TW201509111A - Motor speed control apparatus - Google Patents

Motor speed control apparatus Download PDF

Info

Publication number
TW201509111A
TW201509111A TW103111760A TW103111760A TW201509111A TW 201509111 A TW201509111 A TW 201509111A TW 103111760 A TW103111760 A TW 103111760A TW 103111760 A TW103111760 A TW 103111760A TW 201509111 A TW201509111 A TW 201509111A
Authority
TW
Taiwan
Prior art keywords
speed
motor
limit value
command
torque command
Prior art date
Application number
TW103111760A
Other languages
Chinese (zh)
Inventor
Yuji Ide
Satoshi Yamazaki
Original Assignee
Sanyo Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co filed Critical Sanyo Electric Co
Publication of TW201509111A publication Critical patent/TW201509111A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/04Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for very low speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

A speed proportional gain limit arithmetic unit calculates a speed proportional gain limit on the basis of a motor speed and load inertia ratio. A speed integration time constant torque command low-pass filter limit arithmetic unit calculates a speed integration time constant limit and a cutoff frequency limit on the basis of the speed proportional gain limit. A speed controller receives a speed command and outputs a torque command on the basis of a speed proportional gain and a speed integration time constant. A torque command low-pass filter allows a torque command of frequencies lower than a cutoff frequency to pass and thereby reduces harmonics contained in the torque command.

Description

馬達的速度控制裝置 Motor speed control device 發明領域 Field of invention

本發明是有關於在具有編碼器之芯偏移、主軸之芯偏移的情況下亦能同時實現穩定之高速旋轉控制、到中速域為止之高響應之速度控制、寬廣之定輸出領域之馬達的速度控制裝置。 The present invention relates to a high-speed rotation control capable of simultaneously achieving stable high-speed rotation control to a medium-speed domain, and a wide-range output field in the case of having a core offset of an encoder and a core offset of a spindle. Motor speed control device.

發明背景 Background of the invention

進行高精度攻牙加工之工作機的主軸是要求同時實現在高速之銑床加工與到中速域為止之高精度攻牙、在低速之重切削。 The spindle of the working machine for high-precision tapping is required to achieve high-precision tapping at high-speed milling and high-speed tapping, and heavy-duty cutting at low speed.

因此,使用藉由感應電機之磁場減弱所進行之定輸出控制而實現在低速之重切削與高速旋轉,將基底速度設定成較高而將因磁場減弱造成之特性之劣化減少而實現了高精度攻牙加工。 Therefore, the heavy-duty cutting and high-speed rotation are realized by the constant output control by the magnetic field weakening of the induction motor, and the base speed is set to be high, and the deterioration of the characteristic due to the weakening of the magnetic field is reduced to achieve high precision. Tapping processing.

圖3是習知之馬達的速度控制裝置的方塊圖。該馬達的速度控制裝置是如下地動作。 3 is a block diagram of a conventional speed control device for a motor. The speed control device of the motor operates as follows.

首先,將速度指令與來自速度演算器15之馬達旋轉速度ωm比較,速度控制器20由速度指令與馬達旋轉 速度ωm之偏差來求出q軸電流指令IqC。速度演算器15輸出之馬達旋轉速度ωm是使用編碼器10檢測出之位置回饋來演算。 First, the speed command is compared with the motor rotational speed ωm from the speed calculator 15, and the speed controller 20 is rotated by the speed command and the motor. The q-axis current command IqC is obtained by the deviation of the speed ωm. The motor rotation speed ωm output from the speed calculator 15 is calculated using the position feedback detected by the encoder 10.

將q軸電流指令IqC與來自座標轉換器25之q軸電流回饋IqF比較,q軸電流積分控制器30將q軸電流指令IqC與q軸電流回饋IqF之差積分。求出q軸電流指令IqC與q軸電流積分器輸出之和,而求出積分補償後之q軸電流指令IqCB。 The q-axis current command IqC is compared with the q-axis current feedback IqF from the coordinate converter 25, and the q-axis current integration controller 30 integrates the difference between the q-axis current command IqC and the q-axis current feedback IqF. The sum of the q-axis current command IqC and the q-axis current integrator output is obtained, and the q-axis current command IqCB after the integral compensation is obtained.

另一方面,參考馬達旋轉速度ωm而以d軸電流指令Idc賦予必要之激磁電流,將d軸電流指令IdC與來自座標轉換器25之d軸電流回饋IdF比較,d軸電流積分控制器35將d軸電流指令IdC與d軸電流回饋IdF之差積分。求出d軸電流指令IdC與d軸電流積分器輸出之和,而求出積分補償後之d軸電流指令IdCB。 On the other hand, with reference to the motor rotational speed ωm, the d-axis current command Idc is given the necessary exciting current, and the d-axis current command IdC is compared with the d-axis current feedback IdF from the coordinate converter 25, and the d-axis current integral controller 35 The difference integral between the d-axis current command IdC and the d-axis current feedback IdF. The sum of the d-axis current command IdC and the d-axis current integrator output is obtained, and the d-axis current command IdCB after the integral compensation is obtained.

轉差頻率演算器40由q軸電流指令IqC與d軸電流指令IdC算出轉差頻率指令ωs。轉差頻率指令ωs與速度演算器15輸出之馬達旋轉速度ωm相加。將轉差頻率指令ωs與馬達旋轉速度ωm相加而求出一次頻率指令ω1。將一次頻率指令ω1以積分器45積分,使其成為馬達之極對數Pm倍,而求出定子位置指令θmc。 The slip frequency calculator 40 calculates the slip frequency command ωs from the q-axis current command IqC and the d-axis current command IdC. The slip frequency command ωs is added to the motor rotation speed ωm output from the speed calculator 15. The primary frequency command ω1 is obtained by adding the slip frequency command ωs to the motor rotational speed ωm. The primary frequency command ω1 is integrated by the integrator 45 so as to become the pole pair Pm of the motor, and the stator position command θmc is obtained.

座標轉換器50是基於定子位置指令θmc將積分補償後之q軸電流指令IqCB與積分補償後之d軸電流指令IdCB座標轉換,求出三相電流指令Iuc、Ivc、Iwc。 The coordinate converter 50 converts the q-axis current command IqCB after the integral compensation and the d-axis current command IdCB coordinate after the integral compensation based on the stator position command θmc, and obtains the three-phase current commands Iuc, Ivc, and Iwc.

相電流控制器55是基於三相電流指令Iuc、Ivc、 Iwc與馬達電流Iu、Iv而控制各相之電流、算出三相電壓指令Vuc、Vvc、Vwc。三相電壓指令Vuc、Vvc、Vwc是透過PWM控制器60、電力轉換器70而供給至馬達80,馬達80因應三相電壓指令Vuc、Vvc、Vwc而驅動。 The phase current controller 55 is based on the three-phase current commands Iuc, Ivc, Iwc and the motor currents Iu and Iv control the currents of the respective phases, and calculate the three-phase voltage commands Vuc, Vvc, and Vwc. The three-phase voltage commands Vuc, Vvc, and Vwc are supplied to the motor 80 through the PWM controller 60 and the power converter 70, and the motor 80 is driven in response to the three-phase voltage commands Vuc, Vvc, and Vwc.

q軸電流回饋IqF與d軸電流回饋IdF是由座標轉換器25基於定子位置指令θmc將馬達電流Iu、Iv座標轉換而求出。 The q-axis current feedback IqF and the d-axis current feedback IdF are obtained by the coordinate converter 25 converting the motor currents Iu and Iv based on the stator position command θmc.

參考馬達旋轉速度ωm而求出之激磁電流指令(d軸電流指令Idc)是如圖3所示,在定扭矩領域是一定,在定輸出領域是對馬達旋轉速度ωm之上昇成反比例地降低。亦即,進行磁場減弱控制。 The excitation current command (d-axis current command Idc) obtained by referring to the motor rotation speed ωm is constant in the constant torque field as shown in FIG. 3, and is inversely proportional to the increase in the motor rotation speed ωm in the fixed output field. That is, the field weakening control is performed.

在使激磁電流指令與馬達旋轉速度ωm之上昇成反比例地降低之磁場減弱領域,因為馬達之磁通量是伴隨激磁電流指令之減少而降低,對扭矩電流指令(q軸電流指令IqC)之實際之馬達扭矩下降。 In the field of field weakening in which the excitation current command is inversely proportional to the increase in the motor rotational speed ωm, since the magnetic flux of the motor is reduced with the decrease of the excitation current command, the actual motor for the torque current command (q-axis current command IqC) is reduced. The torque drops.

