TWI720544B - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
TWI720544B
TWI720544B TW108125147A TW108125147A TWI720544B TW I720544 B TWI720544 B TW I720544B TW 108125147 A TW108125147 A TW 108125147A TW 108125147 A TW108125147 A TW 108125147A TW I720544 B TWI720544 B TW I720544B
Authority
TW
Taiwan
Prior art keywords
metal
glass
mol
semiconductor layer
semiconductor device
Prior art date
Application number
TW108125147A
Other languages
Chinese (zh)
Other versions
TW202105521A (en
Inventor
小笠原淳
伊東浩二
Original Assignee
日商新電元工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商新電元工業股份有限公司 filed Critical 日商新電元工業股份有限公司
Priority to TW108125147A priority Critical patent/TWI720544B/en
Publication of TW202105521A publication Critical patent/TW202105521A/en
Application granted granted Critical
Publication of TWI720544B publication Critical patent/TWI720544B/en

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

半導體裝置的製造方法,具有:在包含第一金屬以及第二金屬的金屬容器100內投入玻璃材料、或在包含第一金屬的金屬容器100內投入第二金屬以及玻璃材料的工序;在第一期間內,通過以第一加熱溫度將所述玻璃材料溶融在所述金屬容器100內,從而生成含有所述第一金屬或含有所述第二金屬的含金屬玻璃組分100的工序;以及將所述含金屬玻璃組分設置在半導體層的工序。 The method of manufacturing a semiconductor device includes a step of putting a glass material into a metal container 100 containing a first metal and a second metal, or putting a second metal and a glass material into the metal container 100 containing the first metal; During the period, by melting the glass material in the metal container 100 at the first heating temperature to generate the metal-containing glass component 100 containing the first metal or the second metal; and The step of placing the metal-containing glass component on the semiconductor layer.

Description

半導體裝置的製造方法 Manufacturing method of semiconductor device

本發明涉及使用玻璃材料的半導體裝置的製造方法以及具有玻璃膜的半導體裝置。 The present invention relates to a method of manufacturing a semiconductor device using a glass material and a semiconductor device having a glass film.

以往,已經嘗試導入關於半導體裝置的壽命抑制劑(life time killer)。例如在特開昭62-73730號公報中,在將各區域(1)(2)(3)的表面露出後在其表面蒸鍍膜厚為500~1000Å的重金屬薄膜,並通過進行在溫度為800~1000℃、時間為60~120分鐘的N2環境中的熱處理,從而來使含有壽命抑制劑的物質向基板中擴散。由於該壽命抑制劑的擴散,因此固溶在矽中的晶格位置或晶格之間位置的重金屬的雜質能級成為複合中心,在運作時,通過在所述複合中心處對移動於區域之間的電子或空穴進行捕捉,從而來縮短電晶體的開關轉換時間。 In the past, attempts have been made to introduce life time killers for semiconductor devices. For example, in Japanese Patent Laid-Open No. 62-73730, after exposing the surface of each area (1), (2), and (3), a heavy metal thin film with a thickness of 500 to 1000 Å is deposited on the surface, and the temperature is 800 Heat treatment in an N 2 environment at ~1000°C for 60 to 120 minutes to diffuse the life inhibitor-containing substance into the substrate. Due to the diffusion of the lifetime inhibitor, the impurity level of the heavy metal in the crystal lattice position or the position between the crystal lattices in silicon becomes the recombination center. During operation, the recombination center moves between the regions. The electrons or holes in between are captured to shorten the switching time of the transistor.

然而,在使用這種蒸鍍的方法中,由於難以正確地控制重金屬的添加量,並且重金屬的擴散係數均快至10-7~10-8cm/sec,因此就會有壽命在重金屬添加時的溫度依賴性變大,並且其控制是極為困難的問題。 However, in the use of this vapor deposition method, it is difficult to accurately control the amount of heavy metal added, and the diffusion coefficient of heavy metals is as fast as 10 -7 ~ 10 -8 cm/sec, so there will be a lifetime when heavy metals are added. The temperature dependence of the chromophore becomes larger, and its control is an extremely difficult problem.

為了解決該問題,在特開平2-51235中,提出了一種壽命抑制劑的導入方法,其特徵為:在將重金屬元素混合在由多晶矽顆粒構成的 粉末後,將該粉末粘附在矽基板表面,從而通過施加熱處理來使重金屬向矽基板內擴散。 In order to solve this problem, Japanese Patent Laid-Open No. 2-51235 proposes a method of introducing a lifetime inhibitor, which is characterized by mixing heavy metal elements in polycrystalline silicon particles. After the powder, the powder adheres to the surface of the silicon substrate, and heat treatment is applied to diffuse heavy metals into the silicon substrate.

然而,在以往的這種方法中,與不控制壽命的半導體裝置相比較,其工序數量會增加,並且製造成本也會上升。 However, in this conventional method, compared with a semiconductor device that does not control the lifetime, the number of processes will increase and the manufacturing cost will also increase.

此外,當以μs的單位對trr(反向恢復時間)進行控制時需要使用電子束照射等,但在使用電子束照射等的情況下就需要導入昂貴的裝置。 In addition, when trr (reverse recovery time) is controlled in units of μs, electron beam irradiation or the like is required. However, when electron beam irradiation or the like is used, it is necessary to introduce an expensive device.

鑒於上述課題,本發明的目的,是提供一種在不增加工序數量的情況下就能夠以μs的單位對trr進行控制的半導體裝置的製造方法,以及通過該製造方法所製造出的半導體裝置。 In view of the above-mentioned problems, an object of the present invention is to provide a semiconductor device manufacturing method capable of controlling trr in units of μs without increasing the number of processes, and a semiconductor device manufactured by the manufacturing method.

[概念一] [Concept One]

本發明涉及的半導體裝置的製造方法的特徵在於,包括:在包含第一金屬以及第二金屬的金屬容器內投入玻璃材料,或在包含第二金屬的金屬容器內投入第一金屬以及玻璃材料的工序;通過在第一期間內以第一加熱溫度將所述玻璃材料溶融在所述金屬容器內,從而生成含有所述第一金屬或含有所述第二金屬的含金屬玻璃組分的工序;以及將所述含金屬玻璃組分設置在半導體層的工序。 The method of manufacturing a semiconductor device according to the present invention is characterized by including: putting a glass material into a metal container containing a first metal and a second metal, or putting the first metal and a glass material into a metal container containing the second metal Process; a process of generating a metal-containing glass component containing the first metal or the second metal by melting the glass material in the metal container at the first heating temperature during the first period; And the step of arranging the metal-containing glass component on the semiconductor layer.

