TWI720544B - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor device Download PDFInfo
- Publication number
- TWI720544B TWI720544B TW108125147A TW108125147A TWI720544B TW I720544 B TWI720544 B TW I720544B TW 108125147 A TW108125147 A TW 108125147A TW 108125147 A TW108125147 A TW 108125147A TW I720544 B TWI720544 B TW I720544B
- Authority
- TW
- Taiwan
- Prior art keywords
- metal
- glass
- mol
- semiconductor layer
- semiconductor device
- Prior art date
Links
Images
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
半導體裝置的製造方法,具有:在包含第一金屬以及第二金屬的金屬容器100內投入玻璃材料、或在包含第一金屬的金屬容器100內投入第二金屬以及玻璃材料的工序;在第一期間內,通過以第一加熱溫度將所述玻璃材料溶融在所述金屬容器100內,從而生成含有所述第一金屬或含有所述第二金屬的含金屬玻璃組分100的工序;以及將所述含金屬玻璃組分設置在半導體層的工序。 The method of manufacturing a semiconductor device includes a step of putting a glass material into a metal container 100 containing a first metal and a second metal, or putting a second metal and a glass material into the metal container 100 containing the first metal; During the period, by melting the glass material in the metal container 100 at the first heating temperature to generate the metal-containing glass component 100 containing the first metal or the second metal; and The step of placing the metal-containing glass component on the semiconductor layer.
Description
本發明涉及使用玻璃材料的半導體裝置的製造方法以及具有玻璃膜的半導體裝置。 The present invention relates to a method of manufacturing a semiconductor device using a glass material and a semiconductor device having a glass film.
以往,已經嘗試導入關於半導體裝置的壽命抑制劑(life time killer)。例如在特開昭62-73730號公報中,在將各區域(1)(2)(3)的表面露出後在其表面蒸鍍膜厚為500~1000Å的重金屬薄膜,並通過進行在溫度為800~1000℃、時間為60~120分鐘的N2環境中的熱處理,從而來使含有壽命抑制劑的物質向基板中擴散。由於該壽命抑制劑的擴散,因此固溶在矽中的晶格位置或晶格之間位置的重金屬的雜質能級成為複合中心,在運作時,通過在所述複合中心處對移動於區域之間的電子或空穴進行捕捉,從而來縮短電晶體的開關轉換時間。 In the past, attempts have been made to introduce life time killers for semiconductor devices. For example, in Japanese Patent Laid-Open No. 62-73730, after exposing the surface of each area (1), (2), and (3), a heavy metal thin film with a thickness of 500 to 1000 Å is deposited on the surface, and the temperature is 800 Heat treatment in an N 2 environment at ~1000°C for 60 to 120 minutes to diffuse the life inhibitor-containing substance into the substrate. Due to the diffusion of the lifetime inhibitor, the impurity level of the heavy metal in the crystal lattice position or the position between the crystal lattices in silicon becomes the recombination center. During operation, the recombination center moves between the regions. The electrons or holes in between are captured to shorten the switching time of the transistor.
然而,在使用這種蒸鍍的方法中,由於難以正確地控制重金屬的添加量,並且重金屬的擴散係數均快至10-7~10-8cm/sec,因此就會有壽命在重金屬添加時的溫度依賴性變大,並且其控制是極為困難的問題。 However, in the use of this vapor deposition method, it is difficult to accurately control the amount of heavy metal added, and the diffusion coefficient of heavy metals is as fast as 10 -7 ~ 10 -8 cm/sec, so there will be a lifetime when heavy metals are added. The temperature dependence of the chromophore becomes larger, and its control is an extremely difficult problem.
為了解決該問題,在特開平2-51235中,提出了一種壽命抑制劑的導入方法,其特徵為:在將重金屬元素混合在由多晶矽顆粒構成的 粉末後,將該粉末粘附在矽基板表面,從而通過施加熱處理來使重金屬向矽基板內擴散。 In order to solve this problem, Japanese Patent Laid-Open No. 2-51235 proposes a method of introducing a lifetime inhibitor, which is characterized by mixing heavy metal elements in polycrystalline silicon particles. After the powder, the powder adheres to the surface of the silicon substrate, and heat treatment is applied to diffuse heavy metals into the silicon substrate.
然而,在以往的這種方法中,與不控制壽命的半導體裝置相比較,其工序數量會增加,並且製造成本也會上升。 However, in this conventional method, compared with a semiconductor device that does not control the lifetime, the number of processes will increase and the manufacturing cost will also increase.