因為速度控制系統之響應是以速度控制器20之增益與對扭矩電流指令(q軸電流指令IqC)之實際之馬達扭矩的關係之乘算來決定,速度控制系統之響應會伴隨磁場減弱而下降。 Because the response of the speed control system is determined by the multiplication of the gain of the speed controller 20 and the actual motor torque of the torque current command (q-axis current command IqC), the response of the speed control system decreases with the weakening of the magnetic field. .

在高精度之銑床加工,為了將主軸馬達與進給軸馬達同步控制,速度控制系統之響應是期望能快速。若速度控制系統之響應慢,則會因為對指令之響應延遲而造成攻牙加工之加工精度下降。因此,藉由將馬達之基底速度設定較高而防止馬達之中速域之速度控制響應之下降。 In high-precision milling machines, in order to synchronize the spindle motor with the feed axis motor, the response of the speed control system is expected to be fast. If the response of the speed control system is slow, the machining accuracy of the tapping process will be degraded due to the delay in response to the command. Therefore, the speed control response of the speed range in the motor is prevented from being lowered by setting the base speed of the motor to be high.

圖4及圖5是顯示磁場減弱控制時之馬達80之扭矩-旋轉速度特性的圖。圖4是顯示在習知之攻牙加工所使用之扭矩-旋轉速度特性的圖,基底速度比顯示定輸出領域寬廣之情況下之扭矩-旋轉速度特性的圖5還高,將定輸出領域拓廣。與圖5之扭矩-旋轉速度特性相比,圖4之扭矩旋轉速度特性是在低速領域可輸出之扭矩小。因此,具有在低速領域需要大切削扭矩之低速重切削能力低的問題。 4 and 5 are graphs showing the torque-rotation speed characteristics of the motor 80 when the field weakening control is performed. Fig. 4 is a graph showing the torque-rotation speed characteristics used in the conventional tapping process, and the base speed is higher than that of Fig. 5 showing the torque-rotation speed characteristic in the case where the fixed output field is wide, and the field of the output is expanded. . Compared with the torque-rotation speed characteristic of Fig. 5, the torque rotation speed characteristic of Fig. 4 is that the torque that can be output in the low speed range is small. Therefore, there is a problem that low-speed heavy cutting capability requiring a large cutting torque in a low speed region is low.

近年來,要求低速重切削之更進一步之高扭矩化與高速切削之旋轉速度之提昇,要求將定輸出範圍更拓廣。 In recent years, the demand for higher torque and lowering of the rotational speed of high-speed cutting is required to achieve a wider range of output.

然而,若將基底速度取低而將定輸出領域拓廣,則在中速領域之激磁電流之下降會變大。因此,對扭矩指令之實際之馬達扭矩之下降會變大,在中速領域之速度響應之下降變大,具有無法實現高精度之攻牙加工的問題。 However, if the substrate speed is lowered and the output field is expanded, the decrease in the magnetizing current in the medium speed region will become large. Therefore, the actual motor torque reduction for the torque command is increased, and the speed response in the medium speed region is decreased, which has a problem that the high-precision tapping processing cannot be realized.

若為了改善該問題而將速度增益取高,並為了在高速之銑床加工精度改善而將最高旋轉速度更提高將定輸出領域拓廣,則馬達電流會變得易於受旋轉速度變動所影響。 If the speed gain is increased in order to improve the problem, and the maximum rotation speed is increased in order to improve the machining accuracy of the high-speed milling machine, the motor current is likely to be affected by the fluctuation of the rotation speed.

於馬達80具有馬達本身之軸承所造成之芯偏移與編碼器10之芯偏移,於馬達80之旋轉速度之檢測出現馬達80之1旋轉變動。馬達80之1旋轉之誤差是1旋轉有1次的情況下,因為由速度演算器15進行之馬達旋轉速度ωm之 算出結果是馬達位置之微分,故越是高速旋轉則振幅越大,每1旋轉發生1次之速度變動。 The core offset caused by the motor 80 having the bearing of the motor itself is offset from the core of the encoder 10, and the rotation of the motor 80 detects the rotational variation of the motor 80. The error of the rotation of the motor 80 is 1 when the rotation is once, because the motor rotation speed ωm by the speed calculator 15 The result of the calculation is the differentiation of the motor position. Therefore, the higher the speed is, the larger the amplitude is, and the speed change occurs once per rotation.

速度指令是一定的情況下,速度控制系統是以抑制該速度變動的方式輸出扭矩指令。因為扭矩是速度之微分量,故於扭矩指令(q軸電流Iqc)含有用於抑制速度變動之變動。該變動是每1旋轉發生1次之扭矩指令(q軸電流Iqc)變動,該變動之振幅是越高速則越大。 When the speed command is constant, the speed control system outputs a torque command in such a manner as to suppress the speed variation. Since the torque is a slight component of the speed, the torque command (q-axis current Iqc) includes a variation for suppressing the speed variation. This fluctuation is a torque command (q-axis current Iqc) that occurs once per rotation, and the amplitude of the fluctuation is larger as the speed is higher.

另外,因為定子位置指令θmc是將一次頻率指令ω1積分且進行極對數倍者,故定子位置指令θmc在轉差小的情況下是成為每1馬達旋轉而極對數倍之SINθ、COSθ訊號。而且,因為藉由座標轉換器50將定子位置指令θmc與q軸及d軸電流指令Iqc、Idc乘算而算出各相之馬達電流指令Iuc、Ivc、Iwc,故若q軸電流指令Iqc於馬達1旋轉有1次之變動,則於馬達電流指令會出現高頻波。 Further, since the stator position command θmc is obtained by integrating the primary frequency command ω1 and performing the pole-number multiple, the stator position command θmc is a SIN θ, COS θ signal which is a multiple of the number of poles per motor rotation when the slip is small. Further, since the stator position command θmc and the q-axis and d-axis current commands Iqc and Idc are multiplied by the coordinate converter 50 to calculate the motor current commands Iuc, Ivc, and Iwc of the respective phases, the q-axis current command Iqc is applied to the motor. 1 When there is a change in the rotation, a high-frequency wave appears in the motor current command.

舉例來說,馬達80為4極的情況下,SINθ、COSθ之頻率是馬達旋轉頻率之2倍,若q軸電流指令Iqc於1旋轉有1次之變動,則於各相之馬達電流指令Iuc、Ivc、Iwc出現3倍高頻波。速度控制器20之增益高的情況下,於q軸電流指令Iqc會出現比較大的變動,各相之馬達電流指令Iuc、Ivc、Iwc之高頻波亦變大。 For example, when the motor 80 is 4 poles, the frequency of SIN θ and COS θ is twice the motor rotation frequency. If the q-axis current command Iqc changes once in 1 rotation, the motor current command Iuc in each phase is used. , Ivc, Iwc appeared 3 times high frequency wave. When the gain of the speed controller 20 is high, a large fluctuation occurs in the q-axis current command Iqc, and the high-frequency waves of the motor current commands Iuc, Ivc, and Iwc of the respective phases also become large.

圖6是顯示速度控制器20之增益高且q軸電流指令Iqc於1旋轉有1次之變動時之模擬結果的圖。 FIG. 6 is a view showing a simulation result when the gain of the speed controller 20 is high and the q-axis current command Iqc is changed once in one rotation.

如圖所示,q軸電流指令Iqc於馬達1旋轉表現1次之變動。SINθ之頻率是成為該變動之2倍。而且,U相 電流指令Iuc是於馬達1旋轉出現1次之變動之3倍之高次諧波變動。 As shown in the figure, the q-axis current command Iqc exhibits a change in the rotation of the motor 1 once. The frequency of SINθ is twice that of the change. Moreover, U phase The current command Iuc is a harmonic change that is three times the change in the rotation of the motor 1 once.

下述專利文獻1有抑制如此之編碼器之芯偏移之例。於下述專利文獻1揭示有如下之技術。 Patent Document 1 listed below has an example of suppressing the core shift of such an encoder. Patent Document 1 below discloses the following techniques.

專利文獻1之裝置是為了檢測旋轉軸之旋轉位置而將位置檢測器安裝於旋轉軸、基於來自位置檢測器之位置回饋訊號而控制旋轉位置之位置控制裝置。 The device of Patent Document 1 is a position control device that controls a rotational position by attaching a position detector to a rotating shaft and returning a signal based on a position from a position detector in order to detect a rotational position of the rotating shaft.

起因於位置檢測器內之被檢測體之偏心與安裝誤差之檢測誤差資料是基於位置檢測器之輸出訊號之值而算出。在以驅動控制馬達之速度迴路未追隨之相當快之一定速度使旋轉軸旋轉時,檢測誤差資料之算出是基於從位置檢測器輸出之1旋轉訊號之發生時點而在每個預定時間求出之位置檢測器之輸出訊號之值來算出。 The detection error data due to the eccentricity and mounting error of the object in the position detector is calculated based on the value of the output signal of the position detector. When the rotation axis is rotated at a constant speed at which the speed of the drive control motor is not sufficiently fast, the detection error data is calculated based on the occurrence point of the one rotation signal output from the position detector at each predetermined time. The value of the output signal of the position detector is calculated.

