TWI717231B - 伺服馬達驅動器裝置及其電流控制方法 - Google Patents

伺服馬達驅動器裝置及其電流控制方法 Download PDF

Info

Publication number
TWI717231B
TWI717231B TW109108292A TW109108292A TWI717231B TW I717231 B TWI717231 B TW I717231B TW 109108292 A TW109108292 A TW 109108292A TW 109108292 A TW109108292 A TW 109108292A TW I717231 B TWI717231 B TW I717231B
Authority
TW
Taiwan
Prior art keywords
current
time delay
module
controller
servo motor
Prior art date
Application number
TW109108292A
Other languages
English (en)
Other versions
TW202135455A (zh
Inventor
賴炎生
許志榮
林秉毅
Original Assignee
賴炎生
許志榮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 賴炎生, 許志榮 filed Critical 賴炎生
Priority to TW109108292A priority Critical patent/TWI717231B/zh
Application granted granted Critical
Publication of TWI717231B publication Critical patent/TWI717231B/zh
Publication of TW202135455A publication Critical patent/TW202135455A/zh

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

一種伺服馬達驅動器裝置及其電流控制方法,該發明係在伺服馬達驅動器裝置中的電流迴路控制增加一可變頻率的電壓命令模組、一基於快速傅立葉轉換的系統模型重建模組、一具時間延遲的電流模型估測模組、一控制器增益計算模組及一具時間延遲補償的電流控制模組,利用系統模型重建模組找出不同頻率區段的馬達電流模型,分析不同頻率區段內的模型以估測出馬達參數及其時間延遲,最後根據具時間延遲補償的最佳化方法,自動計算出適合系統的電流控制器增益與時間延遲補償的控制方法,以達到最佳之電流響應特性。

