TWI720662B - Servo amplifier and servo system - Google Patents

Servo amplifier and servo system Download PDF

Info

Publication number
TWI720662B
TWI720662B TW108138372A TW108138372A TWI720662B TW I720662 B TWI720662 B TW I720662B TW 108138372 A TW108138372 A TW 108138372A TW 108138372 A TW108138372 A TW 108138372A TW I720662 B TWI720662 B TW I720662B
Authority
TW
Taiwan
Prior art keywords
torque
motor
load torque
unit
servo amplifier
Prior art date
Application number
TW108138372A
Other languages
Chinese (zh)
Other versions
TW202025613A (en
Inventor
藍原隆司
Original Assignee
日商富士電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商富士電機股份有限公司 filed Critical 日商富士電機股份有限公司
Publication of TW202025613A publication Critical patent/TW202025613A/en
Application granted granted Critical
Publication of TWI720662B publication Critical patent/TWI720662B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/05Torque loop, i.e. comparison of the motor torque with a torque reference

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

提供一種伺服放大器,其具備:根據馬達的轉矩指令對所述馬達的轉矩進行控制的轉矩控制部;根據所述馬達的速度、以及所述轉矩指令或所述馬達的轉矩檢測值對所述馬達承受的負載轉矩進行估計的負載轉矩估計部;和將與由所述負載轉矩估計部估計的所述負載轉矩相關的監視資訊輸出至伺服放大器外部的輸出部。Provided is a servo amplifier including: a torque control unit that controls the torque of the motor based on a torque command of the motor; and detection based on the speed of the motor and the torque command or the torque of the motor A load torque estimating unit that estimates the load torque received by the motor; and outputting monitoring information related to the load torque estimated by the load torque estimating unit to an output unit outside the servo amplifier.

Description

伺服放大器和伺服系統Servo amplifier and servo system

本發明涉及伺服放大器(servo amplifier)和伺服系統。The present invention relates to a servo amplifier and a servo system.

以往,熟知一種具備負載轉矩觀測器(load torque observer)的馬達控制裝置,該負載轉矩觀測器可根據轉矩指令和馬達速度對馬達承受的負載轉矩進行估計(estimation)(例如,參照專利文獻1)。 [先前技術文獻] [專利文獻] [專利文獻1](日本)特開2012-130214號公報In the past, a motor control device equipped with a load torque observer is well known. The load torque observer can estimate the load torque borne by the motor based on the torque command and the motor speed (for example, refer to Patent Document 1). [Prior Technical Literature] [Patent Literature] [Patent Document 1] (Japan) JP 2012-130214 A

[發明欲解決的課題] 然而,現有技術中,所估計的負載轉矩是以抑制干擾(disturbance)為目的而應用於馬達控制的,並不能從外部對與所估計的負載轉矩相關的資訊進行監視。 因此,本公開的目的在於,提供一種可從外部對與所估計的負載轉矩相關的資訊進行監視的伺服放大器和伺服系統。 [用於解決課題的手段] 本公開提供一種伺服放大器,其具備: 轉矩控制部,其根據馬達的轉矩指令對所述馬達的轉矩進行控制; 負載轉矩估計部,其根據所述馬達的速度、以及所述轉矩指令或所述馬達的轉矩檢測值,對所述馬達承受的負載轉矩進行估計;和 輸出部,其將與由所述負載轉矩估計部估計的所述負載轉矩相關的監視資訊輸出至伺服放大器的外部。 根據本公開的技術,由於與所估計的負載轉矩相關的監視資訊可被輸出至伺服放大器的外部,所以可從伺服放大器的外部對與所估計的負載轉矩相關的資訊進行監視。 此外,本公開還提供一種伺服系統,其具備伺服放大器和設置在所述伺服放大器的外部的外部裝置,其中: 所述伺服放大器具備轉矩控制部,其根據馬達的轉矩指令對所述馬達的轉矩進行控制, 所述外部裝置具備 負載轉矩估計部,其根據所述馬達的速度、以及所述轉矩指令或所述馬達的轉矩檢測值,對所述馬達承受的負載轉矩進行估計;和 輸出部,其將與由所述負載轉矩估計部估計的所述負載轉矩相關的監視資訊輸出至所述外部裝置的外部。 根據本公開的技術,由於與所估計的所述負載轉矩相關的監視資訊可被輸出至外部裝置的外部,所以可從外部裝置的外部對與所估計的負載轉矩相關的資訊進行監視。 [發明的效果] 根據本公開的技術,能夠提供一種可從外部對與所估計的負載轉矩相關的資訊進行監視的伺服放大器和伺服系統。[The problem to be solved by the invention] However, in the prior art, the estimated load torque is applied to motor control for the purpose of suppressing disturbance, and the information related to the estimated load torque cannot be monitored from the outside. Therefore, the purpose of the present disclosure is to provide a servo amplifier and a servo system that can monitor information related to the estimated load torque from the outside. [Means used to solve the problem] The present disclosure provides a servo amplifier, which includes: A torque control unit, which controls the torque of the motor according to the torque command of the motor; A load torque estimation unit that estimates the load torque borne by the motor based on the speed of the motor and the torque command or the torque detection value of the motor; and An output unit that outputs monitoring information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier. According to the technology of the present disclosure, since the monitoring information related to the estimated load torque can be output to the outside of the servo amplifier, the information related to the estimated load torque can be monitored from the outside of the servo amplifier. In addition, the present disclosure also provides a servo system including a servo amplifier and an external device provided outside the servo amplifier, wherein: The servo amplifier includes a torque control unit that controls the torque of the motor based on the torque command of the motor, The external device has A load torque estimation unit that estimates the load torque borne by the motor based on the speed of the motor and the torque command or the torque detection value of the motor; and An output unit that outputs monitoring information related to the load torque estimated by the load torque estimation unit to the outside of the external device. According to the technology of the present disclosure, since the monitoring information related to the estimated load torque can be output to the outside of the external device, the information related to the estimated load torque can be monitored from the outside of the external device. [Effects of the invention] According to the technology of the present disclosure, it is possible to provide a servo amplifier and a servo system that can monitor information related to the estimated load torque from the outside.

