TWI714839B - Optical component detection system and method for detecting optical component - Google Patents

Optical component detection system and method for detecting optical component Download PDF

Info

Publication number
TWI714839B
TWI714839B TW107111652A TW107111652A TWI714839B TW I714839 B TWI714839 B TW I714839B TW 107111652 A TW107111652 A TW 107111652A TW 107111652 A TW107111652 A TW 107111652A TW I714839 B TWI714839 B TW I714839B
Authority
TW
Taiwan
Prior art keywords
image
image sensor
reflected light
area
sensor
Prior art date
Application number
TW107111652A
Other languages
Chinese (zh)
Other versions
TW201842300A (en
Inventor
威法蘭茲 奧格斯特
Original Assignee
德商紐豹有限責任合資公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商紐豹有限責任合資公司 filed Critical 德商紐豹有限責任合資公司
Publication of TW201842300A publication Critical patent/TW201842300A/en
Application granted granted Critical
Publication of TWI714839B publication Critical patent/TWI714839B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一種用於偵測元件之表面的光學元件偵測系統。容置裝置適於將元件定位在攝影機裝置前,以用攝影機裝置偵測元件之第一表面。攝影機裝置包括影像感測器,影像感測器適於接收在元件之第一表面上反射的光。光學元件偵測系統還包括第一光學有效元件,配置在反射光朝影像感測器的光路中;及用於第一光學有效元件的調節裝置。調節裝置包括支架,固定在空心圓柱形鏡管的內側,且鏡管的縱向中心線與第一光學有效元件的光軸同軸。支架至少在鏡管縱向上具有彈性柔性。調節裝置還包括用於調節光學有效元件與影像感測器間的相對距離的第一調節驅動裝置。An optical element detection system for detecting the surface of the element. The accommodating device is suitable for positioning the component in front of the camera device so that the camera device can detect the first surface of the component. The camera device includes an image sensor, and the image sensor is adapted to receive light reflected on the first surface of the element. The optical element detection system further includes a first optical effective element, which is arranged in the light path of the reflected light toward the image sensor; and an adjustment device for the first optical effective element. The adjusting device includes a bracket, which is fixed on the inner side of the hollow cylindrical mirror tube, and the longitudinal center line of the mirror tube is coaxial with the optical axis of the first optical effective element. The bracket has elastic flexibility at least in the longitudinal direction of the lens tube. The adjusting device further includes a first adjusting drive device for adjusting the relative distance between the optical effective element and the image sensor.

Description

光學元件偵測系統及偵測光學元件的方法Optical element detection system and method for detecting optical element

本發明是有關於一種光學元件偵測系統及偵測光學元件的方法。 The invention relates to an optical element detection system and a method for detecting optical elements.

半導體元件應用於許多技術領域,例如半導體電子設備、光伏、製造光學偵測器及輻射源(如發光二級體)。由於半導體元件的廣泛應用,特別是在品質方面對半導體元件製造商的要求愈來愈高。半導體元件中或半導體元件上的缺陷或故障是有害的,因其可能會對半導體元件的功能性造成影響。因而在製造過程中便對半導體元件進行缺陷及故障檢查。檢查半導體元件的一種方案是:用微米級光學系統來對半導體元件進行成像。 Semiconductor components are used in many technical fields, such as semiconductor electronics, photovoltaics, manufacturing optical detectors, and radiation sources (such as light-emitting diodes). Due to the wide application of semiconductor components, the requirements for semiconductor component manufacturers, especially in terms of quality, are increasing. Defects or malfunctions in or on the semiconductor element are harmful because they may affect the functionality of the semiconductor element. Therefore, semiconductor components are inspected for defects and failures during the manufacturing process. One solution for inspecting semiconductor components is to use micron-level optical systems to image semiconductor components.

但光學系統之傳統型結構的景深較小。若待檢半導體元件之待成像表面相對光學系統之影像感測器的影像感測器表面發生傾斜,則無法將半導體元件完全清晰地成像於一影像中。此外,安裝在光學系統中之光學元件通常具有較大質量。因此,調節操作較為緩慢,或者在透過調節元件來改變焦點時,光學系統會發生振動,從而使得影像品質顯著變差。如此一來,必須等待至振 動減弱方能進行攝像。在連續式製造/檢查半導體元件過程中,此種有所延長之攝像時間會降低半導體元件的產量。 But the traditional structure of the optical system has a small depth of field. If the imaging surface of the semiconductor device to be inspected is inclined relative to the image sensor surface of the image sensor of the optical system, the semiconductor device cannot be completely and clearly imaged in an image. In addition, the optical components installed in the optical system usually have a relatively large mass. Therefore, the adjustment operation is relatively slow, or when the focus is changed through the adjustment element, the optical system may vibrate, which significantly deteriorates the image quality. In this way, we must wait for the vibration Only when the movement is weakened can the camera be taken. In the process of continuous manufacturing/inspection of semiconductor components, this extended imaging time reduces the yield of semiconductor components.

德國專利案DE 10 2008 018 586 A1是有關於一種用於偵測元件之至少一表面的光學偵測裝置。藉由保持元件將元件對準攝影機裝置,由光源以其短波範圍內的第一光束照射元件之第一表面。偵測裝置還包括第二光源,其以長波範圍內的第二光束發射至元件的第二表面,其中該元件之第二表面與第一表面相對配置。藉由攝影機裝置來接收在此等表面上反射的光束。 German patent DE 10 2008 018 586 A1 relates to an optical detection device for detecting at least one surface of a component. The component is aligned with the camera device by the holding component, and the light source illuminates the first surface of the component with the first light beam in the shortwave range. The detection device further includes a second light source, which emits a second light beam in the long-wave range to the second surface of the element, wherein the second surface of the element is disposed opposite to the first surface. The light beam reflected on these surfaces is received by the camera device.

日本專利案JP 2016 128 781披露一種用於檢查電子元件的裝置。此種裝置包括攝製電子元件之不同區域的影像的第一及第二攝像元件,其中此等區域為一矩形平行六面體的兩個不同區域。 Japanese Patent JP 2016 128 781 discloses a device for inspecting electronic components. This type of device includes first and second imaging elements that capture images of different areas of the electronic element, where these areas are two different areas of a rectangular parallelepiped.

本發明之目的在於提供一種用於偵測元件的高效之光學元件偵測系統。 The object of the present invention is to provide an efficient optical element detection system for detecting elements.

本發明提出一種用於偵測至少一元件之至少一表面的光學元件偵測系統。容置裝置適於將該元件定位在攝影機裝置前,以便用該攝影機裝置偵測該元件之第一表面。該攝影機裝置包括影像感測器,該影像感測器適於接收在該元件之第一表面上反射的光。該光學元件偵測系統還包括第一光學有效元件,其配置在該反射光朝該影像感測器的光路中;及用於該第一光學有效元件的調節裝置。該調節裝置包括用於該第一光學有效元件的支架。該支架固定在空心圓柱形鏡管的內側上,且該鏡管的縱向中心線 與該第一光學有效元件的光軸同軸。該支架至少在鏡管縱向上具有彈性柔性。該調節裝置還包括用於調節該光學有效元件與該影像感測器間的相對距離的第一調節驅動裝置,以便沿該光軸相對該影像感測器移動該光學有效元件。 The present invention provides an optical element detection system for detecting at least one surface of at least one element. The accommodating device is adapted to position the component in front of the camera device, so that the camera device can detect the first surface of the component. The camera device includes an image sensor, and the image sensor is adapted to receive light reflected on the first surface of the element. The optical element detection system further includes a first optical effective element, which is arranged in the light path of the reflected light toward the image sensor; and an adjusting device for the first optical effective element. The adjusting device includes a holder for the first optically effective element. The bracket is fixed on the inner side of the hollow cylindrical mirror tube, and the longitudinal centerline of the mirror tube It is coaxial with the optical axis of the first effective optical element. The bracket has elastic flexibility at least in the longitudinal direction of the lens tube. The adjusting device also includes a first adjusting and driving device for adjusting the relative distance between the effective optical element and the image sensor, so as to move the effective optical element relative to the image sensor along the optical axis.

透過該彈性柔性的支架,毋需相應螺紋或者該光學有效元件之縱向可調的托座便能將該第一光學有效元件保持住。該光學有效元件為消色差鏡組時,該消色差鏡組的(例如由冕牌(crown)玻璃透鏡與火石(flint)玻璃透鏡構成之)透鏡對被該支架保持。如此便毋需為透鏡對配設托座,從而減小了光學有效元件的運動質量及光學元件偵測系統的總質量。具有支架之光學有效元件的質量有所減小後,施加相對較小的作用力便能調節光學有效元件的位置。較小的質量還有助於對光學有效元件進行低慣性控制;從而提高元件之清晰度平面的後續調節速度。 Through the elastic and flexible support, the first optically effective element can be held without the corresponding thread or the longitudinally adjustable bracket of the optically effective element. When the optically effective element is an achromatic lens group, the lens pair of the achromatic lens group (for example, composed of a crown glass lens and a flint glass lens) is held by the bracket. In this way, there is no need to provide a holder for the lens pair, thereby reducing the moving quality of the optical effective element and the total mass of the optical element detection system. After the mass of the optically effective element with the bracket is reduced, the position of the optically effective element can be adjusted by applying a relatively small force. The smaller mass also contributes to the low inertia control of the optically effective components; thereby improving the subsequent adjustment speed of the clarity plane of the components.

該彈性柔性的支架具有含橡膠材料或螺簧或者構建為波紋管。替代地,該支架可構建為碟簧,其中該碟簧在其豎軸中具有用來容置該第一光學有效元件的開口。 The elastic and flexible support has a rubber-containing material or a spiral spring or is constructed as a bellows. Alternatively, the bracket may be constructed as a disc spring, wherein the disc spring has an opening in its vertical axis for accommodating the first optically effective element.

如此便能大幅減輕乃至防止施加於光學有效元件的外部干擾(如振動)。從而提高用該光學元件偵測系統所實施之測量的抗干擾性。 In this way, external interference (such as vibration) imposed on the optically effective element can be greatly reduced or even prevented. Thereby improving the anti-interference performance of the measurement implemented by the optical element detection system.

此外,該彈性柔性的支架透過其彈性特性而可被無段地拉伸或壓縮,如此便能精確調節該第一光學有效元件的位置。 In addition, the elastic and flexible support can be stretched or compressed steplessly through its elastic characteristics, so that the position of the first optically effective element can be precisely adjusted.

在實際生產環境中,可能無法精確地將元件對準光學設備。在此類情形下,無法以足夠的景深完全清晰地對元件進行成像。採用本文所提出的光學元件偵測系統便能迅速地實施一系列 攝像。 In an actual production environment, it may not be possible to accurately align the components to the optical device. In such situations, the element cannot be imaged completely and clearly with sufficient depth of field. Using the optical component detection system proposed in this article can quickly implement a series of Camera.

該光學元件偵測系統具有良好且迅速的可調性,如此便能提高元件測量的速度及精確性,從而提高產量。 The optical component detection system has good and rapid adjustability, so that the speed and accuracy of component measurement can be improved, thereby increasing the yield.

該影像感測器可為CCD晶片。在其他方案中,該影像感測器可為CMOS晶片或針對某些波長範圍較為靈敏的影像感測器,如微測輻射熱計陣列或熱電陣列。 The image sensor can be a CCD chip. In other solutions, the image sensor can be a CMOS chip or an image sensor that is more sensitive to certain wavelength ranges, such as a microbolometer array or a thermoelectric array.

該鏡管具有較小的磁導率。在另一方案中,該鏡管具有順磁材料。該鏡管亦可至少具有鋁或塑膠。 The mirror tube has a smaller magnetic permeability. In another solution, the mirror tube has a paramagnetic material. The mirror tube can also have at least aluminum or plastic.

該線圈可抵靠在該鏡管上或者與其間隔配置。線圈的位置可視支架的位置而在光軸上偏置。 The coil can be placed against the mirror tube or spaced apart from it. The position of the coil can be offset on the optical axis depending on the position of the bracket.

該支架具有第一端區,在該第一端區中,該支架固定在該鏡管上。該支架還具有第二端區,該第一光學有效元件保持在該第二端區上。在靜止狀態下,該支架之第一端區的位置可相對該光軸而言與該線圈的一末端的位置一致。在另一方案中,該支架之第一端區的位置可相對光軸而言位於線圈內部或外部。作為替代或補充方案,該支架之第二端區相對光軸而言位於線圈內部或外部。 The bracket has a first end region, in which the bracket is fixed on the mirror tube. The bracket also has a second end region, and the first optically effective element is held on the second end region. In the static state, the position of the first end region of the bracket can be consistent with the position of an end of the coil with respect to the optical axis. In another solution, the position of the first end region of the bracket may be located inside or outside the coil with respect to the optical axis. As an alternative or supplementary solution, the second end region of the bracket is located inside or outside the coil with respect to the optical axis.