Description

伺服馬達驅動器裝置及其電流控制方法
本發明係關於一種伺服馬達驅動器裝置及其電流控制方法,特別是指一種應用於搭配不同馬達的情況下仍可自動調整其電流控制器增益,或搭配時間延遲補償的控制方法,使其達到最佳電流響應之伺服馬達驅動器裝置。
如圖1所示,係為習知的基本伺服控制驅動系統之示意圖,其主要架構係包含一上位控制器1、一交流電源2、一伺服馬達驅動器3及一伺服馬達機構系統4;而伺服馬達機構系統4包含一伺服馬達41、一編碼器42、一傳動機構43及一機械負載44。
伺服馬達驅動器3中包含變頻器之電力電子架構,可接受單相或三相交流電源2的輸入,並使用脈波寬度調變技術來輸出三相電壓脈波給予伺服 馬達41作驅動。同時,伺服馬達驅動器3接收上位控制器1的位置命令
Figure 109108292-A0305-02-0003-1
控制伺 服馬達機構系統4達到需要的行程,而伺服馬達41則透過編碼器42將伺服馬達轉子角度資訊 θ r 回授至伺服馬達驅動器3作為控制使用。
圖2係為習知的伺服馬達驅動器3中含有電流迴路之位置-速度環串聯型伺服控制方塊圖,典型的控制模式分別為位置控制迴路、速度控制迴路與 電流控制迴路,藉以控制伺服馬達所需之位置、速度與電流大小,使其達到高精度與快速響應的負載特性。伺服馬達驅動器3可包括一減法器31、一位置控制器32、一減法器33、一速度控制器34、一電流迴路35、一計數器36、一速度估測器37。位置回授 θ m 經由編碼器42的轉子角度資訊 θ r ,再經由計數器36產生;位置 命令
Figure 109108292-A0305-02-0004-2
與位置回授 θ m 經由減法器31得到位置誤差後,再透過位置控制器32產生 速度命令
Figure 109108292-A0305-02-0004-3
,速度回授 ω m 則由位置回授 θ m 經過速度估測器37產生;速度命令
Figure 109108292-A0305-02-0004-4
與速度回授 ω m 經由減法器33得到速度誤差後,再透過速度控制器34產生電 流命令
Figure 109108292-A0305-02-0004-5
送至電流迴路35,最後再經由電流迴路35產生三相電壓波形 v abc 來控制 伺服馬達達到目標的轉速與位置,其中
Figure 109108292-A0305-02-0004-6
包含了習知的交直軸電流命令成分;在 此,位置控制器32與速度控制器34之形式為一比例-積分(PI)控制器,亦可為一比例-積分-微分(PID)控制器。
習知的伺服馬達向量控制的電流控制迴路方塊圖,如圖3所示,其主要架構係包含一減法器3501、一電流控制器3502、一第一座標轉換模組3503、一脈波寬度調變模組3504、一變頻器模組3505、一電流回授單元3506、一電流回授模組3507、一類比/數位轉換器3508及一第二座標轉換模組3509。實現電流控制迴路的方式係透過電流回授單元3506將馬達電流轉換成電壓信號,經由電流回授模組3507調整成微處理器可接收的電壓大小,再經由類比/數位轉換器3508進行實際電流的數位化取樣後,透過第二座標轉換模組3509,將交流電流轉換成 具直流特性的數位交直軸電流回授
Figure 109108292-A0305-02-0004-41
,電流命令
Figure 109108292-A0305-02-0004-7
與電流回授
Figure 109108292-A0305-02-0004-42
經由減法器3501 得到電流誤差後,再透過電流控制器3502產生交直軸電壓命令
Figure 109108292-A0305-02-0004-8
,經過第一座 標轉換模組3503產生三相電壓命令
Figure 109108292-A0305-02-0004-9
,再經過脈波寬度調變模組3504轉換成 三相脈波命令,最後再透過變頻器模組3505將三相脈波命令轉換成實際的三相 電壓波形 v abc 。在此,電流控制器3502之形式為一比例-積分(PI)控制器。
為了達到前述之快速響應的性能,最重要的是必須先達到較佳的電流迴路之頻率響應。以性能評估指標來看,尤其著重在電流迴路頻寬之大小;當電流迴路頻寬之大小愈高,表示伺服馬達驅動系統在電流控制迴路下之暫態表現愈快速且優異,可應用之市場領域及其應用範圍則愈寬;反之,則愈窄。
習知的電流迴路控制器設計方法係採用比例-積分(PI)控制器實現,其控制器增益調整方法有三種,第一種為在時域下利用單位步階命令測試其電流回授的暫態響應,根據電流響應的上升時間、安定時間、最大過衝量以及穩態誤差等規格進行控制器增益調適,此方法之優點為簡單且直觀,但缺點為由於步階命令其變加速度較大,容易造成馬達速度過衝而損壞馬達的軸承,且無法在明確知道伺服馬達的參數下進行調適,因而無法直接套用調適好的增益應用到不同的馬達。同時,此法較難以驗證系統頻寬與穩定性。