此外,當以μs的單位對trr(反向恢復時間)進行控制時需要使用電子束照射等,但在使用電子束照射等的情況下就需要導入昂貴的裝置。 In addition, when trr (reverse recovery time) is controlled in units of μs, electron beam irradiation or the like is required. However, when electron beam irradiation or the like is used, it is necessary to introduce an expensive device.
鑒於上述課題,本發明的目的,是提供一種在不增加工序數量的情況下就能夠以μs的單位對trr進行控制的半導體裝置的製造方法,以及通過該製造方法所製造出的半導體裝置。 In view of the above-mentioned problems, an object of the present invention is to provide a semiconductor device manufacturing method capable of controlling trr in units of μs without increasing the number of processes, and a semiconductor device manufactured by the manufacturing method.
[概念一] [Concept One]
本發明涉及的半導體裝置的製造方法的特徵在於,包括:在包含第一金屬以及第二金屬的金屬容器內投入玻璃材料,或在包含第二金屬的金屬容器內投入第一金屬以及玻璃材料的工序;通過在第一期間內以第一加熱溫度將所述玻璃材料溶融在所述金屬容器內,從而生成含有所述第一金屬或含有所述第二金屬的含金屬玻璃組分的工序;以及將所述含金屬玻璃組分設置在半導體層的工序。 The method of manufacturing a semiconductor device according to the present invention is characterized by including: putting a glass material into a metal container containing a first metal and a second metal, or putting the first metal and a glass material into a metal container containing the second metal Process; a process of generating a metal-containing glass component containing the first metal or the second metal by melting the glass material in the metal container at the first heating temperature during the first period; And the step of arranging the metal-containing glass component on the semiconductor layer.
[概念二] [Concept two]
在本發明的概念一涉及的半導體裝置的製造方法中,通過在第一期間內以第一加熱溫度將所述玻璃材料溶融在所述金屬容器內,從而使所述含金屬玻璃組分內含有所述第一金屬以及所述第二金屬。 In the manufacturing method of the semiconductor device according to the first concept of the present invention, the glass material is melted in the metal container at the first heating temperature during the first period, so that the metal-containing glass component contains The first metal and the second metal.
[概念三] [Concept Three]
在本發明的概念一或概念二涉及的半導體裝置的製造方法中,所述第一加熱溫度比所述第一金屬的熔點更高,且比所述第二金屬的熔點更低。 In the manufacturing method of the semiconductor device related to the concept 1 or the concept 2 of the present invention, the first heating temperature is higher than the melting point of the first metal and lower than the melting point of the second metal.
[概念四] [Concept Four]
在本發明的概念一至概念三中的任意一項涉及的半導體裝置的製造方法中,所述金屬容器含有所述第一金屬以及所述第二金屬,所述金屬容器中,所述第一金屬占3重量%~10重量%,所述第二金屬占90重量%~97重量%。 In the method of manufacturing a semiconductor device according to any one of Concept 1 to Concept 3 of the present invention, the metal container contains the first metal and the second metal, and in the metal container, the first metal It accounts for 3% to 10% by weight, and the second metal accounts for 90% to 97% by weight.
[概念五] [Concept 5]
在本發明的概念一至概念四中的任意一項涉及的半導體裝置的製造方法中,所述第一金屬是金,所述第二金屬是鉑。 In the method for manufacturing a semiconductor device according to any one of Concept 1 to Concept 4 of the present invention, the first metal is gold and the second metal is platinum.
[概念六] [Concept Six]
在本發明的概念一至概念五中的任意一項涉及的半導體裝置的製造方法中,所述玻璃材料的SiO2的含量在49.5mol%~64.3mol%的範圍內,Al2O3的含量在3.7mol%~14.8mol%的範圍內,B2O3的含量在8.4mol%~17.9mol%的範圍內,ZnO的含量在3.9mol%~14.2mol%的範圍內,鹼土金屬的氧化物含量在7.4mol%~12.9mol%的範圍內,所述第一期間為1~3小時,所述第一加熱溫度在1350℃以上1700℃以下。
In the method for manufacturing a semiconductor device according to any one of Concept 1 to
[概念七] [Concept Seven]
本發明涉及的半導體裝置的特徵在於,包括:半導體層;以及設置在所述半導體層的玻璃膜,其中,所述半導體層含有分散後的金,所述半導體層通過從所述玻璃膜擴散後的金來被壽命控制。 The semiconductor device according to the present invention is characterized by comprising: a semiconductor layer; and a glass film provided on the semiconductor layer, wherein the semiconductor layer contains dispersed gold, and the semiconductor layer is diffused from the glass film. The gold comes to be controlled by life.