該第一調節驅動裝置的支架可至少部分地被線圈包圍。控制裝置適於對輸入該線圈之用於產生磁場的電流進行控制。該支架還具有含軟鐵或永磁的磁軛作為含軟鐵或永磁的元件,該磁軛適於根據輸入該線圈的電流來沿該鏡管的縱向中心線移動該支架。 The support of the first adjustment drive can be at least partially surrounded by the coil. The control device is adapted to control the current input to the coil for generating the magnetic field. The bracket also has a yoke containing soft iron or permanent magnet as an element containing soft iron or permanent magnet, and the yoke is adapted to move the bracket along the longitudinal centerline of the mirror tube according to the current input to the coil.

透過上述結構來減輕用於調節該相對距離之元件的磨損或損耗。此外還能透過磁場所產生的作用力來精確調節該相對距 離。 Through the above structure, the wear or loss of the components used to adjust the relative distance can be reduced. In addition, the relative distance can be accurately adjusted through the force generated by the magnetic field. from.

在具有含軟鐵的磁軛的支架配置在線圈的一末端上的情況下,該作用力朝線圈中心作用於支架。若將磁場減弱並予以斷開,則不再有作用力作用於支架。在此情況下,該支架重新處於初始位置。 In a case where a stent having a yoke containing soft iron is arranged on one end of the coil, the force acts on the stent toward the center of the coil. If the magnetic field is weakened and disconnected, no more force will act on the bracket. In this case, the bracket is in the initial position again.

若該支架具有永磁的磁軛,則根據電流流過線圈的電流方向及永磁元件之北極及南極的定向,可沿兩個方向對該支架進行拉伸。如此便能用永磁元件來沿兩個方向對該相對距離進行針對性調節。 If the stent has a permanent magnet yoke, the stent can be stretched in two directions according to the direction of current flowing through the coil and the orientation of the north and south poles of the permanent magnet element. In this way, permanent magnet elements can be used to adjust the relative distance in two directions.

該容置裝置適於將該元件定位在該攝影機裝置前,使得該元件的清晰度平面至少部分地被投射至該影像感測器的影像感測器表面。 The accommodating device is adapted to position the component in front of the camera device, so that the definition plane of the component is at least partially projected onto the image sensor surface of the image sensor.

該光學元件偵測系統亦可包括被該控制裝置控制之用於調節該影像感測器的第二調節驅動裝置,以便沿該光軸相對該第一光學有效元件移動該影像感測器。 The optical element detection system may also include a second adjustment driving device for adjusting the image sensor controlled by the control device, so as to move the image sensor relative to the first effective optical element along the optical axis.

該第二調節驅動裝置可包括壓電制動器或微動式線性工作的軸系統。該微動式線性工作的軸系統可指由若干推桿構成的系統。 The second adjusting and driving device may include a piezoelectric actuator or a micro-motion linear working shaft system. The micro-motion linear working axis system can refer to a system composed of several push rods.

藉由該第二調節驅動裝置便能在光軸上移動該影像感測器,並將清晰度平面投射至影像感測器的影像感測器表面。從而針對元件迅速地進行光學設備調焦。 The second adjusting and driving device can move the image sensor on the optical axis, and project the definition plane to the image sensor surface of the image sensor. Therefore, the optical device can be adjusted quickly for the components.

如此,在藉由影像感測器初次攝製元件時便能將該元件的一預設部分清晰成像在影像中。 In this way, when the device is first captured by the image sensor, a predetermined part of the device can be clearly imaged in the image.

該光學元件偵測系統還包括光源,其適於將光發射至該 元件的表面。該光源適於將一預設波長或一預設波長範圍的光發射至該元件的表面。該光源所發射的光可為波長約為380至780nm的可見光、紅外光及/或極化光。該影像感測器亦可在紅外範圍內或者針對極化光具有靈敏度。 The optical element detection system also includes a light source, which is suitable for emitting light to the The surface of the component. The light source is suitable for emitting light of a predetermined wavelength or a predetermined wavelength range to the surface of the element. The light emitted by the light source may be visible light, infrared light and/or polarized light with a wavelength of about 380 to 780 nm. The image sensor can also have sensitivity in the infrared range or for polarized light.

作為選項,該控制裝置可適於透過控制該第一及/或該第二調節驅動裝置來調節該第一光學有效元件與該影像感測器間的相對距離,以便將該反射光的清晰度平面投射至該影像感測器之朝向該反射光的影像感測器表面。 As an option, the control device may be adapted to adjust the relative distance between the first optically effective element and the image sensor by controlling the first and/or the second adjustment driving device, so that the clarity of the reflected light The plane is projected to the surface of the image sensor facing the reflected light.

透過控制該第一及/或該第二調節驅動裝置,便能迅速且精確地調節該第一光學有效元件與該影像感測器間的相對距離,使得清晰度平面被投射至該影像感測器的影像感測器表面。 By controlling the first and/or the second adjusting and driving device, the relative distance between the first optically effective element and the image sensor can be adjusted quickly and accurately, so that the definition plane is projected to the image sensor The image sensor surface of the camera.

該光學元件偵測系統的影像處理裝置可適於藉由該影像感測器來攝製該元件的第一影像。該影像感測器將該第一影像提供給該影像處理裝置。基於所產生的該第一影像,該影像處理裝置確定該反射光的清晰度平面是否實質上完全被投射至該影像感測器的影像感測器表面。若該反射光的清晰度平面未被實質上完全投射至該影像感測器的影像感測器表面,則該影像處理裝置適於確定該第一影像之多個第一影像區域中的一第一影像區域,在該第一影像區域中,該反射光的清晰度平面的第一分區被投射至該影像感測器的影像感測器表面。 The image processing device of the optical element detection system can be adapted to capture the first image of the element by the image sensor. The image sensor provides the first image to the image processing device. Based on the generated first image, the image processing device determines whether the sharpness plane of the reflected light is substantially completely projected to the image sensor surface of the image sensor. If the clarity plane of the reflected light is not substantially completely projected onto the image sensor surface of the image sensor, the image processing device is adapted to determine a first image area of the first image An image area, in the first image area, the first partition of the clarity plane of the reflected light is projected onto the image sensor surface of the image sensor.

該影像處理裝置亦適於,確定該第一影像之該等多個第一影像區域中的一第二影像區域,在該第二影像區域中,該反射光的清晰度平面的第二分區未被投射至該影像感測器的影像感測器表面。該影像處理裝置亦適於將一控制信號提供給該控制裝 置。該控制裝置適於基於該控制信號來控制該第一及/或該第二調節驅動裝置,以便調節該光學有效元件與該影像感測器間的相對距離。在此過程中,對該反射光的清晰度平面的第二分區進行調節,使得該反射光的清晰度平面被投射至該影像感測器的影像感測器表面。 The image processing device is also suitable for determining a second image area among the plurality of first image areas of the first image. In the second image area, the second partition of the clarity plane of the reflected light is not It is projected to the image sensor surface of the image sensor. The image processing device is also suitable for providing a control signal to the control device Set. The control device is adapted to control the first and/or the second adjustment driving device based on the control signal, so as to adjust the relative distance between the optically effective element and the image sensor. In this process, the second subarea of the clarity plane of the reflected light is adjusted so that the clarity plane of the reflected light is projected onto the image sensor surface of the image sensor.

該影像處理裝置亦適於藉由該影像感測器來攝製該元件的第二影像。在該第二影像中,該影像處理裝置確定該第二影像之多個第二影像區域中的一第三影像區域,在該第三影像區域中,該反射光的清晰度平面的第一分區未被投射至該影像感測器的影像感測器表面。該影像處理裝置還確定該第二影像之該等多個第二影像區域中的一第四影像區域,在該第四影像區域中,該反射光的清晰度平面的第二分區被投射至該影像感測器的影像感測器表面。 The image processing device is also suitable for capturing a second image of the device by the image sensor. In the second image, the image processing device determines a third image area among a plurality of second image areas of the second image, and in the third image area, the first partition of the clarity plane of the reflected light It is not projected onto the image sensor surface of the image sensor. The image processing device also determines a fourth image area among the plurality of second image areas of the second image. In the fourth image area, the second partition of the clarity plane of the reflected light is projected to the The image sensor surface of the image sensor.

在無法將該元件清晰成像在影像中的情況下,透過前述操作便能產生元件的至少兩個攝製,其中分別有一影像區域對該元件的一部分進行了清晰成像。此外還將識別出之不清晰影像區域清晰成像在下一影像中,從而實現了整個元件的檢查。 In the case that the element cannot be clearly imaged in the image, at least two shots of the element can be produced through the foregoing operations, and an image area respectively has an image area that clearly images a part of the element. In addition, the identified unclear image area is clearly imaged in the next image, thereby realizing the inspection of the entire component.

在第一替代方案中,影像處理裝置可適於藉由該影像感測器來攝製第一影像,該影像感測器將該第一影像提供給該影像處理裝置。該影像處理裝置亦適於將一控制指令提供給該控制裝置以控制該第一及/或該第二調節驅動裝置,以便以一預設行程調節該第一光學有效元件與該影像感測器間的相對距離。該影像處理裝置亦適於藉由該影像感測器來攝製第二影像,其中該影像感測器將該第二影像提供給該影像處理裝置。 In a first alternative, the image processing device may be adapted to capture a first image by the image sensor, and the image sensor provides the first image to the image processing device. The image processing device is also suitable for providing a control command to the control device to control the first and/or the second adjustment driving device so as to adjust the first optically effective element and the image sensor with a preset stroke The relative distance between. The image processing device is also suitable for capturing a second image by the image sensor, wherein the image sensor provides the second image to the image processing device.

在攝製該第一影像後的一預設時間段後,該影像處理裝置可將該控制指令提供給該第一及/或該第二調節驅動裝置。 After a predetermined period of time after the first image is captured, the image processing device may provide the control command to the first and/or the second adjustment driving device.

該預設行程可與該第一及/或該第二光學有效元件的光學特性以及/或者與該元件之表面的尺寸相關。較佳地,該預設行程可根據景深而被預設,使得該預設行程小於、等於或大於景深。 The predetermined stroke may be related to the optical characteristics of the first and/or the second optically effective element and/or the size of the surface of the element. Preferably, the preset stroke can be preset according to the depth of field, so that the preset stroke is less than, equal to, or greater than the depth of field.

在預設行程小於或等於景深的情況下,可透過所攝影像之個別清晰成像的影像區域來整體檢查元件表面上是否存在缺陷。若預設行程大於景深,則可檢查元件之預設表面區域是否存在缺陷。因而不檢查其他表面區域是否存在缺陷。如此便能以較少的計算成本及/或在較短時間內檢查表面區域是否存在缺陷。 When the preset stroke is less than or equal to the depth of field, the individual clearly imaged image area of the photographed image can be used to check whether there are defects on the surface of the component as a whole. If the preset stroke is greater than the depth of field, the preset surface area of the component can be checked for defects. Therefore, other surface areas are not checked for defects. In this way, the surface area can be inspected for defects with less calculation cost and/or in a shorter time.

在第二替代方案中,影像處理裝置可適於藉由該影像感測器來攝製第一影像,該影像感測器將該第一影像提供給該影像處理裝置。該影像處理裝置亦適於將一控制指令提供給該控制裝置以控制該第一及/或該第二調節驅動裝置,以便在攝製該第一影像期間以一預設速度調節該第一光學有效元件與該影像感測器間的相對距離。該影像處理裝置亦適於藉由該影像感測器來攝製第二影像,該影像感測器將該第二影像提供給該影像處理裝置。在該第一影像後或者在攝製該第一影像後的一預設時間段後,且在調節該第一光學有效元件與該影像感測器間的相對距離期間,攝製該第二影像。在另一替代方案中,在該影像感測器與該第一光學有效元件間的相對距離發生預設之長度變化後,攝製該第二影像。 In a second alternative, the image processing device may be adapted to capture the first image by the image sensor, and the image sensor provides the first image to the image processing device. The image processing device is also adapted to provide a control command to the control device to control the first and/or the second adjustment driving device, so as to adjust the first optical effect at a predetermined speed during the shooting of the first image The relative distance between the component and the image sensor. The image processing device is also suitable for capturing a second image by the image sensor, and the image sensor provides the second image to the image processing device. After the first image or after a predetermined period of time after the first image is captured, and during the adjustment of the relative distance between the first optical effective element and the image sensor, the second image is captured. In another alternative solution, after the relative distance between the image sensor and the first effective optical element changes by a predetermined length, the second image is captured.