以下,參照附圖對本公開的實施方式進行說明。首先,為了與本公開的實施方式進行比較,對個比較方式的伺服系統的構成進行說明。 圖1是一比較方式的伺服系統構成例示圖。圖1所示的伺服系統100是對用於使未圖示的可動部移動的馬達9進行控制的馬達系統。伺服系統100具備速度控制部1、加法器2、轉矩控制部3、速度檢測部4、負載轉矩估計部5、控制濾波器(filter)8、馬達9及位置檢測器10。 轉矩控制部3根據轉矩指令Tr對馬達9的轉矩進行控制。位置檢測器10對馬達9的位置(旋轉位置θ)進行檢測。位置檢測器也被稱為PG。速度檢測部4根據由位置檢測器10檢測的旋轉位置θ的時間變化,對馬達9的速度(角速度ω)進行檢測。速度控制部1生成用於使由速度檢測部4檢測的角速度ω跟隨(follow)從未圖示的上一級的控制塊所供給的速度指令ωr的反饋轉矩指令Tb。 此外,伺服系統100具備用於對馬達9承受的負載轉矩TL進行估計的負載轉矩估計部5。負載轉矩估計部5可根據轉矩指令Tr和由速度檢測部4檢測的角速度ω對負載轉矩TL進行估計。 當將馬達9的發生轉矩設為T、將馬達9的慣性矩(慣性值)設為J、並將馬達9的角加速度設為dω/dt時,在負載轉矩TL包括馬達9和可動部的摩擦轉矩的情況下,下述關系式成立。 TL=T-J×dω/dt    ・・・式1 因此,負載轉矩估計部5通過藉由減法器7從轉矩指令Tr減去由轉矩計算部6計算的轉矩(J×dω/dt),可對負載轉矩TL進行估計。 控制濾波器8通過對由負載轉矩估計部5估計的負載轉矩TL(估計負載轉矩TLe)進行濾波器處理,可生成補償負載轉矩TLc。加法器2通過使由速度控制部1生成的反饋轉矩指令Tb加上由控制濾波器8生成的補償負載轉矩TLc,可生成轉矩指令Tr。 然而,圖1所示的伺服系統100中,由負載轉矩估計部5估計的負載轉矩TL是以抑制干擾為目的而應用於馬達控制的,並不能從外部對與估計負載轉矩TLe相關的資訊進行監視。 因此,本公開的實施方式的伺服放大器和伺服系統具備可從外部對與所估計的負載轉矩相關的資訊進行監視的構成。接下來,對本公開的實施方式的伺服放大器和伺服系統的該構成進行說明。 圖2是第1實施方式的伺服放大器構成例示圖。圖2所示的伺服放大器111是對用於使未圖示的可動部移動的馬達19進行驅動的馬達驅動裝置,例如,通過對馬達19進行驅動,可將可動部的位置控制在預期的位置。就伺服放大器111而言,例如,作為其主要構成可具備速度控制部11、加法器12、轉矩控制部13、速度檢測部14、負載轉矩估計部15、控制濾波器18及輸出部23。 轉矩控制部13基於轉矩指令Tr對馬達19的轉矩進行控制。位置檢測器20對馬達19的位置(旋轉位置θ)進行檢測。速度檢測部14根據由位置檢測器20檢測的位置的時間變化,對馬達19的速度(角速度ω)進行檢測。速度控制部11生成用於使由速度檢測部14檢測的角速度ω跟隨從未圖示的前一級的控制塊所供給的速度指令ωr的反饋轉矩指令Tb。例如,速度控制部11通過採用使由速度檢測部14所檢測的角速度ω和從未圖示的前一級的控制塊所供給的速度指令ωr之偏差為零的方式進行PI控制(比例控制和積分控制),可生成反饋轉矩指令Tb。 負載轉矩估計部15根據轉矩指令Tr或轉矩檢測值Tde、以及由速度檢測部14檢測的角速度ω,對馬達9承受的負載轉矩TL(施加至馬達9的負載轉矩TL)進行估計。負載轉矩估計部5例如是對負載轉矩TL進行估計的負載轉矩觀測器。負載轉矩TL的估計中使用的轉矩檢測值Tde表示由轉矩檢測部21檢測的馬達19的轉矩值。也就是說,負載轉矩TL的估計中可使用轉矩指令Tr,也可使用轉矩檢測值Tde。例如,在轉矩檢測部21不包含於伺服放大器111的情況下,轉矩指令Tr可用於負載轉矩TL的估計。以下,也將由負載轉矩估計部15估計的負載轉矩TL稱為“估計負載轉矩TLe”。 負載轉矩估計部15例如具有與圖1所示的負載轉矩估計部5相同的構成。此情況下,負載轉矩估計部15與上述同樣,通過藉由減法器7從轉矩指令Tr或轉矩檢測值Tde減去由轉矩計算部6計算的轉矩(J×dω/dt),可對負載轉矩TL進行估計。需要說明的是,負載轉矩估計部15並不限定於該構成,還可為任意的公知構成。 控制濾波器18通過對估計負載轉矩TLe進行濾波器處理,可生成補償負載轉矩TLc。加法器12通過使由速度控制部11生成的反饋轉矩指令Tb加上由控制濾波器18生成的補償負載轉矩TLc,可生成轉矩指令Tr。 伺服放大器111具備將與估計負載轉矩TLe相關的監視資訊輸出至伺服放大器111的外部的輸出部23。據此,與估計負載轉矩TLe相關的監視資訊可被輸出至伺服放大器111的外部。因此,不僅能以抑制干擾為目的地將估計負載轉矩TLe反映於轉矩指令Tr的計算,以用於馬達19的伺服控制,而且還可從伺服放大器111的外部對與估計負載轉矩TLe相關的資訊進行監視。 例如,如果由馬達19進行位置等的控制的可動部或馬達19本身發生了異常(例如,經年劣化、異物接觸等),則估計負載轉矩TLe也會發生變化。因此,通過在伺服放大器111的外部對與從輸出部23輸出的估計負載轉矩TLe相關的監視資訊進行監視,可在伺服放大器111的外部對可動部或馬達19發生的異常進行檢測。 作為與估計負載轉矩TLe相關的監視資訊,例如可列舉出估計負載轉矩TLe的值、在伺服放大器111的內部基於估計負載轉矩TLe進行異常判定而得的結果等。 輸出部23可採用模擬(analog)輸出的方式將與估計負載轉矩TLe相關的監視資訊輸出至外部,也可採用有線通信或無線通信的方式將其輸出至外部。 例如,輸出部23可將估計負載轉矩TLe的值轉換為模擬電壓值並將其輸出至外部。據此,伺服放大器111的外部裝置可根據從輸出部23輸出的模擬電壓值,對估計負載轉矩TLe的值進行檢測。另外,在輸出部23藉由預定的載波並採用通信的方式對估計負載轉矩TLe的值進行輸出的情況下,同樣地,伺服放大器111的外部裝置通過接收從輸出部23輸出的載波,也可對估計負載轉矩TLe的值進行檢測。 同理,輸出部23可將表示在伺服放大器111的內部根據估計負載轉矩TLe進行異常判定而得的結果(正常或異常)的資訊轉換為模擬電壓值並將其輸出至外部,還可藉由預定的載波並採用通信的方式將其輸出至外部。據此,伺服放大器111的外部裝置通過對從輸出部23輸出的模擬電壓或載波進行檢測,可獲得伺服放大器111進行異常判定而得的結果。 此外,進行負載轉矩TL的估計時,如上所述可使用馬達19的慣性矩(慣性值J)。當負載轉矩TL的估計中所使用的慣性值兼作伺服控制參數(例如,由速度控制部11進行的比例控制的控制增益A)的確定中所使用的慣性值的情況下,就負載轉矩TL的估計中所使用的慣性值而言,並不限定於一定要對其進行正確的設定。其原因在於,適於提高伺服控制的控制性的慣性值並不一定也適於提高負載轉矩TL的估計精度。此外,就伺服控制參數的確定中所使用的慣性矩比而言,即使存在一些誤差,只要不會發生伺服控制上的障礙即可,因此,存在將其設定為1、5、10倍等的概略值,並藉由自動調諧增益對其進行微細調整的情況。在這樣的情況下,難以高精度地對負載轉矩TL進行估計。 關於該點,圖2所示的伺服放大器111具備對第1慣性值Jc進行設定以用於進行馬達19的控制的第1慣性值設定部24和對第2慣性值Je進行設定以用於進行負載轉矩TL的估計的第2慣性值設定部26。也就是說,設置了可分別獨立地對負載轉矩TL的估計用和馬達19的控制用的慣性值進行設定的功能。通過設置這樣的可分別獨立地對慣性值進行設定的功能,為了進行負載轉矩TL的估計,可設定更適當的慣性值,由此可提高負載轉矩TL的估計精度。此外,由於可分別設定用於負載轉矩TL的估計和馬達19的控制的適當的慣性值,因此可同時提高伺服控制的控制精度和負載轉矩TL的估計精度。 例如,第1慣性值設定部24可根據所輸入的第1慣性值Jc對控制增益A進行自動調諧,並將自動調諧後的控制增益A設定給由速度控制部11進行的比例控制的控制增益。另一方面,第2慣性值設定部26可將所輸入的第2慣性值Je設定給在負載轉矩估計部15內用於進行負載轉矩TL的估計的慣性值J(例如,用於計算上述(J×dω/dt)的慣性值J)。 需要說明的是,就第1慣性值Jc或第2慣性值Je而言,可為由伺服放大器111所具備的慣性值估計計算功能所獲得的估計值,也可為根據使用者或從伺服放大器111的外部裝置所輸入的資訊而確定的值。 此外,圖2所示的伺服放大器111具備對第1濾波器值Kc進行設定以用於進行馬達19的控制的第1濾波器值設定部25和對第2濾波器值Ko進行設定以用於進行與估計負載轉矩TLe相關的監視資訊的輸出的第2濾波器值設定部27。也就是說,設置了可分別獨立地對用於監視資訊的輸出和用於馬達19的控制的濾波器值進行設定的功能。通過設置這樣的可分別獨立地對濾波器值進行設定的功能,不僅可對適於馬達19的伺服控制的濾波器值進行設定,而且還可對適於伺服放大器111的外部裝置對監視資訊進行監視的濾器值進行設定。 伺服放大器111例如具備馬達19的控制用的控制濾波器18和監視資訊的輸出用的輸出濾波器22。第1濾波器值設定部25向控制濾波器18設定所輸入的第1濾波器值Kc,第2濾波器值設定部27向輸出濾波器22設定所輸入的第2濾波器值Ko。例如,第1濾波器值Kc為控制濾波器18的響應時常數,第2濾波器值Ko為輸出濾波器22的響應時常數,但並不限定於此,也可將其設定為適於由各濾波器進行的濾波器處理的值。控制濾波器18通過對估計負載轉矩TLe實施使用了第1濾波器值Kc的濾波器處理,可生成補償負載轉矩TLc。輸出濾波器22通過對估計負載轉矩TLe實施使用了第2濾波器值Ko的濾波器處理,可生成適於外部監視的估計負載轉矩TLe。 需要說明的是,輸出濾波器22可為低通濾波器、帶通濾波器或高通濾波器。可對其設定適於外部監視的濾波器特性。 圖3是第2實施方式的伺服系統構成例示圖。圖3所示的伺服系統120是對用於使未圖示的可動部移動的馬達19進行驅動和控制的馬達驅動控制系統,例如,通過對馬達19進行驅動和控制,可將可動部的位置控制於預期的位置。需要說明的是,就與上述實施方式相同的構成和效果的說明而言,這裡援引上述說明,並對其進行了省略或簡略。 伺服系統120具備伺服放大器121和外部裝置122。外部裝置122是設置在伺服放大器121的外部的機器,並具備對負載轉矩TL進行監視的監視功能。外部裝置122可通過模擬電壓、或者有線通信或無線通信的方式與伺服放大器121連接。 第2實施方式中,負載轉矩估計部15、輸出濾波器22、輸出部23、第2慣性值設定部26及第2濾波器值設定部27並不包含於伺服放大器121,而是包含於外部裝置122,這點與第1實施方式不同。根據第2實施方式,由於與估計負載轉矩TLe相關的監視資訊可被輸出至外部裝置122的外部,所以可從外部裝置122的外部對與估計負載轉矩TLe相關的資訊進行監視。因此,通過在外部裝置122的外部對與從輸出部23輸出的估計負載轉矩TLe相關的監視資訊進行監視,可在外部裝置122的外部對可動部或馬達19發生的異常進行檢測。 負載轉矩估計部15通過從伺服放大器121獲取包含角速度ω、以及轉矩指令Tr或轉矩檢測值Tde的資訊,可對負載轉矩TL進行估計。控制濾波器18通過從外部裝置122獲取由負載轉矩估計部15估計的負載轉矩TL(估計負載轉矩TLe),可生成補償負載轉矩TLc。 圖4是第3實施方式的伺服放大器構成例示圖。圖4所示的伺服放大器131是對用於使未圖示的可動部移動的馬達19進行驅動的馬達驅動裝置,例如,通過對馬達19進行驅動,可將可動部的位置控制於預期的位置。需要說明的是,就與上述實施方式相同的構成和效果的說明而言,這裡援引上述說明,並對其進行了省略或簡略。 第1實施方式中,負載轉矩TL包含摩擦轉矩,由此對負載轉矩TL進行了估計。第3實施方式則示出了以負載轉矩TL不包含馬達9和可動部的摩擦轉矩的方式對負載轉矩TL進行估計的情況。當將馬達19所承受的干擾轉矩設為Td並將干擾轉矩Td中所包含的摩擦轉矩設為Tf時,在負載轉矩TL不包含馬達9和可動部的摩擦轉矩Tf的情況下,下述關系式成立。 TL=Td-Tf=T-J×dω/dt-Tf    ・・・式2 通過從估計對象即負載轉矩TL中除掉摩擦轉矩Tf,可提高負載轉矩TL的估計精度。需要說明的是,摩擦轉矩Tf例如可由庫倫摩擦和動摩擦的函數表示。 在使用公式2對負載轉矩TL進行估計的情況下,負載轉矩估計部15例如具有干擾轉矩估計部28、摩擦轉矩估計部29及減法器30。 干擾轉矩估計部28可根據轉矩指令Tr或轉矩檢測值Tde、以及由速度檢測部14檢測的角速度ω,對馬達19承受的干擾轉矩Td(施加至馬達19的干擾轉矩Td)進行估計。干擾轉矩估計部28例如是可對干擾轉矩Td進行估計的干擾轉矩觀測器。以下,也將由干擾轉矩估計部28估計的干擾轉矩Td稱為“估計干擾轉矩Tdie”。 干擾轉矩估計部28例如具有與圖1所示的負載轉矩估計部5相同的構成。此情況下,干擾轉矩估計部28與上述同樣地通過藉由減法器7從轉矩指令Tr或轉矩檢測值Tde減去由轉矩計算部6計算的轉矩(J×dω/dt),可對干擾轉矩Td進行估計。需要說明的是,干擾轉矩估計部28並不限定於該構成,也可為任意的公知構成。 摩擦轉矩估計部29根據由速度檢測部14檢測的角速度ω,可對干擾轉矩Td中所含的摩擦轉矩Tf進行估計。圖5是角速度ω和摩擦轉矩Tf的關系的例示圖。如圖5所示,摩擦轉矩Tf具有以庫倫摩擦為起點,按照基於粘性摩擦的斜率,隨角速度ω變快而變大的特性。摩擦轉矩估計部29根據圖5所示的特性可對摩擦轉矩Tf進行估計。 如公式2所示,負載轉矩TL可藉由從干擾轉矩Td減去摩擦轉矩Tf而被進行估計。因此,負載轉矩估計部15通過藉由減法器30從由干擾轉矩估計部28估計的干擾轉矩Td(估計干擾轉矩Tdie)減去由摩擦轉矩估計部29估計的摩擦轉矩Tf,可對負載轉矩TL進行估計。也就是說,通過摩擦轉矩Tf的補償,可獲得高精度的估計負載轉矩TLe。 圖6是第4實施方式的伺服系統構成例示圖。圖6所示的伺服系統140是對用於使未圖示的可動部移動的馬達19進行驅動和控制的馬達驅動控制系統,例如,通過對馬達19進行驅動和控制,可將可動部的位置控制於預期的位置。需要說明的是,就與上述實施方式相同的構成和效果的說明而言,這裡援引上述說明,並對其進行了省略或簡略。 伺服系統140具備伺服放大器141和外部裝置142。外部裝置142是設置在伺服放大器141的外部的機器,並具有對負載轉矩TL進行監視的監視功能。外部裝置142可採用模擬電壓、或者有線通信或無線通信的方式與伺服放大器141進行連接。 第4實施方式中,負載轉矩估計部15、輸出濾波器22、輸出部23、第2慣性值設定部26及第2濾波器值設定部27並不包含於伺服放大器141,而是包含於外部裝置142,這點與第3實施方式不同。根據第4實施方式,由於與估計負載轉矩TLe相關的監視資訊可被輸出至外部裝置142的外部,因此可在外部裝置142的外部對與估計負載轉矩TLe相關的資訊進行監視。 圖7是第5實施方式的伺服放大器構成例示圖。圖7所示的伺服放大器151是對用於使未圖示的可動部移動的馬達19進行驅動的馬達驅動裝置,例如,通過對馬達19進行驅動,可將可動部的位置控制於預期的位置。需要說明的是,就與上述實施方式相同的構成和效果的說明而言,這裡援引上述說明,並對其進行了省略或簡略。 伺服放大器151具備對估計負載轉矩TLe的異常進行判定的異常判定部31。輸出部23可將包含由異常判定部31判定的判定結果的、與估計負載轉矩TLe相關的監視資訊輸出至外部。據此,使用者或外部裝置可識別基於估計負載轉矩TLe的異常判定結果。 異常判定部31例如可對估計負載轉矩TLe是否超過了預定的異常判定閾值(level)進行判定,在估計負載轉矩TLe超過了預定的異常判定閾值(level)的情況下,判定為可動部或馬達19發生了異常(例如,經年劣化、異物接觸等)。此外,異常判定部31例如還可在估計負載轉矩TLe超過預定的異常判定閾值(level)的持續時間超過了預定的異常判定閾值(time)的情況下,判定為可動部或馬達19發生了異常(例如,經年劣化、異物接觸等)。 需要說明的是,負載轉矩估計部15可如第1實施方式那樣使用上述公式1對負載轉矩TL進行估計,也可如第3實施方式那樣使用上述公式2對負載轉矩TL進行估計。 圖8是第6實施方式的伺服系統構成例示圖。圖8所示的伺服系統160是對用於使未圖示的可動部移動的馬達19進行驅動和控制的馬達驅動控制系統,例如,通過對馬達19進行驅動和控制,可將可動部的位置控制於預期的位置。需要說明的是,就與上述實施方式相同的構成和效果的說明而言,這裡援引上述說明,並對其進行了省略或簡略。 伺服系統160具備伺服放大器161和外部裝置162。外部裝置162是設置在伺服放大器161的外部的機器,並具有對負載轉矩TL進行監視的監視功能。外部裝置162可通過模擬電壓、或者有線通信或無線通信的方式與伺服放大器161進行連接。 第6實施方式中,外部裝置162具備異常判定部31,這點與第5實施方式不同。輸出部23用於將包含由異常判定部31判定的判定結果的、與估計負載轉矩TLe相關的監視資訊輸出至外部。據此,使用者或與外部裝置162不同的外部裝置可識別基於估計負載轉矩TLe的異常判定結果。 圖9是估計負載轉矩TLe中包含摩擦轉矩Tf的情況下的各波形的例示圖。也就是說,示出了負載轉矩估計部15使用上述公式1對負載轉矩TL進行估計的情況。轉矩指令Tr或轉矩檢測值Tde中包含基於庫倫摩擦和/或動摩擦的摩擦轉矩Tf、馬達9的加減速轉矩等。在負載轉矩估計部15使用上述公式1對負載轉矩TL進行估計的情況下,估計負載轉矩TLe的波形變為如圖9所示的形狀。因此,根據圖9,在想要對可動部或馬達19的劣化等所引起的摩擦變化等進行外部監視的情況下,負載轉矩估計部15優選使用上述公式1對負載轉矩TL進行估計。 圖10是估計負載轉矩TLe中不含摩擦轉矩Tf的情況下的各波形的例示圖。也就是說,示出了負載轉矩估計部15使用上述公式2對負載轉矩TL進行估計的情況。此情況下,就估計負載轉矩TLe的波形而言,如圖10所示,變為通過除掉摩擦轉矩Tf和加減速轉矩而使馬達19暫時承受的負載轉矩TL被剔除後的形狀。因此,根據圖10可知,在想要對至可動部或馬達19的異物咬入等的異物接觸進行外部監視的情況下,負載轉矩估計部15優選使用上述公式2對負載轉矩TL進行估計。 如上所述,根據上述實施方式,由於與所估計的負載轉矩TL相關的監視資訊可被輸出至外部,因此可對與所估計的負載轉矩相關的資訊進行外部監視。 這裡需要說明的是,上述實施方式中,就伺服放大器或外部裝置所具備的估計轉矩估計部等的各部件的功能而言,也可通過被可讀取地保存在存儲器中的程序使CPU(Central Processing Unit)進行工作而實現。 基於上述,可提供一種伺服放大器,其具備:根據馬達的轉矩指令對所述馬達的轉矩進行控制的轉矩控制部;根據所述馬達的速度、以及所述轉矩指令或所述馬達的轉矩檢測值對所述馬達承受的負載轉矩進行估計的負載轉矩估計部;和將與由所述負載轉矩估計部估計的所述負載轉矩相關的監視資訊輸出至伺服放大器的外部的輸出部。 所述伺服放大器還具備:用來設定用於進行所述馬達的控制的第1慣性值的第1慣性值設定部;和用來設定用於進行所述負載轉矩的估計的第2慣性值的第2慣性值設定部。 所述伺服放大器還具備:用來設定用於進行所述監視資訊的輸出的濾波器值設定部。 所述伺服放大器還具備:用來設定用於進行所述馬達的控制的濾波器值的濾波器值設定部。 所述負載轉矩估計部具有:根據所述馬達的速度、以及所述轉矩指令或所述馬達的轉矩檢測值對所述馬達承受的干擾轉矩進行估計的干擾轉矩估計部;根據所述馬達的速度對所述干擾轉矩中所含的摩擦轉矩進行估計的摩擦轉矩估計部;和從由所述干擾轉矩估計部估計的所述干擾轉矩減去由所述摩擦轉矩估計部估計的所述摩擦轉矩從而計算所述負載轉矩的減法器。 所述伺服放大器還具備:對由所述負載轉矩估計部估計的所述負載轉矩的異常進行判定的異常判定部。其中,所述監視資訊包括由所述異常判定部判定的判定結果。 所述輸出部採用模擬輸出或通信的方式將所述監視資訊輸出至外部。 另外,還可提供一種伺服系統,其具備:伺服放大器;和設置在所述伺服放大器的外部的外部裝置。其中,所述伺服放大器具備:根據馬達的轉矩指令對所述馬達的轉矩進行控制的轉矩控制部。所述外部裝置具備:根據所述馬達的速度、以及所述轉矩指令或所述馬達的轉矩檢測值對所述馬達承受的負載轉矩進行估計的負載轉矩估計部;和將與由所述負載轉矩估計部估計的所述負載轉矩相關的監視資訊輸出至所述外部裝置的外部的輸出部。 以上盡管藉由實施方式對伺服放大器和伺服系統進行了說明,但本發明並不限定於上述實施方式。在不超出本發明的技術範圍的情況下,也可對其進行各種各樣的變形和改良。Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. First, in order to compare with the embodiment of the present disclosure, the configuration of a servo system of a comparison method will be described. Fig. 1 is a diagram showing an example of the configuration of a servo system in a comparison mode. The servo system 100 shown in FIG. 1 is a motor system which controls the motor 9 for moving the movable part which is not shown in figure. The servo system 100 includes a speed control unit 1, an adder 2, a torque control unit 3, a speed detection unit 4, a load torque estimation unit 5, a control filter 8, a motor 9, and a position detector 10. The torque control unit 3 controls the torque of the motor 9 based on the torque command Tr. The position detector 10 detects the position (rotation position θ) of the motor 9. The position detector is also called PG. The speed detection unit 4 detects the speed (angular speed ω) of the motor 9 based on the temporal change of the rotational position θ detected by the position detector 10. The speed control unit 1 generates a feedback torque command Tb for causing the angular velocity ω detected by the speed detection unit 4 to follow a speed command ωr supplied from an upper-stage control block (not shown). In addition, the servo system 100 includes a load torque estimation unit 5 for estimating the load torque TL received by the motor 9. The load torque estimation unit 5 can estimate the load torque TL based on the torque command Tr and the angular velocity ω detected by the speed detection unit 4. When the generated torque of the motor 9 is set to T, the moment of inertia (inertia value) of the motor 9 is set to J, and the angular acceleration of the motor 9 is set to dω/dt, the load torque TL includes the motor 9 and the movable In the case of the friction torque of the part, the following relational expression holds. TL=T-J×dω/dt ・・・Equation 1 Therefore, the load torque estimation unit 5 can estimate the load torque TL by subtracting the torque (J×dω/dt) calculated by the torque calculation unit 6 from the torque command Tr by the subtractor 7. The control filter 8 performs filter processing on the load torque TL (estimated load torque TLe) estimated by the load torque estimation unit 5 to generate a compensated load torque TLc. The adder 2 can generate the torque command Tr by adding the feedback torque command Tb generated by the speed control unit 1 to the compensation load torque TLc generated by the control filter 8. However, in the servo system 100 shown in FIG. 1, the load torque TL estimated by the load torque estimation unit 5 is applied to motor control for the purpose of suppressing interference, and cannot be correlated with the estimated load torque TLe from the outside. Information to monitor. Therefore, the servo amplifier and the servo system of the embodiment of the present disclosure have a configuration capable of monitoring information related to the estimated load torque from the outside. Next, the configuration of the servo amplifier and the servo system of the embodiment of the present disclosure will be described. Fig. 2 is a diagram showing an example of the configuration of a servo amplifier according to the first embodiment. The servo amplifier 111 shown in FIG. 2 is a motor driving device that drives a motor 19 for moving a movable part not shown. For example, by driving the motor 19, the position of the movable part can be controlled at a desired position. . Regarding the servo amplifier 111, for example, as its main components, a speed control unit 11, an adder 12, a torque control unit 13, a speed detection unit 14, a load torque estimation unit 15, a control filter 18, and an output unit 23 can be provided. . The torque control unit 13 controls the torque of the motor 19 based on the torque command Tr. The position detector 20 detects the position (rotation position θ) of the motor 19. The speed detection unit 14 detects the speed (angular velocity ω) of the motor 19 based on the temporal change of the position detected by the position detector 20. The speed control unit 11 generates a feedback torque command Tb for causing the angular velocity ω detected by the speed detection unit 14 to follow a speed command ωr supplied from a control block of the previous stage (not shown). For example, the speed control unit 11 performs PI control (proportional control and integral control) by adopting a method such that the deviation between the angular velocity ω detected by the speed detecting unit 14 and the speed command ωr supplied from a control block of the previous stage (not shown) is zero. Control), can generate feedback torque command Tb. The load torque estimation unit 15 performs a calculation of the load torque TL (load torque TL applied to the motor 9) applied to the motor 9 based on the torque command Tr or the torque detection value Tde, and the angular velocity ω detected by the speed detection unit 14. estimate. The load torque estimation unit 5 is, for example, a load torque observer that estimates the load torque TL. The torque detection value Tde used in the estimation of the load torque TL indicates the torque value of the motor 19 detected by the torque detection unit 21. In other words, the torque command Tr may be used for the estimation of the load torque TL, and the torque detection value Tde may also be used. For example, in a case where the torque detection unit 21 is not included in the servo amplifier 111, the torque command Tr can be used to estimate the load torque TL. Hereinafter, the load torque TL estimated by the load torque estimation unit 15 is also referred to as "estimated load torque TLe". The load torque estimation unit 15 has, for example, the same configuration as the load torque estimation unit 5 shown in FIG. 1. In this case, the load torque estimation unit 15 is the same as described above, by subtracting the torque (J×dω/dt) calculated by the torque calculation unit 6 from the torque command Tr or the torque detection value Tde by the subtractor 7 , The load torque TL can be estimated. It should be noted that the load torque estimation unit 15 is not limited to this configuration, and may have any known configuration. The control filter 18 can generate a compensated load torque TLc by performing filter processing on the estimated load torque TLe. The adder 12 can generate a torque command Tr by adding the feedback torque command Tb generated by the speed control unit 11 to the compensation load torque TLc generated by the control filter 18. The servo amplifier 111 includes an output unit 23 that outputs monitoring information related to the estimated load torque TLe to the outside of the servo amplifier 111. According to this, monitoring information related to the estimated load torque TLe can be output to the outside of the servo amplifier 111. Therefore, not only can the estimated load torque TLe be reflected in the calculation of the torque command Tr for the purpose of suppressing interference for the servo control of the motor 19, but also the estimated load torque TLe can be compared with the estimated load torque TLe from the outside of the servo amplifier 111. Related information is monitored. For example, if an abnormality occurs in the movable part of the motor 19 that controls the position or the like or the motor 19 itself (for example, deterioration over the years, contact with foreign objects, etc.), the estimated load torque TLe also changes. Therefore, by monitoring the monitoring information related to the estimated load torque TLe output from the output unit 23 outside the servo amplifier 111, it is possible to detect an abnormality occurring in the movable part or the motor 19 outside the servo amplifier 111. As the monitoring information related to the estimated load torque TLe, for example, the value of the estimated load torque TLe, the result of abnormality determination based on the estimated load torque TLe in the servo amplifier 111, and the like can be cited. The output unit 23 may output the monitoring information related to the estimated load torque TLe to the outside by means of analog output, and may also output it to the outside by means of wired communication or wireless communication. For example, the output unit 23 may convert the value of the estimated load torque TLe into an analog voltage value and output it to the outside. According to this, the external device of the servo amplifier 111 can detect the value of the estimated load torque TLe based on the analog voltage value output from the output unit 23. In addition, when the output unit 23 uses a predetermined carrier wave to output the value of the estimated load torque TLe by means of communication, similarly, the external device of the servo amplifier 111 receives the carrier wave output from the output unit 23. The value of the estimated load torque TLe can be detected. In the same way, the output unit 23 can convert the information indicating the result (normal or abnormal) of the abnormality determination based on the estimated load torque TLe inside the servo amplifier 111 into an analog voltage value and output it to the outside. A predetermined carrier wave is used to output it to the outside by means of communication. According to this, the external device of the servo amplifier 111 detects the analog voltage or the carrier wave output from the output unit 23 to obtain the result of the abnormality determination of the servo amplifier 111. In addition, when the load torque TL is estimated, the moment of inertia (inertia value J) of the motor 19 can be used as described above. When the inertia value used in the estimation of the load torque TL also serves as the inertia value used in the determination of the servo control parameter (for example, the control gain A of the proportional control performed by the speed control unit 11), the load torque The inertia value used in the estimation of TL is not limited to the correct setting. The reason is that the inertia value suitable for improving the controllability of the servo control is not necessarily also suitable for improving the estimation accuracy of the load torque TL. In addition, with regard to the moment of inertia ratio used in the determination of the servo control parameters, even if there is some error, as long as there is no obstacle to the servo control, it is possible to set it to 1, 5, 10 times, etc. Approximate value and fine-tuning the gain by auto tuning. In such a case, it is difficult to estimate the load torque TL with high accuracy. In this regard, the servo amplifier 111 shown in FIG. 2 includes a first inertia value setting unit 24 for setting the first inertia value Jc for controlling the motor 19, and a second inertia value Je for setting the second inertia value Je The estimated second inertia value setting unit 26 of the load torque TL. That is, a function is provided that can independently set the inertia values for the estimation of the load torque TL and the control of the motor 19. By providing such a function that can independently set the inertia value, in order to estimate the load torque TL, a more appropriate inertia value can