第二種方法為使用頻率響應分析儀(Frequency Response Analyzer)量測迴路響應,調整控制器增益以滿足系統規格,如習知的中華民國發明專利申請號第106113211號的伺服驅動系統之電流頻寬與相位驗證裝置之方法,透過一頻寬與相位量測輔助單元以及一頻率響應分析儀,分析伺服驅動系統在電流迴路之頻率響應,根據系統頻寬、共振頻率與峰值等規格來調整控制器增益,其優點為可詳細且準確的掌握頻率響應的特性,包含頻寬與相位特性,但缺點為需要具專業背景的人士操作,並需花費時間不斷地進行調適以滿足規格。與第一種方法一樣無法明確知道伺服馬達的參數,因而無法直接套用調適好的增益應用到不同的馬達。
第三種方法則是將上述的伺服馬達向量控制的電流迴路35化簡 成由控制器與受控體組成的回授控制系統,如圖4所示,其主要架構係包含一減法器3501、一電流控制器3502以及一伺服馬達的電流等效模型3510所組成的馬達電流等效控制迴路,其中伺服馬達的電流等效模型3510係由等效電阻 R S 與等效電感 L S 所構成的方程式。基於此電流等效控制迴路系統,透過變頻器注入特定大小的脈衝電壓或是特定頻率的弦波電壓命令至伺服馬達中,藉由電流回授 估測出馬達電氣參數等效電阻
Figure 109108292-A0305-02-0006-10
與等效電感
Figure 109108292-A0305-02-0006-11
,再依據預設好的頻寬值進行控 制器增益的計算。此方法的優點是可以依照不同的馬達估算出馬達電氣參數並透過同一套控制器設計公式計算出增益值,但其方法仍存在一些問題,其中之一為注入的脈衝電壓的大小或特定頻率的弦波電壓命令不易決定,且須先給予控制器增益一個初始值,該初始值的設定會影響參數估測的結果因而影響控制器增益的設計。
另外一個較為嚴重的問題係前述之方法並未考慮數位控制系統下造成的時間延遲問題,此時間延遲為數位控制系統下必定會衍生出的問題。根據數位控制的理論可知,時間延遲的影響將會造成嚴重的相位落後問題,而相位落後的情況發生時則會導致嚴重的穩定性問題;換言之,在沒有考慮時間遲延下所設計的頻寬值,會因為穩定性問題以及實際硬體系統的限制,容易導致電流迴路有較大的共振頻率且系統較不穩定;若因採用保守的頻寬值設計控制器增益則無法達到電流迴路的最大頻寬響應。因此,如何在具有時間延遲的系統下適當地調適控制器增益,使其達到有足夠穩定性裕度的最大頻寬響應;與此同時,如何獲得有效且準確的時間延遲參數並對其補償的方法,這些都是值得研究與改善的課題。
由此可知,上述習知方法仍有諸多缺失,實非一良善之設計,而亟待加以改良。本案發明人鑑於上述習用之方法所衍生的缺點,乃亟思加以改良創新,並經由多年的研究後,終於成功完成本件伺服馬達驅動器裝置及其電流控制方法。
鑒於以上的問題,本發明之主要目的即在於提供一種伺服馬達驅動器裝置及其電流控制方法,係為了使得伺服驅動系統達到最佳的頻寬響應且可適用於不同的馬達,藉由伺服馬達驅動器裝置中的電流迴路增加一可變頻率的電壓命令模組,使用一基於快速傅立葉轉換的系統模型重建模組找出不同頻率區段的馬達電流模型,分析不同頻率區段內的模型以估測出馬達參數及其時間延遲,根據線上估測到的馬達電流模型及其時間延遲之參數,依照具時間延遲的最佳化方法自動地去調整電流控制器增益,即可改善上述習知的控制器增益設計方法造成的電流迴路相位裕度不足的問題;亦可改善需要額外量測儀器進行調適的複雜而昂貴的方法。本發明的另一種伺服馬達驅動器裝置及其電流控制方法亦揭露一種利用前述估測出的時間延遲之參數,搭配時間延遲補償的控制方法,可改善因為時間延遲所造成的相位落後問題,使得系統能夠在足夠的穩定性裕度下盡可能地提高電流迴路頻寬,可藉以解決習知技術中所存在的技術課題與潛在缺點。
因此,為達上述之目的,本發明係為一種伺服馬達驅動器裝置及其電流控制方法,其係包含有: 一上位控制器,作為運動控制命令之產生,用於下達位置命令給伺服馬達驅動器裝置,並連結至該裝置的位置命令輸入側(
Figure 109108292-A0305-02-0008-12