在攝製該第二影像後,該影像處理裝置可適於將另一控制指令提供給該第一及/或該第二調節驅動裝置,以便停止該影像 感測器與該第一光學有效元件間的相對距離的調節。 After capturing the second image, the image processing device may be adapted to provide another control command to the first and/or the second adjustment driving device to stop the image Adjustment of the relative distance between the sensor and the first effective optical element.

該預設速度可與該第一及/或該第二光學有效元件的光學特性、該元件之表面的尺寸、該第一及/或該第二光學有效元件及/或該影像感測器的質量,以及/或者與上述元件之透過該第一及/或該第二調節驅動裝置的響應特性,相關。 The preset speed may be related to the optical characteristics of the first and/or the second optically effective element, the size of the surface of the element, the first and/or the second optically effective element and/or the image sensor The quality, and/or is related to the response characteristics of the above-mentioned components through the first and/or the second adjustment drive device.

可如此地選擇該預設速度,使得在攝製一影像期間,不再作為該景深來調節該影像感測器與該第一光學有效元件間的相對距離。如此便能在調節該影像感測器與該第一光學有效元件間的相對距離的同時,足夠清晰地攝製影像。透過連續式調節該影像感測器與該第一光學有效元件間的相對距離,毋需將影像感測器及/或第一光學有效元件停止並重新加速。從而有利於防止因影像感測器及/或第一光學有效元件之加速及停止而造成的振動。另一優點在於:可將檢查元件是否存在缺陷的時間縮短至最小,因為僅需一次性對影像感測器及/或第一光學有效元件進行加速及停止。 The preset speed can be selected in such a way that during the filming of an image, the relative distance between the image sensor and the first effective optical element is no longer adjusted as the depth of field. In this way, while adjusting the relative distance between the image sensor and the first effective optical element, an image can be captured clearly enough. By continuously adjusting the relative distance between the image sensor and the first effective optical element, it is not necessary to stop and accelerate the image sensor and/or the first effective optical element again. Therefore, it is beneficial to prevent the vibration caused by the acceleration and stop of the image sensor and/or the first effective optical element. Another advantage is that the time for inspecting the components for defects can be shortened to a minimum, because only the image sensor and/or the first optically effective component need to be accelerated and stopped at one time.

該第一及第二替代方案之影像處理裝置可適於,在攝製該第一影像或在攝製該第二影像後,確定該第一影像之多個第一影像區域中的一第一影像區域。在該第一影像區域中,該反射光的清晰度平面的第一分區被投射至該影像感測器的影像感測器表面。作為附加或補充方案,該影像處理裝置確定該第一影像之該等多個第一影像區域中的一第二影像區域,在該第二影像區域中,該反射光的清晰度平面的第二分區未被投射至該影像感測器的影像感測器表面。 The image processing device of the first and second alternatives may be adapted to determine a first image area among the first image areas of the first image after the first image is captured or the second image is captured . In the first image area, the first subarea of the sharpness plane of the reflected light is projected onto the image sensor surface of the image sensor. As an additional or supplementary solution, the image processing device determines a second image area among the plurality of first image areas of the first image, and in the second image area, the second image area of the clarity plane of the reflected light The partition is not projected onto the image sensor surface of the image sensor.

作為補充或替代方案,該影像處理裝置亦可在攝製該第 二影像後確定該第二影像之多個第二影像區域中的一第三影像區域。在該第三影像區域中,該反射光的清晰度平面的第一分區未被投射至該影像感測器的影像感測器表面。作為補充或替代方案,該影像處理裝置還確定該第二影像之該等多個第二影像區域中的一第四影像區域,在該第四影像區域中,該反射光的清晰度平面的第二分區被投射至該影像感測器的影像感測器表面。 As a supplement or alternative, the image processing device can also record the After the two images, a third image area among the second image areas of the second image is determined. In the third image area, the first partition of the clarity plane of the reflected light is not projected onto the image sensor surface of the image sensor. As a supplement or alternative, the image processing device further determines a fourth image area among the plurality of second image areas of the second image, and in the fourth image area, the second image area of the clarity plane of the reflected light The two partitions are projected onto the image sensor surface of the image sensor.

該影像處理裝置亦可適於在攝製該第二影像後將一控制指令提供給該控制裝置以控制該第一及/或該第二調節驅動裝置,以便在攝製該第二影像後將該影像感測器與該第一光學有效元件間的相對距離調節至其初始長度。 The image processing device may also be adapted to provide a control command to the control device to control the first and/or the second adjustment driving device after the second image is captured, so that the image is captured after the second image is captured. The relative distance between the sensor and the first effective optical element is adjusted to its initial length.

該第一影像的第一及第二影像區域分別對該元件的一部分進行成像,該部分實質上對應於該第二影像的第三及第四影像區域中之該元件的部分。該第一影像的第一及第二影像區域對該元件進行完整成像。 The first and second image areas of the first image respectively image a part of the element, and the part substantially corresponds to the part of the element in the third and fourth image areas of the second image. The first and second image areas of the first image completely image the element.

該第一影像的該等多個第一影像區域可對應於該第二影像的該等多個第二影像區域。 The plurality of first image areas of the first image may correspond to the plurality of second image areas of the second image.

該第一影像的該第一與第二影像區域以及/或者該第二影像的該第三與第四影像區域可為相連的影像區域。替代地,該第一影像的該第一與第二影像區域以及/或者該第二影像的該第三與第四影像區域亦可至少部分重疊。 The first and second image areas of the first image and/or the third and fourth image areas of the second image may be connected image areas. Alternatively, the first and second image areas of the first image and/or the third and fourth image areas of the second image may also at least partially overlap.

該第一影像中該清晰度平面的該第一分區以及該第二影像中該清晰度平面的該第二分區在一預設景深內被投射至該影像感測器的影像感測器表面。在此情況下,該第一影像中該清晰度平面的該第二分區以及該第二影像中該清晰度平面的該第一分區 在該預設景深外被投射至該影像感測器的影像感測器表面。 The first partition of the definition plane in the first image and the second partition of the definition plane in the second image are projected onto the image sensor surface of the image sensor within a predetermined depth of field. In this case, the second partition of the definition plane in the first image and the first partition of the definition plane in the second image It is projected onto the image sensor surface of the image sensor outside the preset depth of field.

該影像處理裝置可適於將該第一影像區域自該第一影像截出且將該第四影像區域自該第二影像截出。該影像處理裝置亦適於將該等截出之第一與第四影像區域接合在一起,以產生第三影像。 The image processing device may be adapted to cut out the first image area from the first image and cut out the fourth image area from the second image. The image processing device is also suitable for joining the cut-out first and fourth image regions together to generate a third image.

透過產生第三影像,在檢查該元件是否存在故障或缺陷時,僅需由該影像處理裝置檢查一個影像而非兩個影像,從而降低檢查該元件的時間及計算成本。 By generating the third image, when checking whether the component has a fault or defect, only one image instead of two images needs to be checked by the image processing device, thereby reducing the time and calculation cost of checking the component.

該影像處理裝置亦可適於,基於該第一影像的第一影像區域及/或該第二影像的第四影像區域及/或該第三影像來確定該元件是否具有至少一故障。若該影像處理裝置確定至少一故障,則該影像處理裝置適於提供關於該元件的故障資訊。 The image processing device may also be adapted to determine whether the component has at least one fault based on the first image area of the first image and/or the fourth image area of the second image and/or the third image. If the image processing device determines at least one failure, the image processing device is adapted to provide failure information about the component.

該光學元件偵測系統可包括位置偵測感測器,該位置偵測感測器適於確定該第一光學有效元件及/或該影像感測器的影像感測器表面的位置及/或方位。該位置偵測感測器亦適於,將關於該光學有效元件及/或該影像感測器的影像感測器表面的位置及/或方位的資訊提供給該控制裝置,該控制裝置基於所提供之該等資訊來控制該第一及/或該第二調節驅動裝置。該位置偵測感測器可為光學或電機的位置偵測感測器。 The optical element detection system may include a position detection sensor adapted to determine the position of the first optically effective element and/or the image sensor surface of the image sensor and/or position. The position detection sensor is also suitable for providing the control device with information about the position and/or orientation of the optically effective element and/or the image sensor surface of the image sensor, and the control device is based on all The information provided is used to control the first and/or the second adjusting drive device. The position detection sensor can be an optical or motor position detection sensor.

該位置偵測感測器可安裝在該鏡管的內側上。在另一方案中,該位置偵測感測器可整合在該影像感測器中。該支架在朝向該影像感測器的表面區域上具有圖案。該影像感測器適於識別該表面區域上的該圖案並基於所識別的表面區域來確定該光學有效元件的位置及/或方位。 The position detection sensor can be installed on the inner side of the mirror tube. In another solution, the position detection sensor can be integrated in the image sensor. The bracket has a pattern on the surface area facing the image sensor. The image sensor is adapted to recognize the pattern on the surface area and determine the position and/or orientation of the optically effective element based on the recognized surface area.

透過所提供的資訊,該控制裝置便能精確定位該第一光學有效元件及/或該影像感測器,從而使得該反射光的清晰度平面被投射至該影像感測器的影像感測器表面。 Through the information provided, the control device can accurately position the first optically effective element and/or the image sensor, so that the clear plane of the reflected light is projected to the image sensor of the image sensor surface.

該攝影機裝置可在該第一光學有效元件與該影像感測器間的光路中包括第二光學有效元件。該第二光學有效元件的光軸與該第一光學有效元件的光軸同軸。 The camera device may include a second optically effective element in the optical path between the first optically effective element and the image sensor. The optical axis of the second effective optical element is coaxial with the optical axis of the first effective optical element.

該第一光學有效元件可為消色差鏡組或複消色差鏡組以及/或者該第二光學有效元件可為聚光透鏡。 The first optically effective element may be an achromatic lens group or an apochromatic lens group and/or the second optically effective element may be a condenser lens.

光的折射率自紅色至藍色逐漸遞增,因而透鏡的焦距遞減。使用該消色差鏡組來對此種成像錯誤進行補償或修正。 The refractive index of light gradually increases from red to blue, so the focal length of the lens decreases. Use this achromatic lens group to compensate or correct this kind of imaging error.

本發明還提出一種用於偵測至少一元件之至少一表面的光學元件偵測系統。容置裝置適於將該元件定位在攝影機裝置前,以便用該攝影機裝置偵測該元件之第一表面。該攝影機裝置包括影像感測器,該影像感測器適於接收在該元件之第一表面上反射的光。該光學元件偵測系統還包括第一光學有效元件,其配置在該反射光朝該影像感測器的光路中;及用於該第一光學有效元件的調節裝置。該調節裝置包括用於該第一光學有效元件的支架。該支架藉由線性導引裝置固定在空心圓柱形鏡管的內側上,且該鏡管的縱向中心線與該第一光學有效元件的光軸同軸。該線性導引裝置適於平行於該光軸地導引該支架。該調節裝置還包括用於調節該影像感測器與該第一光學有效元件間的相對距離的第一調節驅動裝置,以便相對該影像感測器移動該第一光學有效元件。 The present invention also provides an optical element detection system for detecting at least one surface of at least one element. The accommodating device is adapted to position the component in front of the camera device, so that the camera device can detect the first surface of the component. The camera device includes an image sensor, and the image sensor is adapted to receive light reflected on the first surface of the element. The optical element detection system further includes a first optical effective element, which is arranged in the light path of the reflected light toward the image sensor; and an adjusting device for the first optical effective element. The adjusting device includes a holder for the first optically effective element. The bracket is fixed on the inner side of the hollow cylindrical mirror tube by a linear guiding device, and the longitudinal center line of the mirror tube is coaxial with the optical axis of the first optical effective element. The linear guiding device is suitable for guiding the bracket parallel to the optical axis. The adjusting device further includes a first adjusting and driving device for adjusting the relative distance between the image sensor and the first effective optical element, so as to move the first effective optical element relative to the image sensor.

此外還提出一種用於光學有效元件的調節裝置,該調節 裝置包括用於該第一光學有效元件的支架。該支架固定在空心圓柱形鏡管的內側上,且該鏡管的縱向中心線與該第一光學有效元件的光軸同軸。該支架至少在鏡管縱向上具有彈性柔性。該調節裝置還包括用於調節該支架的第一調節驅動裝置,以便沿該光軸相對該鏡管移動該第一光學有效元件。 In addition, an adjustment device for optically effective elements is proposed. The device includes a holder for the first optically effective element. The bracket is fixed on the inner side of the hollow cylindrical mirror tube, and the longitudinal center line of the mirror tube is coaxial with the optical axis of the first effective optical element. The bracket has elastic flexibility at least in the longitudinal direction of the lens tube. The adjusting device also includes a first adjusting and driving device for adjusting the bracket so as to move the first effective optical element relative to the mirror tube along the optical axis.