be set, thereby improving the estimation accuracy of the load torque TL. In addition, since appropriate inertia values for the estimation of the load torque TL and the control of the motor 19 can be set separately, the control accuracy of the servo control and the estimation accuracy of the load torque TL can be improved at the same time. For example, the first inertia value setting unit 24 can automatically tune the control gain A based on the input first inertia value Jc, and set the auto-tuned control gain A to the control gain of the proportional control performed by the speed control unit 11. . On the other hand, the second inertia value setting unit 26 can set the input second inertia value Je to the inertia value J used in the load torque estimating unit 15 to estimate the load torque TL (for example, for calculating The above-mentioned (J×dω/dt) inertia value J). It should be noted that the first inertia value Jc or the second inertia value Je may be an estimated value obtained by the inertia value estimation calculation function of the servo amplifier 111, or may be based on the user or from the servo amplifier The value determined by the information input by the external device of 111. In addition, the servo amplifier 111 shown in FIG. 2 includes a first filter value setting unit 25 that sets the first filter value Kc for use in controlling the motor 19, and a second filter value Ko for setting the second filter value Ko. The second filter value setting unit 27 outputs monitoring information related to the estimated load torque TLe. In other words, a function is provided that can independently set the output for monitoring information and the filter value for control of the motor 19. By providing such a function that can independently set the filter value, not only the filter value suitable for the servo control of the motor 19 can be set, but also the monitoring information of the external device suitable for the servo amplifier 111 can be set. Set the monitored filter value. The servo amplifier 111 includes, for example, a control filter 18 for controlling the motor 19 and an output filter 22 for outputting monitoring information. The first filter value setting unit 25 sets the input first filter value Kc to the control filter 18, and the second filter value setting unit 27 sets the input second filter value Ko to the output filter 22. For example, the first filter value Kc is the response time constant of the control filter 18, and the second filter value Ko is the response time constant of the output filter 22, but it is not limited to this, and it may be set to be suitable for The value of the filter processing performed by each filter. The control filter 18 performs filter processing using the first filter value Kc on the estimated load torque TLe, thereby generating a compensated load torque TLc. The output filter 22 performs filter processing using the second filter value Ko on the estimated load torque TLe, thereby generating an estimated load torque TLe suitable for external monitoring. It should be noted that the output filter 22 may be a low-pass filter, a band-pass filter, or a high-pass filter. Filter characteristics suitable for external monitoring can be set. Fig. 3 is a diagram showing an example of the configuration of a servo system according to a second embodiment. The servo system 120 shown in FIG. 3 is a motor drive control system that drives and controls a motor 19 for moving a movable part not shown. For example, by driving and controlling the motor 19, the position of the movable part can be adjusted Control in the expected position. It should be noted that, regarding the description of the same configuration and effects as the above-mentioned embodiment, the above-mentioned description is cited here, and the above-mentioned description is omitted or abbreviated. The servo system 120 includes a servo amplifier 121 and an external device 122. The external device 122 is a device installed outside the servo amplifier 121, and has a monitoring function for monitoring the load torque TL. The external device 122 may be connected to the servo amplifier 121 by means of analog voltage, or wired communication or wireless communication. In the second embodiment, the load torque estimation unit 15, the output filter 22, the output unit 23, the second inertia value setting unit 26, and the second filter value setting unit 27 are not included in the servo amplifier 121, but are included in The external device 122 is different from the first embodiment in this point. According to the second embodiment, since the monitoring information related to the estimated load torque TLe can be output to the outside of the external device 122, the information related to the estimated load torque TLe can be monitored from the outside of the external device 122. Therefore, by monitoring the monitoring information related to the estimated load torque TLe output from the output unit 23 outside the external device 122, it is possible to detect the abnormality of the movable part or the motor 19 outside the external device 122. The load torque estimation unit 15 can estimate the load torque TL by acquiring information including the angular velocity ω and the torque command Tr or the torque detection value Tde from the servo amplifier 121. The control filter 18 obtains the load torque TL (estimated load torque TLe) estimated by the load torque estimating unit 15 from the external device 122 to generate a compensated load torque TLc. Fig. 4 is a diagram showing an example of the configuration of a servo amplifier according to a third embodiment. The servo amplifier 131 shown in FIG. 4 is a motor driving device that drives a motor 19 for moving a movable part not shown. For example, by driving the motor 19, the position of the movable part can be controlled to a desired position. . It should be noted that, regarding the description of the same configuration and effects as the above-mentioned embodiment, the above-mentioned description is cited here, and the above-mentioned description is omitted or abbreviated. In the first embodiment, the load torque TL includes the friction torque, and thus the load torque TL is estimated. In the third embodiment, the load torque TL is estimated so that the load torque TL does not include the friction torque of the motor 9 and the movable part. When the disturbance torque received by the motor 19 is set to Td and the friction torque included in the disturbance torque Td is set to Tf, when the load torque TL does not include the friction torque Tf of the motor 9 and the movable part Next, the following relationship holds. TL=Td-Tf=T-J×dω/dt-Tf ・・・Equation 2 By removing the friction torque Tf from the load torque TL that is the estimation target, the estimation accuracy of the load torque TL can be improved. It should be noted that the friction torque Tf can be represented by a function of Coulomb friction and dynamic friction, for example. When the load torque TL is estimated using Equation 2, the load torque estimation unit 15 has, for example, a disturbance torque estimation unit 28, a friction torque estimation unit 29, and a subtractor 30. The disturbance torque estimation unit 28 can receive the disturbance torque Td (the disturbance torque Td applied to the motor 19) to the motor 19 based on the torque command Tr or the torque detection value Tde and the angular velocity ω detected by the speed detection unit 14 Make an estimate. The disturbance torque estimation unit 28 is, for example, a disturbance torque observer that can estimate the disturbance torque Td. Hereinafter, the disturbance torque Td estimated by the disturbance torque estimation unit 28 is also referred to as “estimated disturbance torque Tdie”. The disturbance torque estimation unit 28 has, for example, the same configuration as the load torque estimation unit 5 shown in FIG. 1. In this case, the disturbance torque estimation unit 28 uses the subtractor 7 to subtract the torque calculated by the torque calculation unit 6 (J×dω/dt) from the torque command Tr or the torque detection value Tde in the same manner as described above. , The disturbance torque Td can be estimated. It should be noted that the disturbance torque estimation unit 28 is not limited to this configuration, and may have any known configuration. The friction torque estimation unit 29 can estimate the friction torque Tf included in the disturbance torque Td based on the angular velocity ω detected by the speed detection unit 14. Fig. 5 is an illustration of the relationship between the angular velocity ω and the friction torque Tf. As shown in FIG. 5, the friction torque Tf has a characteristic of starting from Coulomb friction and increasing as the angular velocity ω increases according to the slope based on the viscous friction. The friction torque estimation unit 29 can estimate the friction torque Tf based on the characteristics shown in FIG. 5. As shown in Equation 2, the load torque TL can be estimated by subtracting the friction torque Tf from the disturbance torque Td. Therefore, the load torque estimation unit 15 subtracts the friction torque Tf estimated by the friction torque estimation unit 29 from the disturbance torque Td (estimated disturbance torque Tdie) estimated by the disturbance torque estimation unit 28 by the subtractor 30. , The load torque TL can be estimated. That is, through compensation of the friction torque Tf, a high-precision estimated load torque TLe can be obtained. Fig. 6 is a diagram showing an example of the configuration of a servo system according to a fourth embodiment. The servo system 140 shown in FIG. 6 is a motor drive control system that drives and controls a motor 19 for moving a movable part not shown. For example, by driving and controlling the motor 19, the position of the movable part can be adjusted Control in the expected position. It should be noted that, regarding the description of the same