);一交流電源,作為伺服馬達驅動器裝置之輸入能量來源,並連結至伺服馬達驅動器裝置的電力輸入側(RST);一伺服馬達機構系統,一伺服馬達與一編碼器同軸共為一體,與伺服馬達驅動器裝置的電力輸出側(UVW)相連接,使機械負載運轉;一伺服馬達驅動器裝置,與交流電源、上位控制器相連接,可接受單相或三相交流電源的輸入並經由變頻器轉換後,使用脈波寬度調變技術來輸出三相電壓之脈波輸出,將能量轉換至電力輸出側(UVW)來驅動伺服馬達;其內部包含一位置迴路、一速度迴路以及一具時間延遲補償之電流迴路及其控制器;其間伺服馬達驅動器裝置同時接收編碼器的位置信號( θ r );一具時間延遲補償之電流迴路及其控制器包含有:一具時間延遲之電流模型鑑別模組,係利用一可變頻率的電壓命令模組、一基於快速傅立葉轉換的系統模型重建模組、一具時間延遲的電流模型估測模組、一控制器增益計算模組,可得到馬達參數及其時間延遲,及具時間延遲最佳化方法的電流控制器增益;一具時間延遲補償之電流控制模組,將前述的最佳化電流控制器增益自動設定於電流控制的比例-積分(PI)控制器中,並透過估測到的參數執行時間延遲補償的控制方法。
本發明的優點在於利用一可變頻率的電壓命令模組產生電壓命令,並利用其電壓命令與電流回授之信號,不需要額外的量測儀器設備,而係透過一基於快速傅立葉轉換的系統模型重建模組,找出不同頻率區段的馬達電流模型,分析不同頻率區段內的模型以估測出馬達參數及其時間延遲,根據線上估 測到的馬達電流模型及其時間延遲之參數,依照具時間延遲的最佳化方法自動地去調整電流控制器增益,因此,可在具有時間延遲的系統下適當地調適控制器參數增益,使其達到有足夠穩定性裕度的最大頻寬響應。
此外,本發明的另一個優點係提出利用前述估測出的時間延遲之參數,搭配時間延遲補償的控制方法,可改善因為時間延遲所造成的相位落後問題,使得系統能夠在足夠的穩定性裕度下盡可能地提高電流迴路頻寬。
1:上位控制器
2:交流電源
3:伺服馬達驅動器
31:減法器
32:位置控制器
33:減法器
34:速度控制器
35:電流迴路
3501:減法器
3502:電流控制器
3503:第一座標轉換模組
3504:脈波寬度調變模組
3505:變頻器模組
3506:電流回授單元
3507:電流回授模組
3508:類比/數位轉換器
3509:第二座標轉換模組
3510:伺服馬達的電流等效模型
36:計數器
37:速度估測器
4:伺服馬達機構系統
41:伺服馬達
42:編碼器
43:傳動機構
44:機械負載
5:本發明之伺服馬達驅動器裝置
51:位置迴路
52:速度迴路
53:具時間延遲補償之電流迴路及其控制器
5301:具時間延遲之電流模型鑑別模組
53011:可變頻率之電壓命令模組
53012:系統模型重建模組
53013:具時間延遲之電流模型估測模組
53014:控制器增益計算模組
5302:具時間延遲補償之電流控制模組實施型態1
5302a:具時間延遲補償之電流控制模組實施型態2
5302b:具時間延遲補償之電流控制模組實施型態3
53021:減法器
53022:控制器之比例增益值
53023:控制器之時間常數值
53024:積分器
53025:加法器
53026:時間延遲補償器
53027:加法器
5303:電壓命令切換模組
5204:第一座標轉換模組
5305:脈波寬度調變模組
5306:變頻器模組
5307:電流回授單元
5308:電流回授模組
5309:類比/數位轉換器
5310:第二座標轉換模組
〔圖1〕係習知的伺服馬達驅動控制系統的方塊圖。
〔圖2〕係習知的串聯型伺服控制的方塊圖。
〔圖3〕係習知的向量控制的電流迴路控制的方塊圖。
〔圖4〕係習知的馬達電流等效控制迴路的方塊圖。
〔圖5〕係本發明之伺服馬達驅動器裝置及其電流控制方法的方塊圖。
〔圖6〕係本發明之具時間延遲補償之電流迴路及其控制器的方塊圖。
〔圖7〕係本發明之具時間延遲之電流模型鑑別模組的方塊圖。
〔圖8〕係本發明之具時間延遲補償之電流控制模組實施型態1。
〔圖9〕係本發明之具時間延遲補償之電流控制模組實施型態2。
〔圖10〕係本發明之具時間延遲補償之電流控制模組實施型態3。
有關於本發明的特徵與實作,茲配合圖示作最佳實施例詳細說明如下。參照圖5~圖8說明本發明之伺服馬達驅動器裝置及其電流控制方法的實施型態。圖5表示為本發明之伺服馬達驅動器裝置及其電流控制方法的方塊圖,其中係包含:一上位控制器1,連結至本發明之伺服馬達驅動器裝置5的位置命令輸入側;一交流電源2,連結至本發明之伺服馬達驅動器裝置5的電力輸入側(RST);一伺服馬達機構系統4,與本發明之伺服馬達驅動器裝置5的電力輸出側(UVW)相連接;一本發明之伺服馬達驅動器裝置5,與上位控制器1、交流電源2、伺服馬達機械系統4相連接;其中包含了一位置迴路51、一速度迴路52及一具時間延遲補償之電流迴路及其控制器53。
本發明之具時間延遲補償之電流迴路及其控制器53的方塊圖,如圖6所示,其主要架構係包含一具時間延遲之電流模型鑑別模組5301以及一具時間延遲補償之電流控制模組5302、一電壓命令切換模組5303、一第一座標轉換模組5304、一脈波寬度調變模組5305、一變頻器模組5306、一電流回授單元5307、一電流回授模組5308、一類比/數位轉換器5309及一第二座標轉換模組5310。