此外還提出一種用於光學有效元件的調節裝置,該調節裝置包括用於該第一光學有效元件的支架。該支架藉由線性導引裝置固定在空心圓柱形鏡管的內側上,且該鏡管的縱向中心線與該第一光學有效元件的光軸同軸。該線性導引裝置適於平行於該光軸地導引該支架。該調節裝置還包括用於調節該支架的第一調節驅動裝置,以便沿該光軸相對該鏡管移動該第一光學有效元件。 In addition, an adjustment device for an optically effective element is also proposed, which includes a holder for the first optically effective element. The bracket is fixed on the inner side of the hollow cylindrical mirror tube by a linear guiding device, and the longitudinal center line of the mirror tube is coaxial with the optical axis of the first optical effective element. The linear guiding device is suitable for guiding the bracket parallel to the optical axis. The adjusting device also includes a first adjusting and driving device for adjusting the bracket so as to move the first effective optical element relative to the mirror tube along the optical axis.

本發明還提出一種偵測至少一元件之至少一表面的方法,包括以下步驟:將該元件對準攝影機裝置;藉由該攝影機裝置偵測該元件之第一表面;藉由該攝影機裝置的影像感測器來接收在該元件之第一表面上反射的光;藉由沿縱向具有彈性柔性的支架來將第一光學有效元件保持在該反射光的光路中,其中該縱向平行於該光學有效元件的光軸;調節該影像感測器與該第一光學有效元件間的相對距離,以便沿該光軸相對該影像感測器移動該第一光學有效元件。 The present invention also provides a method for detecting at least one surface of at least one component, which includes the following steps: aligning the component with a camera device; detecting the first surface of the component by the camera device; and using the image of the camera device The sensor receives the light reflected on the first surface of the element; the first optically effective element is held in the optical path of the reflected light by the elastic and flexible support along the longitudinal direction, wherein the longitudinal direction is parallel to the optically effective The optical axis of the element; adjust the relative distance between the image sensor and the first effective optical element, so as to move the first effective optical element relative to the image sensor along the optical axis.

該方法亦可包括以下步驟:調節該影像感測器與該第一光學有效元件間的相對距離,以便沿該光軸相對該第一光學有效元件移動該影像感測器;以及,作為選項,調節該影像感測器與該第一光學有效元件間的相對距離,以便將該反射光的清晰度平面投射至該影像感測器之朝向該反射光的影像感測器表面。 The method may also include the following steps: adjusting the relative distance between the image sensor and the first effective optical element so as to move the image sensor relative to the first effective optical element along the optical axis; and, as an option, The relative distance between the image sensor and the first effective optical element is adjusted so that the clarity plane of the reflected light is projected onto the surface of the image sensor facing the reflected light.

該方法亦可包括以下步驟:用光照射該元件的該第一表面。該光可為一預設波長或一預設波長範圍的光。 The method may also include the step of irradiating the first surface of the element with light. The light can be light of a predetermined wavelength or a predetermined wavelength range.

該方法亦可包括以下步驟:攝製第一影像;基於該第一影像來確定該反射光的清晰度平面是否實質上完全被投射至該影像感測器的影像感測器表面;且若該反射光的清晰度平面未被實質上完全投射至該影像感測器的影像感測器表面,則確定該第一影像之多個第一影像區域中的一第一影像區域,在該第一影像區域中,該反射光的清晰度平面的第一分區被投射至該影像感測器的影像感測器表面;確定該第一影像之該等多個第一影像區域中的一第二影像區域,在該第二影像區域中,該反射光的清晰度平面的第二分區未被投射至該影像感測器的影像感測器表面;調節該影像感測器與該第一光學有效元件間的相對距離,以便將該反射光的清晰度平面的第二分區投射至該影像感測器的影像感測器表面;攝製第二影像;確定該第二影像之多個第二影像區域中的一第三影像區域,在該第三影像區域中,該反射光的清晰度平面的第一分區未被投射至該影像感測器的影像感測器表面;確定該第二影像之該等多個第二影像區域中的一第四影像區域,在該第四影像區域中,該反射光的清晰度平面的第二分區被投射至該影像感測器的影像感測器表面。 The method may also include the following steps: filming a first image; determining whether the sharpness plane of the reflected light is substantially completely projected to the image sensor surface of the image sensor based on the first image; and if the reflection The clarity plane of the light is not substantially completely projected onto the image sensor surface of the image sensor, then it is determined that a first image area among the first image areas of the first image is in the first image In the area, the first partition of the clarity plane of the reflected light is projected onto the image sensor surface of the image sensor; a second image area among the first image areas of the first image is determined In the second image area, the second subarea of the clarity plane of the reflected light is not projected to the image sensor surface of the image sensor; adjusting the gap between the image sensor and the first optical effective element To project the second subarea of the sharpness plane of the reflected light onto the image sensor surface of the image sensor; shoot the second image; determine the second image area of the second image A third image area in which the first partition of the clarity plane of the reflected light is not projected onto the image sensor surface of the image sensor; determining the number of the second image A fourth image area in the second image area, in the fourth image area, the second partition of the sharpness plane of the reflected light is projected onto the image sensor surface of the image sensor.

在第一替代方案中,該方法可包括以下步驟:攝製第一影像;以一預設行程調節該影像感測器與該第一光學有效元件間的相對距離;攝製第二影像。 In the first alternative, the method may include the following steps: shooting a first image; adjusting the relative distance between the image sensor and the first effective optical element with a preset stroke; shooting a second image.

在第二替代方案中,該方法可包括以下步驟:攝製第一影像;在攝製該第一影像期間以一預設速度調節該影像感測器與 該第一光學有效元件間的相對距離;在攝製該第一影像後或者在攝製該第一影像後的一預設時間段後,且在調節該影像感測器與該第一光學有效元件間的相對距離期間,攝製該第二影像。 In a second alternative, the method may include the following steps: shooting a first image; adjusting the image sensor and the image sensor at a predetermined speed during the shooting of the first image The relative distance between the first optically effective element; after the first image is taken or after a predetermined period of time after the first image is taken, and after adjusting the image sensor and the first optically effective element During the relative distance of, the second image was taken.

根據該第一及第二替代方案的該方法亦可包括以下步驟:確定該第一影像之多個第一影像區域中的一第一影像區域,在該第一影像區域中,該反射光的清晰度平面的第一分區被投射至該影像感測器的影像感測器表面;確定該第一影像之該等多個影像區域中的一第二影像區域,在該第二影像區域中,該反射光的清晰度平面的第二分區未被投射至該影像感測器表面;以及/或者確定該第二影像之多個第二影像區域中的一第三影像區域,在該第三影像區域中,該反射光的清晰度平面的第一分區未被投射至該影像感測器的影像感測器表面;以及/或者確定該第二影像之該等多個第二影像區域中的一第四影像區域,在該第四影像區域中,該反射光的清晰度平面的第二分區被投射至該影像感測器的影像感測器表面。 The method according to the first and second alternatives may also include the following steps: determining a first image area among a plurality of first image areas of the first image, in the first image area, the reflected light The first partition of the definition plane is projected onto the image sensor surface of the image sensor; a second image area among the plurality of image areas of the first image is determined, in the second image area, The second partition of the clarity plane of the reflected light is not projected onto the surface of the image sensor; In the region, the first subarea of the clarity plane of the reflected light is not projected to the image sensor surface of the image sensor; and/or one of the second image regions for determining the second image The fourth image area, in the fourth image area, the second subarea of the sharpness plane of the reflected light is projected onto the image sensor surface of the image sensor.

該方法亦可包括以下步驟:將該第一影像區域自該第一影像截出且將該第四影像區域自該第二影像截出;將該等截出之第一與第四影像區域接合在一起,以產生第三影像。 The method may also include the following steps: cutting out the first image area from the first image and cutting out the fourth image area from the second image; joining the cut out first and fourth image areas Together to produce a third image.

該方法亦可包括以下步驟:基於該第一影像的第一影像區域及/或該第二影像的第四影像區域及/或該第三影像來確定該元件是否具有至少一故障:且若該元件具有至少一故障,則提供關於該元件的故障資訊。 The method may also include the following steps: determining whether the component has at least one fault based on the first image area of the first image and/or the fourth image area of the second image and/or the third image: and if the If the component has at least one failure, the failure information about the component is provided.

上文針對所述方法所描述的態樣亦可適用於所述裝置。同樣,上文針對所述裝置所描述的態樣亦可適用於所述方法。 The aspects described above for the method can also be applied to the device. Likewise, the aspects described above for the device can also be applied to the method.

100:調節裝置 100: adjusting device

110:鏡管 110: mirror tube

120:調節驅動裝置 120: Adjust the drive device

121:線圈 121: Coil

130:消色差鏡組、第一光學有效元件 130: Achromatic lens group, first optical effective element

130A:冕牌玻璃透鏡 130A: Crown glass lens

130B:火石玻璃透鏡 130B: flint glass lens

140:支架 140: bracket

141:磁軛 141: Magnetic Yoke

142:磁軛 142: Yoke

143:支架件 143: Bracket

144:支架件 144: Bracket

145:環形支架 145: Ring bracket

146:磁軛 146: Magnetic Yoke

150:容置裝置 150: containment device

160:聚光透鏡、第二光學有效元件 160: Condenser lens, second optical effective element

200:光學元件偵測系統 200: Optical component detection system

220:攝影機裝置 220: Camera device

230:CCD晶片、影像感測器 230: CCD chip, image sensor

231:影像感測器表面 231: Image sensor surface

240:第二調節驅動裝置 240: second adjusting drive device

250:位置偵測感測器 250: Position detection sensor

310:步驟 310: Step

311:步驟 311: Step

312:步驟 312: Step

320:步驟 320: step

330:步驟 330: Step

331:步驟 331: Step

332:步驟 332: Step

340:步驟 340: Step

350:步驟 350: step

351:步驟 351: step

352:步驟 352: step

353:步驟 353: step

360:步驟 360: steps

410:步驟 410: Step

430:步驟 430: step

450:步驟 450: step

460:步驟 460: step

B:半導體晶片、半導體元件 B: Semiconductor wafers, semiconductor components

B1:第一影像區域 B1: The first image area

B2:第二影像區域 B2: Second image area

B3:第三影像區域 B3: Third image area

B4:第四影像區域 B4: The fourth image area

BA:第一影像 BA: First image

BB:第二影像 BB: Second image

BC:第三影像 BC: Third image

BV:影像處理裝置 BV: image processing device

ECU:控制裝置 ECU: Control device

L:反射光 L: reflected light

O:表面 O: surface

OA:光軸 OA: Optical axis

SE:清晰度平面 SE: plane of definition

ST:景深 ST: depth of field

t0:時間點 t0: point in time

alpha:角度 alpha: angle

v:速度 v: speed

t、t1、t2、t3、t-1:時間 t, t1, t2, t3, t-1: time

v1:預設速度 v1: preset speed

s:焦距 s: focal length

更多目標、特徵、優點及用途參閱下文結合附圖對非限制性實施例所作的描述。所有描述或圖示之單項特徵或特徵組合,不論申請專利範圍對其如何歸總或如何回溯引用,皆屬發明主題。附圖所示組件之尺寸及比率並非總是按實際比例;而是可能在待實施之實施例中與本圖有所差別。 For more objectives, features, advantages and uses, please refer to the following description of non-limiting embodiments in conjunction with the accompanying drawings. All individual features or combinations of features described or illustrated, regardless of how they are summarized or retrospectively cited within the scope of the patent application, are the subject of invention. The dimensions and ratios of the components shown in the drawings are not always in actual proportions; they may be different from the drawings in the embodiment to be implemented.

圖1是用於光學有效元件之調節裝置的示意性側向俯視圖;圖2及圖3是該調節裝置之支架的實施例的示意性俯視圖;圖4是用於偵測至少一元件之至少一表面的光學元件偵測系統的示意性側向俯視圖;圖5及圖6是具有不同清晰度之影像區域的不同攝像的示意圖;圖7是一攝像的示意圖,該攝像由前述攝像的影像區域構成;圖8至圖10是相對該光學元件偵測系統之影像感測器而言,待成像元件之清晰度平面的示意性側向俯視圖;圖11是時間-速度曲線圖,其用來改變光學有效元件與該光學元件偵測系統之影像感測器間的相對距離;圖12是時間-焦距曲線圖,其用來對用於攝製元件影像的實施例進行闡述;圖13是另一時間-焦距曲線圖,其用來對用於攝製元件影像的另一實施例進行闡述。 1 is a schematic side plan view of an adjusting device for an optically effective element; FIGS. 2 and 3 are schematic plan views of an embodiment of a bracket of the adjusting device; FIG. 4 is used to detect at least one of at least one element A schematic side plan view of the optical element detection system on the surface; Figures 5 and 6 are schematic diagrams of different imaging of image areas with different definitions; Figure 7 is a schematic diagram of a camera composed of the aforementioned image areas 8 to 10 are relative to the image sensor of the optical element detection system, a schematic side view of the sharpness plane of the imaging element; Figure 11 is a time-speed graph, which is used to change the optical The relative distance between the effective element and the image sensor of the optical element detection system; Fig. 12 is a time-focus curve, which is used to illustrate the embodiment used to capture element images; Fig. 13 is another time- The focal length curve graph is used to illustrate another embodiment for capturing component images.