configuration and effects as the above-mentioned embodiment, the above-mentioned description is cited here, and the above-mentioned description is omitted or abbreviated. The servo system 140 includes a servo amplifier 141 and an external device 142. The external device 142 is a device provided outside the servo amplifier 141, and has a monitoring function for monitoring the load torque TL. The external device 142 may be connected to the servo amplifier 141 by means of analog voltage, wired communication or wireless communication. In the fourth embodiment, the load torque estimation unit 15, the output filter 22, the output unit 23, the second inertia value setting unit 26, and the second filter value setting unit 27 are not included in the servo amplifier 141, but are included in The external device 142 is different from the third embodiment in this point. According to the fourth embodiment, since the monitoring information related to the estimated load torque TLe can be output to the outside of the external device 142, the information related to the estimated load torque TLe can be monitored outside the external device 142. Fig. 7 is a diagram showing an example of the configuration of a servo amplifier according to a fifth embodiment. The servo amplifier 151 shown in FIG. 7 is a motor driving device that drives a motor 19 for moving a movable part not shown. For example, by driving the motor 19, the position of the movable part can be controlled to a desired position. . It should be noted that, regarding the description of the same configuration and effects as the above-mentioned embodiment, the above-mentioned description is cited here, and the above-mentioned description is omitted or abbreviated. The servo amplifier 151 includes an abnormality determination unit 31 that determines abnormality of the estimated load torque TLe. The output unit 23 can output monitoring information related to the estimated load torque TLe including the determination result determined by the abnormality determination unit 31 to the outside. Accordingly, the user or the external device can recognize the abnormality determination result based on the estimated load torque TLe. For example, the abnormality determination unit 31 may determine whether the estimated load torque TLe exceeds a predetermined abnormality determination threshold (level), and when the estimated load torque TLe exceeds a predetermined abnormality determination threshold (level), determine that it is a movable part. Or the motor 19 is abnormal (for example, deterioration over the years, contact with foreign objects, etc.). In addition, the abnormality determination unit 31 may also determine that the movable part or the motor 19 has occurred when the estimated load torque TLe exceeds a predetermined abnormality determination threshold (level) for a duration that exceeds a predetermined abnormality determination threshold (time), for example. Abnormality (for example, deterioration over the years, contact with foreign objects, etc.). It should be noted that the load torque estimation unit 15 may estimate the load torque TL using the above-mentioned formula 1 as in the first embodiment, or may estimate the load torque TL using the above-mentioned formula 2 as in the third embodiment. Fig. 8 is a diagram showing an example of the configuration of a servo system according to a sixth embodiment. The servo system 160 shown in FIG. 8 is a motor drive control system that drives and controls a motor 19 for moving a movable part not shown. For example, by driving and controlling the motor 19, the position of the movable part can be adjusted. Control in the expected position. It should be noted that, regarding the description of the same configuration and effects as the above-mentioned embodiment, the above-mentioned description is cited here, and the above-mentioned description is omitted or abbreviated. The servo system 160 includes a servo amplifier 161 and an external device 162. The external device 162 is a device provided outside the servo amplifier 161 and has a monitoring function for monitoring the load torque TL. The external device 162 may be connected to the servo amplifier 161 by means of analog voltage, or wired communication or wireless communication. The sixth embodiment is different from the fifth embodiment in that the external device 162 includes an abnormality determination unit 31. The output unit 23 is for outputting monitoring information related to the estimated load torque TLe including the determination result determined by the abnormality determination unit 31 to the outside. Accordingly, the user or an external device different from the external device 162 can recognize the abnormality determination result based on the estimated load torque TLe. FIG. 9 is an illustration of each waveform when the friction torque Tf is included in the estimated load torque TLe. That is, the case where the load torque estimation unit 15 estimates the load torque TL using the above-mentioned formula 1 is shown. The torque command Tr or the torque detection value Tde includes the friction torque Tf based on Coulomb friction and/or dynamic friction, the acceleration and deceleration torque of the motor 9, and the like. In the case where the load torque estimation unit 15 estimates the load torque TL using the above formula 1, the waveform of the estimated load torque TLe becomes the shape shown in FIG. 9. Therefore, according to FIG. 9, when it is desired to externally monitor changes in friction caused by deterioration of the movable part or the motor 19, etc., the load torque estimating unit 15 preferably estimates the load torque TL using the above formula 1. FIG. 10 is an illustration of each waveform when the friction torque Tf is not included in the estimated load torque TLe. That is, the case where the load torque estimation unit 15 estimates the load torque TL using the above-mentioned formula 2 is shown. In this case, as for the waveform of the estimated load torque TLe, as shown in FIG. 10, the load torque TL temporarily borne by the motor 19 is removed by removing the friction torque Tf and acceleration/deceleration torque. shape. Therefore, it can be seen from FIG. 10 that when it is desired to externally monitor foreign body contact such as foreign body biting into the movable part or the motor 19, the load torque estimating unit 15 preferably estimates the load torque TL using the above formula 2. . As described above, according to the above-described embodiment, since the monitoring information related to the estimated load torque TL can be output to the outside, the information related to the estimated load torque can be externally monitored. It should be noted here that, in the above-mentioned embodiment, the functions of each component such as the estimated torque estimation unit included in the servo amplifier or the external device can also be used to make the CPU readable by a program stored in the memory. (Central Processing Unit) work to achieve. Based on the above, it is possible to provide a servo amplifier including: a torque control unit that controls the torque of the motor based on the torque command of the motor; and based on the speed of the motor and the torque command or the motor A load torque estimating unit that estimates the load torque borne by the motor; and a load torque estimating unit that outputs monitoring information related to the load torque estimated by the load torque estimating unit to the servo amplifier External output section. The servo amplifier further includes: a first inertia value setting unit for setting a first inertia value for controlling the motor; and a second inertia value for setting a second inertia value for estimating the load torque The second inertia value setting part. The servo amplifier further includes a filter value setting unit for setting the output of the monitoring information. The servo amplifier further includes a filter value setting unit for setting a filter value for controlling the motor. The load torque estimating unit has: an interference torque estimating unit that estimates the interference torque received by the motor based on the speed of the motor and the torque command or the torque detection value of the motor; A friction torque estimating section that estimates the friction torque contained in the disturbance torque by the speed of the motor; and subtracting the friction torque from the disturbance torque estimated by the disturbance torque estimating section The friction torque estimated by the torque estimating part is thus a subtractor that calculates the load torque. The servo amplifier further includes an abnormality determination unit that determines an abnormality of the load torque estimated by the load torque estimation unit. Wherein, the monitoring information includes a determination result determined by the abnormality determination unit. The output unit uses analog output or communication to output the monitoring information to the outside. In addition, it is also possible to provide a servo system including: a servo amplifier; and an external device provided outside the servo amplifier. Wherein, the servo amplifier includes a torque control unit that controls the torque of the motor based on a torque command of the motor. The external device includes: a load torque estimating unit that estimates the load torque borne by the motor based on the speed of the motor and the torque command or the torque detection value of the motor; and The load torque-related monitoring information estimated by the load torque estimation unit is output to an external output unit of the external device. Although the servo amplifier and the servo system have been described above with the embodiment, the present invention is not limited to the above embodiment. Various modifications and improvements can also be made to it without going beyond the technical scope of the present invention.