根據本發明,能夠提供一種在不增加工序數量的情況下就能夠以μs的單位對trr進行控制的半導體裝置的製造方法、以及通過該製造方法所製造出的半導體裝置。 According to the present invention, it is possible to provide a semiconductor device manufacturing method capable of controlling trr in units of μs without increasing the number of processes, and a semiconductor device manufactured by the manufacturing method.
11:第一導電型半導體基板 11: First conductivity type semiconductor substrate
12:第一導電型半導體層 12: The first conductivity type semiconductor layer
13:第二導電型半導體層 13: Second conductivity type semiconductor layer
20:第一電極 20: first electrode
21:矽化鋁膜 21: Aluminum silicide film
22:矽化鎳膜 22: Nickel silicide film
23:Ni(鎳)-P膜 23: Ni (nickel)-P film
30:第二電極 30: second electrode
50:玻璃膜 50: glass film
61:絕緣膜 61: Insulating film
62:絕緣膜 62: Insulating film
65:檯面溝槽 65: Countertop groove
70:開口部 70: opening
100:金屬容器 100: metal container
110:含金屬玻璃組分 110: Metallic glass component
圖1是在本發明的第一實施方式中使用的半導體裝置的截面圖。 FIG. 1 is a cross-sectional view of a semiconductor device used in the first embodiment of the present invention.
圖2是展示在本發明的第一實施方式中使用的半導體裝置的製造工序過程的截面圖。 2 is a cross-sectional view showing the manufacturing process of the semiconductor device used in the first embodiment of the present invention.
圖3是展示從圖2進行工序的半導體裝置的製造工序過程的截面圖。 3 is a cross-sectional view showing the process of the manufacturing process of the semiconductor device in which the process is performed from FIG. 2;
圖4是展示從圖3進行工序的半導體裝置的製造工序過程的截面圖。 4 is a cross-sectional view showing the process of the manufacturing process of the semiconductor device in which the process is performed from FIG. 3;
圖5是展示從圖4進行工序的半導體裝置的製造工序過程的截面圖。 FIG. 5 is a cross-sectional view showing the process of the manufacturing process of the semiconductor device in which the process is performed from FIG. 4;
圖6是展示在本發明的各實施方式中使用的金屬容器與含金屬玻璃組分的截面圖。 Fig. 6 is a cross-sectional view showing a metal container and a metal-containing glass component used in each embodiment of the present invention.
圖7是展示加熱時間以及加熱溫度與trr之間關係的圖表。 Fig. 7 is a graph showing the relationship between heating time and heating temperature and trr.
本實施方式的半導體裝置具有二極體、晶閘管等的PN結。半導體裝置例如圖1所示,具有:由第一導電型構成的第一導電型半導體基板11、設置在第一導電型半導體基板11上的第一導電型的摻雜物濃度比第一導電型半導體基板11更薄的由第一導電型構成的第一導電型半導體層12、以及設置在第一導電型半導體層12上的第二導電型半導體層13。其中,第一導電型是例如n型,第二導電型是例如p型。但是,也可以不限於此,第一導電型可以是p型,第二導電型可以是n型。
The semiconductor device of this embodiment has a PN junction such as a diode and a thyristor. For example, as shown in FIG. 1, a semiconductor device has: a first conductivity
能夠使用矽基板、碳化矽基板、氮化鎵基板等來做為第一導電型半導體基板11,其摻雜物濃度是例如1×1019cm-3~1×1020cm-3。第一導電型半導體層12在第一導電型半導體基板11上例如通過外延生長來形成,第一導電型半導體層12中的摻雜物濃度是例如5×1015cm-3~1×1017cm-3。第一導電型半導體基板11的厚度例如是180μm,第一導電型半導體層12的厚度例如是50μm。第二導電型半導體層13能夠通過在第一導電型半導體層12上注入例如p型摻雜物(例如硼)來形成,第二導電型半導體層13中的摻雜物濃度例如是1×1016cm-3~1×1019cm-3,厚度是例如8μm。
A silicon substrate, a silicon carbide substrate, a gallium nitride substrate, etc. can be used as the first conductivity
第二導電型半導體層13的正面設置有第一電極20,第一導電型半導體基板11的背面設置有第二電極30。第一電極20是例如陽極電極,第二電極30是例如陰極電極。第一電極20具有例如:矽化鋁膜21、矽化鎳膜22、Ni(鎳)-P膜23。第二電極30具有鎳膜,該鎳膜具有矽化物膜。
The
第一電極20的周圍設置有做為鈍化膜的玻璃膜50。該半導體裝置按照以下方法來製造。
A
準備基板,該基板具有:由第一導電型構成的第一導電型半導體基板11、設置在第一導電型半導體基板11上且第一導電型的摻雜物濃度比第一導電型半導體基板11更薄的由第一導電型構成的第一導電型半導體層12、以及設置在第一導電型半導體層12上的第二導電型半導體層13(參照圖2)。
A substrate is prepared. The substrate has: a first conductivity
接著,在第二導電型半導體層13上形成由SiO2等構成的絕緣膜61(參照圖2)。此外,在第一導電型半導體基板11的背面形成由SiO2等構成的絕緣膜62(參照圖2)。 Next, an insulating film 61 made of SiO 2 or the like is formed on the second conductivity type semiconductor layer 13 (refer to FIG. 2 ). In addition, an insulating film 62 made of SiO 2 or the like is formed on the back surface of the first conductive type semiconductor substrate 11 (refer to FIG. 2 ).
