TWI714907B - 具有中空奈米結構之複合片體及其應用 - Google Patents

具有中空奈米結構之複合片體及其應用 Download PDF

Info

Publication number
TWI714907B
TWI714907B TW107139857A TW107139857A TWI714907B TW I714907 B TWI714907 B TW I714907B TW 107139857 A TW107139857 A TW 107139857A TW 107139857 A TW107139857 A TW 107139857A TW I714907 B TWI714907 B TW I714907B
Authority
TW
Taiwan
Prior art keywords
hollow
dimensional nano
sheet
wire
dimensional
Prior art date
Application number
TW107139857A
Other languages
English (en)
Other versions
TW202017999A (zh
Inventor
吳宗明
薛富盛
竇維平
王傑瑁
王湘婷
Original Assignee
國立中興大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中興大學 filed Critical 國立中興大學
Priority to TW107139857A priority Critical patent/TWI714907B/zh
Priority to US16/576,258 priority patent/US11252816B2/en
Publication of TW202017999A publication Critical patent/TW202017999A/zh
Application granted granted Critical
Publication of TWI714907B publication Critical patent/TWI714907B/zh

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一種具有中空奈米結構之複合片體,其包含:一維奈米中空線混合分散於高分子片體中,其中:該高分子片體具有可撓曲性;以及該一維奈米中空線之電特性低於該高分子片體,並使該具有中空奈米結構之複合片體的電特性介於該高分子片體之電特性與該一維奈米中空線之電特性之間;本發明之中空結構具備之質輕特性,製備具有中空奈米結構之複合材料片體,藉由具有可撓曲性之片體內部添加的一維中空材料達到結構輕量化與降低介電常數的目標,並同時達到可穿戴式電子元件需要可撓曲與彈性之需求。