[概念二] [Concept two]

在本發明的概念一涉及的半導體裝置的製造方法中,通過在第一期間內以第一加熱溫度將所述玻璃材料溶融在所述金屬容器內,從而使所述含金屬玻璃組分內含有所述第一金屬以及所述第二金屬。 In the manufacturing method of the semiconductor device according to the first concept of the present invention, the glass material is melted in the metal container at the first heating temperature during the first period, so that the metal-containing glass component contains The first metal and the second metal.

[概念三] [Concept Three]

在本發明的概念一或概念二涉及的半導體裝置的製造方法中,所述第一加熱溫度比所述第一金屬的熔點更高,且比所述第二金屬的熔點更低。 In the manufacturing method of the semiconductor device related to the concept 1 or the concept 2 of the present invention, the first heating temperature is higher than the melting point of the first metal and lower than the melting point of the second metal.

[概念四] [Concept Four]

在本發明的概念一至概念三中的任意一項涉及的半導體裝置的製造方法中,所述金屬容器含有所述第一金屬以及所述第二金屬,所述金屬容器中,所述第一金屬占3重量%~10重量%,所述第二金屬占90重量%~97重量%。 In the method of manufacturing a semiconductor device according to any one of Concept 1 to Concept 3 of the present invention, the metal container contains the first metal and the second metal, and in the metal container, the first metal It accounts for 3% to 10% by weight, and the second metal accounts for 90% to 97% by weight.

[概念五] [Concept 5]

在本發明的概念一至概念四中的任意一項涉及的半導體裝置的製造方法中,所述第一金屬是金,所述第二金屬是鉑。 In the method for manufacturing a semiconductor device according to any one of Concept 1 to Concept 4 of the present invention, the first metal is gold and the second metal is platinum.

[概念六] [Concept Six]

在本發明的概念一至概念五中的任意一項涉及的半導體裝置的製造方法中,所述玻璃材料的SiO2的含量在49.5mol%~64.3mol%的範圍內,Al2O3的含量在3.7mol%~14.8mol%的範圍內,B2O3的含量在8.4mol%~17.9mol%的範圍內,ZnO的含量在3.9mol%~14.2mol%的範圍內,鹼土金屬的氧化物含量在7.4mol%~12.9mol%的範圍內,所述第一期間為1~3小時,所述第一加熱溫度在1350℃以上1700℃以下。 In the method for manufacturing a semiconductor device according to any one of Concept 1 to Concept 5 of the present invention, the content of SiO 2 of the glass material is in the range of 49.5 mol% to 64.3 mol%, and the content of Al 2 O 3 is in the range of 49.5 mol% to 64.3 mol%. Within the range of 3.7mol%~14.8mol%, the content of B 2 O 3 is within the range of 8.4mol%~17.9mol%, the content of ZnO is within the range of 3.9mol%~14.2mol%, the content of alkaline earth metal oxides In the range of 7.4 mol% to 12.9 mol%, the first period is 1 to 3 hours, and the first heating temperature is above 1350°C and below 1700°C.

[概念七] [Concept Seven]

本發明涉及的半導體裝置的特徵在於,包括:半導體層;以及設置在所述半導體層的玻璃膜,其中,所述半導體層含有分散後的金,所述半導體層通過從所述玻璃膜擴散後的金來被壽命控制。 The semiconductor device according to the present invention is characterized by comprising: a semiconductor layer; and a glass film provided on the semiconductor layer, wherein the semiconductor layer contains dispersed gold, and the semiconductor layer is diffused from the glass film. The gold comes to be controlled by life.

根據本發明,能夠提供一種在不增加工序數量的情況下就能夠以μs的單位對trr進行控制的半導體裝置的製造方法、以及通過該製造方法所製造出的半導體裝置。 According to the present invention, it is possible to provide a semiconductor device manufacturing method capable of controlling trr in units of μs without increasing the number of processes, and a semiconductor device manufactured by the manufacturing method.

11:第一導電型半導體基板 11: First conductivity type semiconductor substrate

12:第一導電型半導體層 12: The first conductivity type semiconductor layer

13:第二導電型半導體層 13: Second conductivity type semiconductor layer

20:第一電極 20: first electrode

21:矽化鋁膜 21: Aluminum silicide film

22:矽化鎳膜 22: Nickel silicide film

23:Ni(鎳)-P膜 23: Ni (nickel)-P film

30:第二電極 30: second electrode

50:玻璃膜 50: glass film

61:絕緣膜 61: Insulating film

62:絕緣膜 62: Insulating film

65:檯面溝槽 65: Countertop groove

70:開口部 70: opening

100:金屬容器 100: metal container

110:含金屬玻璃組分 110: Metallic glass component

圖1是在本發明的第一實施方式中使用的半導體裝置的截面圖。 FIG. 1 is a cross-sectional view of a semiconductor device used in the first embodiment of the present invention.

圖2是展示在本發明的第一實施方式中使用的半導體裝置的製造工序過程的截面圖。 2 is a cross-sectional view showing the manufacturing process of the semiconductor device used in the first embodiment of the present invention.

圖3是展示從圖2進行工序的半導體裝置的製造工序過程的截面圖。 3 is a cross-sectional view showing the process of the manufacturing process of the semiconductor device in which the process is performed from FIG. 2;

圖4是展示從圖3進行工序的半導體裝置的製造工序過程的截面圖。 4 is a cross-sectional view showing the process of the manufacturing process of the semiconductor device in which the process is performed from FIG. 3;

圖5是展示從圖4進行工序的半導體裝置的製造工序過程的截面圖。 FIG. 5 is a cross-sectional view showing the process of the manufacturing process of the semiconductor device in which the process is performed from FIG. 4;

圖6是展示在本發明的各實施方式中使用的金屬容器與含金屬玻璃組分的截面圖。 Fig. 6 is a cross-sectional view showing a metal container and a metal-containing glass component used in each embodiment of the present invention.

圖7是展示加熱時間以及加熱溫度與trr之間關係的圖表。 Fig. 7 is a graph showing the relationship between heating time and heating temperature and trr.