本文所描述的裝置方案及其功能與工作態樣僅用於更好地瞭解其結構、工作方式及特性;該等裝置方案例如不在實施例方面對揭露內容構成限制。附圖部分為示意性作用,其中主要的特性及效果部分作放大顯示,以便對功能、作用原理、技術方案及特徵進行闡述。其中,附圖中繪示或者在說明書中揭露的每個工作方式、每個原理、每個技術方案及每個特徵,皆可與所有申請專利範圍、說明書及其他附圖中的每個特徵、本揭露內容中所包含或由其給出之其他工作方式、原理、技術方案及特徵,自由且任意地加以組合,從而使得本文所描述的裝置具備所有可能的組合。其中,說明書(即說明書的每個段落)中的所有實施方案間的組合亦包括在申請專利範圍中,說明書中的不同方案間的組合亦包括在申請專利範圍及附圖中,並能夠成為其他申請專利範圍的主題。申請專利範圍亦不對揭露內容及所有所述及之特徵的組合可能性構成限制。所有揭露之特徵,無論其為單項特徵或特徵組合,皆為本案揭露內容。 The device solutions described herein and their functions and working modes are only used to better understand their structure, working methods and characteristics; for example, these device solutions do not limit the disclosure content in the embodiments. The parts of the drawings are schematic, and the main features and effects are enlarged to illustrate the functions, principles, technical solutions and features. Wherein, each working mode, each principle, each technical solution and each feature illustrated in the drawings or disclosed in the specification can be combined with each feature, each feature in the scope of patent application, specification and other drawings. The other working methods, principles, technical solutions, and features contained in or given by the present disclosure can be freely and arbitrarily combined, so that the device described herein has all possible combinations. Among them, the combination of all embodiments in the specification (ie each paragraph of the specification) is also included in the scope of patent application, and the combination of different solutions in the specification is also included in the scope of patent application and drawings, and can become other The subject of the scope of the patent application. The scope of patent application does not limit the disclosure content and the combination possibilities of all the mentioned features. All disclosed features, no matter it is a single feature or a combination of features, are all disclosed in this case.

附圖中相同或功能類似的元件皆用一致的元件符號表示。現結合實施例對本發明之裝置及方法進行描述。 Elements with the same or similar functions in the drawings are represented by the same symbol. The device and method of the present invention will now be described in conjunction with embodiments.

圖1示出用於作為第一光學有效元件之消色差鏡組130的調節裝置100。消色差鏡組130由火石玻璃透鏡130B與冕牌玻璃透鏡130A構成。調節裝置100包括用於消色差鏡組130的支架140。支架140固定在空心圓柱形鏡管110的內側上,且鏡管110的縱向中心線與消色差鏡組130的光軸OA同軸。在本實施方案中,支架140呈環形。支架140將消色差鏡組130容置在該支架140開口中,使得消色差鏡組的光軸OA與鏡管110的縱向中心線 同軸。鏡管110具有較小的磁導率(磁導率μ>1)及順磁材料。該順磁材料為鋁。在另一方案中,鏡管110具有塑膠作為材料。 FIG. 1 shows an adjusting device 100 for the achromatic lens group 130 as the first optically effective element. The achromatic lens group 130 is composed of a flint glass lens 130B and a crown glass lens 130A. The adjusting device 100 includes a bracket 140 for the achromatic lens group 130. The bracket 140 is fixed on the inner side of the hollow cylindrical mirror tube 110, and the longitudinal center line of the mirror tube 110 is coaxial with the optical axis OA of the achromatic lens group 130. In this embodiment, the bracket 140 has a ring shape. The bracket 140 accommodates the achromatic lens group 130 in the opening of the bracket 140 so that the optical axis OA of the achromatic lens group is aligned with the longitudinal centerline of the mirror tube 110 Coaxial. The mirror tube 110 has a small magnetic permeability (permeability μ>1) and a paramagnetic material. The paramagnetic material is aluminum. In another solution, the mirror tube 110 has plastic as a material.

支架140至少在鏡管縱向上具有彈性柔性。為此,支架140具有含橡膠之可發生彈性變形的材料。在另一方案中,支架140構建為波紋管或螺簧。在又一方案中,支架140構建為碟簧,其將消色差鏡組130保持住,使其光軸OA與鏡管110的縱向中心線同軸。 The bracket 140 has elastic flexibility at least in the longitudinal direction of the lens tube. To this end, the bracket 140 has an elastically deformable material containing rubber. In another solution, the bracket 140 is constructed as a bellows or a coil spring. In another solution, the bracket 140 is constructed as a disc spring, which holds the achromatic lens group 130 so that its optical axis OA is coaxial with the longitudinal center line of the mirror tube 110.

如圖1所示,支架140以第一端區固定在鏡管110上。沿著光軸OA,支架140之壁厚朝支架140之保持有消色差鏡組130的第二端區逐漸變小。支架140之第二端區並非固定在鏡管110上且在垂直於光軸OA的方向上與鏡管110間隔一段距離。為此,支架140具有至少一凹處,其用作用於消色差鏡組130的托座。消色差鏡組130被容置及保持在該凹處中。 As shown in FIG. 1, the bracket 140 is fixed on the mirror tube 110 with a first end area. Along the optical axis OA, the wall thickness of the bracket 140 gradually becomes smaller toward the second end region of the bracket 140 where the achromatic lens group 130 is held. The second end area of the bracket 140 is not fixed on the mirror tube 110 and is spaced apart from the mirror tube 110 in a direction perpendicular to the optical axis OA. To this end, the bracket 140 has at least one recess, which serves as a holder for the achromatic lens group 130. The achromatic lens group 130 is accommodated and held in the recess.

調節裝置100另包括用於調節支架140的第一調節驅動裝置120,以便沿光軸OA相對鏡管110移動消色差鏡組130。為此,第一調節驅動裝置120在圖1中具有線圈121,其至少部分地包圍支架140。 The adjusting device 100 further includes a first adjusting and driving device 120 for adjusting the bracket 140 to move the achromatic lens group 130 relative to the mirror tube 110 along the optical axis OA. To this end, the first adjustment drive 120 has a coil 121 in FIG. 1, which at least partially surrounds the support 140.

線圈121在圖1中抵靠在鏡管110上。在另一方案中,線圈121與鏡管110間隔配置。 The coil 121 abuts on the mirror tube 110 in FIG. 1. In another solution, the coil 121 and the mirror tube 110 are spaced apart.

在圖1中,支架140之第一端區相對光軸OA而言配置在線圈121外部。而支架140之第二端區相對光軸OA而言位於線圈121外部。 In FIG. 1, the first end area of the bracket 140 is disposed outside the coil 121 with respect to the optical axis OA. The second end area of the bracket 140 is located outside the coil 121 with respect to the optical axis OA.

在另一方案中,支架140之第一端區的位置相對光軸OA而言與線圈121的一末端一致。在又一方案中,支架140之第一 端區的位置相對光軸而言位於線圈121內部或外部。在又一方案中,支架140之第二端區相對光軸OA而言位於線圈121內部或外部。 In another solution, the position of the first end region of the bracket 140 is consistent with an end of the coil 121 relative to the optical axis OA. In yet another solution, the first of the bracket 140 The position of the end region is located inside or outside the coil 121 with respect to the optical axis. In another solution, the second end area of the bracket 140 is located inside or outside the coil 121 with respect to the optical axis OA.

在支架140的第二端區上,支架140具有含軟鐵的磁軛141、142。在另一方案中,支架140具有永磁的磁軛141、142。在圖1中,支架140在該支架140的第二端區上具有磁軛141、142。磁軛141、142與支架140的托座相對配置。在另一方案中,磁軛141、142位於消色差鏡組130與支架140之間。 On the second end area of the bracket 140, the bracket 140 has yokes 141, 142 containing soft iron. In another solution, the bracket 140 has permanent magnet yokes 141 and 142. In FIG. 1, the bracket 140 has yokes 141 and 142 on the second end region of the bracket 140. The yokes 141 and 142 are arranged opposite to the bracket of the bracket 140. In another solution, the yokes 141 and 142 are located between the achromatic lens group 130 and the bracket 140.

電流流過線圈121時,在線圈內產生磁場。在對線圈121進行通電的情況下,由該磁場對含軟鐵的磁軛141、142施加作用力,該作用力將含軟鐵的磁軛141、142拉向線圈121的中心。含軟鐵的磁軛141、142為具有較高純度值之非合金鐵。從而對支架140進行拉伸及壓縮(具體視線圈121沿光軸OA相對含軟鐵的磁軛141、142而言所配置之處而定),因為支架140一方面緊密固定在鏡管110的內側上。另一方面又由磁場將支架140之含軟鐵的磁軛141、142拉向線圈121的中心。透過被施加之磁場而對支架140進行拉伸及壓縮,從而用支架140來沿光軸OA移動消色差鏡組130的位置。在此過程中不改變消色差鏡組130的定向,因而透過消色差鏡組130的位移,僅沿光軸OA移動消色差鏡組130的焦點。 When current flows through the coil 121, a magnetic field is generated in the coil. When the coil 121 is energized, the magnetic field exerts a force on the yokes 141 and 142 containing soft iron, and the force pulls the yokes 141 and 142 containing soft iron toward the center of the coil 121. The soft iron-containing yokes 141 and 142 are non-alloyed iron with a higher purity value. Thus the bracket 140 is stretched and compressed (specifically depending on where the coil 121 is arranged along the optical axis OA relative to the soft iron-containing yokes 141, 142), because the bracket 140 is tightly fixed on the mirror tube 110 on the one hand On the inside. On the other hand, the yokes 141 and 142 containing soft iron of the bracket 140 are pulled toward the center of the coil 121 by the magnetic field. The bracket 140 is stretched and compressed through the applied magnetic field, so that the bracket 140 is used to move the position of the achromatic lens group 130 along the optical axis OA. During this process, the orientation of the achromatic lens group 130 is not changed, and therefore, through the displacement of the achromatic lens group 130, only the focus of the achromatic lens group 130 is moved along the optical axis OA.

在另一方案中,支架140具有永磁的磁軛141、142。永磁的磁軛141、142在平行於光軸OA的縱向上延伸。永磁的磁軛141、142之北極及南極如此定向,使得北極與南極沿光軸OA沿相反的方向定向。在此情形下,支架140根據線圈121中電流的 電流方向而變形。如此,支架140沿第一方向及第二方向皆發生變形,其中該第二方向反向於該第一方向。 In another solution, the bracket 140 has permanent magnet yokes 141 and 142. The permanent magnet yokes 141, 142 extend in the longitudinal direction parallel to the optical axis OA. The north and south poles of the permanent magnet yokes 141 and 142 are oriented such that the north and south poles are oriented in opposite directions along the optical axis OA. In this case, the bracket 140 is based on the current in the coil 121 The direction of the current is deformed. In this way, the bracket 140 is deformed in both the first direction and the second direction, wherein the second direction is opposite to the first direction.

支架140具有彈性柔性,故其具有反作用於變形的變形阻力。支架140發生變形時,變形阻力所產生之作用力根據支架140之變形幅度而增大或減小。亦即,若產生磁場且支架140隨著該磁場所產生之作用力而變形,則變形阻力所產生之作用力與該磁場所產生之作用力形成一力平衡。若將磁場減弱並最後予以斷開,則支架140因其彈性柔性特性而重新處於初始位置。相應地,透過對電流之電流強度進行針對性控制便能沿光軸OA設定支架140的位置。 The bracket 140 is elastic and flexible, so it has a deformation resistance that reacts to deformation. When the bracket 140 deforms, the force generated by the deformation resistance increases or decreases according to the deformation amplitude of the bracket 140. That is, if a magnetic field is generated and the bracket 140 is deformed with the force generated by the magnetic field, the force generated by the deformation resistance and the force generated by the magnetic field form a force balance. If the magnetic field is weakened and finally disconnected, the bracket 140 will be in the initial position again due to its elasticity and flexibility. Correspondingly, the position of the bracket 140 can be set along the optical axis OA through targeted control of the current intensity of the current.