Description

具有中空奈米結構之複合片體及其應用
一種複合材料,特別是一種透過添加具有中空結構之奈米材料而使介電性質下降之複合材料。
21世紀以來人們對於消費性電子產品的要求除了性能上的突破,外型上的輕、薄、短、小,甚至可撓曲性也是影響產品接受度的重點。近年來可攜式產品的興起,便於消費者不限工作環境區域及時間都能方便工作,大幅增加工作效能,因此可攜式產品輕量化的研究也視為科技中相當重視的區域。由於印刷電路板(Printed Circuit Board, PCB)於手機、平板電腦等電子產品零組件中佔了整體重量相當大的比率,為可使此等可攜式產品攜帶重量減少,同時保有可撓性與高效能,本領域開發人員皆傾注思慮開發。
軟性印刷電路板的常見材料,例如聚醯亞胺,常應用於軟性銅箔基板(FCCL)以及製成電路用的軟板覆蓋膜(Coverlay),並廣泛使用於高階軟板、發光二極體(LED)、電子通訊、與光電顯示等相關產業,但聚醯亞胺有損耗因子較高以及介電常數較高的問題。而高頻電路的需求內涵就是傳輸訊號的速度與品質,影響這兩項的主要因素是傳輸材料的電特性,亦即材料介電常數(Dielectric Constant,Dk)與介電損失(Dissipation Factor,Df ),如何提升低印刷電路板材料傳輸速率同時保持訊號的完整性是一大課題,此需求可藉由降低印刷電路板材料的介電常數和介電損失來改善,將可縮短訊號延遲(Signal Propagation Delay Time),以及提高訊號傳輸速率與減少訊號傳輸損失(Signal Transmission Loss)。
然而,目前市場上缺少一種複合材料能維持輕量化的同時,依然保有可撓性與高效能的優點。
為了解決目前市場缺乏一種同時具有質輕、可撓性與高效能優勢的複合材料,本發明提供了一種具有中空奈米結構之複合片體,其包含:一一維奈米中空線混合分散於一高分子片體中,其中:該高分子片體具有可撓曲性;以及該一維奈米中空線之電特性低於該高分子片體,並使該具有中空奈米結構之複合片體的電特性介於該高分子片體之電特性與該一維奈米中空線之電特性之間。
其中,該高分子片體的材質為聚醯亞胺或液晶高分子。
其中,該一維奈米中空線的材質包含二氧化矽、二氧化錫、二氧化鈦、錳酸鈷或氧化鐵鈷。
其中,該一維奈米中空線之線體內外徑比與該具有中空奈米結構之複合片體的介電常數成反比。
其中,當該一維奈米中空線的材質為二氧化矽,該一維奈米中空線的介電常數小於3.9。
其中,該具有中空奈米結構之複合片體係以刮刀塗佈成型,並使該一維奈米中空線實質同向分散於該高分子片體中。
本發明進一步提供一種具有可撓曲性之印刷電路板,其包含前述之該具有中空奈米結構之複合片體。
藉由上述說明可知,本發明具有以下優點:
1. 未來電子產品會不斷地朝高性能與輕量化的方向成長,承載各項電子元件的電路板必須提升以面對高頻訊號的傳輸以及攜帶式產品的需求。本發明之中空結構具備之質輕特性,製備具有中空奈米結構之複合材料片體,藉由具有可撓曲性之片體內部添加的一維中空材料達到結構輕量化與降低介電常數的目標,並同時達到可穿戴式電子元件需要可撓曲與彈性之需求。
2.本發明透過摻混具有低密度、低熱傳導係數、表面積大、易改質、機械穩定性佳及毒性低特點之一維中空結構於軟性印刷電路板材料中,不僅減輕原本軟性印刷電路板材料重量、更強化其結構,以達降低成本與輕量化的效果,同時也因為中空結構材料的添加而降低了原本軟性印刷電路板材料介電常數與損耗因子,成功解決目前既有技術之難題,係一前瞻且創新之發明創造。
本發明所謂之片體為基本扁平狀材料之統稱,包含薄膜、片材或板材,於此不限定。本發明所謂之電特性、電性質,主要為材料之介電特性,至少包含介電常數與介電損失。
請參考圖1,本發明係一種具有中空奈米結構之複合片體10,其包含一一維奈米中空線13混合分散於一高分子片體11中,該一維奈米中空線13的添加可使原本該高分子片體11的電特性,至少包含介電常數與介電損失下降,更佳的是可使該具有中空奈米結構之複合片體之電特性介於該高分子片體與該一維奈米中空線之電特性之間。
前述該高分子片體11之材質包含聚醯亞胺(Polyimide, PI)或液晶高分子(Liquid Crystal Polymer, LCP)。該一維奈米中空線13的材質包含二氧化矽(SiO2 )、二氧化錫(SnO2 )、二氧化鈦(TiO2 )、錳酸鈷(CoMn2 O4 )或氧化鐵鈷(CoFe2 O4 )。
本發明之第一較佳實施例,該高分子片體11之材質選用聚醯亞胺,而該一維奈米中空線13的材質選用二氧化矽,以下說明其較佳之製備方法:
請參考圖2,本發明之該一維奈米中空線13之SEM圖,該一維奈米中空線13之直徑介於50~1000nm。本發明的該一維奈米中空線13較佳係以靜電紡絲方法所製得,靜電紡絲是將高分子溶液施加電荷,利用電場的牽引使高分子溶液在兩電極間運動,在此過程中高分子溶液會逐漸細化並伴隨著溶劑的揮發而凝固,形成直徑在數十~數百奈米間的纖維。以靜電紡絲法製備非高分子材料中空纖維,以本實施例二氧化矽為例,是將前驅物tetraethyl orthosilicate (TEOS)與高分子(如Poly-vinylpyrrolidone, PVP)溶液混和後,經由靜電紡絲製備出TEOS/PVP的複合纖維,再將此纖維於高溫下將高分子移除,獲得該一維奈米中空線13。
上述製備完成之該一維奈米中空線13與該高分子片體11材料混合製備成片體,而本發明形成片體之方法較佳係刮刀塗佈法,主要先將刮刀塗佈法所使用之刀片垂直靜置於塗佈平台上,並將先前配製之該一維奈米中空線13與該高分子片體材料懸浮液置於刀片其中一側之塗佈平台,此時,使用注射幫浦以定速度拖曳塗佈平台,靜止不動的刀片可將懸浮液均勻塗佈於塗佈平台,並給予懸浮液一個單方向之剪切力,使懸浮液中該一維奈米中空線13得以排列,甚至使該一維奈米中空線13能實質同向地排列於該高分子片體11的材料中,再於刮刀塗佈後,將所得之片體固化,以獲本發明之具有中空奈米結構之複合片體10。本發明因使用具有可撓曲特性之該高分子片體12,使製得之該具有中空奈米結構之複合片體10也同樣具有可撓曲特性,適用於基板材料、印刷電路板使用。
接著,以下敘述本發明該一維奈米中空線13確實可改變本發明該高分子片體11之電特性下降,甚至可透過改變該一維奈米中空線13的內外徑比達到調控該高分子片體11複合後的電特性,同樣以前述第一較佳實施例,該高分子片體11之材質選用聚醯亞胺,而該一維奈米中空線13的材質選用二氧化矽為例,各材料之原介電常數如下表1:
表1。
Figure 107139857-A0304-0001
本發明該複合片體之基本介電常數之計算公式如下:(公式中所稱之基材即為該高分子片體13,所謂之填充物即為該一維奈米中空線13)
Figure 02_image001
而針對其中個別材料之介電常數,由於本發明選用具有中空結構之奈米線,因此計算材料之整體介電常數時,需考量中空結構中空氣之介電常數所造成之影響。
計算該一維奈米中空線13/該高分子片體11介電常數值。由於本發明採用刮刀塗布,可以預見的是該一維奈米中空線13受到刮刀的橫向剪切力時會平躺在平面上,因此該一維奈米中空線13在該高分子片體11中分布的狀況鮮少會出現垂直於薄膜平面的行為,故在此使用式(1)計算,並經過適當修正後用於MGI-AI平台計算。其中εc1 為該一維奈米中空線13與該高分子片體13複合介電常數,Vp 與V1 分別為高分子與該一維奈米中空線13體積分率,εp 與ε1 分別為高分子與該一維奈米中空線13介電常數。
Figure 02_image003
因此,以本發明第一較佳實施例所選用之二氧化矽為例,並請一併參考圖3、4,該一維奈米中空線13之介電常數為以下式2:(令中空線之圓柱外徑為R2 、內徑為R1 、長度為L、A=R1 /R2 、R1 =AR2 )
Figure 02_image005
由上述算式與圖3可知,該一維奈米中空線13的介電常數與線體直徑大小無關,只與內外徑比值有關,因此本發明在不改變該一維奈米中空線1之線體大小下,可透過調控該一維奈米中空線13之內外徑比(即為線體厚度)達到改變其介電常數的效果。
自前述說明可知,該一維奈米中空線13在相同A下,長度不影響介電常數,如此可證實本發明添加該一維奈米中空線13的優勢在於該一維奈米中空線13即便在混合或後續成片、膜體時斷裂,依然可維持一維中空之結構,不影響其中空結構所形成之介電常數,依然可達到本發明複合材料整體電特性之下降效果。
請參考圖5,其係為本發明該複合片體之介電常數、該一維奈米中空線體積分率以及該一維奈米中空線內外徑比率圖。藉由上述計算可知,本發明實施例一之以二氧化矽與聚醯亞胺所複合形成之片體,因為其中空結構之添加,導致電特性下降之效果。如此,本發明的另一優勢在於,可透過調控該一維奈米中空線13之壁厚即可調控該具有中空奈米結構之複合片體10整體之電特性,不一定需要透過調控前述中空材料之添加量來達成。
以上所述僅為本發明的較佳實施範例而已,並非用以限定本發明主張的權利範圍,凡其他未脫提本發明所揭示的精神所完成的等效改變或修飾,均應包含在本發明的申請專利範圍內。
10:具有中空奈米結構之複合片體11:高分子片體13:一維奈米中空線
圖1為本發明較佳實施例示意圖。 圖2為本發明該一維奈米中空線SEM圖。 圖3為本發明該一維奈米中空線介電常數、線體外徑與線體內外徑比率圖。 圖4為本發明該一維奈米中空線介電常數與內外徑比率圖。 圖5為本發明該複合片體之介電常數、該一維奈米中空線體積分率以及該一維奈米中空線內外徑比率圖。
10:具有中空奈米結構之複合片體
11:高分子片體
13:一維奈米中空線