第一實施方式The first embodiment

本實施方式的半導體裝置具有二極體、晶閘管等的PN結。半導體裝置例如圖1所示,具有:由第一導電型構成的第一導電型半導體基板11、設置在第一導電型半導體基板11上的第一導電型的摻雜物濃度比第一導電型半導體基板11更薄的由第一導電型構成的第一導電型半導體層12、以及設置在第一導電型半導體層12上的第二導電型半導體層13。其中,第一導電型是例如n型,第二導電型是例如p型。但是,也可以不限於此,第一導電型可以是p型,第二導電型可以是n型。 The semiconductor device of this embodiment has a PN junction such as a diode and a thyristor. For example, as shown in FIG. 1, a semiconductor device has: a first conductivity type semiconductor substrate 11 composed of a first conductivity type, and a first conductivity type semiconductor substrate 11 provided on the first conductivity type semiconductor substrate 11 has a higher dopant concentration than the first conductivity type. The semiconductor substrate 11 has a thinner first conductivity type semiconductor layer 12 composed of a first conductivity type, and a second conductivity type semiconductor layer 13 provided on the first conductivity type semiconductor layer 12. Among them, the first conductivity type is, for example, n-type, and the second conductivity type is, for example, p-type. However, it may not be limited to this, the first conductivity type may be p-type, and the second conductivity type may be n-type.

能夠使用矽基板、碳化矽基板、氮化鎵基板等來做為第一導電型半導體基板11,其摻雜物濃度是例如1×1019cm-3~1×1020cm-3。第一導電型半導體層12在第一導電型半導體基板11上例如通過外延生長來形成,第一導電型半導體層12中的摻雜物濃度是例如5×1015cm-3~1×1017cm-3。第一導電型半導體基板11的厚度例如是180μm,第一導電型半導體層12的厚度例如是50μm。第二導電型半導體層13能夠通過在第一導電型半導體層12上注入例如p型摻雜物(例如硼)來形成,第二導電型半導體層13中的摻雜物濃度例如是1×1016cm-3~1×1019cm-3,厚度是例如8μm。 A silicon substrate, a silicon carbide substrate, a gallium nitride substrate, etc. can be used as the first conductivity type semiconductor substrate 11, and the dopant concentration thereof is, for example, 1×10 19 cm -3 to 1×10 20 cm -3 . The first conductivity type semiconductor layer 12 is formed on the first conductivity type semiconductor substrate 11, for example, by epitaxial growth, and the dopant concentration in the first conductivity type semiconductor layer 12 is, for example, 5×10 15 cm -3 to 1×10 17 cm -3 . The thickness of the first conductivity type semiconductor substrate 11 is, for example, 180 μm, and the thickness of the first conductivity type semiconductor layer 12 is, for example, 50 μm. The second conductive type semiconductor layer 13 can be formed by implanting, for example, p-type dopants (for example, boron) on the first conductive type semiconductor layer 12, and the dopant concentration in the second conductive type semiconductor layer 13 is, for example, 1×10. From 16 cm -3 to 1×10 19 cm -3 , the thickness is, for example, 8 μm.

第二導電型半導體層13的正面設置有第一電極20,第一導電型半導體基板11的背面設置有第二電極30。第一電極20是例如陽極電極,第二電極30是例如陰極電極。第一電極20具有例如:矽化鋁膜21、矽化鎳膜22、Ni(鎳)-P膜23。第二電極30具有鎳膜,該鎳膜具有矽化物膜。 The first electrode 20 is provided on the front surface of the second conductive type semiconductor layer 13, and the second electrode 30 is provided on the back surface of the first conductive type semiconductor substrate 11. The first electrode 20 is, for example, an anode electrode, and the second electrode 30 is, for example, a cathode electrode. The first electrode 20 has, for example, an aluminum silicide film 21, a nickel silicide film 22, and a Ni (nickel)-P film 23. The second electrode 30 has a nickel film, and the nickel film has a silicide film.

第一電極20的周圍設置有做為鈍化膜的玻璃膜50。該半導體裝置按照以下方法來製造。 A glass film 50 as a passivation film is provided around the first electrode 20. This semiconductor device is manufactured according to the following method.

準備基板,該基板具有:由第一導電型構成的第一導電型半導體基板11、設置在第一導電型半導體基板11上且第一導電型的摻雜物濃度比第一導電型半導體基板11更薄的由第一導電型構成的第一導電型半導體層12、以及設置在第一導電型半導體層12上的第二導電型半導體層13(參照圖2)。 A substrate is prepared. The substrate has: a first conductivity type semiconductor substrate 11 composed of a first conductivity type, provided on the first conductivity type semiconductor substrate 11 and having a higher dopant concentration of the first conductivity type than the first conductivity type semiconductor substrate 11 A thinner first conductivity type semiconductor layer 12 composed of a first conductivity type, and a second conductivity type semiconductor layer 13 provided on the first conductivity type semiconductor layer 12 (refer to FIG. 2).

接著,在第二導電型半導體層13上形成由SiO2等構成的絕緣膜61(參照圖2)。此外,在第一導電型半導體基板11的背面形成由SiO2等構成的絕緣膜62(參照圖2)。 Next, an insulating film 61 made of SiO 2 or the like is formed on the second conductivity type semiconductor layer 13 (refer to FIG. 2 ). In addition, an insulating film 62 made of SiO 2 or the like is formed on the back surface of the first conductive type semiconductor substrate 11 (refer to FIG. 2 ).

隨後,如圖3所示,將形成後的絕緣膜61做為掩膜來使用,並進行蝕刻來形成檯面溝槽65。做為本實施方式中的蝕刻,能夠使用乾蝕刻或濕蝕刻等。 Subsequently, as shown in FIG. 3, the formed insulating film 61 is used as a mask, and etching is performed to form a mesa trench 65. As the etching in this embodiment, dry etching, wet etching, or the like can be used.

接著,如圖4所示,通過玻璃膜50來形成保護膜(鈍化膜)從而覆蓋形成後的檯面溝槽65以及絕緣膜61。 Next, as shown in FIG. 4, a protective film (passivation film) is formed by the glass film 50 so as to cover the mesa trench 65 and the insulating film 61 after the formation.

隨後,如圖5所示,在形成後的絕緣膜61以及玻璃膜50上通過蝕刻來形成開口部70。 Subsequently, as shown in FIG. 5, an opening 70 is formed on the insulating film 61 and the glass film 50 after formation by etching.