如此便透過圖1所示結構實現了一種用於光學有效元件的輕型構造。此外,消色差鏡組130之振動因支架140而大幅減輕,因為支架140對源於外部的振動產生抑制作用。需要調節消色差鏡組130的焦點時,透過相應之磁場來使得支架140發生變形。在此過程中唯有較小的質量發生運動,從而將調節驅動裝置120的振動降至最低。 In this way, a lightweight structure for optically effective elements is realized through the structure shown in FIG. 1. In addition, the vibration of the achromatic lens group 130 is greatly reduced by the bracket 140 because the bracket 140 suppresses the vibration from the outside. When the focus of the achromatic lens group 130 needs to be adjusted, the bracket 140 is deformed through the corresponding magnetic field. During this process, only the smaller masses move, thereby minimizing the vibration of the adjusting drive device 120.

在另一實施例中,調節裝置100具有線性導引裝置(未繪示)以取代線圈121。該線性導引裝置適於平行於光軸OA地導引支架140。如此便能沿光軸OA調節支架140及消色差鏡組130的位置。調節裝置100包括驅動裝置(未繪示),其適於沿該線性導引裝置移行支架140。 In another embodiment, the adjusting device 100 has a linear guiding device (not shown) instead of the coil 121. The linear guiding device is suitable for guiding the bracket 140 parallel to the optical axis OA. In this way, the positions of the bracket 140 and the achromatic lens group 130 can be adjusted along the optical axis OA. The adjusting device 100 includes a driving device (not shown), which is adapted to move the support 140 along the linear guide device.

圖2及3中示出支架140之可能的實施例。圖2及3是支架140、磁軛141、142及消色差鏡組130的俯視圖。 Possible embodiments of the bracket 140 are shown in FIGS. 2 and 3. 2 and 3 are top views of the bracket 140, the yokes 141, 142, and the achromatic lens group 130.

在圖2中,支架140由共同保持消色差鏡組130的至少 兩個支架件143、144構成。在一種方案中,消色差鏡組130配置在該二支架件143、144之間,使得該二支架件143、144相對配置。在另一方案中,該支架具有至少四個支架件(未繪示),其互以90°圍繞光軸OA錯開配置且對消色差鏡組130進行保持。 In FIG. 2, the bracket 140 is used to hold at least the achromatic lens group 130 Two bracket members 143, 144 are formed. In one solution, the achromatic lens group 130 is disposed between the two bracket members 143 and 144 so that the two bracket members 143 and 144 are arranged oppositely. In another solution, the bracket has at least four bracket members (not shown), which are arranged staggered around the optical axis OA by 90° and hold the achromatic lens group 130.

在支架140之圖3所示方案中,支架140在該二支架件143、144上各具一磁軛141、142。在採用四個支架件的方案中,支架140至少在兩個支架件上各具一磁軛,或者在所有四個區域內各具一磁軛。 In the solution shown in FIG. 3 of the bracket 140, the bracket 140 has a yoke 141, 142 on each of the two bracket members 143, 144. In the solution using four bracket members, the bracket 140 has a yoke on each of at least two bracket members, or a yoke in each of all four regions.

圖3示出支架140的另一方案,在該方案中,支架140構建為環形支架145,以便保持消色差鏡組130。 FIG. 3 shows another solution of the bracket 140. In this solution, the bracket 140 is constructed as an annular bracket 145 in order to hold the achromatic lens group 130.

根據圖4所示方案,磁軛146呈環形。在該環形磁軛146中,該磁場所產生之感應電流被該環形磁軛146中的多個縫隙阻止。透過該環形磁軛146,該磁場所產生之作用力均勻地作用於支架140並使其均勻變形。替代地,該磁軛可採用針對圖3所描述的構建方案。 According to the solution shown in FIG. 4, the yoke 146 has a ring shape. In the toroidal yoke 146, the induced current generated by the magnetic field is blocked by a plurality of gaps in the toroidal yoke 146. Through the annular yoke 146, the force generated by the magnetic field uniformly acts on the bracket 140 and deforms it uniformly. Alternatively, the yoke may adopt the construction scheme described with respect to FIG. 3.

圖4示出一種用於偵測作為元件之半導體晶片B之至少一表面O的光學元件偵測系統200。光學元件偵測系統200包括容置裝置150。容置裝置150適於將半導體晶片B定位在攝影機裝置220前,以便用攝影機裝置220偵測半導體晶片B之第一表面O。圖4中之第一表面指的是半導體晶片B的一側表面。但容置裝置150並非僅限於將半導體晶片B的該表面O對準攝影機裝置220。容置裝置150適於將半導體晶片B以該半導體晶片B的另一表面對準攝影機裝置220,以便檢查半導體晶片B的其他表面。光學元件偵測系統200還包括光源(未繪示),其適於將光朝 半導體晶片B之第一表面O發射或者對半導體晶片B進行照明。該光源適於用一預設波長或一預設波長範圍的光對半導體晶片B進行照明。在一種方案中,該光源所發射的光是波長約為380至790nm的可見光。在其他方案中使用的是紅外光或極化光。 FIG. 4 shows an optical element detection system 200 for detecting at least one surface O of a semiconductor chip B as an element. The optical element detection system 200 includes a receiving device 150. The accommodating device 150 is adapted to position the semiconductor chip B in front of the camera device 220 so that the camera device 220 can detect the first surface O of the semiconductor chip B. The first surface in FIG. 4 refers to a side surface of the semiconductor wafer B. However, the accommodating device 150 is not limited to aligning the surface O of the semiconductor wafer B with the camera device 220. The accommodating device 150 is suitable for aligning the semiconductor wafer B with the other surface of the semiconductor wafer B to the camera device 220 so as to inspect the other surface of the semiconductor wafer B. The optical element detection system 200 also includes a light source (not shown), which is suitable for directing light toward The first surface O of the semiconductor wafer B emits or illuminates the semiconductor wafer B. The light source is suitable for illuminating the semiconductor chip B with light of a predetermined wavelength or a predetermined wavelength range. In one solution, the light emitted by the light source is visible light with a wavelength of about 380 to 790 nm. In other schemes, infrared light or polarized light is used.

攝影機裝置220包括作為影像感測器的CCD晶片230,其適於接收在半導體晶片B之第一表面O上反射的光。在其他方案中,該影像感測器可為CMOS晶片或針對某些波長範圍較為靈敏的影像感測器,如微測輻射熱計陣列或熱電陣列。CCD晶片-根據所用光波長範圍-針對光範圍或極化光具有相應的靈敏度。在反射光L的光路中,圖1所示調節裝置100連同作為第一光學有效元件的消色差鏡組130一起配置。此外,在消色差鏡組130與CCD晶片230間的光路中,還設有作為第二光學有效元件的聚光透鏡160。聚光透鏡160的光軸與消色差鏡組130的光軸OA同軸。 The camera device 220 includes a CCD chip 230 as an image sensor, which is adapted to receive light reflected on the first surface O of the semiconductor chip B. In other solutions, the image sensor can be a CMOS chip or an image sensor that is more sensitive to certain wavelength ranges, such as a microbolometer array or a thermoelectric array. The CCD chip-according to the wavelength range of the light used-has a corresponding sensitivity for the light range or polarized light. In the optical path of the reflected light L, the adjusting device 100 shown in FIG. 1 is configured together with the achromatic lens group 130 as the first optically effective element. In addition, in the optical path between the achromatic lens group 130 and the CCD chip 230, a condenser lens 160 as a second optically effective element is also provided. The optical axis of the condenser lens 160 is coaxial with the optical axis OA of the achromatic lens group 130.

在圖4所示光學元件偵測系統200中,調節裝置100具有作為第一調節驅動裝置120的線圈121。在此實施例中,支架140沿鏡管110的鏡管縱向具有彈性柔性。 In the optical element detection system 200 shown in FIG. 4, the adjustment device 100 has a coil 121 as the first adjustment drive device 120. In this embodiment, the bracket 140 has elastic flexibility along the longitudinal direction of the lens tube 110.

替代地,光學元件偵測系統200具有線性導引裝置以取代線圈121。支架140透過該線性導引裝置固定在鏡管110的內側上。此外,該線性導引裝置適於平行於光軸OA地導引支架140。該線性導引裝置構建為平行於光軸OA的軌道。在另一方案中,該線性導引裝置構建為兩個軌道。在此情況下,該二軌道相對光軸OA而言對稱式相對配置。 Alternatively, the optical element detection system 200 has a linear guiding device instead of the coil 121. The bracket 140 is fixed on the inner side of the mirror tube 110 through the linear guide device. In addition, the linear guiding device is suitable for guiding the bracket 140 parallel to the optical axis OA. The linear guide device is constructed as a track parallel to the optical axis OA. In another solution, the linear guide device is constructed as two tracks. In this case, the two tracks are arranged symmetrically relative to the optical axis OA.

在圖4中,半導體晶片B之第一表面O並不平行於CCD晶片230的影像感測器表面231,而是以角度alpha相對光軸OA 傾斜。在圖4中,角度alpha大於或小於90°。 In FIG. 4, the first surface O of the semiconductor chip B is not parallel to the image sensor surface 231 of the CCD chip 230, but is relative to the optical axis OA at an angle alpha tilt. In Figure 4, the angle alpha is greater or less than 90°.

在圖4中,光學元件偵測系統200還包括控制裝置ECU,其適於對第一調節驅動裝置120進行控制。因此,控制裝置ECU適於對輸入線圈121的電流進行控制,以便調節消色差鏡組130與CCD晶片230(或CCD晶片230之影像感測器表面231)間的相對距離。光學元件偵測系統200包括線性導引裝置以取代線圈121時,控制裝置ECU適於對一馬達進行控制,該馬達沿該線性導引裝置移動該支架140。 In FIG. 4, the optical element detection system 200 further includes a control device ECU, which is suitable for controlling the first adjustment driving device 120. Therefore, the control device ECU is suitable for controlling the current of the input coil 121 to adjust the relative distance between the achromatic lens group 130 and the CCD chip 230 (or the image sensor surface 231 of the CCD chip 230). When the optical element detection system 200 includes a linear guide device instead of the coil 121, the control device ECU is adapted to control a motor that moves the bracket 140 along the linear guide device.

在圖4中,控制裝置ECU包括影像處理裝置BV。在另一方案中,控制裝置ECU及影像處理裝置BV可為兩個適於相互通信的獨立單元。 In FIG. 4, the control device ECU includes an image processing device BV. In another solution, the control device ECU and the image processing device BV can be two independent units suitable for mutual communication.

此外,光學元件偵測系統200在圖4中還具有被控制裝置ECU控制的第二調節驅動裝置240。第二調節驅動裝置240適於對CCD晶片230進行調節,從而沿光軸OA相對消色差鏡組130移動CCD晶片230。 In addition, the optical element detection system 200 also has a second adjusting drive device 240 controlled by the control device ECU in FIG. 4. The second adjusting and driving device 240 is adapted to adjust the CCD wafer 230 so as to move the CCD wafer 230 relative to the achromatic lens group 130 along the optical axis OA.

光學元件偵測系統200還包括位置偵測感測器250,其適於確定消色差鏡組130及/或CCD晶片230之影像感測器表面231的位置及/或方位。在圖1中,位置偵測感測器250配置且固定在鏡管110的內側上且與磁軛142相對配置。在另一方案中,位置偵測感測器250可配置且固定在鏡管110的內側上且與磁軛141相對配置。 The optical element detection system 200 further includes a position detection sensor 250, which is suitable for determining the position and/or orientation of the achromatic mirror group 130 and/or the image sensor surface 231 of the CCD chip 230. In FIG. 1, the position detection sensor 250 is arranged and fixed on the inner side of the mirror tube 110 and arranged opposite to the yoke 142. In another solution, the position detection sensor 250 can be configured and fixed on the inner side of the mirror tube 110 and disposed opposite to the yoke 141.

在另一方案中,位置偵測感測器250整合在CCD晶片230中。在此情況下,支架140在朝向CCD晶片230的至少一表面區域上具有標記。CCD晶片230適於偵測該標記並基於所測標記來 確定消色差鏡組130的位置及/或方位。 In another solution, the position detection sensor 250 is integrated in the CCD chip 230. In this case, the bracket 140 has a mark on at least one surface area facing the CCD wafer 230. The CCD chip 230 is suitable for detecting the mark and performing The position and/or orientation of the achromatic lens group 130 is determined.

位置偵測感測器250將關於消色差鏡組130及/或CCD晶片230之影像感測器表面231的位置及/或方位的資訊提供給控制裝置ECU,該控制裝置基於所提供之資訊來控制第一及/或第二調節驅動裝置120、240。位置偵測感測器250為光學位置偵測感測器,在另一方案中亦可為電機位置偵測感測器。 The position detection sensor 250 provides information about the position and/or orientation of the achromatic mirror group 130 and/or the image sensor surface 231 of the CCD chip 230 to the control device ECU, which is based on the provided information Control the first and/or second adjustment drive device 120, 240. The position detection sensor 250 is an optical position detection sensor. In another solution, it can also be a motor position detection sensor.