首先說明本發明的核心原理,根據數位控制的理論,可將伺服馬達數位化向量控制的電流迴路視為由一電流控制器、一具時間延遲的伺服馬達電流等效模型所組成的數位電流等效控制迴路,其中電流控制器係由比例增益值 K P 以及積分時間常數 T N 所構成的方程式;而具時間延遲的伺服馬達電流等效模型係由時間延遲 T Σ 、等效電阻 R S 以及等效電感 L S 所構成的方程式,時間延遲造成的最主要的影響係會為控制系統帶來額外的相位落後的問題,此問題係造成控制頻寬無法提高的瓶頸點之一,同時會帶來嚴重的不穩定問題。因此,若能 夠將等效電阻 R S 、等效電感 L S 以及時間延遲 T Σ 等參數精確的估測出來,便能夠設計出考量時間延遲的最佳化控制器增益,使其達到有足夠穩定性裕度的最大頻寬響應;或是進一步實現時間延遲補償的控制方法,使得系統能夠在足夠的穩定性裕度下盡可能地提高電流迴路頻寬之目的。
為了實現本發明提出的線上馬達電流模型及其時間延遲之參數估測,並採用具時間延遲的最佳化方法自動地去設計電流控制器增益之目的,參閱圖6,其具時間延遲補償之電流迴路及其控制器的具體實施方法係透過一具時 間延遲之電流模型鑑別模組5301產生一可變頻率的電壓命令
Figure 109108292-A0305-02-0011-13
,經由電壓命 令切換模組5303依照S1信號切換於接點B得到交直軸電壓命令
Figure 109108292-A0305-02-0011-14
,經過第一座標 轉換模組5304產生三相電壓命令,再經過脈波寬度調變模組5305轉換成三相脈波命令,最後再透過變頻器模組5306將三相脈波命令轉換成實際的三相電壓波形;同時,馬達電流透過電流回授單元5307轉換成電壓信號,經由電流回授模組5308調整成微處理器可接收的電壓大小,再經由類比/數位轉換器5309進行實際電流的數位化取樣後,透過第二座標轉換模組5310,將交流電流轉換成具直流特 性的數位交直軸電流回授
Figure 109108292-A0305-02-0011-38
,再將數位交直軸電流回授
Figure 109108292-A0305-02-0011-39
與交直軸電壓命令
Figure 109108292-A0305-02-0011-15
一同輸入至具時間延遲之電流模型鑑別模組5201中,等到分析與估測出等 效電阻
Figure 109108292-A0305-02-0011-16
、等效電感
Figure 109108292-A0305-02-0011-17
以及時間延遲
Figure 109108292-A0305-02-0011-18
後,自動計算出具時間延遲的最佳化控 制器增益
Figure 109108292-A0305-02-0011-19
Figure 109108292-A0305-02-0011-20
,將控制器增益連同時間延遲
Figure 109108292-A0305-02-0011-21
傳送到具時間延遲補償之電 流控制模組5302中,並控制S1信號使得電壓命令切換模組5303切換於接點A後,便能夠實現具時間延遲之電流迴路控制。
本發明之具時間延遲之電流模型鑑別模組5301的具體實現方法如圖7所示,其包含了一可變頻率之電壓命令模組53011、一系統模型重建模組 53012、一具時間延遲的電流模型估測模組53013以及一控制器增益計算模組53014。其中可變頻率之電壓命令模組53011,其電壓命令型態具有複數個頻率點且其電壓振福大小相同之特性,可為Chirp弦波命令函數,或是具備複數個頻率序列的振幅大小相同之複合頻率陣列函數的信號,除此之外,只要符合複數個頻率點且其電壓振福大小相同之特性均可用於該模組的電壓命令產生方式。同時系統模型重建模組53012可建立不同頻率區段的馬達電流模型;具時間延遲的電流模型估測模組53013能夠分析不同頻率區段內的模型以估測出馬達參數及其時間延遲等參數;而控制器增益計算模組53014能根據馬達電流模型及其時間延遲之參數,依照具時間延遲的最佳化方法計算電流控制器增益,其中控制器增益
Figure 109108292-A0305-02-0012-22
考慮了時間延遲
Figure 109108292-A0305-02-0012-23
,因此,可使控制器達到有足夠穩定性裕度的最大頻寬響 應。
本發明提出一種利用快速傅立葉轉換的技巧來重建出系統模型,係透過軟體程式之方法在即時的數位信號處理器中執行,其方法的主要原理係 將數位交直軸電流回授
Figure 109108292-A0305-02-0012-37
與交直軸電壓命令
Figure 109108292-A0305-02-0012-24