算出之檢測誤差是記憶於位置控制裝置內,對於往將旋轉軸驅動之馬達之旋轉指令位置,將檢測誤差資料補正而作為往馬達之旋轉指令位置。 The calculated detection error is stored in the position control device, and the detection error data is corrected for the rotation command position of the motor that drives the rotary shaft as the rotation command position to the motor.

先行技術文獻 Advanced technical literature 專利文獻 Patent literature

專利文獻1 日本特開平11-27973號公報 Patent Document 1 Japanese Patent Laid-Open No. 11-27973

發明概要 Summary of invention

然而,在馬達之1旋轉變動穩定的情況下雖然可,但馬達1旋轉變動是馬達本身之軸承所造成之芯偏移 與編碼器之芯偏移、間隙偏心所造成之芯偏移、甚至還會與馬達連接之機械主軸之芯偏移等好幾個要素糾纏在一起。 However, in the case where the rotational variation of the motor 1 is stable, the rotational variation of the motor 1 is the core offset caused by the bearing of the motor itself. It is intertwined with several elements such as the core offset of the encoder, the core offset caused by the eccentricity of the gap, and even the core offset of the mechanical spindle connected to the motor.

因此,在無法獲得穩定之芯偏移的情況下,會有該等芯偏移之影響殘留的問題。 Therefore, in the case where a stable core offset cannot be obtained, there is a problem that the influence of the core offset remains.

如上述,對於逐漸增大之加工性能之要求,習知之馬達的速度控制裝置要同時實現穩定之高速旋轉控制、到中速域為止之高響應之速度控制、寬廣之定輸出領域是很困難。 As described above, it is difficult for the speed control device of the conventional motor to realize stable high-speed rotation control, high-speed response control up to the medium-speed range, and wide-ranging output field in order to meet the demand for increasing processing performance.

本發明是為了解除如此之習知之問題點而建構之發明,其目的是提供即便在具有編碼器之芯偏移、主軸之芯偏移的情況下亦可同時實現穩定之高速旋轉控制、到中速域為止之高響應之速度控制、寬廣之定輸出領域之馬達的速度控制裝置。 The present invention is an invention constructed to solve such a conventional problem, and an object thereof is to provide stable high-speed rotation control at the same time even when the core of the encoder is offset and the core of the spindle is shifted. High-speed response speed control in the speed range and a wide range of speed control devices for the motor in the output field.

為了達成上述目的之與本發明相關之馬達的速度控制裝置是具有速度比例增益限制值演算器、速度積分時常數扭矩指令低通濾波器限制值演算器及速度控制器、扭矩指令低通濾波器。 The speed control device for the motor related to the present invention for achieving the above object is a speed proportional gain limit value calculator, a speed integral time constant torque command low pass filter limit value calculator and a speed controller, a torque command low pass filter .

速度比例增益限制值演算器是使用馬達速度與負載慣量比而演算速度比例增益限制值。速度積分時常數扭矩指令低通濾波器限制值演算器是使用速度比例增益限制值而演算速度積分時常數限制值並演算截止頻率限制值。速度控制器是輸入速度指令,使用速度比例增益與速 度積分時常數而輸出扭矩指令。扭矩指令低通濾波器是使頻率比截止頻率還低之扭矩指令通過,且使扭矩指令含有之高次諧波降低。 The speed proportional gain limit value calculator calculates the speed proportional gain limit value using the motor speed to load inertia ratio. Speed integral time constant torque command Low-pass filter limit value calculator calculates the speed integral time constant limit value and calculates the cutoff frequency limit value by using the speed proportional gain limit value. The speed controller is the input speed command, using the speed proportional gain and speed The integral time constant is output and the torque command is output. The torque command low-pass filter passes a torque command that has a lower frequency than the cutoff frequency, and lowers the harmonics contained in the torque command.

根據如以上構成之與本發明相關之馬達的速度控制裝置,即便在具有馬達本身之軸承所造成之芯偏移、編碼器之芯偏移、甚至、與馬達連接之機械主軸之芯偏移等各種芯偏移的情況下,亦可使馬達穩定地旋轉至高速。另外,即便進行磁場減弱,對扭矩指令之實際之馬達之扭矩之下降亦少,可實現到中速域為止之高的速度控制響應,可藉由寬廣之定輸出領域而同時實現大的低速扭矩。 According to the speed control device of the motor according to the present invention constructed as above, the core offset caused by the bearing having the motor itself, the core offset of the encoder, and even the core offset of the mechanical spindle connected to the motor, etc. In the case of various core shifts, the motor can also be stably rotated to high speed. In addition, even if the magnetic field is weakened, the actual motor torque reduction for the torque command is small, and a high speed control response up to the medium speed range can be achieved, and a large low-speed torque can be simultaneously achieved by a wide range of output fields. .

10、110‧‧‧編碼器 10, 110‧‧‧ encoder

15、115‧‧‧速度演算器 15, 115‧‧‧ speed calculator

20、120‧‧‧速度控制器 20, 120‧‧‧ speed controller

25、50、150、155‧‧‧座標轉換器 25, 50, 150, 155‧‧‧ coordinate converters

30‧‧‧q軸電流積分控制器 30‧‧‧q axis current integral controller

35‧‧‧d軸電流積分控制器 35‧‧‧d-axis current integral controller

40‧‧‧轉差頻率演算器 40‧‧‧ slip frequency calculator

45、255‧‧‧積分器 45, 255‧‧‧ integrator

55‧‧‧相電流控制器 55‧‧‧phase current controller

60、160‧‧‧PWM控制器 60, 160‧‧‧ PWM controller

70、170‧‧‧電力轉換器 70, 170‧‧‧Power Converter

80、180‧‧‧馬達 80, 180‧‧‧ motor

100‧‧‧馬達的速度控制裝置 100‧‧‧Motor speed control device

121‧‧‧負載慣量比記憶部 121‧‧‧Load inertia ratio memory

122‧‧‧速度比例增益限制值演算器 122‧‧‧Speed proportional gain limit value calculator

123‧‧‧速度積分時常數扭矩指令低通濾波器限制值演算器 123‧‧‧Speed integral time constant torque command low pass filter limit value calculator

124‧‧‧速度比例增益設定值記憶部 124‧‧‧Speed proportional gain set value memory

125‧‧‧速度比例增益演算器 125‧‧‧Speed proportional gain calculator

126‧‧‧速度積分時常數扭矩指令低通濾波器設定值記憶部 126‧‧‧Speed integral constant torque command low-pass filter set value memory

127‧‧‧速度積分時常數扭矩指令低通濾波器設定值演算器 127‧‧‧Speed integral constant torque command low-pass filter set value calculator

130‧‧‧限制器 130‧‧‧Restrictor

132‧‧‧最大一次電流指令部 132‧‧‧Maximum primary current command

134‧‧‧扭矩限制值演算器 134‧‧‧torque limit value calculator

135‧‧‧扭矩指令低通濾波器 135‧‧‧Torque command low-pass filter

140‧‧‧q軸電流演算器 140‧‧‧q-axis current calculator

145‧‧‧q軸電流控制器 145‧‧‧q axis current controller

220‧‧‧磁場減弱部 220‧‧‧Magnetic field weakening

225‧‧‧磁通量演算器 225‧‧‧Magnetic flux calculator

230‧‧‧轉差頻率演算器 230‧‧‧ slip frequency calculator

240‧‧‧磁通量控制器 240‧‧‧Magnetic flux controller

245‧‧‧d軸電流控制器 245‧‧‧d axis current controller

圖1是與本實施形態相關之馬達的速度控制裝置的方塊圖。 Fig. 1 is a block diagram of a speed control device for a motor according to the embodiment.

圖2是顯示對馬達之旋轉速度之速度比例增益限制值特性的圖。 Fig. 2 is a graph showing the speed proportional gain limit value characteristic of the rotational speed of the motor.

圖3是習知之馬達的速度控制裝置的方塊圖。 3 is a block diagram of a conventional speed control device for a motor.

圖4是顯示在習知之攻牙加工所使用之扭矩-旋轉速度特性的圖。 Fig. 4 is a graph showing the torque-rotation speed characteristics used in conventional tapping processing.

圖5是顯示定輸出領域寬廣之情況下之扭矩-旋轉速度特性的圖。 Fig. 5 is a graph showing the torque-rotation speed characteristics in the case where the output field is wide.

圖6是顯示速度控制器之增益高且q軸電流指令於1旋轉有1次之變動時之模擬結果的圖。 Fig. 6 is a view showing a simulation result when the gain of the speed controller is high and the q-axis current command is changed once in one rotation.