在圖4中,控制裝置ECU適於透過控制第一及/或第二調節驅動裝置120、240來調節消色差鏡組130與CCD晶片230間的相對距離,以便將反射光L的清晰度平面SE投射至CCD晶片230之朝向反射光L的影像感測器表面231。 In FIG. 4, the control device ECU is adapted to adjust the relative distance between the achromatic mirror group 130 and the CCD chip 230 by controlling the first and/or second adjustment drive devices 120, 240, so as to flatten the clarity of the reflected light L The SE is projected onto the image sensor surface 231 of the CCD chip 230 facing the reflected light L.

在某種情形下,半導體晶片B之表面O實質上平行於CCD晶片230的影像感測器表面231。控制裝置ECU如此地控制第一及/或第二調節驅動裝置120、240,使得清晰度平面SE被投射至CCD晶片230的影像感測器表面231。 Under certain circumstances, the surface O of the semiconductor chip B is substantially parallel to the image sensor surface 231 of the CCD chip 230. The control device ECU controls the first and/or second adjustment driving devices 120 and 240 in such a way that the definition plane SE is projected onto the image sensor surface 231 of the CCD chip 230.

此時,若CCD晶片230攝製該半導體晶片B的影像,則半導體晶片B清晰地成像於該影像中,從而檢查半導體晶片B中可能存在的缺陷或故障。若透過影像處理裝置BV來測定缺陷或故障,則該影像處理裝置BV提供關於半導體晶片B的故障資訊。 At this time, if the CCD chip 230 captures an image of the semiconductor wafer B, the semiconductor wafer B is clearly imaged in the image, so as to check possible defects or failures in the semiconductor wafer B. If the defect or failure is determined by the image processing device BV, the image processing device BV provides failure information about the semiconductor chip B.

第一及/或第二調節驅動裝置120、240適於在數毫秒內以100μm的幅度增大或減小消色差鏡組130與CCD晶片230間的相對距離。具體言之,第一及/或第二調節驅動裝置120、240適於在2至10ms內,較佳約在5ms內以100μm的幅度改變該相對距離。如此地增大或減小消色差鏡組130與CCD晶片230間的相對距離,使得特別是沿運動方向不會發生或產生消色差鏡組130及/或 CCD晶片230之過度振動。 The first and/or second adjusting and driving devices 120 and 240 are adapted to increase or decrease the relative distance between the achromatic mirror group 130 and the CCD chip 230 by 100 μm within a few milliseconds. Specifically, the first and/or second adjusting and driving device 120, 240 is suitable for changing the relative distance within 2 to 10 ms, preferably within about 5 ms, by an amplitude of 100 μm. In this way, the relative distance between the achromatic lens group 130 and the CCD chip 230 is increased or decreased, so that the achromatic lens group 130 and/or the achromatic lens group 130 and/or will not be generated or generated especially in the direction of movement. Excessive vibration of the CCD chip 230.

半導體晶片B在圖4中相對CCD晶片230的影像感測器表面231有所傾斜,因此,控制裝置ECU無法透過調節消色差鏡組130與CCD晶片230之影像感測器表面231間的相對距離,來將反射光L的清晰度平面SE實質上完全投射至CCD晶片230的影像感測器表面231。 The semiconductor chip B is inclined relative to the image sensor surface 231 of the CCD chip 230 in FIG. 4, therefore, the control device ECU cannot adjust the relative distance between the achromatic mirror group 130 and the image sensor surface 231 of the CCD chip 230 , To project the sharpness plane SE of the reflected light L to the image sensor surface 231 of the CCD chip 230 substantially completely.

影像處理裝置BV適於透過CCD晶片230來攝製第一影像BA。基於透過CCD晶片230所攝製的第一影像BA,影像處理裝置BV確定反射光L的清晰度平面SE是否實質上完全被投射至CCD晶片230的影像感測器表面231。若影像處理裝置BV確定清晰度平面SE實質上未被完全投射至CCD晶片230的影像感測器表面231,則影像處理裝置BV確定第一影像BA之多個第一影像區域B1、B2中的一第一影像區域B1。在該第一影像區域B1中,反射光L的清晰度平面SE的第一分區被投射至CCD晶片230的影像感測器表面231。 The image processing device BV is adapted to capture the first image BA through the CCD chip 230. Based on the first image BA captured through the CCD chip 230, the image processing device BV determines whether the sharpness plane SE of the reflected light L is substantially completely projected onto the image sensor surface 231 of the CCD chip 230. If the image processing device BV determines that the definition plane SE is not substantially projected onto the image sensor surface 231 of the CCD chip 230, the image processing device BV determines that one of the first image regions B1, B2 of the first image BA A first image area B1. In the first image area B1, the first subarea of the sharpness plane SE of the reflected light L is projected to the image sensor surface 231 of the CCD chip 230.

圖5示意性示出所攝製的第一影像BA,其中具有黑色實線的影像區域為清晰成像的影像區域。換言之,具有黑色實線的影像區域為某些影像區域,在該等影像區域內,反射光L的清晰度平面SE的一分區被投射至CCD晶片230的影像感測器表面231。具有黑色虛線的影像區域為某些影像區域,該等影像區域不清晰或者在該等影像區域內,清晰度平面SE的一分區未被投射至CCD晶片230的影像感測器表面231。 FIG. 5 schematically shows the first image BA shot, in which an image area with a solid black line is a clearly imaged image area. In other words, the image areas with black solid lines are certain image areas in which a section of the clarity plane SE of the reflected light L is projected onto the image sensor surface 231 of the CCD chip 230. The image areas with black dashed lines are certain image areas that are not clear or within the image areas, a section of the definition plane SE is not projected onto the image sensor surface 231 of the CCD chip 230.

影像處理裝置BV基於該第一影像BA來確定該等多個第一影像區域B1、B2中的一第二影像區域B2,在該第二影像區域 中,反射光L的清晰度平面SE的第二分區未被投射至CCD晶片230的影像感測器表面231。 The image processing device BV determines a second image area B2 among the plurality of first image areas B1, B2 based on the first image BA. , The second subarea of the definition plane SE of the reflected light L is not projected to the image sensor surface 231 of the CCD chip 230.

隨後,影像處理裝置BV將一控制信號提供給控制裝置ECU。控制裝置ECU基於該控制信號來控制第一及/或第二調節驅動裝置120、240,以便調節消色差鏡組130與CCD晶片230間的相對距離。在此過程中,將反射光L的清晰度平面SE的第二部分投射至CCD晶片230的影像感測器表面231。在此情況下,反射光L的清晰度平面SE的該第二分區被投射至CCD晶片230的影像感測器表面231。而反射光L的清晰度平面SE的第一分區不再被投射至CCD晶片230的影像感測器表面231。隨後,影像處理裝置BV將一信號發送給CCD晶片230,以便接收第二影像BB。 Subsequently, the image processing device BV provides a control signal to the control device ECU. The control device ECU controls the first and/or second adjustment driving devices 120 and 240 based on the control signal, so as to adjust the relative distance between the achromatic mirror group 130 and the CCD chip 230. In this process, the second part of the sharpness plane SE of the reflected light L is projected onto the image sensor surface 231 of the CCD chip 230. In this case, the second subarea of the definition plane SE of the reflected light L is projected to the image sensor surface 231 of the CCD chip 230. The first subarea of the definition plane SE of the reflected light L is no longer projected to the image sensor surface 231 of the CCD chip 230. Subsequently, the image processing device BV sends a signal to the CCD chip 230 to receive the second image BB.

如圖6所示,影像處理裝置BV基於該第二影像BB來確定第二影像BB之多個第二影像區域B3、B4中的一第三影像區域B3。在該第三影像區域B3中,反射光L的清晰度平面SE的第一分區未被投射至CCD晶片230的影像感測器表面231。隨後,影像處理裝置BV確定第二影像BB之多個第二影像區域B3、B4中的一第四影像區域B4。在該第四影像區域B4中,反射光L的清晰度平面SE的第二分區被投射至CCD晶片230的影像感測器表面231。因而在該第二影像BB中,第四影像區域B4將半導體晶片B的一片段清晰成像。該等多個第一及第二影像區域並非僅限於數目兩個。 As shown in FIG. 6, the image processing device BV determines a third image area B3 among the second image areas B3 and B4 of the second image BB based on the second image BB. In the third image area B3, the first section of the sharpness plane SE of the reflected light L is not projected onto the image sensor surface 231 of the CCD chip 230. Subsequently, the image processing device BV determines a fourth image area B4 among the second image areas B3 and B4 of the second image BB. In the fourth image area B4, the second subarea of the definition plane SE of the reflected light L is projected to the image sensor surface 231 of the CCD chip 230. Therefore, in the second image BB, the fourth image area B4 clearly images a segment of the semiconductor chip B. The plurality of first and second image regions is not limited to two in number.

在一種較佳實施方案中,第一影像BA的第一及第二影像區域B1、B2分別對半導體晶片B的一部分進行成像,該部分實質上對應於第二影像BB的第三及第四影像區域B3、B4中之半導 體晶片B的部分。如此便確保在第一及第二影像BA、BB的影像區域B1、B2、B3、B4中,對半導體晶片B的相同部分進行成像。 In a preferred embodiment, the first and second image areas B1 and B2 of the first image BA respectively image a part of the semiconductor chip B, which substantially corresponds to the third and fourth images of the second image BB Semiconducting in area B3 and B4 Part of the bulk wafer B. This ensures that the same part of the semiconductor wafer B is imaged in the image areas B1, B2, B3, and B4 of the first and second images BA, BB.

在圖5至7中,第一影像BA的第一與第二影像區域B1、B2以及第二影像BB的第三與第四影像區域B3、B4顯示為相連的影像區域。替代地,第一影像BA的第一與第二影像區域B1、B2以及第二影像BB的第三與第四影像區域B3、B4亦可至少部分重疊。 In FIGS. 5 to 7, the first and second image areas B1 and B2 of the first image BA and the third and fourth image areas B3 and B4 of the second image BB are displayed as connected image areas. Alternatively, the first and second image areas B1 and B2 of the first image BA and the third and fourth image areas B3 and B4 of the second image BB may also at least partially overlap.

影像處理裝置BV適於將第一影像區域B1自第一影像BA截出且將第四影像區域B4自第二影像BB截出。基於所截出的影像區域B1、B4,影像處理裝置BV產生第三影像BC。該第三影像BC為半導體晶片B的全清晰成像,因為在第一影像BA的第一影像區域B1及第二影像BB的第四影像區域B4中,半導體晶片B被清晰成像。 The image processing device BV is adapted to cut out the first image area B1 from the first image BA and cut out the fourth image area B4 from the second image BB. Based on the clipped image areas B1 and B4, the image processing device BV generates a third image BC. The third image BC is a full clear image of the semiconductor chip B, because the semiconductor chip B is clearly imaged in the first image area B1 of the first image BA and the fourth image area B4 of the second image BB.

影像處理裝置BV亦適於,基於第一影像BA的第一影像區域B1及/或第二影像BB的第四影像區域B4及/或第三影像BC來確定半導體晶片B是否具有至少一缺陷或故障。若半導體晶片B具有缺陷或故障,則影像處理裝置BV提供一故障資訊。 The image processing device BV is also suitable for determining whether the semiconductor chip B has at least one defect or not based on the first image area B1 of the first image BA and/or the fourth image area B4 of the second image BB and/or the third image BC malfunction. If the semiconductor chip B has a defect or failure, the image processing device BV provides failure information.

圖8至10中示出具有相應之景深ST的清晰度平面SE。為清晰地攝製半導體晶片B,必須將清晰度平面SE實質上投射至CCD晶片230的影像感測器表面231。清晰度平面SE具有某種景深ST,因而在清晰度平面SE並不完全平行於CCD晶片230的影像感測器表面231的情況下,亦將半導體晶片B清晰成像。同樣,在清晰度平面SE以一定距離位於CCD晶片230的影像感測器表面231前或後的情況下,亦將半導體晶片B清晰成像。在此情況 下,景深ST描述了用來將物體(此處為半導體晶片B)足夠清晰地成像的距離。 8 to 10 show the sharpness plane SE with a corresponding depth of field ST. In order to photograph the semiconductor chip B clearly, the definition plane SE must be substantially projected onto the image sensor surface 231 of the CCD chip 230. The sharpness plane SE has a certain depth of field ST, so that the semiconductor wafer B is sharply imaged even when the sharpness plane SE is not completely parallel to the image sensor surface 231 of the CCD chip 230. Similarly, when the definition plane SE is located in front of or behind the image sensor surface 231 of the CCD chip 230 at a certain distance, the semiconductor chip B is also clearly imaged. In this situation Below, the depth of field ST describes the distance used to image the object (here, the semiconductor wafer B) sufficiently clearly.