進行快速傅立葉轉換,根據轉 換結果,將兩者的振幅之結果儲存於「增益G陣列」,其中,「增益G陣列」包含不同頻率下相對應的振幅;同時,將兩者的角度之結果儲存於「相位P陣列」,其中,「相位P陣列」包含不同頻率下相對應的角度;此「增益G陣列」與「相位P陣列」,即為該系統的模型陣列。至此,便是實作系統模型重建模組的方法。
另外,本發明之具時間延遲的電流模型估測模組,其實施的方法同樣係透過軟體程式之方法在即時的數位信號處理器中執行,根據較低頻率區 段系統模型的增益G陣列與相位P陣列,估測出馬達參數,包含等效電阻
Figure 109108292-A0305-02-0012-25
、等 效電感
Figure 109108292-A0305-02-0012-26
,並根據參數建立馬達電流模型,再將馬達電流模型與其他頻率區段
系統模型的增益G陣列與相位P陣列相互運算後,可獲得時間延遲
Figure 109108292-A0305-02-0013-54
的估測值。 以上,便是實作具時間延遲的電流模型估測模組的方法。
本發明之具時間延遲補償之電流控制模組5302的實施型態1的架構如圖8所表示,其包含有一減法器53021、一可調整之控制器比例增益值53022、一可調整之控制器積分時間常數值53023、一積分器53024以及一加法器53025, 電流命令
Figure 109108292-A0305-02-0013-59
與電流回授
Figure 109108292-A0305-02-0013-60
經由減法器53021得到電流誤差後,在經過比例增益值 53022與積分時間常數值53023以及積分器53024運算後,並透過加法器53025總和後,得到比例-積分(PI)控制器的控制量。其中,比例增益值53022與積分時間常數值53023會依照前述的方法調適控制器增益。
經由本發明的伺服馬達驅動器裝置及其電流控制方法的實施型態說明後,可知圖5~圖8之方塊圖確實可達到線上估測馬達電流模型及其時間延遲之參數,並搭配具時間延遲的最佳化方法自動計算出適合系統的電流控制器增益的功能,在具有時間延遲的系統下適當地調適控制器增益,使其達到有足夠穩定性裕度的最大頻寬響應。
本發明的另一個優點係提出利用前述估測出的時間延遲之參數,搭配時間延遲補償的控制方法,可改善因為時間延遲所造成的相位落後問題,使得系統能夠在足夠的穩定性裕度下盡可能地提高電流迴路頻寬。其實施方式可參照圖9~圖10。
參照圖9為本發明之伺服馬達驅動器裝置及其電流控制方法的具時間延遲補償之電流控制模組5302a的實施型態2,與圖8的主要差異在於電流回 授
Figure 109108292-A0305-02-0013-57
先經由一時間延遲補償器53026,並根據控制器的控制量、電流回授
Figure 109108292-A0305-02-0013-36
以及 估測的時間延遲
Figure 109108292-A0305-02-0013-53
進行數學運算後得到補償量,電流命令
Figure 109108292-A0305-02-0013-58
再與該補償量經由 減法器53021可得到時間延遲補償後的電流誤差,再經過比例增益值53022與積分時間常數值53023以及積分器53024運算後,並透過加法器53025總和後,可得到具時間延遲補償之比例-積分(PI)控制器的控制量。如上述依本實施型態,因其時間延遲補償的控制方法,便能夠改善因為時間延遲所造成相位落後問題。
參照圖10為本發明之伺服馬達驅動器裝置及其電流控制方法的具時間延遲補償之電流控制模組5302b的實施型態3,其實施形態多了一加法器 53027,且時間延遲補償器53026可僅由控制器的控制量與估測的時間延遲
Figure 109108292-A0305-02-0014-31
進 行數學運算後得到補償值,將電流命令
Figure 109108292-A0305-02-0014-32
與電流回授
Figure 109108292-A0305-02-0014-33
經由減法器53021得到的 電流誤差,再經由加法器53027將兩者進行相加後,可得到具有時間延遲補償後的電流誤差,再經過比例增益值53022與積分時間常數值53023以及積分器53024運算後,並透過加法器53025總和後,可得到具時間延遲補償之比例-積分(PI)控制器的控制量。同樣的,如上述依本實施型態,因其時間延遲補償的控制方法,亦能夠改善因為時間延遲所造成相位落後問題。
綜上所述,本案不但在技術思想上確屬創新,並能較習知技術增進上述多項功效,應充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。
1:上位控制器
2:交流電源
4:伺服馬達機構系統
5:本發明之伺服馬達驅動器裝置
51:位置迴路
52:速度迴路
53:具時間延遲補償之電流迴路及其控制器