用以實施發明之形態 Form for implementing the invention

與本發明相關之馬達的速度控制裝置是基於馬達旋轉速度與負載慣量比而於速度控制器與扭矩指令低通濾波器設限制。由最大一次電流指令與d軸電流指令演算扭矩限制值,使扭矩限制後之扭矩指令通過低通濾波器而將扭矩指令含有之起因於編碼器或主軸之芯偏移之變動分抑制。另外,藉由q軸電流演算器而防止因為磁場減弱造成之扭矩指令-扭矩特性之下降。藉此,即便在具有馬達本身之軸承所造成之芯偏移、編碼器之芯偏移、甚至、與馬達連接之機械主軸之芯偏移等各種芯偏移的情況下,亦可使馬達穩定地旋轉至高速。另外,即便進行磁場減弱,對扭矩指令之實際之馬達之扭矩之下降亦少,可實現到中速域為止之高的速度控制響應,可藉由寬廣之定輸出領域而同時實現大的低速扭矩。 The speed control device of the motor associated with the present invention is based on a motor speed and load inertia ratio and is limited by a speed controller and a torque command low pass filter. The torque limit value is calculated from the maximum primary current command and the d-axis current command, and the torque command after the torque limit is passed through the low-pass filter to suppress the fluctuation of the core offset caused by the torque command. In addition, the torque command-torque characteristic due to the weakening of the magnetic field is prevented by the q-axis current calculator. Thereby, the motor can be stabilized even in the case of various core offsets such as core offset caused by the bearing of the motor itself, offset of the core of the encoder, and even the core offset of the mechanical spindle connected to the motor. Rotate to high speed. In addition, even if the magnetic field is weakened, the actual motor torque reduction for the torque command is small, and a high speed control response up to the medium speed range can be achieved, and a large low-speed torque can be simultaneously achieved by a wide range of output fields. .

接著,一面參考圖面一面說明可發揮如上述之特性之與本發明相關之馬達的速度控制裝置的實施形態。 Next, an embodiment of a speed control device that can exhibit the above-described characteristics of the motor according to the present invention will be described with reference to the drawings.

[馬達的速度控制裝置100的構成] [Configuration of Motor Speed Control Device 100]

圖1是與本實施形態相關之馬達的速度控制裝置100的方塊圖。 Fig. 1 is a block diagram of a speed control device 100 for a motor according to the present embodiment.

馬達的速度控制裝置100具有速度控制器120、負載慣量比記憶部121、速度比例增益限制值演算器122、速度積分時常數扭矩指令低通濾波器限制值演算器123、速度比例增益設定值記憶部124、速度比例增益演算器125、速度積分時常數扭矩指令低通濾波器設定值記憶部 126、限制器130、最大一次電流指令部132、扭矩限制值演算器134、扭矩指令低通濾波器135、q軸電流演算器140及q軸電流控制器145來作為賦予q軸電壓指令VqC之系統。 The motor speed control device 100 includes a speed controller 120, a load inertia ratio memory unit 121, a speed proportional gain limit value calculator 122, a speed integral time constant torque command low-pass filter limit value calculator 123, and a speed proportional gain set value memory. Portion 124, speed proportional gain calculator 125, speed integral time constant torque command low pass filter set value memory unit 126, the limiter 130, the maximum primary current command unit 132, the torque limit value calculator 134, the torque command low-pass filter 135, the q-axis current calculator 140, and the q-axis current controller 145 are given as the q-axis voltage command VqC. system.

速度控制器120是將速度指令與馬達速度ωm比較,輸入速度指令與馬達速度ωm之差分。速度控制器120是以PI控制器構成。馬達速度ωm是速度演算器115使用對馬達180之旋轉進行檢測之編碼器110之位置訊號而演算。速度控制器120是輸入速度指令且使用速度比例增益KVP與速度積分時常數t而輸出扭矩指令。 The speed controller 120 compares the speed command with the motor speed ωm and the difference between the input speed command and the motor speed ωm. The speed controller 120 is constructed of a PI controller. The motor speed ωm is calculated by the speed calculator 115 using the position signal of the encoder 110 that detects the rotation of the motor 180. The speed controller 120 is an input speed command and outputs a torque command using the speed proportional gain KVP and the speed integral time constant t.

負載慣量比記憶部121是將負載慣量JL與馬達慣量JM之比之JL/JM予以記憶。這是為了因應負載慣量比之大小而使速度比例增益之限制值改變。速度比例增益限制值演算器122是因應馬達速度ωm與負載慣量比JL/JM而演算速度比例增益限制值。速度積分時常數扭矩指令低通濾波器限制值演算器123是基於速度比例增益限制值,演算速度積分時常數限制值及扭矩指令低通濾波器限制值。 The load inertia ratio memory unit 121 stores JL/JM which is a ratio of the load inertia JL to the motor inertia JM. This is to change the limit value of the speed proportional gain in response to the magnitude of the load inertia ratio. The speed proportional gain limit value calculator 122 calculates the speed proportional gain limit value in accordance with the motor speed ωm and the load inertia ratio JL/JM. The speed integral time constant torque command low pass filter limit value calculator 123 is based on the speed proportional gain limit value, the calculated speed integral time constant limit value, and the torque command low pass filter limit value.

速度比例增益設定值記憶部124是將速度比例增益設定值予以記憶。速度比例增益演算器125是以速度比例增益設定值為根據,使用速度比例增益限制值而演算速度比例增益KVP。速度積分時常數扭矩指令低通濾波器設定值記憶部126是將速度積分時常數t與扭矩指令低通濾波器fc予以記憶。速度積分時常數扭矩指令低通濾波器設定值演算部127是以速度積分時常數、扭矩指令低通濾波器 設定值為根據,使用速度積分時常數限制值、扭矩指令低通濾波器fc限制值而演算速度積分時常數與扭矩指令低通濾波器fc。速度控制器120是使用所輸入之速度指令與馬達速度ωm之差分、速度比例增益KVP、速度積分時常數TVI而輸出扭矩指令。 The speed proportional gain set value storage unit 124 stores the speed proportional gain set value. The speed proportional gain calculator 125 calculates the speed proportional gain KVP using the speed proportional gain limit value based on the speed proportional gain set value. The speed integral time constant torque command low-pass filter set value storage unit 126 stores the speed integral time constant t and the torque command low-pass filter fc. Speed integral time constant torque command low-pass filter set value calculation unit 127 is a speed integral time constant, torque command low-pass filter The set value is based on the speed integral time constant value and the torque command low-pass filter fc limit value, and the speed integral time constant and the torque command low-pass filter fc are calculated. The speed controller 120 outputs a torque command using the difference between the input speed command and the motor speed ωm, the speed proportional gain KVP, and the speed integral time constant TVI.

限制器130是對速度控制器120所輸出之扭矩指令之大小進行限制。最大一次電流指令部132是將電力轉換器170可輸出之最大一次電流IPC輸出。扭矩限制值演算器134是使用d軸電流指令IdC、最大一次電流IPC、後述之磁通量演算器225輸出之磁通量φ2而演算扭矩限制值TLIM。扭矩限制值TLIM是設定於限制器130。 The limiter 130 limits the magnitude of the torque command output by the speed controller 120. The maximum primary current command unit 132 is a maximum primary current IPC output that the power converter 170 can output. The torque limit value calculator 134 calculates the torque limit value TLIM using the d-axis current command IdC, the maximum primary current IPC, and the magnetic flux φ2 outputted by the magnetic flux calculator 225 to be described later. The torque limit value TLIM is set to the limiter 130.

所以,限制器130是將輸入之扭矩指令之大小限制成含於±TLIM。於扭矩指令低通濾波器135設定由速度積分時常數扭矩指令低通濾波器設定值演算器127所演算出之扭矩指令低通濾波器135之截止頻率。所以,扭矩指令低通濾波器135是使頻率比所設定之截止頻率還低之扭矩指令通過,將扭矩指令含有之起因於編碼器或主軸之芯偏移之高次諧波之變動分抑制。扭矩指令低通濾波器135是以2次低通濾波器構成。 Therefore, the limiter 130 limits the size of the input torque command to be included in the ±TLIM. The torque command low-pass filter 135 sets the cutoff frequency of the torque command low-pass filter 135 calculated by the speed integral time constant torque command low-pass filter set value calculator 127. Therefore, the torque command low-pass filter 135 passes a torque command that lowers the frequency than the set cutoff frequency, and suppresses fluctuations in higher harmonics due to the core offset of the encoder or the spindle included in the torque command. The torque command low-pass filter 135 is constituted by a secondary low-pass filter.

q軸電流演算器140是從通過扭矩指令低通濾波器135後之扭矩指令演算q軸電流指令IqC。q軸電流限制器145是輸入q軸電流演算器140輸出之q軸電流指令IqC與座標轉換器155輸出之q軸電流回饋IqF的偏差,輸出q軸電壓指令VqC。而,q軸電流限制器145是以比例積分控制器構 成。 The q-axis current calculator 140 calculates the q-axis current command IqC from the torque command after passing through the torque command low-pass filter 135. The q-axis current limiter 145 is a deviation of the q-axis current command IqC output from the q-axis current calculator 140 and the q-axis current feedback IqF output from the coordinate converter 155, and outputs a q-axis voltage command VqC. The q-axis current limiter 145 is a proportional integral controller to make.