Claims (6)

  1. 一種具有中空奈米結構之複合片體,其包含:一一維奈米中空線混合分散於一高分子片體中,其中:該高分子片體具有可撓曲性;該一維奈米中空線之電特性低於該高分子片體,並使該具有中空奈米結構之複合片體的電特性介於該高分子片體之電特性與該一維奈米中空線之電特性之間;以及該具有中空奈米結構之複合片體係以刮刀塗佈成型,並使該一維奈米中空線以平行於該高分子片體平面方向實質同向地分散於該高分子片體中。
  2. 如申請專利範圍第1項之具有中空奈米結構之複合片體,該高分子片體的材質為聚醯亞胺或液晶高分子。
  3. 如申請專利範圍第1項之具有中空奈米結構之複合片體,該一維奈米中空線的材質包含二氧化矽、二氧化錫、二氧化鈦、錳酸鈷或氧化鐵鈷。
  4. 如申請專利範圍第1、2或3項之具有中空奈米結構之複合片體,該一維奈米中空線之線體內外徑比與該具有多維度中空奈米結構之複合片體的介電常數成反比。
  5. 如申請專利範圍第3項之具有中空奈米結構之複合片體,當該一維奈米中空線的材質為二氧化矽,該一維奈米中空線的介電常數小於3.9。
  6. 一種具有可撓曲性之印刷電路板,其包含申請專利範圍第1~5項之具有中空奈米結構之複合片體。
TW107139857A 2018-11-09 2018-11-09 具有中空奈米結構之複合片體及其應用 TWI714907B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107139857A TWI714907B (zh) 2018-11-09 2018-11-09 具有中空奈米結構之複合片體及其應用
US16/576,258 US11252816B2 (en) 2018-11-09 2019-09-19 Composite with hollow nano-structures and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107139857A TWI714907B (zh) 2018-11-09 2018-11-09 具有中空奈米結構之複合片體及其應用