Claims (10)

  1. 一種伺服馬達驅動器裝置,是指一種應用於搭配不同馬達的情況下仍可自動調整其電流控制器增益,使其達到最佳電流響應,該裝置包括:一上位控制器,作為運動控制命令之產生;一交流電源,作為伺服馬達驅動器之輸入能量來源;一伺服馬達機械負載,一伺服馬達與一編碼器同軸共為一體,與伺服馬達驅動器的電力輸出側相連接,使機械負載運轉;一本發明之伺服馬達驅動器裝置,與交流電源、上位控制器相連接,可接受單相或三相交流電源的輸入並經由變頻器轉換後,使用脈波寬度調變技術來輸出三相電壓之脈波輸出,將能量轉換至電力輸出側來驅動伺服馬達;其特徵包含有一位置迴路、一速度迴路及一具時間延遲補償之電流迴路及其控制器。
  2. 如請求項1所述之本發明之伺服馬達驅動器裝置,包含有一具時間延遲之電流模型鑑別模組、一具時間延遲補償之電流控制模組,並與一電壓命令切換模組、一第一座標轉換模組、一脈波寬度調變模組、一變頻器模組、一電流回授單元、一電流回授模組、一類比/數位轉換器、與一第二座標轉換模組相連接。
  3. 如請求項2所述之具時間延遲之電流模型鑑別模組,係與具時間延遲補償之電流控制模組相連接,用以產生電壓命令訊號,並儲存電壓命令訊號與電流回授訊號,找出具時間延遲的馬達電流模型,分析不同頻率區段內的模型以估測出馬達參數及其時間延遲,根據線上估測到的馬達電流模型及其時間延遲之參數,自動計算電流控制器增益。
  4. 如請求項2所述之具時間延遲補償之電流控制模組,係透過前述具時間延遲之電流模型鑑別模組,所得到的電流控制器增益,將其增益自動設定於電流控制模組的控制器中。
  5. 如請求項3所述之具時間延遲之電流模型鑑別模組,包含有四個模組,分別為一可變頻率之電壓命令模組、一系統模型重建模組、一具時間延遲之電流模型估測模組以及一控制器增益計算模組。
  6. 一種具時間延遲補償之電流控制的方法,是指一種透過線上估測到的馬達電流模型及其時間延遲之參數,自動計算出具時間延遲的最佳化電流控制器增益,在具時間延遲的系統下適當地調適控制器增益,使其達到有足夠穩定性裕度的最大頻寬響應;及利用估測出的時間延遲參數進行時間延遲補償,以改善因為時間延遲所造成的相位落後問題,使得系統能夠在足夠的穩定性裕度下盡可能地提高電流迴路頻寬,其中,該方法包含以下特徵者:(1)具有可調整之控制器比例增益值及積分時間常數值及積分器運算;(2)具有時間延遲補償器;(3)電流回授先經由一時間延遲補償器,並根據控制器的控制量、電流回授以及估測的時間延遲進行數學運算後得到補償量,電流命令與該補償量經由減法器得到具有時間延遲補償後的電流誤差,再經過比例增益值與積分時間常數值以及積分器運算後,並透過加法器總和後,可得到具時間延遲補償之比例-積分(PI)控制器的控制量;(4)時間延遲補償器可僅由控制器的控制量及估測的時間延遲進行數學運算後得到補償量,將電流命令與電流回授經由減法器得到電流誤差,再經由加法器將兩者進行相加後,可得到具有時間延遲補償後的電流誤差,再經過比 例增益值與積分時間常數值以及積分器運算後,並透過加法器總和後,可得到具時間延遲補償之比例-積分(PI)控制器的控制量。
  7. 如請求項5所述之可變頻率之電壓命令模組,其中,電壓命令型態具有複數個頻率點且其電壓振福大小相同之特性,可為Chirp弦波命令函數,或是具備複數個頻率序列的振幅大小相同之複合頻率陣列函數的信號,除此之外,凡符合複數個頻率點且其電壓振福大小相同之特性均為該模組的電壓命令產生的特徵者。
  8. 如請求項5所述之系統模型重建模組,其中,系統模型重建係基於快速傅立葉轉換方法來分析所儲存的電壓命令訊號與電流回授訊號,根據轉換結果,將兩者的振幅之結果儲存於「增益G陣列」,其中,「增益G陣列」包含不同頻率下相對應的振幅;同時,將兩者的角度之結果儲存於「相位P陣列」,其中,「相位P陣列」包含不同頻率下相對應的角度,即可獲得系統模型陣列;除此之外,模型重建的方法不限於快速傅立葉轉換方法,採用遞迴函數等數值方法建立模型函數的模組,均符合系統模型重建的特徵者。
  9. 如請求項5所述之具時間延遲之電流模型估測模組,其中,該方法包含以下特徵者:(1)根據較低頻率區段系統模型的增益G陣列與相位P陣列,估測出馬達參數,包含等效電阻、等效電感等;(2)根據馬達電氣參數計算出馬達電流模型;(3)根據馬達電流模型與其他頻率區段系統模型的增益G陣列與相位P陣列相互運算,獲得時間延遲的估測值。
  10. 如請求項5所述之控制器增益計算模組,其中,該控制器增益係根據馬達電流等效模型以及時間延遲的估測值來計算控制器增益為其特徵者。
TW109108292A 2020-03-13 2020-03-13 伺服馬達驅動器裝置及其電流控制方法 TWI717231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109108292A TWI717231B (zh) 2020-03-13 2020-03-13 伺服馬達驅動器裝置及其電流控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109108292A TWI717231B (zh) 2020-03-13 2020-03-13 伺服馬達驅動器裝置及其電流控制方法