並且,在正面側的開口部上形成第一電極20,在背面側形成第二電極30(參照圖1)。 In addition, the first electrode 20 is formed on the opening on the front side, and the second electrode 30 is formed on the back side (see FIG. 1).

接著,對本實施方式中使用的玻璃膜50的製造方法的一例進行說明。 Next, an example of the manufacturing method of the glass film 50 used in this embodiment is demonstrated.

在製造本實施方式涉及的玻璃膜50時,在包含第一金屬以及第二金屬的金屬容器100(參照圖6)內投入玻璃材料來做為用於製作玻璃的原料(玻璃材料投入工序)。金屬容器100例如是金屬坩堝。第一金屬是金(Au),第二金屬是鉑(Pt)。金屬容器100中,第一金屬占3重量%~10重量%,第二金屬占90重量%~97重量%。做為第一金屬,除了金以外也可以使用銠(Rh)。金屬容器100可以含有除第一金屬以及第二金屬以外的金屬,也可以是由第一金屬、第二金屬以及第三金屬這三種成分的合金構成,還可以是由大於等於四種成分的合金構成。 When manufacturing the glass film 50 according to the present embodiment, a glass material is put into the metal container 100 (see FIG. 6) containing the first metal and the second metal as a raw material for making glass (glass material input step). The metal container 100 is, for example, a metal crucible. The first metal is gold (Au) and the second metal is platinum (Pt). In the metal container 100, the first metal accounts for 3% to 10% by weight, and the second metal accounts for 90% to 97% by weight. As the first metal, rhodium (Rh) can also be used in addition to gold. The metal container 100 may contain metals other than the first metal and the second metal, or may be composed of an alloy of the first metal, the second metal, and the third metal, or may be an alloy of four or more components. constitute.

例如,玻璃材料的SiO2的含量在49.5mol%~64.3mol%的範圍內,Al2O3的含量在3.7mol%~14.8mol%的範圍內,B2O3的含量在8.4mol%~17.9mol%的範圍內,ZnO的含量在3.9mol%~14.2mol%的範圍內,鹼土金屬的氧化物含量在7.4mol%~12.9mol%的範圍內。 For example, the content of SiO 2 in the glass material is in the range of 49.5 mol% to 64.3 mol%, the content of Al 2 O 3 is in the range of 3.7 mol% to 14.8 mol%, and the content of B 2 O 3 is in the range of 8.4 mol%. In the range of 17.9 mol%, the content of ZnO is in the range of 3.9 mol% to 14.2 mol%, and the content of alkaline earth metal oxides is in the range of 7.4 mol% to 12.9 mol%.

隨後,在第一期間內以第一加熱溫度將玻璃材料溶融在金屬容器100內(溶融工序)。通過這樣將玻璃材料溶融在金屬容器100內,從而在玻璃組分內生成含有第一金屬、第二金屬或含有第一金屬以及第二金屬這兩個金屬的含金屬玻璃組分110。第一加熱溫度比第一金屬的熔點更高,且比第二金屬的熔點更低。第一期間例如為1~3小時,第一加熱溫度例如在1350℃以上及1700℃以下。此外,金的熔點是1064℃,鉑的熔點是1768℃。 Subsequently, the glass material is melted in the metal container 100 at the first heating temperature during the first period (melting step). By melting the glass material in the metal container 100 in this way, a metal-containing glass component 110 containing the first metal, the second metal, or two metals of the first metal and the second metal is generated in the glass component. The first heating temperature is higher than the melting point of the first metal and lower than the melting point of the second metal. The first period is, for example, 1 to 3 hours, and the first heating temperature is, for example, 1350°C or more and 1700°C or less. In addition, the melting point of gold is 1064°C and the melting point of platinum is 1768°C.

通過將上述準備好的含金屬玻璃組分110設置在諸如所述第二導電型半導體層13這種半導體層上,從而來形成玻璃膜50(玻璃膜形成工序)。具體來說,將溶融後的含金屬玻璃組分110冷卻後粉碎成數μm的粒徑,並在將粉碎後的含金屬玻璃組分110設置在第一導電型半導體基板11、第一導電型半導體層12、第二導電型半導體層13等的半導體層上後,將該含金屬玻璃組分110溶融(參照圖4)。在圖4中,雖然展示了檯面溝槽65被設置在直至第一導電型半導體基板11的形態,但這僅僅是其中一例,也可以採用在第一導電型半導體基板11以及第一導電型半導體層12上設置檯面溝槽65、在第一導電型半導體基板11上不設置檯面溝槽65的形態。 The glass film 50 is formed by disposing the metal-containing glass composition 110 prepared as described above on a semiconductor layer such as the second conductivity type semiconductor layer 13 (glass film forming process). Specifically, the melted metal-containing glass component 110 is cooled and pulverized into a particle size of several μm, and the pulverized metal-containing glass component 110 is disposed on the first conductive semiconductor substrate 11, the first conductive semiconductor After the layer 12 and the second conductive type semiconductor layer 13 are formed on the semiconductor layer, the metal-containing glass component 110 is melted (see FIG. 4). In FIG. 4, although the mesa trench 65 is provided up to the first conductivity type semiconductor substrate 11, this is only one example, and it can also be used in the first conductivity type semiconductor substrate 11 and the first conductivity type semiconductor substrate 11. The mesa trench 65 is provided on the layer 12 and the mesa trench 65 is not provided on the first conductivity type semiconductor substrate 11.

本實施方式中的玻璃膜50含有第一金屬等金屬。因此,通過設置這種玻璃膜50,就能夠在諸如影響trr控制的第一導電型半導體層12這 種半導體層內使其微量的第一金屬等金屬分散。這樣一來,根據本申請的發明人的確認,能夠將半導體層中的trr(反相恢復時間)設為5μs以上及15μs以下,從而就能夠進行壽命控制。此外,trr的理想情況是在5μs以上及11μs以下,更為理想的情況是在5μs以上及8μs以下。而且,在以往這種添加重金屬的形態中,由於其與本實施方式相比添加有大量的重金屬,因此就無法以μs為單位來控制trr。 The glass film 50 in this embodiment contains a metal such as a first metal. Therefore, by providing such a glass film 50, it is possible to use the first conductivity type semiconductor layer 12 that affects trr control. A small amount of metal such as the first metal is dispersed in the semiconductor layer. In this way, according to the confirmation of the inventors of the present application, trr (reverse phase recovery time) in the semiconductor layer can be set to 5 μs or more and 15 μs or less, thereby enabling life control. In addition, the ideal situation of trr is above 5μs and below 11μs, and the more ideal situation is above 5μs and below 8μs. In addition, in the conventional form of adding heavy metals, since a large amount of heavy metals is added compared with the present embodiment, it is impossible to control trr in units of μs.