隨後,如圖3所示,將形成後的絕緣膜61做為掩膜來使用,並進行蝕刻來形成檯面溝槽65。做為本實施方式中的蝕刻,能夠使用乾蝕刻或濕蝕刻等。
Subsequently, as shown in FIG. 3, the formed insulating
接著,如圖4所示,通過玻璃膜50來形成保護膜(鈍化膜)從而覆蓋形成後的檯面溝槽65以及絕緣膜61。
Next, as shown in FIG. 4, a protective film (passivation film) is formed by the
隨後,如圖5所示,在形成後的絕緣膜61以及玻璃膜50上通過蝕刻來形成開口部70。
Subsequently, as shown in FIG. 5, an
並且,在正面側的開口部上形成第一電極20,在背面側形成第二電極30(參照圖1)。
In addition, the
接著,對本實施方式中使用的玻璃膜50的製造方法的一例進行說明。
Next, an example of the manufacturing method of the
在製造本實施方式涉及的玻璃膜50時,在包含第一金屬以及第二金屬的金屬容器100(參照圖6)內投入玻璃材料來做為用於製作玻璃的原料(玻璃材料投入工序)。金屬容器100例如是金屬坩堝。第一金屬是金(Au),第二金屬是鉑(Pt)。金屬容器100中,第一金屬占3重量%~10重量%,第二金屬占90重量%~97重量%。做為第一金屬,除了金以外也可以使用銠(Rh)。金屬容器100可以含有除第一金屬以及第二金屬以外的金屬,也可以是由第一金屬、第二金屬以及第三金屬這三種成分的合金構成,還可以是由大於等於四種成分的合金構成。
When manufacturing the
例如,玻璃材料的SiO2的含量在49.5mol%~64.3mol%的範圍內,Al2O3的含量在3.7mol%~14.8mol%的範圍內,B2O3的含量在8.4mol%~17.9mol%的範圍內,ZnO的含量在3.9mol%~14.2mol%的範圍內,鹼土金屬的氧化物含量在7.4mol%~12.9mol%的範圍內。 For example, the content of SiO 2 in the glass material is in the range of 49.5 mol% to 64.3 mol%, the content of Al 2 O 3 is in the range of 3.7 mol% to 14.8 mol%, and the content of B 2 O 3 is in the range of 8.4 mol%. In the range of 17.9 mol%, the content of ZnO is in the range of 3.9 mol% to 14.2 mol%, and the content of alkaline earth metal oxides is in the range of 7.4 mol% to 12.9 mol%.