15:負載轉矩估計部 18:控制濾波器 22:輸出濾波器 23:輸出部 24:第1慣性值設定部 25:第1濾波器值設定部 26:第2慣性值設定部 27:第2濾波器值設定部 28:干擾轉矩估計部 29:摩擦轉矩估計部 100、120、140、160:伺服系統 111、121、131、141、151、161:伺服放大器 122、142、162:外部裝置15: Load torque estimation section 18: Control filter 22: output filter 23: output section 24: The first inertia value setting part 25: The first filter value setting section 26: The second inertia value setting part 27: Second filter value setting section 28: Disturbance torque estimation section 29: Friction torque estimation section 100, 120, 140, 160: Servo system 111, 121, 131, 141, 151, 161: Servo amplifier 122, 142, 162: external device

[圖1]一比較方式的伺服系統構成例示圖。 [圖2]第1實施方式的伺服放大器構成例示圖。 [圖3]第2實施方式的伺服系統構成例示圖。 [圖4]第3實施方式的伺服放大器構成例示圖 [圖5]馬達速度和摩擦轉矩的關系的例示圖。 [圖6]第4實施方式的伺服系統構成例示圖。 [圖7]第5實施方式的伺服放大器構成例示圖。 [圖8]第6實施方式的伺服系統構成例示圖。 [圖9]估計負載轉矩中包含摩擦轉矩的情況下的各波形的例示圖。 [圖10]估計負載轉矩中不包含摩擦轉矩的情況下的各波形的例示圖。[Fig. 1] A diagram showing an example of the configuration of a servo system in a comparison mode. [Fig. 2] A diagram showing an example of the configuration of a servo amplifier according to the first embodiment. [Fig. 3] A diagram showing an example of the configuration of a servo system according to the second embodiment. [Fig. 4] A diagram showing an example of the configuration of a servo amplifier according to the third embodiment [Fig. 5] Illustrative diagram of the relationship between motor speed and friction torque. [Fig. 6] A diagram showing an example of the configuration of a servo system according to the fourth embodiment. [Fig. 7] A diagram showing an example of the configuration of a servo amplifier according to a fifth embodiment. [Fig. 8] A diagram showing an example of the configuration of a servo system according to a sixth embodiment. [FIG. 9] Illustrative diagrams of respective waveforms when friction torque is included in the estimated load torque. [Fig. 10] Illustrative diagrams of respective waveforms in the case where friction torque is not included in the estimated load torque.