將實驗結果在圖7中進行展示。在該實驗中,使用電阻率ρ=30Ω.cm的晶片。如圖7中所展示的,當純粹使用Pt來做為金屬容器100時,trr約為22μs,當使用鉑中含有金的Pt-Au坩堝(Au的含量占5重量%)時,能夠降低trr。具體來說,如圖7所示,在Pt-Au坩堝內以1350℃的溫度使玻璃材料溶融5個小時後,將該玻璃組合物(含金屬玻璃組分110)設置在半導體層中,這時該半導體層中的trr約為15μs。在Pt-Au坩堝內以1450℃的溫度使玻璃材料溶融1個小時後,將該玻璃組合物(含金屬玻璃組分110)設置在所述半導體層中,這時該半導體層中的trr約為14μs。在Pt-Au坩堝內以1450℃的溫度使玻璃材料溶融2個小時後,將該玻璃組合物(含金屬玻璃組分110)設置在所述半導體層中,這時該半導體層中的trr約為11μs。在Pt-Au坩堝內以1560℃的溫度使玻璃材料溶融1個小時後,將該玻璃組合物(含金屬玻璃組分110)設置在所述半導體層中,這時該半導體層中的trr約為8μs。在Pt-Au坩堝內以1560℃的溫度使玻璃材料溶融2個小時後,將該玻璃組合物(含金屬玻璃組分110)設置在所述半導體層中,這時該半導體層中的trr約為8μs。此外,在經過發明者確認後,由於可以認為金具有易於融入 玻璃組合物的性質,因此相比銠(Rh),使用金(Au)來做為第一金屬對於能夠容易地控制trr是有幫助的。 The experimental results are shown in Figure 7. In this experiment, the resistivity ρ=30Ω is used. cm wafers. As shown in Figure 7, when purely using Pt as the metal container 100, trr is about 22μs, when using a Pt-Au crucible containing gold in platinum (Au content is 5 wt%), trr can be reduced . Specifically, as shown in FIG. 7, after the glass material is melted in a Pt-Au crucible at a temperature of 1350°C for 5 hours, the glass composition (metal-containing glass component 110) is placed in the semiconductor layer. The trr in the semiconductor layer is about 15 μs. After the glass material was melted in the Pt-Au crucible at a temperature of 1450°C for 1 hour, the glass composition (metallic glass component 110) was placed in the semiconductor layer. At this time, the trr in the semiconductor layer was approximately 14μs. After the glass material was melted in the Pt-Au crucible at a temperature of 1450°C for 2 hours, the glass composition (the metallic glass component 110) was placed in the semiconductor layer, and the trr in the semiconductor layer was about 11μs. After melting the glass material in the Pt-Au crucible at a temperature of 1560°C for 1 hour, the glass composition (containing the metallic glass component 110) is placed in the semiconductor layer, and the trr in the semiconductor layer is about 8μs. After the glass material was melted in the Pt-Au crucible at a temperature of 1560°C for 2 hours, the glass composition (metallic glass component 110) was placed in the semiconductor layer, and the trr in the semiconductor layer was about 8μs. In addition, after the inventor’s confirmation, it can be considered that gold has easy integration The nature of the glass composition, therefore, compared to rhodium (Rh), using gold (Au) as the first metal is helpful to be able to easily control trr.

《效果》 "effect"

下面,對本實施方式涉及的效果的一例進行說明。此外,能夠採用在「效果」中說明的所有形態。 Hereinafter, an example of the effect according to the present embodiment will be described. In addition, all the forms described in "Effects" can be adopted.

一直以來都是使玻璃在坩堝等容器內進行溶融的。在本實施方式中,由於是按照以往所使用的工序來僅使玻璃溶融,因此本實施方式與添加重金屬或進行電子束照射的形態不同,能夠在不增加工序數量的情況下對trr進行控制。此外,根據本實施方式,能夠將trr以μs的單位進行控制。因此,就能夠在防止晶片等半導體裝置的製造成本上升的同時將trr以μs的單位進行控制。 Traditionally, glass has been melted in a vessel such as a crucible. In this embodiment, since only glass is melted according to the conventionally used process, this embodiment is different from the form of adding heavy metals or performing electron beam irradiation, and can control trr without increasing the number of processes. In addition, according to the present embodiment, trr can be controlled in units of μs. Therefore, it is possible to control trr in units of μs while preventing the increase in the manufacturing cost of semiconductor devices such as wafers.

做為將trr以μs的單位進行控制的方法,具體來說,通過調整溫度以及時間從而就能夠如圖7所示般調整半導體層中的trr。因此,只需在每個半導體裝置中根據所需的trr來調整溫度以及時間就能夠以極為簡單的方法來調整trr。此外,如圖7所示,通過調整溫度能夠比調整時間更為有效地控制trr。理想的情況是以大於等於1400℃的溫度進行加熱,較為理想的情況是以大於等於1500℃的溫度進行加熱,更為理想的情況是以大於等於1550℃的溫度進行加熱。 As a method of controlling trr in units of μs, specifically, by adjusting temperature and time, it is possible to adjust trr in the semiconductor layer as shown in FIG. 7. Therefore, it is possible to adjust trr in an extremely simple method by adjusting the temperature and time according to the required trr in each semiconductor device. In addition, as shown in Fig. 7, by adjusting the temperature, trr can be controlled more effectively than adjusting the time. Ideally, heating is performed at a temperature greater than or equal to 1400°C, more ideally, heating is performed at a temperature greater than or equal to 1500°C, and more ideally, heating is performed at a temperature greater than or equal to 1550°C.