隨後,在第一期間內以第一加熱溫度將玻璃材料溶融在金屬容器100內(溶融工序)。通過這樣將玻璃材料溶融在金屬容器100內,從而在玻璃組分內生成含有第一金屬、第二金屬或含有第一金屬以及第二金屬這兩個金屬的含金屬玻璃組分110。第一加熱溫度比第一金屬的熔點更高,且比第二金屬的熔點更低。第一期間例如為1~3小時,第一加熱溫度例如在1350℃以上及1700℃以下。此外,金的熔點是1064℃,鉑的熔點是1768℃。
Subsequently, the glass material is melted in the
通過將上述準備好的含金屬玻璃組分110設置在諸如所述第二導電型半導體層13這種半導體層上,從而來形成玻璃膜50(玻璃膜形成工序)。具體來說,將溶融後的含金屬玻璃組分110冷卻後粉碎成數μm的粒徑,並在將粉碎後的含金屬玻璃組分110設置在第一導電型半導體基板11、第一導電型半導體層12、第二導電型半導體層13等的半導體層上後,將該含金屬玻璃組分110溶融(參照圖4)。在圖4中,雖然展示了檯面溝槽65被設置在直至第一導電型半導體基板11的形態,但這僅僅是其中一例,也可以採用在第一導電型半導體基板11以及第一導電型半導體層12上設置檯面溝槽65、在第一導電型半導體基板11上不設置檯面溝槽65的形態。
The
本實施方式中的玻璃膜50含有第一金屬等金屬。因此,通過設置這種玻璃膜50,就能夠在諸如影響trr控制的第一導電型半導體層12這
種半導體層內使其微量的第一金屬等金屬分散。這樣一來,根據本申請的發明人的確認,能夠將半導體層中的trr(反相恢復時間)設為5μs以上及15μs以下,從而就能夠進行壽命控制。此外,trr的理想情況是在5μs以上及11μs以下,更為理想的情況是在5μs以上及8μs以下。而且,在以往這種添加重金屬的形態中,由於其與本實施方式相比添加有大量的重金屬,因此就無法以μs為單位來控制trr。
The
將實驗結果在圖7中進行展示。在該實驗中,使用電阻率ρ=30Ω.cm的晶片。如圖7中所展示的,當純粹使用Pt來做為金屬容器100時,trr約為22μs,當使用鉑中含有金的Pt-Au坩堝(Au的含量占5重量%)時,能夠降低trr。具體來說,如圖7所示,在Pt-Au坩堝內以1350℃的溫度使玻璃材料溶融5個小時後,將該玻璃組合物(含金屬玻璃組分110)設置在半導體層中,這時該半導體層中的trr約為15μs。在Pt-Au坩堝內以1450℃的溫度使玻璃材料溶融1個小時後,將該玻璃組合物(含金屬玻璃組分110)設置在所述半導體層中,這時該半導體層中的trr約為14μs。在Pt-Au坩堝內以1450℃的溫度使玻璃材料溶融2個小時後,將該玻璃組合物(含金屬玻璃組分110)設置在所述半導體層中,這時該半導體層中的trr約為11μs。在Pt-Au坩堝內以1560℃的溫度使玻璃材料溶融1個小時後,將該玻璃組合物(含金屬玻璃組分110)設置在所述半導體層中,這時該半導體層中的trr約為8μs。在Pt-Au坩堝內以1560℃的溫度使玻璃材料溶融2個小時後,將該玻璃組合物(含金屬玻璃組分110)設置在所述半導體層中,這時該半導體層中的trr約為8μs。此外,在經過發明者確認後,由於可以認為金具有易於融入
玻璃組合物的性質,因此相比銠(Rh),使用金(Au)來做為第一金屬對於能夠容易地控制trr是有幫助的。
The experimental results are shown in Figure 7. In this experiment, the resistivity ρ=30Ω is used. cm wafers. As shown in Figure 7, when purely using Pt as the
下面,對本實施方式涉及的效果的一例進行說明。此外,能夠採用在「效果」中說明的所有形態。 Hereinafter, an example of the effect according to the present embodiment will be described. In addition, all the forms described in "Effects" can be adopted.
一直以來都是使玻璃在坩堝等容器內進行溶融的。在本實施方式中,由於是按照以往所使用的工序來僅使玻璃溶融,因此本實施方式與添加重金屬或進行電子束照射的形態不同,能夠在不增加工序數量的情況下對trr進行控制。此外,根據本實施方式,能夠將trr以μs的單位進行控制。因此,就能夠在防止晶片等半導體裝置的製造成本上升的同時將trr以μs的單位進行控制。 Traditionally, glass has been melted in a vessel such as a crucible. In this embodiment, since only glass is melted according to the conventionally used process, this embodiment is different from the form of adding heavy metals or performing electron beam irradiation, and can control trr without increasing the number of processes. In addition, according to the present embodiment, trr can be controlled in units of μs. Therefore, it is possible to control trr in units of μs while preventing the increase in the manufacturing cost of semiconductor devices such as wafers.