11:速度控制部 11: Speed control department

12:加法器 12: adder

13:轉矩控制部 13: Torque control department

14:速度檢測部 14: Speed detection department

15:負載轉矩估計部 15: Load torque estimation section

18:控制濾波器 18: Control filter

19:馬達 19: Motor

20:位置檢測器 20: position detector

21:轉矩檢測部 21: Torque detection department

22:輸出濾波器 22: output filter

23:輸出部 23: output section

24:第1慣性值設定部 24: The first inertia value setting part

25:第1濾波器值設定部 25: The first filter value setting section

26:第2慣性值設定部 26: The second inertia value setting part

27:第2濾波器值設定部 27: Second filter value setting section

111:伺服放大器 111: Servo amplifier

A:控制增益 A: Control gain

Jc:第1慣性值 Jc: 1st inertia value

Je:第2慣性值 Je: 2nd inertia value

Kc:第1濾波器值 Kc: the first filter value

Ko:第2濾波器值 Ko: 2nd filter value

Tb:反饋轉矩指令 Tb: feedback torque command

TLc:補償負載轉矩 TLc: Compensate load torque

TLe:估計負載轉矩 TLe: Estimated load torque

Tr:轉矩指令 Tr: Torque command

TL:負載轉矩 TL: Load torque

Tde:轉矩檢測值 Tde: Torque detection value

ωr:速度指令 ωr: Speed command

ω:角速度 ω: angular velocity

θ:旋轉位置 θ: Rotation position

Claims (11)

一種伺服放大器,具備:轉矩控制部,根據馬達的轉矩指令對所述馬達的轉矩進行控制;負載轉矩估計部,對所述馬達承受的負載轉矩進行估計;輸出部,將與由所述負載轉矩估計部估計的所述負載轉矩相關的監視資訊輸出至伺服放大器外部;第1慣性值設定部,設定第1慣性值以用於進行所述馬達的控制;和第2慣性值設定部,設定第2慣性值以用於進行所述負載轉矩的估計。 A servo amplifier includes: a torque control unit that controls the torque of the motor according to a torque command of the motor; a load torque estimation unit that estimates the load torque borne by the motor; and an output unit The monitoring information related to the load torque estimated by the load torque estimation unit is output to the outside of the servo amplifier; a first inertia value setting unit that sets a first inertia value for controlling the motor; and second The inertia value setting unit sets the second inertia value for use in the estimation of the load torque. 如申請專利範圍第1項所述的伺服放大器,還具備:第2濾波器值設定部,設定濾波器值以用於進行所述監視資訊的輸出。 The servo amplifier described in the first item of the scope of patent application further includes a second filter value setting unit that sets a filter value for the output of the monitoring information. 一種伺服放大器,具備:轉矩控制部,根據馬達的轉矩指令對所述馬達的轉矩進行控制;負載轉矩估計部,對所述馬達承受的負載轉矩進行估計;輸出部,將與由所述負載轉矩估計部估計的所述負載 轉矩相關的監視資訊輸出至伺服放大器外部;和第2濾波器值設定部,設定濾波器值以用於進行所述監視資訊的輸出。 A servo amplifier includes: a torque control unit that controls the torque of the motor according to a torque command of the motor; a load torque estimation unit that estimates the load torque borne by the motor; and an output unit The load estimated by the load torque estimation unit The monitoring information related to the torque is output to the outside of the servo amplifier; and the second filter value setting part sets the filter value for the output of the monitoring information. 如申請專利範圍第2或3項所述的伺服放大器,還具備:第1濾波器值設定部,設定濾波器值以用於進行所述馬達的控制。 The servo amplifier described in claim 2 or 3 further includes a first filter value setting unit that sets a filter value for use in controlling the motor. 如申請專利範圍第1至3項中的任一項所述的伺服放大器,其中,所述負載轉矩估計部具有干擾轉矩估計部,根據所述馬達的速度、以及所述轉矩指令或所述馬達的轉矩檢測值,對所述馬達承受的干擾轉矩進行估計;摩擦轉矩估計部,根據所述馬達的速度,對所述干擾轉矩中包含的摩擦轉矩進行估計;和減法器,從由所述干擾轉矩估計部估計的所述干擾轉矩中減去由所述摩擦轉矩估計部估計的所述摩擦轉矩,由此計算所述負載轉矩。 The servo amplifier according to any one of items 1 to 3 in the scope of patent application, wherein the load torque estimating section has a disturbance torque estimating section, and the load torque estimating section is based on the speed of the motor and the torque command The torque detection value of the motor estimates the disturbance torque borne by the motor; the friction torque estimation unit estimates the friction torque included in the disturbance torque according to the speed of the motor; and A subtractor that subtracts the friction torque estimated by the friction torque estimation unit from the disturbance torque estimated by the disturbance torque estimation unit, thereby calculating the load torque. 一種伺服放大器,具備:轉矩控制部,根據馬達的轉矩指令對所述馬達的轉矩進行控制; 負載轉矩估計部,對所述馬達承受的負載轉矩進行估計;和輸出部,將與由所述負載轉矩估計部估計的所述負載轉矩相關的監視資訊輸出至伺服放大器外部,其中,所述負載轉矩估計部具有干擾轉矩估計部,根據所述馬達的速度、以及所述轉矩指令或所述馬達的轉矩檢測值,對所述馬達承受的干擾轉矩進行估計;摩擦轉矩估計部,根據所述馬達的速度,對所述干擾轉矩中包含的摩擦轉矩進行估計;和減法器,從由所述干擾轉矩估計部估計的所述干擾轉矩中減去由所述摩擦轉矩估計部估計的所述摩擦轉矩,由此計算所述負載轉矩。 A servo amplifier includes: a torque control unit that controls the torque of the motor according to the torque command of the motor; A load torque estimation unit that estimates the load torque borne by the motor; and an output unit that outputs monitoring information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier, wherein The load torque estimation unit has an interference torque estimation unit, and estimates the interference torque borne by the motor based on the speed of the motor and the torque command or the torque detection value of the motor; A friction torque estimation unit that estimates the friction torque included in the disturbance torque based on the speed of the motor; and a subtractor that subtracts the disturbance torque estimated by the disturbance torque estimation unit The friction torque estimated by the friction torque estimation section is removed, thereby calculating the load torque. 如申請專利範圍第1至3項中的任一項所述的伺服放大器,還具備:異常判定部,對由所述負載轉矩估計部估計的所述負載轉矩的異常進行判定,其中,所述監視資訊包括由所述異常判定部判定的判定結果。 The servo amplifier according to any one of items 1 to 3 of the scope of patent application further includes: an abnormality determining unit that determines an abnormality of the load torque estimated by the load torque estimating unit, wherein: The monitoring information includes a determination result determined by the abnormality determination unit. 如申請專利範圍第1至3項中的任一項所述的伺服放大器,其中, 所述輸出部以模擬輸出或通信的方式將所述監視資訊輸出至外部。 The servo amplifier described in any one of items 1 to 3 of the scope of patent application, wherein: The output unit outputs the monitoring information to the outside by means of analog output or communication. 一種伺服系統,具備:伺服放大器;和設置在所述伺服放大器的外部的外部裝置,其中,所述伺服放大器具備轉矩控制部,根據馬達的轉矩指令對所述馬達的轉矩進行控制;和第1慣性值設定部,設定第1慣性值以用於進行所述馬達的控制,所述外部裝置具備負載轉矩估計部,對所述馬達承受的負載轉矩進行估計;輸出部,將與由所述負載轉矩估計部估計的所述負載轉矩相關的監視資訊輸出至所述外部裝置的外部;和第2慣性值設定部,設定第2慣性值以用於進行所述負載轉矩的估計。 A servo system includes: a servo amplifier; and an external device provided outside the servo amplifier, wherein the servo amplifier includes a torque control unit that controls the torque of the motor according to a torque command of the motor; And a first inertia value setting unit for setting the first inertia value for control of the motor, the external device is provided with a load torque estimation unit for estimating the load torque borne by the motor; an output unit, The monitoring information related to the load torque estimated by the load torque estimation unit is output to the outside of the external device; and a second inertia value setting unit that sets a second inertia value for performing the load rotation Moment estimation. 一種伺服系統,具備:伺服放大器;和設置在所述伺服放大器的外部的外部裝置,其中, 所述伺服放大器具備轉矩控制部,根據馬達的轉矩指令對所述馬達的轉矩進行控制,所述外部裝置具備負載轉矩估計部,對所述馬達承受的負載轉矩進行估計;輸出部,將與由所述負載轉矩估計部估計的所述負載轉矩相關的監視資訊輸出至所述外部裝置的外部;和第2濾波器值設定部,設定濾波器值以用於進行所述監視資訊的輸出。 A servo system includes: a servo amplifier; and an external device provided outside the servo amplifier, wherein, The servo amplifier includes a torque control unit to control the torque of the motor according to a torque command of the motor, and the external device includes a load torque estimation unit to estimate the load torque borne by the motor; and output; Section for outputting monitoring information related to the load torque estimated by the load torque estimating section to the outside of the external device; and a second filter value setting section for setting the filter value for performing the Describe the output of monitoring information. 一種伺服系統,具備:伺服放大器;和設置在所述伺服放大器的外部的外部裝置,其中,所述伺服放大器具備轉矩控制部,根據馬達的轉矩指令對所述馬達的轉矩進行控制,所述外部裝置具備負載轉矩估計部,對所述馬達承受的負載轉矩進行估計;和輸出部,將與由所述負載轉矩估計部估計的所述負載轉矩相關的監視資訊輸出至所述外部裝置的外部,所述負載轉矩估計部具有 干擾轉矩估計部,根據所述馬達的速度、以及所述轉矩指令或所述馬達的轉矩檢測值,對所述馬達承受的干擾轉矩進行估計;摩擦轉矩估計部,根據所述馬達的速度,對所述干擾轉矩中包含的摩擦轉矩進行估計;和減法器,從由所述干擾轉矩估計部估計的所述干擾轉矩中減去由所述摩擦轉矩估計部估計的所述摩擦轉矩,由此計算所述負載轉矩。A servo system includes: a servo amplifier; and an external device provided outside the servo amplifier, wherein the servo amplifier includes a torque control unit that controls the torque of the motor based on a torque command of the motor, The external device includes a load torque estimation unit that estimates the load torque borne by the motor; and an output unit that outputs monitoring information related to the load torque estimated by the load torque estimation unit to Outside of the external device, the load torque estimating unit has The disturbance torque estimation unit estimates the disturbance torque that the motor bears based on the speed of the motor and the torque command or the torque detection value of the motor; the friction torque estimation unit estimates the disturbance torque borne by the motor according to the The speed of the motor, which estimates the friction torque contained in the disturbance torque; and a subtractor, which subtracts the friction torque estimated by the disturbance torque estimation part from the disturbance torque estimated by the disturbance torque estimation part The estimated friction torque, from which the load torque is calculated.
TW108138372A 2018-12-27 2019-10-24 Servo amplifier and servo system TWI720662B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244461A JP2020108255A (en) 2018-12-27 2018-12-27 Servo amplifier and servo system
JP2018-244461 2018-12-27