此外,近年來在空調的PFC(Power Factor Correction)中,部分開關方式(簡易PAM)佔據了大部分。在簡易PAM的運作模式下,增加了將二極體電橋做為部分開關來使用的用途,從而要求改善二極體電橋的 trr特性。另外,在諸如IGBT這種不想增大正向損耗而只需一定程度的開關轉換速度即可的半導體裝置中,有時就必須要控制以μs為單位的trr。對於這點,根據本實施方式,就可以無需進行追加工序,這樣一來,就能夠在抑制成本的同時對於能夠改善以μs為單位的trr特性也是有幫助的。 In addition, in recent years, in the PFC (Power Factor Correction) of the air conditioner, the partial switch method (simple PAM) has occupied the majority. In the simple PAM operation mode, the use of diode bridge as part of the switch is added, which requires improvement of the diode bridge trr characteristics. In addition, in semiconductor devices such as IGBTs that do not want to increase the forward loss but require a certain degree of switching speed, sometimes it is necessary to control trr in μs. In this regard, according to the present embodiment, it is not necessary to perform an additional process, and thus, it is possible to reduce the cost while being helpful for improving the trr characteristic in μs.

在使用以往的重金屬擴散的情況下,儘管能夠將trr以ns的單位進行控制,但是卻難以將其以μs的單位進行控制。如果使用電子束照射雖然能夠將trr以μs的單位進行控制,但是卻需要導入昂貴的器械。對於這點,根據本實施方式,對於能夠在無需導入昂貴的器械的情況下將trr以μs的單位進行控制也是有說明的。 In the case of using conventional heavy metal diffusion, although trr can be controlled in units of ns, it is difficult to control it in units of μs. If electron beam irradiation is used, trr can be controlled in units of μs, but expensive equipment must be introduced. In this regard, according to the present embodiment, it is also explained that trr can be controlled in units of μs without introducing expensive equipment.

通過將第一加熱溫度設為更高於第一金屬的熔點,就能夠使玻璃組分內含有第一金屬、第二金屬或第一金屬以及第二金屬這兩個金屬。 此外,當在金屬容器100中的第一金屬與第二金屬成為合金的情況下,即使加熱至高於第一金屬的熔點的溫度,第一金屬也不會立即溶融。這在圖7中也可以通過提升溫度使trr下降來證實。也就是說,如所述雖然金的熔點是1064℃,但是通過將溫度上升為1350℃→1450℃→1560℃,trr會發生變化且玻璃材料中所含有的金屬量也發生變化,從而證明了通過加熱至更高於1064℃的溫度會使金立即溶融且不被包含在玻璃組分內。 By setting the first heating temperature to be higher than the melting point of the first metal, the first metal, the second metal, or two metals of the first metal and the second metal can be contained in the glass composition. In addition, when the first metal and the second metal in the metal container 100 become an alloy, even if it is heated to a temperature higher than the melting point of the first metal, the first metal will not melt immediately. This can also be confirmed in Figure 7 by increasing the temperature to decrease trr. In other words, although the melting point of gold is 1064°C as mentioned above, by increasing the temperature to 1350°C→1450°C→1560°C, trr changes and the amount of metal contained in the glass material also changes, which proves By heating to a temperature higher than 1064°C, the gold will melt immediately and will not be contained in the glass composition.

此外,在金屬容器100中的合金比例也同樣重要。例如在金屬容器100中,如果是做為金的第一金屬占3重量%~10重量%,做為鉑的第二金屬占90重量%~97重量%的形態,就能夠有效地調整trr。一旦第一金屬的量少於3重量%,那麼使玻璃組分內含有金屬就會變得困難,從而就 會難以調整trr。另一方面,一旦第一金屬的量多於10重量%,那麼在提升加熱溫度後做為金屬容器100的強度也會變弱。 In addition, the alloy ratio in the metal container 100 is also important. For example, in the metal container 100, if the first metal as gold accounts for 3 wt% to 10 wt%, and the second metal as platinum accounts for 90 wt% to 97 wt%, trr can be effectively adjusted. Once the amount of the first metal is less than 3% by weight, it becomes difficult to make the glass It will be difficult to adjust trr. On the other hand, if the amount of the first metal is more than 10% by weight, the strength of the metal container 100 will also become weak after the heating temperature is increased.

第二實施方式Second embodiment

下面,對本發明的第二實施方式進行說明。 Next, the second embodiment of the present invention will be described.

在第一實施方式中,是使用包含第一金屬以及第二金屬的金屬容器100的形態。在本實施方式中,使用在包含第二金屬的金屬容器100內投入第一金屬以及玻璃材料的形態來進行說明。關於其他則與第一實施方式相同,第二實施方式也能夠採用在第一實施方式中所採用的所有構成。 In the first embodiment, the metal container 100 containing the first metal and the second metal is used. In this embodiment, description is made using a form in which the first metal and the glass material are put into the metal container 100 containing the second metal. The rest is the same as the first embodiment, and the second embodiment can also adopt all the configurations adopted in the first embodiment.

對本實施方式中所使用的玻璃膜50的製造方法的一例進行說明。 An example of the manufacturing method of the glass film 50 used in this embodiment is demonstrated.

在由第二金屬(通常為鉑)構成的金屬容器100內投入第一金屬(通常為金)與玻璃材料。 The first metal (usually gold) and the glass material are put into the metal container 100 made of the second metal (usually platinum).

接著,在第一期間內以第一加熱溫度將玻璃材料溶融在金屬容器100內(溶融工序)。通過這樣將玻璃材料溶融在金屬容器100內,從而來生成含有第一金屬的含金屬玻璃組分110。第一加熱溫度比第一金屬的熔點更高且比第二金屬的熔點更低。第一期間是例如1~3小時,第一加熱溫度是例如在1350℃以上及1700℃以下。 Next, the glass material is melted in the metal container 100 at the first heating temperature in the first period (melting step). By melting the glass material in the metal container 100 in this way, the metal-containing glass component 110 containing the first metal is produced. The first heating temperature is higher than the melting point of the first metal and lower than the melting point of the second metal. The first period is, for example, 1 to 3 hours, and the first heating temperature is, for example, 1350°C or more and 1700°C or less.

通過將準備好的含金屬玻璃組分110設置在諸如所述第二導電型半導體層13這種半導體層上,從而來形成玻璃膜50(玻璃膜形成工序)。 這樣本實施方式的玻璃膜50就混合有第一金屬等金屬。因此,通過設置這 種玻璃膜50,就能夠在諸如影響trr控制的第一導電型半導體層12這種半導體層內使第一金屬分散。 The glass film 50 is formed by disposing the prepared metal-containing glass composition 110 on a semiconductor layer such as the second conductive type semiconductor layer 13 (glass film forming process). In this way, the glass film 50 of the present embodiment is mixed with metals such as the first metal. Therefore, by setting this The glass film 50 can disperse the first metal in a semiconductor layer such as the first conductivity type semiconductor layer 12 that affects trr control.