另外,馬達的速度控制裝置100具有磁場減弱部220、磁通量演算器225、磁通量控制器240、d軸電流控制器245來作為賦予d軸電壓指令VdC之系統。 Further, the motor speed control device 100 includes a magnetic field weakening unit 220, a magnetic flux calculator 225, a magnetic flux controller 240, and a d-axis current controller 245 as a system for giving a d-axis voltage command VdC.

磁場減弱部220是如圖所示,記憶有對馬達速度ωm之磁通量指令φ2C之關係,基於馬達速度ωm而輸出磁通量指令φ2C。磁通量演算器225是使用座標轉換器155輸出之d軸電流回饋IdF而演算磁通量φ2。 As shown in the figure, the field weakening unit 220 stores a relationship between the magnetic flux command φ2C for the motor speed ωm, and outputs a magnetic flux command φ2C based on the motor speed ωm. The magnetic flux calculator 225 calculates the magnetic flux φ2 by using the d-axis current feedback IdF output from the coordinate converter 155.

磁通量控制器240是輸入磁場減弱部220輸出之磁通量指令φ2C與磁通量演算器225輸出之磁通量φ2的偏差,輸出d軸電流指令IdC。d軸電流控制器245是輸入磁通量控制器240輸出之d軸電流指令IdC與座標轉換器155輸出之d軸電流回饋IdF的偏差,輸出d軸電壓指令VdC。磁通量控制器240、d軸電流控制器245是以比例積分控制器構成。附帶一提,q軸電流回饋IqF及d軸電流回饋IdF是由座標轉換器155基於後述之定子位置指令θmc將馬達電流Iu、Iv座標轉換而求出。 The magnetic flux controller 240 is a deviation of the magnetic flux command φ2C output from the input field weakening unit 220 and the magnetic flux φ2 output from the magnetic flux calculator 225, and outputs a d-axis current command Idc. The d-axis current controller 245 is a deviation of the d-axis current command IdC output from the input magnetic flux controller 240 and the d-axis current feedback IdF output from the coordinate converter 155, and outputs a d-axis voltage command VdC. The magnetic flux controller 240 and the d-axis current controller 245 are constituted by a proportional integral controller. Incidentally, the q-axis current feedback IqF and the d-axis current feedback IdF are obtained by the coordinate converter 155 converting the motor currents Iu and Iv coordinates based on a stator position command θmc to be described later.

再者,馬達的速度控制裝置100具有轉差頻率演算器230、積分器255、座標轉換器150、155來作為用於進行座標轉換之系統。 Further, the motor speed control device 100 has a slip frequency calculator 230, an integrator 255, and coordinate converters 150 and 155 as a system for performing coordinate conversion.

轉差頻率演算器230是輸入q軸電流演算器140輸出之q軸電流指令IqC與磁通量演算器225輸出之磁通量指令φ2,算出轉差頻率指令ωs。積分器255是輸入將從轉差頻率演算器230輸出之轉差頻率指令ωs與從速度演算器115 輸出之馬達旋轉速度ωm相加而獲得之一次頻率指令ω1,將一次頻率指令ω1積分。使積分後之一次頻率指令成為馬達之極對數Pm倍而求出定子位置指令θmc。定子位置指令θmc是向座標轉換器150、155輸出。 The slip frequency calculator 230 is a q-axis current command IqC output from the q-axis current calculator 140 and a magnetic flux command φ2 output from the magnetic flux calculator 225, and calculates a slip frequency command ωs. The integrator 255 is an input of the slip frequency command ωs output from the slip frequency calculator 230 and the slave speed calculator 115. The primary frequency command ω1 obtained by adding the output motor rotational speed ωm integrates the primary frequency command ω1. The stator position command θmc is obtained by setting the frequency-first frequency command to the pole number Pm of the motor. The stator position command θmc is output to the coordinate converters 150 and 155.

座標轉換器150是基於所輸入之定子位置指令θmc而將q軸電壓指令VqC、d軸電壓指令VdC座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。 The coordinate converter 150 converts the q-axis voltage command VqC and the d-axis voltage command VdC coordinates based on the input stator position command θmc, and obtains the three-phase voltage commands Vuc, Vvc, and Vwc.

座標轉換器155是基於所輸入之定子位置指令θmc而將馬達電流Iu、Iv座標轉換,求出q軸電流回饋IqF、d軸電流回饋IdF。 The coordinate converter 155 converts the motor currents Iu and Iv based on the input stator position command θmc, and obtains the q-axis current feedback IqF and the d-axis current feedback IdF.

再者,馬達的速度控制裝置100具有PWM控制器160、電力轉換器170來作為用於使馬達180驅動之系統。 Further, the motor speed control device 100 has a PWM controller 160 and a power converter 170 as a system for driving the motor 180.

PWM控制器160是輸入從座標轉換器150輸出之三相電壓指令Vuc、Vvc、Vwc,基於所輸入之三相電壓指令Vuc、Vvc、Vwc而輸出用於使電力轉換器170切換之PWM訊號。 The PWM controller 160 inputs the three-phase voltage commands Vuc, Vvc, and Vwc output from the coordinate converter 150, and outputs a PWM signal for switching the power converter 170 based on the input three-phase voltage commands Vuc, Vvc, and Vwc.

電力轉換器170是輸入從PWM控制器160輸出之PWM訊號來切換內部具備之半導體開關元件,將馬達180驅動。 The power converter 170 is a PWM signal output from the PWM controller 160 to switch the semiconductor switching element provided therein to drive the motor 180.

[馬達的速度控制裝置100的動作] [Operation of Motor Speed Control Device 100]

首先,速度比例增益限制值演算器122是使用速度演算器115輸出之馬達速度ωm與負載慣量比記憶部121記憶之負載慣量比,而藉由下述式子求出速度比例增益限制值 KVPLIM。 First, the speed proportional gain limit value calculator 122 is a load inertia ratio which is calculated by using the motor speed ωm output from the speed calculator 115 and the load inertia ratio memory unit 121, and the speed proportional gain limit value is obtained by the following equation. KVPLIM.

KVPLIM={KVPLIM2-K2(|ωm|-ω2)}/(JL/JM) KVPLIM={KVPLIM2-K2(|ωm|-ω2)}/(JL/JM)

但是,(ω2<|ωm|) However, (ω2<|ωm|)

在此,KVPLIM2是旋轉速度ω2之速度比例限制值,JL是負載慣量,JM是馬達慣量,(JL/JM)是負載慣量比 Here, KVPLIM2 is the speed proportional limit value of the rotational speed ω2, JL is the load inertia, JM is the motor inertia, and (JL/JM) is the load inertia ratio.

當旋轉速度在大於或等於ω2,如上式所示,速度比例增益限制值是與旋轉速度成比例地增加,與負載慣量比(JL/JM)成反比例地減少。 When the rotational speed is greater than or equal to ω2, as shown in the above equation, the speed proportional gain limit value increases in proportion to the rotational speed and decreases inversely proportional to the load inertia ratio (JL/JM).

另外,當旋轉速度在ω1至ω2,速度比例增益限制值是隨著旋轉速度上昇而降低。速度反比例前之速度比例增益限制值KVPLIMB是藉由下述式子而求出。 In addition, when the rotational speed is ω1 to ω2, the speed proportional gain limit value decreases as the rotational speed increases. The speed proportional gain limit value KVPLIMB before the speed inverse ratio is obtained by the following equation.

KVPLIMB={KVPLIM2+K1(ω2-|ωm|)} KVPLIMB={KVPLIM2+K1(ω2-|ωm|)}

但是,(ω1<|ωm|ω2) However, (ω1<|ωm| Ω2)

在此,K1是在ω1~ω2間使速度比例增益限制值降低之係數 Here, K1 is a coefficient that reduces the speed proportional gain limit value between ω1 and ω2.

接著,如下述式般進行與旋轉速度成反比例、與負載慣量比成反比例之演算,求出速度比例增益限制值KVPLIM。 Next, the calculation is performed in inverse proportion to the rotation speed and inversely proportional to the load inertia ratio as in the following equation, and the speed proportional gain limit value KVPLIM is obtained.