Publications (2)

Publication Number Publication Date
TW202017999A TW202017999A (zh) 2020-05-16
TWI714907B true TWI714907B (zh) 2021-01-01

Family

ID=71895465

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107139857A TWI714907B (zh) 2018-11-09 2018-11-09 具有中空奈米結構之複合片體及其應用

Country Status (1)

Country Link
TW (1) TWI714907B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091848A (ja) * 2005-09-28 2007-04-12 Dainippon Ink & Chem Inc シリカナノチューブ会合体を含有する有機無機複合体
JP2015067739A (ja) * 2013-09-30 2015-04-13 Dic株式会社 硬化性樹脂組成物及びその成形品
TWI488739B (zh) * 2009-04-15 2015-06-21 Shinetsu Chemical Co Thermos viscous use of silicone rubber sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091848A (ja) * 2005-09-28 2007-04-12 Dainippon Ink & Chem Inc シリカナノチューブ会合体を含有する有機無機複合体
TWI488739B (zh) * 2009-04-15 2015-06-21 Shinetsu Chemical Co Thermos viscous use of silicone rubber sheet
JP2015067739A (ja) * 2013-09-30 2015-04-13 Dic株式会社 硬化性樹脂組成物及びその成形品

Also Published As

Publication number Publication date
TW202017999A (zh) 2020-05-16

Similar Documents

Publication Publication Date Title
Lim et al. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics
Wang et al. A general approach to composites containing nonmetallic fillers and liquid gallium
Xiong et al. A dynamic graphene oxide network enables spray printing of colloidal gels for high‐performance micro‐supercapacitors
TWI738008B (zh) 高頻銅箔基板及其製法
CN108454192B (zh) Pi型高频高速传输用双面铜箔基板及其制备方法
TWI541831B (zh) 透明導體和包含該透明導體的光學顯示裝置
TW201434640A (zh) 透明導電性膜
CN104672502B (zh) 氰乙基纤维素基高介电柔性纳米复合膜及其制备方法
US11037691B2 (en) Electrically conductive material, printing ink and method for manufacturing electrically conductive structure
Saw et al. Transparent, electrically conductive, and flexible films made from multiwalled carbon nanotube/epoxy composites
CN109285462B (zh) 柔性显示面板及其制作方法、柔性显示装置
TWM556457U (zh) 具有複合式疊構的可撓性塗膠銅箔基板
Jing et al. Highly bendable, transparent, and conductive AgNWs-PET films fabricated via transfer-printing and second pressing technique
JP2014507746A (ja) 金属ナノ粒子のネットワークを含有する透明導電性フィルムのグラビア印刷
Guo et al. Flexible aramid nanofiber/Ag nanowires/graphene nanosheets composite films with sandwich structure for high-performance electromagnetic interference shielding and Joule heating
JP2014125635A (ja) グラビアオフセット印刷用組成物およびグラビアオフセット印刷方法
TWI714907B (zh) 具有中空奈米結構之複合片體及其應用
KR20130131636A (ko) 일액형의 탄소나노튜브 및 은나노와이어 분산액 및 그를 이용한 전도성 코팅 기판의 제조 방법
CN105355272A (zh) 一种双面导电透明导电薄膜及其制备方法
CN109280195B (zh) 一种聚酰亚胺膜及其制备方法
Wang et al. Flexible substrate based on sandwich-structure hydrocarbon resin/aligned boron nitride composites with high thermal conductivity and low dielectric loss
TW202011086A (zh) 複合式疊構液晶高分子基板及其製備方法
TWI685523B (zh) 具有多維度中空奈米結構之複合片體及其應用
KR101380033B1 (ko) 전도성 분산액 및 전도성 적층체
TW201930076A (zh) 高頻高傳輸雙面銅箔基板、用於軟性印刷電路板之複合材料及其製法