根據以上情況,經過本申請的發明人確認,在將第一金屬放入由第二金屬構成的金屬容器100中的情況下,金屬容器100有時會溶出或開孔。由於一旦在金屬容器100中開孔,玻璃材料就會流出,因此就不適合於量產。特別是由於Pt的反應性較高,所以就會容易引起這種溶出或開孔的問題。此外,當第二金屬是Pt時,其會成為非常高價的金屬容器100,因此這種在金屬容器100中開孔的問題對於成本也是難以承受的。所以,從該觀點來看,第一實施方式比第二實施方式更有說明。 Based on the above, the inventor of the present application confirmed that when the first metal is put in the metal container 100 made of the second metal, the metal container 100 may dissolve or open holes. Since the glass material will flow out once a hole is opened in the metal container 100, it is not suitable for mass production. In particular, since Pt has high reactivity, it is easy to cause such elution or open pores. In addition, when the second metal is Pt, it becomes a very expensive metal container 100. Therefore, the problem of opening holes in the metal container 100 is also unbearable for cost. Therefore, from this point of view, the first embodiment is more explanatory than the second embodiment.

第三實施方式The third embodiment

下面,對本發明的第三實施方式進行說明。 Next, a third embodiment of the present invention will be described.

在本實施方式中,使用在包含第一金屬以及第二金屬的金屬容器100內投入第一金屬以及玻璃材料的形態來進行說明。關於其他則與第一實施方式相同,第三實施方式也能夠採用在第一實施方式中所採用的所有構成。 In this embodiment, description is made using a form in which the first metal and the glass material are put into the metal container 100 containing the first metal and the second metal. The rest is the same as the first embodiment, and the third embodiment can also adopt all the configurations adopted in the first embodiment.

對本實施方式中所使用的玻璃膜50的製造方法的一例進行說明。 An example of the manufacturing method of the glass film 50 used in this embodiment is demonstrated.

在由第一金屬(通常為金)以及第二金屬(通常為鉑)構成的金屬容器100內投入第一金屬(通常為金)與玻璃材料。 A first metal (usually gold) and a glass material are put into a metal container 100 made of a first metal (usually gold) and a second metal (usually platinum).

接著,在第一期間內以第一加熱溫度將玻璃材料溶融在金屬容器100內(溶融工序)。通過這樣將玻璃材料溶融在金屬容器100內,從而 來生成含有第一金屬、第二金屬或含有第一金屬以及第二金屬這兩個金屬的含金屬玻璃組分110。第一加熱溫度比第一金屬的熔點更高且比第二金屬的熔點更低。第一期間是例如1~3小時,第一加熱溫度是例如在1350℃以上及1700℃以下。 Next, the glass material is melted in the metal container 100 at the first heating temperature in the first period (melting step). By melting the glass material in the metal container 100 in this way, To generate a metal-containing glass component 110 containing the first metal, the second metal, or the two metals of the first metal and the second metal. The first heating temperature is higher than the melting point of the first metal and lower than the melting point of the second metal. The first period is, for example, 1 to 3 hours, and the first heating temperature is, for example, 1350°C or more and 1700°C or less.

通過將準備好的含金屬玻璃組分110設置在諸如所述第二導電型半導體層13這種半導體層上,從而來形成玻璃膜50(玻璃膜形成工序)。 這樣本實施方式的玻璃膜50就混合有第一金屬等金屬。因此,通過設置這種玻璃膜50,從而就能夠在諸如影響trr控制的第一導電型半導體層12這種半導體層內使第一金屬等金屬分散。 The glass film 50 is formed by disposing the prepared metal-containing glass composition 110 on a semiconductor layer such as the second conductive type semiconductor layer 13 (glass film forming process). In this way, the glass film 50 of the present embodiment is mixed with metals such as the first metal. Therefore, by providing such a glass film 50, it is possible to disperse metals such as the first metal in a semiconductor layer such as the first conductivity type semiconductor layer 12 that affects trr control.

玻璃材料內含有第一金屬是指:第一金屬從金屬容器100逐漸消失。在本實施方式中,有補充這種變少的第一金屬的意思,例如在使用超過規定次數後的金屬容器100來使玻璃材料溶融的情況下就可以進行採用。另一方面,如第二實施方式中說明過的,由於一旦將第一金屬放入金屬容器100內,在金屬容器100內就會開孔,因此被加入金屬容器100內的第一金屬的量是極為少量的。 The inclusion of the first metal in the glass material means that the first metal gradually disappears from the metal container 100. In the present embodiment, there is a meaning to supplement such a reduced first metal, and it can be adopted when, for example, the metal container 100 is used more than a predetermined number of times to melt the glass material. On the other hand, as explained in the second embodiment, once the first metal is put into the metal container 100, holes are opened in the metal container 100, so the amount of the first metal added to the metal container 100 It is very small.

上述記載的各實施方式以及公開的附圖只不過是用於說明權利要求中所記載的發明的一例,在權利要求中記載的發明不受上述記載的各實施方式或公開的附圖所限定。此外,申請最初所記載的權利要求只是一例,能夠基於說明書、附圖等的記載對權利要求的記載進行適當變更。 The above-described embodiments and the disclosed drawings are merely examples for explaining the invention described in the claims, and the inventions described in the claims are not limited by the above-described embodiments or the disclosed drawings. In addition, the claims described at the beginning of the application are only examples, and the description of the claims can be appropriately changed based on descriptions in the specification, drawings, and the like.