Publications (2)

Publication Number Publication Date
TWI717231B true TWI717231B (zh) 2021-01-21
TW202135455A TW202135455A (zh) 2021-09-16

Family

ID=75237230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109108292A TWI717231B (zh) 2020-03-13 2020-03-13 伺服馬達驅動器裝置及其電流控制方法

Country Status (1)

Country Link
TW (1) TWI717231B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965441A (zh) * 2021-02-01 2021-06-15 新代科技(苏州)有限公司 一种控制器通讯延迟补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104270042A (zh) * 2014-09-24 2015-01-07 深圳市正弦电气股份有限公司 伺服电机编码器偏移角度自动学习方法及系统
US9471055B2 (en) * 2014-06-05 2016-10-18 Fanuc Corporation Servo control device reducing deflection of front end point of machine
CN107659241A (zh) * 2016-07-25 2018-02-02 发那科株式会社 伺服电动机控制装置及方法、计算机可读取的存储介质
TW201840120A (zh) * 2017-04-20 2018-11-01 士林電機廠股份有限公司 伺服驅動系統之電流頻寬及相位驗證裝置
TW201841085A (zh) * 2017-01-20 2018-11-16 日商山洋電氣股份有限公司 馬達控制裝置
US10505484B2 (en) * 2017-04-24 2019-12-10 Canon Kabushiki Kaisha Motor control apparatus, sheet conveyance apparatus, document feeding apparatus, document reading apparatus, and image forming apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9471055B2 (en) * 2014-06-05 2016-10-18 Fanuc Corporation Servo control device reducing deflection of front end point of machine
CN104270042A (zh) * 2014-09-24 2015-01-07 深圳市正弦电气股份有限公司 伺服电机编码器偏移角度自动学习方法及系统
CN107659241A (zh) * 2016-07-25 2018-02-02 发那科株式会社 伺服电动机控制装置及方法、计算机可读取的存储介质
TW201841085A (zh) * 2017-01-20 2018-11-16 日商山洋電氣股份有限公司 馬達控制裝置
TW201840120A (zh) * 2017-04-20 2018-11-01 士林電機廠股份有限公司 伺服驅動系統之電流頻寬及相位驗證裝置
US10505484B2 (en) * 2017-04-24 2019-12-10 Canon Kabushiki Kaisha Motor control apparatus, sheet conveyance apparatus, document feeding apparatus, document reading apparatus, and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965441A (zh) * 2021-02-01 2021-06-15 新代科技(苏州)有限公司 一种控制器通讯延迟补偿方法

Also Published As

Publication number Publication date
TW202135455A (zh) 2021-09-16

Similar Documents

Publication Publication Date Title
Xia et al. Switching-gain adaptation current control for brushless DC motors
CN110635735A (zh) Pmsm伺服系统电流环的控制方法
TWI717231B (zh) 伺服馬達驅動器裝置及其電流控制方法
Acikgoz et al. Experimental evaluation of dynamic performance of three‐phase AC–DC PWM rectifier with PD‐type‐2 fuzzy neural network controller
Agirman et al. Adaptive torque-ripple minimization in switched reluctance motors
Hoshino et al. Output voltage correction for a voltage source type inverter of an induction motor drive
KR100967665B1 (ko) 저속 영역에서의 전동기 속도 제어 시스템 및 속도 제어방법
CN110649855A (zh) Pmsm伺服系统电流环系统
CN114499334A (zh) 一种永磁三相交流电机及其负载的模拟装置及控制方法
Zhou et al. Hybrid prediction-based deadbeat control for a high-performance shunt active power filter
CN110045604B (zh) 音圈电机驱动洛伦兹力型fts重复滑模复合控制方法
CN110707908A (zh) 一种基于自适应电流谐波抑制的逆变器电流控制系统
CN115051601A (zh) 变速旋转直流电机伺服系统的扰动补偿和跟踪控制方法
CN110572099A (zh) 一种基于fpga的同步电机励磁方法
CN111756261B (zh) 一种pwm整流器控制方法和装置
CN112701970B (zh) 一种低载波比下的pmsm精确离散自抗扰控制方法
Wang et al. Fractional-order modelling and control for two parallel PWM rectifiers
CN113533998A (zh) 一种三相交流电子负载的预测控制方法
TWI633746B (zh) 伺服驅動系統之電流頻寬及相位驗證裝置
Xiao et al. An improved precise power control of voltage sensorless-MPC for PWM rectifiers
Sayouti et al. Real-time DSP implementation of DTC neural network-based for induction motor drive
CN112701979A (zh) 一种永磁同步电机转矩控制装置
CN116191967B (zh) 一种基于混合电压矢量的无模型电流预测控制装置的电流预测控制方法
Zhang et al. Model predictive power control of a PWM rectifier for electromagnetic transmitters
CN113395029B (zh) 一种精确电压补偿的异步电机全阶观测器低速性能提升方法