KVPLIM=KVPLIMB×ω2/|ωm|/(JL/JM) KVPLIM=KVPLIMB×ω2/|ωm|/(JL/JM)

但是,(ω1<|ωm|ω2) However, (ω1<|ωm| Ω2)

當小於或等於旋轉速度ω1之旋轉速度時,如下述式子,速度比例增益限制值是一定值。 When the rotational speed is less than or equal to the rotational speed ω1, the speed proportional gain limit value is a constant value as shown in the following equation.

KVPLIM=KVPLIM1 KVPLIM=KVPLIM1

又,ω1是取基底速度之2倍左右之旋轉速度,使從速 度0至ω1令速度比例增益不下降。 Moreover, ω1 is a rotation speed that is about twice the speed of the substrate, so that the speed is fast. Degrees 0 to ω1 make the speed proportional gain not decrease.

於是,速度比例增益之上限是限制於KVPLIM。 Thus, the upper limit of the speed proportional gain is limited to KVPLIM.

圖2是顯示對馬達之旋轉速度之速度比例增益限制值特性的圖。如圖所示,到基底速度ω0之2倍左右之中速域ω1為止是限制於一定之高速度增益KVPLIM1,使攻牙之精度提高。在大於或等於中速域ω1是伴隨旋轉速度ωm之上昇而將速度比例增益降低,抑制馬達電流之高次諧波,將馬達之發熱降低。另外,負載慣量比(JL/JM)大的情況下(例如JL/JM=2),因為用於抑制起因於芯偏移之速度變動之扭矩指令變大,故使速度比例增益限制值下降(圖之JL/JM=2之圖形),抑制電流之高次諧波之產生。 Fig. 2 is a graph showing the speed proportional gain limit value characteristic of the rotational speed of the motor. As shown in the figure, the medium speed ω1 is limited to a certain high speed gain KVPLIM1 up to about twice the base speed ω0, and the accuracy of tapping is improved. When the medium-speed range ω1 is greater than or equal to the increase in the speed proportional gain with the increase in the rotational speed ωm, the harmonics of the motor current are suppressed, and the heat generation of the motor is lowered. In addition, when the load inertia ratio (JL/JM) is large (for example, JL/JM=2), since the torque command for suppressing the speed variation due to the core offset becomes large, the speed proportional gain limit value is decreased ( The graph of JL/JM=2 is used to suppress the generation of higher harmonics of current.

速度積分時常數限制值是以KVPLIM為根據,藉由下述式子而算出。 The speed integral time constant limit value is calculated based on KVPLIM and is calculated by the following equation.

TVILIM=1/KVPLIM TVILIM=1/KVPLIM

速度積分時常數之下限是被限制在該值。 The lower limit of the speed integral constant is limited to this value.

扭矩指令低通濾波器之截止頻率限制值是以KVPLIM為根據,藉由下述式子而算出。 The cutoff frequency limit value of the torque command low-pass filter is calculated based on KVPLIM and is calculated by the following equation.

TCLPFLIM=KVPLIM×KTCL TCLPFLIM=KVPLIM×KTCL

扭矩指令低通濾波器之截止頻率之上限是被限制在該值。 The upper limit of the cutoff frequency of the torque command low pass filter is limited to this value.

該係數KTLC是在速度控制系統之頻率響應特性之增益不發生峰值(hump)之範圍取盡量小之值。本實施形態是5。藉此,在超過速度控制系統之響應之頻率中,將扭矩指令低通濾波器設定於盡量小之值,配合速度比例增益 之限制而將在扭矩指令低通濾波器後之扭矩指令出現之1旋轉1次之變動分抑制,將座標轉換造成之高頻波之產生抑制,將馬達之發熱納入容許損失內。 The coefficient KTLC is a value that is as small as possible in the range in which the gain of the frequency response characteristic of the speed control system does not occur. This embodiment is 5. Thereby, in the frequency exceeding the response of the speed control system, the torque command low-pass filter is set to a value as small as possible, and the speed proportional gain is matched. According to the limitation, the fluctuation of one rotation of the torque command after the torque command low-pass filter is suppressed, and the generation of the high-frequency wave by the coordinate conversion is suppressed, and the heat of the motor is included in the allowable loss.

另外,藉由取因應各速度增益值之適當之速度積分時常數限制值、扭矩指令低通濾波器之截止頻率限制值,使速度控制系統之特性為不發生過衝之適當之特性。而,負載慣量比為已知的情況下是使用該值而算出速度增益限制值,未知的情況下是使用迭代最小二乘法等而由扭矩指令與馬達速度算出。另外,亦可以IP控制器等類似之控制器來構成速度控制器120,以三次之低通濾波器等類似之濾波器來構成扭矩指令低通濾波器135。另外,亦可不是由速度比例增益限制值來演算,而是由扭矩指令低通濾波器135之截止頻率限制值或速度積分時常數限制值來依序演算。 Further, by taking the appropriate speed integral time constant value and the torque command low-pass filter cutoff frequency limit value for each speed gain value, the characteristics of the speed control system are such that they do not have an appropriate overshoot. On the other hand, when the load inertia ratio is known, the speed gain limit value is calculated using this value. When it is not known, the torque command and the motor speed are calculated using an iterative least squares method or the like. Alternatively, the speed controller 120 may be configured by an IP controller or the like, and the torque command low-pass filter 135 may be configured by a three-pass low-pass filter or the like. Alternatively, instead of the speed proportional gain limit value, the cutoff frequency limit value or the speed integral time constant limit value of the torque command low-pass filter 135 may be sequentially calculated.

接著,磁場減弱部220是基於速度演算器115輸出之馬達速度ωm而藉由下述式子算出磁通量指令φ2C,在大於或等於基底速度ω0之旋轉速度進行磁場減弱。 Next, the field weakening unit 220 calculates the magnetic flux command φ2C based on the motor speed ωm output from the speed calculator 115, and reduces the magnetic field at a rotation speed greater than or equal to the base speed ω0.

φ2C=φ2CB (0|ωm|ω0時) φ2C=φ2CB (0 |ωm| Ω0)

φ2C=φ2CB.ω0/|ωm| (ω0<|ωm|) φ2C=φ2CB. Ω0/|ωm| (ω0<|ωm|)

將如上述地演算出之磁通量指令φ2C與磁通量演算器225輸出之磁通量φ2比較,磁通量控制器240是由磁通量指令φ2C與磁通量φ2之偏差來輸出d軸電流指令IdC。 The magnetic flux command φ2C calculated as described above is compared with the magnetic flux φ2 output from the magnetic flux calculator 225, and the magnetic flux controller 240 outputs the d-axis current command Idc from the deviation between the magnetic flux command φ2C and the magnetic flux φ2.

扭矩限制值演算器134是基於下述式子而由d軸電流指令IdC與換流器可輸出之最大一次電流指令IPC演算 扭矩限制值TLIM。演算出之扭矩限制值TLIM是設定於限制器130,限制器130是將速度控制器120輸出之扭矩指令限制於小於或等於±TLIM。 The torque limit value calculator 134 is based on the following equation and is calculated by the d-axis current command IdC and the maximum primary current command IPC that the inverter can output. Torque limit value TLIM. The calculated torque limit value TLIM is set to the limiter 130, and the limiter 130 limits the torque command output by the speed controller 120 to less than or equal to ±TLIM.

TLIM=Pm×M/L2×φ2×(IqC2-IdC2)1/2 TLIM=Pm×M/L2×φ2×(IqC2-IdC2)1/2

但是,L2是2次電感,M是互電感,Pm是極對數 However, L2 is the second inductance, M is the mutual inductance, and Pm is the pole logarithm.

使來自速度控制器120之扭矩指令基於扭矩限制值TLIM而通過限制器130,再者,通過扭矩指令低通濾波器135,求出通過低通濾波器後之扭矩指令。藉由將通過低通濾波器後之扭矩指令輸入之q軸電流演算器140而求出q軸電流指令IqC。然後,q軸電流演算器145是基於下述式子而算出q軸電流指令。 The torque command from the speed controller 120 is passed through the limiter 130 based on the torque limit value TLIM, and the torque command passed through the low-pass filter is obtained by the torque command low-pass filter 135. The q-axis current command IqC is obtained by inputting the torque command passed through the low-pass filter to the q-axis current calculator 140. Then, the q-axis current calculator 145 calculates a q-axis current command based on the following equation.

IqC=L2/(Pm×M×φ2)×(通過低通濾波器後之扭矩指令) IqC=L2/(Pm×M×φ2)×(Torque command after passing through the low-pass filter)

如此,因為q軸電流指令是以磁通量φ2除算後而算出,故若磁場減弱造成磁通量變小,則q軸電流指令變大,對扭矩指令之扭矩之特性不因磁場減弱而變小。 In this way, since the q-axis current command is calculated by dividing the magnetic flux φ2, if the magnetic field is weakened and the magnetic flux is reduced, the q-axis current command is increased, and the torque characteristic of the torque command is not reduced by the weakening of the magnetic field.