11:第一導電型半導體基板 11: First conductivity type semiconductor substrate

12:第一導電型半導體層 12: The first conductivity type semiconductor layer

13:第二導電型半導體層 13: Second conductivity type semiconductor layer

20:第一電極 20: first electrode

21:矽化鋁膜 21: Aluminum silicide film

22:矽化鎳膜 22: Nickel silicide film

23:Ni(鎳)-P膜 23: Ni (nickel)-P film

30:第二電極 30: second electrode

50:玻璃膜 50: glass film

61:絕緣膜 61: Insulating film

62:絕緣膜 62: Insulating film

65:檯面溝槽 65: Countertop groove

Claims (6)

一種半導體裝置的製造方法,包括:在包含第一金屬以及第二金屬的金屬容器內投入玻璃材料,或在包含所述第二金屬的所述金屬容器內投入所述第一金屬以及所述玻璃材料的工序;在第一期間內,通過以第一加熱溫度將所述玻璃材料溶融在所述金屬容器內,從而生成含有所述第一金屬或含有所述第二金屬的含金屬玻璃組分的工序;以及將所述含金屬玻璃組分設置在半導體層的工序。 A method of manufacturing a semiconductor device includes: putting a glass material into a metal container containing a first metal and a second metal, or putting the first metal and the glass into the metal container containing the second metal Material process; in the first period, the glass material is melted in the metal container at the first heating temperature to generate a metal-containing glass component containing the first metal or the second metal The process; and the process of providing the metal-containing glass component on the semiconductor layer. 如請求項1所述的半導體裝置的製造方法,其中,在所述第一期間內,通過以所述第一加熱溫度將所述玻璃材料溶融在所述金屬容器內,從而使所述含金屬玻璃組分中含有所述第一金屬以及所述第二金屬。 The method of manufacturing a semiconductor device according to claim 1, wherein in the first period, the glass material is melted in the metal container at the first heating temperature, so that the metal-containing The glass component contains the first metal and the second metal. 如請求項1所述的半導體裝置的製造方法,其中,所述第一加熱溫度比所述第一金屬的熔點更高,且比所述第二金屬的熔點更低。 The method of manufacturing a semiconductor device according to claim 1, wherein the first heating temperature is higher than the melting point of the first metal and lower than the melting point of the second metal. 如請求項1所述的半導體裝置的製造方法,其中,所述金屬容器含有所述第一金屬以及所述第二金屬, 所述金屬容器中,所述第一金屬占3重量%~10重量%,所述第二金屬占90重量%~97重量%。 The method of manufacturing a semiconductor device according to claim 1, wherein the metal container contains the first metal and the second metal, In the metal container, the first metal accounts for 3% to 10% by weight, and the second metal accounts for 90% to 97% by weight. 如請求項1所述的半導體裝置的製造方法,其中,所述第一金屬是金,所述第二金屬是鉑。 The method of manufacturing a semiconductor device according to claim 1, wherein the first metal is gold and the second metal is platinum. 如請求項1所述的半導體裝置的製造方法,其中,在所述玻璃材料中,SiO2的含量在49.5mol%~64.3mol%的範圍內,Al2O3的含量在3.7mol%~14.8mol%的範圍內,B2O3的含量在8.4mol%~17.9mol%的範圍內,ZnO的含量在3.9mol%~14.2mol%的範圍內,鹼土金屬的氧化物含量在7.4mol%~12.9mol%的範圍內,所述第一期間為1~3小時,所述第一加熱溫度在1350℃以上及1700℃以下。 The method of manufacturing a semiconductor device according to claim 1, wherein, in the glass material, the content of SiO 2 is in the range of 49.5 mol% to 64.3 mol%, and the content of Al 2 O 3 is in the range of 3.7 mol% to 14.8 mol%. In the range of mol%, the content of B 2 O 3 is in the range of 8.4 mol% to 17.9 mol%, the content of ZnO is in the range of 3.9 mol% to 14.2 mol%, and the content of alkaline earth metal oxides is in the range of 7.4 mol%. Within the range of 12.9 mol%, the first period is 1 to 3 hours, and the first heating temperature is above 1350°C and below 1700°C.
TW108125147A 2019-07-16 2019-07-16 Manufacturing method of semiconductor device TWI720544B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108125147A TWI720544B (en) 2019-07-16 2019-07-16 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108125147A TWI720544B (en) 2019-07-16 2019-07-16 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
TW202105521A TW202105521A (en) 2021-02-01
TWI720544B true TWI720544B (en) 2021-03-01

Family

ID=75745160

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125147A TWI720544B (en) 2019-07-16 2019-07-16 Manufacturing method of semiconductor device

Country Status (1)

Country Link
TW (1) TWI720544B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965181A (en) * 1972-10-25 1974-06-24
JP4965181B2 (en) 2006-07-31 2012-07-04 有限会社鈴木軽合金 Molding device for spherical mold
TW201334142A (en) * 2012-02-15 2013-08-16 Taiwan Semiconductor Mfg Semiconductor device and method for fabricating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965181A (en) * 1972-10-25 1974-06-24
JP4965181B2 (en) 2006-07-31 2012-07-04 有限会社鈴木軽合金 Molding device for spherical mold
TW201334142A (en) * 2012-02-15 2013-08-16 Taiwan Semiconductor Mfg Semiconductor device and method for fabricating the same

Also Published As

Publication number Publication date
TW202105521A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
CN1579008B (en) Low temperature formation of backside ohmic contacts for vertical devices
US11915934B2 (en) Diamond semiconductor system and method
US2789068A (en) Evaporation-fused junction semiconductor devices
US9941112B2 (en) Method of manufacturing semiconductor device and semiconductor device
US9236318B1 (en) Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
TW201210052A (en) Back junction solar cell with selective front surface field
JP5340511B1 (en) Semiconductor device manufacturing method and semiconductor device
CN109994383A (en) Semiconductor devices and the method for being used to form semiconductor devices
KR20160075562A (en) Manufacturing method of semiconductor device and glass coating film forming apparatus
TWI720544B (en) Manufacturing method of semiconductor device
CN106611797A (en) Power device with local metal service life control and manufacturing method thereof
JP2004111910A (en) Contact forming method and semiconductor device
JP6764034B2 (en) Manufacturing method of semiconductor devices and semiconductor devices
CN113178414A (en) Forming method of silicon carbide ohmic contact structure and preparation method of MOS transistor
JPH0831767A (en) Manufacture of electrode structure
JP2008004704A (en) Method of manufacturing semiconductor element
TWI276145B (en) Semiconductor device having nickel silicide and method of fabricating nickel silicide
JP5303008B2 (en) Semiconductor device and method for manufacturing semiconductor device
CN117373926A (en) Preparation method of gallium oxide longitudinal MOSFET device
JPH0590639A (en) Manufacture of semiconductor light emitting element
JPH0864843A (en) Fabrication of zener diode
JPS59101868A (en) Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof
JPH01255220A (en) Manufacture of semiconductor device
JP2000315806A (en) Schottky barrier diode and manufacture of the same
JPS5994415A (en) Manufacture of semiconductor device