做為將trr以μs的單位進行控制的方法,具體來說,通過調整溫度以及時間從而就能夠如圖7所示般調整半導體層中的trr。因此,只需在每個半導體裝置中根據所需的trr來調整溫度以及時間就能夠以極為簡單的方法來調整trr。此外,如圖7所示,通過調整溫度能夠比調整時間更為有效地控制trr。理想的情況是以大於等於1400℃的溫度進行加熱,較為理想的情況是以大於等於1500℃的溫度進行加熱,更為理想的情況是以大於等於1550℃的溫度進行加熱。 As a method of controlling trr in units of μs, specifically, by adjusting temperature and time, it is possible to adjust trr in the semiconductor layer as shown in FIG. 7. Therefore, it is possible to adjust trr in an extremely simple method by adjusting the temperature and time according to the required trr in each semiconductor device. In addition, as shown in Fig. 7, by adjusting the temperature, trr can be controlled more effectively than adjusting the time. Ideally, heating is performed at a temperature greater than or equal to 1400°C, more ideally, heating is performed at a temperature greater than or equal to 1500°C, and more ideally, heating is performed at a temperature greater than or equal to 1550°C.
此外,近年來在空調的PFC(Power Factor Correction)中,部分開關方式(簡易PAM)佔據了大部分。在簡易PAM的運作模式下,增加了將二極體電橋做為部分開關來使用的用途,從而要求改善二極體電橋的 trr特性。另外,在諸如IGBT這種不想增大正向損耗而只需一定程度的開關轉換速度即可的半導體裝置中,有時就必須要控制以μs為單位的trr。對於這點,根據本實施方式,就可以無需進行追加工序,這樣一來,就能夠在抑制成本的同時對於能夠改善以μs為單位的trr特性也是有幫助的。 In addition, in recent years, in the PFC (Power Factor Correction) of the air conditioner, the partial switch method (simple PAM) has occupied the majority. In the simple PAM operation mode, the use of diode bridge as part of the switch is added, which requires improvement of the diode bridge trr characteristics. In addition, in semiconductor devices such as IGBTs that do not want to increase the forward loss but require a certain degree of switching speed, sometimes it is necessary to control trr in μs. In this regard, according to the present embodiment, it is not necessary to perform an additional process, and thus, it is possible to reduce the cost while being helpful for improving the trr characteristic in μs.
在使用以往的重金屬擴散的情況下,儘管能夠將trr以ns的單位進行控制,但是卻難以將其以μs的單位進行控制。如果使用電子束照射雖然能夠將trr以μs的單位進行控制,但是卻需要導入昂貴的器械。對於這點,根據本實施方式,對於能夠在無需導入昂貴的器械的情況下將trr以μs的單位進行控制也是有說明的。 In the case of using conventional heavy metal diffusion, although trr can be controlled in units of ns, it is difficult to control it in units of μs. If electron beam irradiation is used, trr can be controlled in units of μs, but expensive equipment must be introduced. In this regard, according to the present embodiment, it is also explained that trr can be controlled in units of μs without introducing expensive equipment.
通過將第一加熱溫度設為更高於第一金屬的熔點,就能夠使玻璃組分內含有第一金屬、第二金屬或第一金屬以及第二金屬這兩個金屬。
此外,當在金屬容器100中的第一金屬與第二金屬成為合金的情況下,即使加熱至高於第一金屬的熔點的溫度,第一金屬也不會立即溶融。這在圖7中也可以通過提升溫度使trr下降來證實。也就是說,如所述雖然金的熔點是1064℃,但是通過將溫度上升為1350℃→1450℃→1560℃,trr會發生變化且玻璃材料中所含有的金屬量也發生變化,從而證明了通過加熱至更高於1064℃的溫度會使金立即溶融且不被包含在玻璃組分內。
By setting the first heating temperature to be higher than the melting point of the first metal, the first metal, the second metal, or two metals of the first metal and the second metal can be contained in the glass composition.
In addition, when the first metal and the second metal in the
此外,在金屬容器100中的合金比例也同樣重要。例如在金屬容器100中,如果是做為金的第一金屬占3重量%~10重量%,做為鉑的第二金屬占90重量%~97重量%的形態,就能夠有效地調整trr。一旦第一金屬的量少於3重量%,那麼使玻璃組分內含有金屬就會變得困難,從而就
會難以調整trr。另一方面,一旦第一金屬的量多於10重量%,那麼在提升加熱溫度後做為金屬容器100的強度也會變弱。
In addition, the alloy ratio in the
下面,對本發明的第二實施方式進行說明。 Next, the second embodiment of the present invention will be described.