將q軸電流指令與q軸電流回饋比較,通過q軸電流控制器145而賦予q軸電壓指令VqC。將d軸電流指令與d軸電流回饋比較,通過d軸電流控制器245而賦予d軸電壓指令VdC。 The q-axis current command is compared with the q-axis current feedback, and the q-axis voltage command VqC is given by the q-axis current controller 145. The d-axis current command is compared with the d-axis current feedback, and the d-axis voltage command VdC is given by the d-axis current controller 245.

轉差頻率演算器230是基於下述式子而由q軸電流演算器140輸出之q軸電流指令IqC與磁通量演算器225輸出之磁通量φ2算出轉差頻率指令ωs。 The slip frequency calculator 230 calculates the slip frequency command ωs based on the q-axis current command IqC output from the q-axis current calculator 140 and the magnetic flux φ2 output from the magnetic flux calculator 225 based on the following expression.

ωs=M×R2/L2×(IqC/φ2) Ωs=M×R2/L2×(IqC/φ2)

然後,將算出之轉差頻率指令ωs與馬達速度ωm相加而求出一次頻率指令ω1。 Then, the calculated slip frequency command ωs is added to the motor speed ωm to obtain the primary frequency command ω1.

將一次頻率指令ω1積分,更使其成為馬達之極對數Pm倍而求出固定值位置指令θmc。 The primary frequency command ω1 is integrated, and the pole value of the motor is multiplied by Pm to obtain a fixed value position command θmc.

座標轉換器150是基於定子位置指令θmc將q軸電壓指令VqC、d軸電壓指令VdC座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。三相電壓指令Vuc、Vvc、Vwc是透過PWM控制器160、電力轉換器170而供給至馬達180,馬達180因應三相電壓指令Vuc、Vvc、Vwc而驅動。 The coordinate converter 150 converts the q-axis voltage command VqC and the d-axis voltage command VdC coordinates based on the stator position command θmc, and obtains the three-phase voltage commands Vuc, Vvc, and Vwc. The three-phase voltage commands Vuc, Vvc, and Vwc are supplied to the motor 180 through the PWM controller 160 and the power converter 170, and the motor 180 is driven in response to the three-phase voltage commands Vuc, Vvc, and Vwc.

q軸電流回饋IqF與d軸電流回饋IdF是由座標轉換器155基於定子位置指令θmc將馬達電流Iu、Iv座標轉換而求出。 The q-axis current feedback IqF and the d-axis current feedback IdF are obtained by the coordinate converter 155 converting the motor currents Iu and Iv based on the stator position command θmc.

磁通量演算器225是藉由下述式子而由d軸電流回饋IdF算出磁通量φ2。 The magnetic flux calculator 225 calculates the magnetic flux φ2 from the d-axis current feedback IdF by the following equation.

φ2=1/(1+L2/R2×S)×M×IdF Φ2=1/(1+L2/R2×S)×M×IdF

附帶一提,亦可於d軸電壓指令及q軸電壓指令搭載非干渉控制器,控制d軸及q軸之干涉。另外,亦可藉由三相電流控制系統來構成d軸及q軸之電流控制系統之內部。 Incidentally, the d-axis voltage command and the q-axis voltage command can be used to mount a non-dry controller to control the interference between the d-axis and the q-axis. In addition, the inside of the d-axis and q-axis current control systems can also be constructed by a three-phase current control system.

如以上所說明,習知之馬達的速度控制裝置是難以同時實現穩定之高速旋轉與到中速域為止之高響應之速度控制、寬廣之定輸出領域之確保。然而,與本發明相關之馬達的速度控制裝置是基於馬達旋轉速度與負載慣量比而於速度控制器與扭矩指令低通濾波器設限制,由最大一次電流指令與d軸電流指令演算扭矩限制值,使扭矩限 制後之扭矩指令通過低通濾波器而將扭矩指令含有之起因於編碼器或主軸之芯偏移之變動分抑制。另外,藉由q軸電流演算器而防止因為磁場減弱造成之扭矩指令-扭矩特性之下降。 As described above, the conventional speed control device for a motor is difficult to achieve stable high-speed rotation and high-speed response to a medium-speed range, and to secure a wide output field. However, the speed control device of the motor related to the present invention is based on the motor rotation speed and the load inertia ratio, and is limited by the speed controller and the torque command low-pass filter, and the torque limit value is calculated by the maximum primary current command and the d-axis current command. Torque limit The post-torque torque command suppresses the variation in the torque command due to the core offset of the encoder or the spindle through the low-pass filter. In addition, the torque command-torque characteristic due to the weakening of the magnetic field is prevented by the q-axis current calculator.

藉此,即便在具有馬達本身之軸承所造成之芯偏移、編碼器之芯偏移、甚至、與馬達連接之機械主軸之芯偏移等各種芯偏移的情況下,亦可使馬達穩定地旋轉至高速。另外,即便進行磁場減弱,對扭矩指令之實際之馬達之扭矩之下降亦少,可實現到中速域為止之高的速度控制響應,可藉由寬廣之定輸出領域而同時實現大的低速扭矩。 Thereby, the motor can be stabilized even in the case of various core offsets such as core offset caused by the bearing of the motor itself, offset of the core of the encoder, and even the core offset of the mechanical spindle connected to the motor. Rotate to high speed. In addition, even if the magnetic field is weakened, the actual motor torque reduction for the torque command is small, and a high speed control response up to the medium speed range can be achieved, and a large low-speed torque can be simultaneously achieved by a wide range of output fields. .

100‧‧‧馬達的速度控制裝置 100‧‧‧Motor speed control device

110‧‧‧編碼器 110‧‧‧Encoder

115‧‧‧速度演算器 115‧‧‧Speed Calculator

120‧‧‧速度控制器 120‧‧‧Speed controller

121‧‧‧負載慣量比記憶部 121‧‧‧Load inertia ratio memory

122‧‧‧速度比例增益限制值演算器 122‧‧‧Speed proportional gain limit value calculator

123‧‧‧速度積分時常數扭矩指令低通濾波器限制值演算器 123‧‧‧Speed integral time constant torque command low pass filter limit value calculator

124‧‧‧速度比例增益設定值記憶部 124‧‧‧Speed proportional gain set value memory

125‧‧‧速度比例增益演算器 125‧‧‧Speed proportional gain calculator

126‧‧‧速度積分時常數扭矩指令低通濾波器設定值記憶部 126‧‧‧Speed integral constant torque command low-pass filter set value memory

127‧‧‧速度積分時常數扭矩指令低通濾波器設定值演算器 127‧‧‧Speed integral constant torque command low-pass filter set value calculator

130‧‧‧限制器 130‧‧‧Restrictor

132‧‧‧最大一次電流指令部 132‧‧‧Maximum primary current command

134‧‧‧扭矩限制值演算器 134‧‧‧torque limit value calculator

135‧‧‧扭矩指令低通濾波器 135‧‧‧Torque command low-pass filter

140‧‧‧q軸電流演算器 140‧‧‧q-axis current calculator

145‧‧‧q軸電流控制器 145‧‧‧q axis current controller

150、155‧‧‧座標轉換器 150, 155‧‧‧ coordinate converter

160‧‧‧PWM控制器 160‧‧‧PWM controller

170‧‧‧電力轉換器 170‧‧‧Power Converter

180‧‧‧馬達 180‧‧‧ motor

220‧‧‧磁場減弱部 220‧‧‧Magnetic field weakening

225‧‧‧磁通量演算器 225‧‧‧Magnetic flux calculator

230‧‧‧轉差頻率演算器 230‧‧‧ slip frequency calculator

240‧‧‧磁通量控制器 240‧‧‧Magnetic flux controller

245‧‧‧d軸電流控制器 245‧‧‧d axis current controller

255‧‧‧積分器 255‧‧‧ integrator

Claims (8)