Publications (2)

Publication Number Publication Date
TW202025613A TW202025613A (en) 2020-07-01
TWI720662B true TWI720662B (en) 2021-03-01

Family

ID=71430264

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108138372A TWI720662B (en) 2018-12-27 2019-10-24 Servo amplifier and servo system

Country Status (4)

Country Link
JP (1) JP2020108255A (en)
KR (1) KR102388236B1 (en)
CN (1) CN111404445B (en)
TW (1) TWI720662B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201223120A (en) * 2010-05-26 2012-06-01 Mitsubishi Electric Corp Motor control device
TW201318331A (en) * 2011-10-17 2013-05-01 Mitsubishi Electric Corp Apparatus for controlling a motor
TW201348901A (en) * 2012-05-17 2013-12-01 Mitsubishi Electric Corp Servo parameter adjustment device
TW201509111A (en) * 2013-03-29 2015-03-01 Sanyo Electric Co Motor speed control apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325887A (en) * 1991-04-24 1992-11-16 Omron Corp Load condition display device
JPH06284763A (en) * 1992-05-27 1994-10-07 Nagoya Kogyo Univ Speed controller for servomotor
JPH06262492A (en) * 1993-03-17 1994-09-20 Fanuc Ltd Life control method for tool by estimating disturbance load
JP4109280B2 (en) * 2005-09-08 2008-07-02 ファナック株式会社 Machine having a movable part driven and controlled by a servo motor
JP2008289218A (en) * 2007-05-15 2008-11-27 Yaskawa Electric Corp Motor controller and control method thereof
JP2012130214A (en) 2010-12-17 2012-07-05 Sanyo Denki Co Ltd Motor control device and motor control method
WO2014167852A1 (en) * 2013-04-11 2014-10-16 パナソニック株式会社 Motor drive device
CN105978428B (en) * 2015-03-13 2019-07-26 光宝科技股份有限公司 servo motor system and control method thereof
CN106533291A (en) * 2016-08-31 2017-03-22 东菱技术有限公司 Inertia identification and load torque observation-based speed loop response improvement method
JP6838236B2 (en) * 2016-09-09 2021-03-03 日立Astemo株式会社 Vehicle control device, vehicle control method and electric power steering device
CN106533299B (en) * 2016-12-27 2018-10-02 山东大学 Back-emf, the method for servo-controlling that load torque disturbs and its system are eliminated simultaneously

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201223120A (en) * 2010-05-26 2012-06-01 Mitsubishi Electric Corp Motor control device
TW201318331A (en) * 2011-10-17 2013-05-01 Mitsubishi Electric Corp Apparatus for controlling a motor
TW201348901A (en) * 2012-05-17 2013-12-01 Mitsubishi Electric Corp Servo parameter adjustment device
TW201509111A (en) * 2013-03-29 2015-03-01 Sanyo Electric Co Motor speed control apparatus

Also Published As

Publication number Publication date
CN111404445B (en) 2024-04-12
JP2020108255A (en) 2020-07-09
KR20200081210A (en) 2020-07-07
KR102388236B1 (en) 2022-04-18
TW202025613A (en) 2020-07-01
CN111404445A (en) 2020-07-10

Similar Documents

Publication Publication Date Title
US7289915B2 (en) Method of estimating load inertia for a motor
US6246197B1 (en) Electric power steering controller
US10985684B2 (en) Motor control device
US9952249B2 (en) Inertia estimating method and inertia estimation apparatus of position control apparatus
US20150048772A1 (en) Motor drive device
JP5200715B2 (en) Electric inertia control device of dynamometer system
JP2011257205A (en) Axial torque controller for dynamometer system
EP1487097A1 (en) Control constant adjusting apparatus
US11077552B2 (en) Control system, machine learning apparatus, maintenance assistance apparatus, data generating method, and maintenance assisting method
TWI720662B (en) Servo amplifier and servo system
JP6614384B1 (en) Servo amplifier and servo system
JP4591177B2 (en) Engine test equipment
KR101754441B1 (en) Apparatus for determining start of electric motor
JP5256704B2 (en) Moment of inertia estimation device
JP2004280565A (en) Motor control method and device
JP3856215B2 (en) Speed control device
JP4547619B2 (en) Machine constant identification device and identification method
TWI734569B (en) Servo amplifier and servo system
Yoshioka et al. Variable noise-covariance Kalman filter based instantaneous state observer for industrial robot
JPH02307384A (en) Motor speed controller
JP2011147268A (en) Motor control apparatus
JP5200714B2 (en) Electric inertia control device
WO2016152827A1 (en) Sudden-onset signal processing device for biological information, and sudden-onset signal processing method for biological information
JP5812229B1 (en) Chassis dynamometer controller
JP2004129481A (en) Controlling constant adjusting device