在第一實施方式中,是使用包含第一金屬以及第二金屬的金屬容器100的形態。在本實施方式中,使用在包含第二金屬的金屬容器100內投入第一金屬以及玻璃材料的形態來進行說明。關於其他則與第一實施方式相同,第二實施方式也能夠採用在第一實施方式中所採用的所有構成。
In the first embodiment, the
對本實施方式中所使用的玻璃膜50的製造方法的一例進行說明。
An example of the manufacturing method of the
在由第二金屬(通常為鉑)構成的金屬容器100內投入第一金屬(通常為金)與玻璃材料。
The first metal (usually gold) and the glass material are put into the
接著,在第一期間內以第一加熱溫度將玻璃材料溶融在金屬容器100內(溶融工序)。通過這樣將玻璃材料溶融在金屬容器100內,從而來生成含有第一金屬的含金屬玻璃組分110。第一加熱溫度比第一金屬的熔點更高且比第二金屬的熔點更低。第一期間是例如1~3小時,第一加熱溫度是例如在1350℃以上及1700℃以下。
Next, the glass material is melted in the
通過將準備好的含金屬玻璃組分110設置在諸如所述第二導電型半導體層13這種半導體層上,從而來形成玻璃膜50(玻璃膜形成工序)。
這樣本實施方式的玻璃膜50就混合有第一金屬等金屬。因此,通過設置這
種玻璃膜50,就能夠在諸如影響trr控制的第一導電型半導體層12這種半導體層內使第一金屬分散。
The
根據以上情況,經過本申請的發明人確認,在將第一金屬放入由第二金屬構成的金屬容器100中的情況下,金屬容器100有時會溶出或開孔。由於一旦在金屬容器100中開孔,玻璃材料就會流出,因此就不適合於量產。特別是由於Pt的反應性較高,所以就會容易引起這種溶出或開孔的問題。此外,當第二金屬是Pt時,其會成為非常高價的金屬容器100,因此這種在金屬容器100中開孔的問題對於成本也是難以承受的。所以,從該觀點來看,第一實施方式比第二實施方式更有說明。
Based on the above, the inventor of the present application confirmed that when the first metal is put in the
下面,對本發明的第三實施方式進行說明。 Next, a third embodiment of the present invention will be described.
在本實施方式中,使用在包含第一金屬以及第二金屬的金屬容器100內投入第一金屬以及玻璃材料的形態來進行說明。關於其他則與第一實施方式相同,第三實施方式也能夠採用在第一實施方式中所採用的所有構成。
In this embodiment, description is made using a form in which the first metal and the glass material are put into the
對本實施方式中所使用的玻璃膜50的製造方法的一例進行說明。
An example of the manufacturing method of the
在由第一金屬(通常為金)以及第二金屬(通常為鉑)構成的金屬容器100內投入第一金屬(通常為金)與玻璃材料。
A first metal (usually gold) and a glass material are put into a
接著,在第一期間內以第一加熱溫度將玻璃材料溶融在金屬容器100內(溶融工序)。通過這樣將玻璃材料溶融在金屬容器100內,從而
來生成含有第一金屬、第二金屬或含有第一金屬以及第二金屬這兩個金屬的含金屬玻璃組分110。第一加熱溫度比第一金屬的熔點更高且比第二金屬的熔點更低。第一期間是例如1~3小時,第一加熱溫度是例如在1350℃以上及1700℃以下。
Next, the glass material is melted in the
通過將準備好的含金屬玻璃組分110設置在諸如所述第二導電型半導體層13這種半導體層上,從而來形成玻璃膜50(玻璃膜形成工序)。
這樣本實施方式的玻璃膜50就混合有第一金屬等金屬。因此,通過設置這種玻璃膜50,從而就能夠在諸如影響trr控制的第一導電型半導體層12這種半導體層內使第一金屬等金屬分散。
The
玻璃材料內含有第一金屬是指:第一金屬從金屬容器100逐漸消失。在本實施方式中,有補充這種變少的第一金屬的意思,例如在使用超過規定次數後的金屬容器100來使玻璃材料溶融的情況下就可以進行採用。另一方面,如第二實施方式中說明過的,由於一旦將第一金屬放入金屬容器100內,在金屬容器100內就會開孔,因此被加入金屬容器100內的第一金屬的量是極為少量的。
The inclusion of the first metal in the glass material means that the first metal gradually disappears from the
上述記載的各實施方式以及公開的附圖只不過是用於說明權利要求中所記載的發明的一例,在權利要求中記載的發明不受上述記載的各實施方式或公開的附圖所限定。此外,申請最初所記載的權利要求只是一例,能夠基於說明書、附圖等的記載對權利要求的記載進行適當變更。 The above-described embodiments and the disclosed drawings are merely examples for explaining the invention described in the claims, and the inventions described in the claims are not limited by the above-described embodiments or the disclosed drawings. In addition, the claims described at the beginning of the application are only examples, and the description of the claims can be appropriately changed based on descriptions in the specification, drawings, and the like.