一種馬達的速度控制裝置,其特徵在於具有:速度比例增益限制值演算器,使用馬達速度與負載慣量比而演算速度比例增益限制值;速度積分時常數扭矩指令低通濾波器限制值演算器,使用前述速度比例增益限制值而演算速度積分時常數限制值並演算截止頻率限制值;速度控制器,輸入速度指令,使用速度比例增益與速度積分時常數而輸出扭矩指令;扭矩指令低通濾波器,使頻率比截止頻率還低之扭矩指令通過,且使前述扭矩指令含有之高次諧波降低。 A speed control device for a motor, comprising: a speed proportional gain limit value calculator, calculating a speed proportional gain limit value using a motor speed to a load inertia ratio; and a speed integral time constant torque command low pass filter limit value calculator, Calculate the speed integral time constant limit value and calculate the cutoff frequency limit value by using the aforementioned speed proportional gain limit value; speed controller, input speed command, use speed proportional gain and speed integral time constant to output torque command; torque command low pass filter The torque command having a lower frequency than the cutoff frequency is passed, and the higher harmonics included in the torque command are lowered. 如請求項1之馬達的速度控制裝置,前述速度比例增益演算器在大於或等於ω2之馬達速度是使速度比例增益限制值與馬達速度成比例地減少並與負載慣量比之大小成反比例地減少,在比前述ω2還慢之ω1至ω2間之馬達速度是使速度比例增益限制值隨著馬達速度變快而減少,在小於或等於ω1之馬達速度是將速度比例增益限制值限制於一定值。 The speed control device of the motor of claim 1, wherein the speed proportional gain calculator has a motor speed greater than or equal to ω2 such that the speed proportional gain limit value decreases in proportion to the motor speed and decreases inversely proportional to the magnitude of the load inertia ratio The motor speed between ω1 and ω2 which is slower than the aforementioned ω2 is such that the speed proportional gain limit value decreases as the motor speed becomes faster, and the motor speed less than or equal to ω1 limits the speed proportional gain limit value to a certain value. . 如請求項1之馬達的速度控制裝置,前述負載慣量比是記憶於負載慣量比記憶部,前述負載慣量比是負載慣量JL與馬達慣量JM之比,亦即JL/LM。 In the speed control device for the motor of claim 1, the load inertia ratio is stored in the load inertia ratio memory portion, and the load inertia ratio is a ratio of the load inertia JL to the motor inertia JM, that is, JL/LM. 如請求項1之馬達的速度控制裝置,前述速度積分時常數扭矩指令低通濾波器限制值演算器是以前述速度比 例限制值之倒數來作為前述速度積分時常數限制值。 The speed control device for the motor of claim 1, wherein the speed integral time constant torque command low pass filter limit value calculator is at the aforementioned speed ratio The reciprocal of the limit value is used as the aforementioned speed integral time constant limit value. 如請求項1之馬達的速度控制裝置,前述速度積分時常數扭矩指令低通濾波器限制值演算器是以前述速度比例限制值乘上一定之倍率之值作為截止頻率限制值。 In the speed control device for the motor of claim 1, the speed integral time constant torque command low-pass filter limit value calculator is obtained by multiplying the speed ratio limit value by a value of a certain magnification as the cutoff frequency limit value. 如請求項5之馬達的速度控制裝置,前述一定之倍率是在速度控制之頻率響應特性之增益不發生峰值(hump)之範圍選擇盡量小之值 The speed control device of the motor of claim 5, wherein the predetermined magnification is selected as small as possible in a range in which the gain of the frequency response characteristic of the speed control does not occur (hump) 如請求項1之馬達的速度控制裝置,更具有由通過前述扭矩指令低通濾波器後之扭矩指令來演算q軸電流指令之q軸電流演算器、由因應前述馬達速度之磁通量指令與磁通量之偏差來輸出d軸電流指令之磁通量控制器,使用前述q軸電流指令與前述d軸電流指令而驅動馬達。 The speed control device for the motor of claim 1 further includes a q-axis current calculator for calculating a q-axis current command by a torque command after the torque command low-pass filter, and a magnetic flux command and a magnetic flux corresponding to the motor speed. The magnetic flux controller that outputs the d-axis current command is driven to drive the motor using the q-axis current command and the d-axis current command. 如請求項1之馬達的速度控制裝置,更具有使用前述d軸電流指令與前述磁通量及最大一次電流而演算扭矩限制值之扭矩限制值演算器、將從前述速度控制器朝前述扭矩指令低通濾波器輸出之扭矩指令之大小限制之限制器,於前述限制器設定前述扭矩限制值。 The speed control device for the motor of claim 1, further comprising a torque limit value calculator for calculating a torque limit value using the aforementioned d-axis current command and the magnetic flux and the maximum primary current, and low-passing from the speed controller to the torque command The limiter for limiting the magnitude of the torque command output by the filter sets the aforementioned torque limit value in the limiter.
TW103111760A 2013-03-29 2014-03-28 Motor speed control apparatus TW201509111A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073968A JP6118157B2 (en) 2013-03-29 2013-03-29 Motor speed control device

Publications (1)

Publication Number Publication Date
TW201509111A true TW201509111A (en) 2015-03-01

Family

ID=51600306

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103111760A TW201509111A (en) 2013-03-29 2014-03-28 Motor speed control apparatus

Country Status (4)

Country Link
JP (1) JP6118157B2 (en)
KR (1) KR20140118895A (en)
CN (1) CN104079225B (en)
TW (1) TW201509111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112019110A (en) * 2020-08-24 2020-12-01 合肥工业大学 Flux linkage harmonic observation and torque ripple suppression method for permanent magnet synchronous motor
TWI720662B (en) * 2018-12-27 2021-03-01 日商富士電機股份有限公司 Servo amplifier and servo system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439542B2 (en) * 2015-03-30 2018-12-19 ブラザー工業株式会社 Numerical control device and control method
CN105162383B (en) * 2015-09-23 2018-12-14 中国煤炭科工集团太原研究院有限公司 A kind of ac variable frequency speed regulation method for simulating series DC machine software feature
CN105373151A (en) * 2015-12-23 2016-03-02 高显明 Vibration machine vibration frequency closed-loop control device
JP2017153226A (en) * 2016-02-24 2017-08-31 株式会社デンソー Control device for AC motor
JP6583070B2 (en) * 2016-03-14 2019-10-02 オムロン株式会社 Setting support apparatus, setting support method, information processing program, and recording medium
JP6173520B1 (en) 2016-04-19 2017-08-02 三菱電機株式会社 Control device for rotating electrical machine
JP6877729B2 (en) * 2016-11-10 2021-05-26 中村留精密工業株式会社 Parameter adjustment system for servo motor control device in machine tools
JP6951039B2 (en) * 2017-03-26 2021-10-20 三井精機工業株式会社 Machine tool, its tool rotating device and spindle thermal displacement compensation method
JP7424109B2 (en) * 2020-03-04 2024-01-30 株式会社明電舎 Power conversion device and its control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262709B2 (en) * 1996-04-25 2002-03-04 三菱電機株式会社 Motor vector control method and vector control inverter device
JP3561911B2 (en) * 2000-07-11 2004-09-08 株式会社安川電機 Motor control device
JP2005247574A (en) * 2004-03-08 2005-09-15 Mitsubishi Electric Corp Elevator control device
DE112006003736B4 (en) * 2006-02-08 2020-07-23 Mitsubishi Electric Corp. Engine control unit and engine control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI720662B (en) * 2018-12-27 2021-03-01 日商富士電機股份有限公司 Servo amplifier and servo system
CN112019110A (en) * 2020-08-24 2020-12-01 合肥工业大学 Flux linkage harmonic observation and torque ripple suppression method for permanent magnet synchronous motor

Also Published As

Publication number Publication date
JP2014200129A (en) 2014-10-23
KR20140118895A (en) 2014-10-08
CN104079225B (en) 2018-02-27
CN104079225A (en) 2014-10-01
JP6118157B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
TW201509111A (en) Motor speed control apparatus
US10396702B2 (en) Motor drive control device
JP5527025B2 (en) Position sensorless control device for synchronous machine
WO2016121237A1 (en) Inverter control device and motor drive system
WO2013137146A1 (en) Device for controlling electric motor and method for controlling electric motor
JP5992113B2 (en) AC rotating machine control device
KR101681438B1 (en) Method for controlling primary magnetic flux
JP6869392B1 (en) Control device for AC rotating electric machine
JP6115392B2 (en) Motor control device
WO2013065512A1 (en) Power conversion device
CN107947669B (en) Nonlinear back-thrust tracking control method for hybrid excitation synchronous motor
JP2018057077A (en) Motor control device and drive system
KR20140099821A (en) Motor Control Unit
JP7162759B2 (en) electric motor drive
CN110140290A (en) The control device of synchronous motor
WO2017221320A1 (en) Motor control device and control method
JP5862690B2 (en) Control device for motor drive device and motor drive system
JP3958920B2 (en) Spindle controller
JPWO2015190150A1 (en) AC rotating machine control device
JP5807832B1 (en) Phase generator for induction motor
JP5517983B2 (en) AC rotating machine control device
KR102133181B1 (en) Apparatus for controlling inverter
KR101802077B1 (en) Stator flux estimation device and method thereof for controlling rotation speed of gas turbine synchronous machine without position sensors
JP6012037B2 (en) Power converter
JP5488880B2 (en) Winding induction machine controller