11:第一導電型半導體基板 11: First conductivity type semiconductor substrate
12:第一導電型半導體層 12: The first conductivity type semiconductor layer
13:第二導電型半導體層 13: Second conductivity type semiconductor layer
20:第一電極 20: first electrode
21:矽化鋁膜 21: Aluminum silicide film
22:矽化鎳膜 22: Nickel silicide film
23:Ni(鎳)-P膜 23: Ni (nickel)-P film
30:第二電極 30: second electrode
50:玻璃膜 50: glass film
61:絕緣膜 61: Insulating film
62:絕緣膜 62: Insulating film
65:檯面溝槽 65: Countertop groove
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108125147A TWI720544B (en) | 2019-07-16 | 2019-07-16 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108125147A TWI720544B (en) | 2019-07-16 | 2019-07-16 | Manufacturing method of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202105521A TW202105521A (en) | 2021-02-01 |
TWI720544B true TWI720544B (en) | 2021-03-01 |
Family
ID=75745160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108125147A TWI720544B (en) | 2019-07-16 | 2019-07-16 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI720544B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4965181A (en) * | 1972-10-25 | 1974-06-24 | ||
JP4965181B2 (en) | 2006-07-31 | 2012-07-04 | 有限会社鈴木軽合金 | Molding device for spherical mold |
TW201334142A (en) * | 2012-02-15 | 2013-08-16 | Taiwan Semiconductor Mfg | Semiconductor device and method for fabricating the same |
-
2019
- 2019-07-16 TW TW108125147A patent/TWI720544B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4965181A (en) * | 1972-10-25 | 1974-06-24 | ||
JP4965181B2 (en) | 2006-07-31 | 2012-07-04 | 有限会社鈴木軽合金 | Molding device for spherical mold |
TW201334142A (en) * | 2012-02-15 | 2013-08-16 | Taiwan Semiconductor Mfg | Semiconductor device and method for fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
TW202105521A (en) | 2021-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1579008B (en) | Low temperature formation of backside ohmic contacts for vertical devices | |
US11915934B2 (en) | Diamond semiconductor system and method | |
US2789068A (en) | Evaporation-fused junction semiconductor devices | |
US9941112B2 (en) | Method of manufacturing semiconductor device and semiconductor device | |
US9236318B1 (en) | Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device | |
TW201210052A (en) | Back junction solar cell with selective front surface field | |
JP5340511B1 (en) | Semiconductor device manufacturing method and semiconductor device | |
CN109994383A (en) | Semiconductor devices and the method for being used to form semiconductor devices | |
KR20160075562A (en) | Manufacturing method of semiconductor device and glass coating film forming apparatus | |
TWI720544B (en) | Manufacturing method of semiconductor device | |
CN106611797A (en) | Power device with local metal service life control and manufacturing method thereof | |
JP2004111910A (en) | Contact forming method and semiconductor device | |
JP6764034B2 (en) | Manufacturing method of semiconductor devices and semiconductor devices | |
CN113178414A (en) | Forming method of silicon carbide ohmic contact structure and preparation method of MOS transistor | |
JPH0831767A (en) | Manufacture of electrode structure | |
JP2008004704A (en) | Method of manufacturing semiconductor element | |
TWI276145B (en) | Semiconductor device having nickel silicide and method of fabricating nickel silicide | |
JP5303008B2 (en) | Semiconductor device and method for manufacturing semiconductor device | |
CN117373926A (en) | Preparation method of gallium oxide longitudinal MOSFET device | |
JPH0590639A (en) | Manufacture of semiconductor light emitting element | |
JPH0864843A (en) | Fabrication of zener diode | |
JPS59101868A (en) | Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof | |
JPH01255220A (en) | Manufacture of semiconductor device | |
JP2000315806A (en) | Schottky barrier diode and manufacture of the same | |
JPS5994415A (en) | Manufacture of semiconductor device |