如圖8所示,清晰度平面SE平行於CCD晶片230的影像感測器表面231且沿光軸OA與影像感測器表面231間隔配置。清晰度平面SE的景深ST在圖8中足夠大,因此,反射光L的如此投射之清晰度平面SE的所攝影像較為清晰。 As shown in FIG. 8, the definition plane SE is parallel to the image sensor surface 231 of the CCD chip 230 and is spaced apart from the image sensor surface 231 along the optical axis OA. The depth ST of the sharpness plane SE is sufficiently large in FIG. 8, and therefore, the image captured by the sharpness plane SE projected in this way by the reflected light L is relatively clear.

在圖9及10中,示意性地示出傾斜後之半導體晶片B的情形。半導體晶片B之表面O相對CCD晶片230的影像感測器表面231有所傾斜,因此,反射光L的清晰度平面SE相對CCD晶片230的影像感測器表面231亦有所傾斜。 9 and 10 schematically show the state of the semiconductor wafer B after tilting. The surface O of the semiconductor chip B is inclined relative to the image sensor surface 231 of the CCD chip 230. Therefore, the definition plane SE of the reflected light L is also inclined relative to the image sensor surface 231 of the CCD chip 230.

在圖9中,清晰度平面SE的第一分區被投射至CCD晶片230的影像感測器表面231,因而在所攝第一影像BA中,第一影像區域B1給出半導體晶片B的清晰成像。儘管清晰度平面SE與CCD晶片230的影像感測器表面231僅部分相交,但藉由景深ST,第一影像BA的第一影像區域B1被清晰成像。在第二影像區域B2中,具有景深ST的清晰度平面SE的第二分區不再被投射至CCD晶片230的影像感測器表面231,因此,第一影像BA的第二影像區域B2給出半導體晶片B的不清晰成像。 In FIG. 9, the first subarea of the definition plane SE is projected onto the image sensor surface 231 of the CCD chip 230, so in the captured first image BA, the first image area B1 gives a clear image of the semiconductor chip B . Although the definition plane SE only partially intersects the image sensor surface 231 of the CCD chip 230, the first image area B1 of the first image BA is clearly imaged by the depth of field ST. In the second image area B2, the second subarea of the definition plane SE with the depth of field ST is no longer projected onto the image sensor surface 231 of the CCD chip 230. Therefore, the second image area B2 of the first image BA gives Unclear image of semiconductor wafer B.

根據影像處理裝置BV的控制指令,控制裝置ECU控制第一及/或第二調節驅動裝置120、240,以便調節消色差鏡組130與CCD晶片230間的相對距離。在此過程中,相對CCD晶片230的影像感測器表面231來調節清晰度平面SE,使得清晰度平面SE的第二分區被投射至CCD晶片230的影像感測器表面231。 According to the control instruction of the image processing device BV, the control device ECU controls the first and/or second adjustment driving devices 120 and 240 to adjust the relative distance between the achromatic mirror group 130 and the CCD chip 230. In this process, the definition plane SE is adjusted relative to the image sensor surface 231 of the CCD chip 230, so that the second sub-region of the definition plane SE is projected onto the image sensor surface 231 of the CCD chip 230.

如圖10所示,在所攝第二影像BB的第四影像區域B4 中,將反射光L之具有景深ST的清晰度平面SE的第二分區投射至CCD晶片230的影像感測器表面231。在該第二影像BB中,清晰度平面SE亦與CCD晶片230的影像感測器表面231僅部分相交,因而藉由景深ST,第二影像BB的第四影像區域B4清晰地給出半導體晶片B的一部分。而在第二影像BB的第三影像區域B3中,具有景深ST的清晰度平面SE的第一分區不再被投射至CCD晶片230的影像感測器表面231。相應地,第二影像BB的第三影像區域B3不清晰地給出半導體晶片B的一部分。 As shown in FIG. 10, in the fourth image area B4 of the captured second image BB , The second subarea of the sharpness plane SE with the depth ST of the reflected light L is projected onto the image sensor surface 231 of the CCD chip 230. In the second image BB, the definition plane SE also only partially intersects with the image sensor surface 231 of the CCD chip 230. Therefore, with the depth of field ST, the fourth image area B4 of the second image BB clearly shows the semiconductor chip Part of B. In the third image area B3 of the second image BB, the first subarea of the definition plane SE with the depth of field ST is no longer projected onto the image sensor surface 231 of the CCD chip 230. Correspondingly, the third image area B3 of the second image BB does not clearly show a part of the semiconductor chip B.

對應於此前對光學元件偵測系統200的描述,現對偵測至少一半導體晶片B之表面的方法進行描述。 Corresponding to the previous description of the optical element detection system 200, the method for detecting the surface of at least one semiconductor chip B will now be described.

在第一步驟中,將半導體晶片B對準攝影機裝置220。在下一步驟中,藉由該攝影機裝置220來偵測半導體晶片B之第一表面O。 In the first step, the semiconductor wafer B is aligned with the camera device 220. In the next step, the camera device 220 is used to detect the first surface O of the semiconductor chip B.

在下一步驟中,藉由CCD晶片230來接收在半導體晶片B之表面O上反射的光。在下一步驟中,藉由沿縱向具有彈性柔性的支架140來將消色差鏡組130保持在反射光L的光路中。該縱向平行於消色差鏡組130的光軸OA。在下一步驟中,調節CCD晶片230與消色差鏡組130間的相對距離,從而沿光軸OA相對CCD晶片230移動消色差鏡組130。 In the next step, the CCD chip 230 receives the light reflected on the surface O of the semiconductor chip B. In the next step, the achromatic lens group 130 is held in the optical path of the reflected light L by the support 140 having elastic flexibility in the longitudinal direction. The longitudinal direction is parallel to the optical axis OA of the achromatic lens group 130. In the next step, the relative distance between the CCD wafer 230 and the achromatic lens group 130 is adjusted to move the achromatic lens group 130 relative to the CCD wafer 230 along the optical axis OA.

圖11是時間-速度(t,v)曲線圖。藉由此種曲線圖,控制裝置ECU適於來調節消色差鏡組130與CCD晶片230間的相對距離。 Figure 11 is a time-velocity (t, v) graph. With such a graph, the control device ECU is suitable for adjusting the relative distance between the achromatic lens group 130 and the CCD chip 230.

在時間點t0上,透過第一及/或第二調節驅動裝置120、240來調節消色差鏡組130與CCD晶片230間的相對距離。在第 一時間段(t0-t1)的一半內,透過第一及/或第二調節驅動裝置120、240將消色差鏡組130及/或CCD晶片230加速至預設速度v1。在時間段(t0-t1)的一半結束後,透過第一及/或第二調節驅動裝置120、240將消色差鏡組130及/或CCD晶片230制動。 At the time t0, the relative distance between the achromatic lens group 130 and the CCD chip 230 is adjusted through the first and/or second adjusting and driving devices 120 and 240. In the Within half of a period of time (t0-t1), the achromatic lens group 130 and/or the CCD chip 230 are accelerated to the predetermined speed v1 through the first and/or second adjusting and driving devices 120, 240. After half of the time period (t0-t1) is over, the achromatic mirror group 130 and/or the CCD chip 230 are braked through the first and/or second adjusting and driving devices 120, 240.

在對消色差鏡組130及/或影像感測器230進行調節後,如圖9所示,清晰度平面SE被投射至CCD晶片230的影像感測器表面231。消色差鏡組130及/或CCD晶片230停止後,在第二時間段(t1-t2)內攝製第一影像BA。 After the achromatic mirror group 130 and/or the image sensor 230 are adjusted, as shown in FIG. 9, the definition plane SE is projected onto the image sensor surface 231 of the CCD chip 230. After the achromatic lens group 130 and/or the CCD chip 230 are stopped, the first image BA is captured in the second time period (t1-t2).

隨後,由影像處理裝置BV基於該第一影像BA來確定第一及第二影像區域B1、B2。在第一影像BA的第一影像區域B1中,清晰度平面SE的第一分區被投射至CCD晶片230的影像感測器表面231。而在第二影像區域B2中,清晰度平面SE的第二部分未被投射至CCD晶片230的影像感測器表面231。為攝製並讀取影像,CCD晶片230需要6至12ms(如約8至10ms)的時間,具體視攝製時的光照條件及晶片大小及影響讀取時間的讀取速度(像素/秒)而定。 Subsequently, the image processing device BV determines the first and second image regions B1 and B2 based on the first image BA. In the first image area B1 of the first image BA, the first partition of the definition plane SE is projected onto the image sensor surface 231 of the CCD chip 230. In the second image area B2, the second part of the definition plane SE is not projected onto the image sensor surface 231 of the CCD chip 230. In order to capture and read the image, the CCD chip 230 needs 6 to 12ms (such as about 8 to 10ms), depending on the lighting conditions and the size of the chip during the shooting, and the reading speed (pixels/second) that affects the reading time .

隨後在第三時間段(t2-t3)開始時,控制裝置ECU根據影像處理裝置BV的控制指令來控制第一及/或第二調節驅動裝置120、240,以便調節消色差鏡組130與CCD晶片230間的相對距離。在此過程中,如此地調節該相對距離,使得清晰度平面SE的第二分區被投射至影像感測器230的影像感測器表面231。 Then at the beginning of the third time period (t2-t3), the control device ECU controls the first and/or second adjustment drive devices 120, 240 according to the control instructions of the image processing device BV, so as to adjust the achromatic mirror group 130 and the CCD The relative distance between the wafers 230. In this process, the relative distance is adjusted in such a way that the second partition of the definition plane SE is projected onto the image sensor surface 231 of the image sensor 230.

相應地,直至第三時間段(t2-t3)的一半,將消色差鏡組130及/或CCD晶片230加速至該預設速度。在第三時間段(t2-t3)的一半結束後,將消色差鏡組130及/或CCD晶片230制 動。一旦消色差鏡組130及/或CCD晶片230停止,透過CCD晶片230攝製第二影像BB。消色差鏡組130與CCD晶片230間的相對距離有所減小或增大的行程為70至150μm,較佳為100μm。在2至10ms的時間段內,較佳在10ms範圍內移動上述行程。消色差鏡組130與CCD晶片230間的相對距離有所移動的行程與所用第一及/或第二光學有效元件130、160及其光學特性相關。 Correspondingly, until half of the third time period (t2-t3), the achromatic mirror group 130 and/or the CCD chip 230 are accelerated to the predetermined speed. After half of the third time period (t2-t3) is over, the achromatic lens group 130 and/or the CCD chip 230 are manufactured move. Once the achromatic lens group 130 and/or the CCD chip 230 stop, the second image BB is captured through the CCD chip 230. The relative distance between the achromatic lens group 130 and the CCD chip 230 is reduced or increased, and the stroke is 70 to 150 μm, preferably 100 μm. In a time period of 2 to 10 ms, the above stroke is preferably moved in the range of 10 ms. The stroke of the relative distance between the achromatic lens group 130 and the CCD chip 230 is related to the first and/or second optically effective elements 130 and 160 used and their optical characteristics.

影像處理裝置BV亦適於將另一控制指令提供給第一及/或第二調節驅動裝置120、240,以便在攝製第二影像BB後將影像感測器230與消色差鏡組130間的相對距離調節至初始長度。 The image processing device BV is also suitable for providing another control command to the first and/or second adjusting and driving devices 120, 240, so that the image sensor 230 and the achromatic mirror group 130 are separated after the second image BB is captured. Adjust the relative distance to the initial length.

在另一方案中,藉由CCD晶片230來攝製各具三個影像區域的三個影像。在該等三個影像區域的一個中,分別有清晰度平面SE的一分區被投射至CCD晶片230的影像感測器表面231,而在另兩個影像區域中,清晰度平面SE未被投射至CCD晶片230的影像感測器表面231。該等三個攝像的流程與該二攝像的流程在工作方式方面相同,同樣僅採用各具三個影像區域的三個影像。為攝製該等三個影像並相應地調節消色差鏡組130與CCD晶片230間的相對距離,該光學元件偵測系統需要80至120ms的時間,較佳100ms的時間。 In another solution, the CCD chip 230 is used to capture three images each with three image areas. In one of the three image areas, a subarea with a sharpness plane SE is projected onto the image sensor surface 231 of the CCD chip 230, while in the other two image areas, the sharpness plane SE is not projected To the image sensor surface 231 of the CCD chip 230. The process of these three cameras is the same as the process of the two cameras in terms of working methods, and also only uses three images with three image areas each. In order to capture the three images and adjust the relative distance between the achromatic lens group 130 and the CCD chip 230 accordingly, the optical element detection system requires 80 to 120 ms, preferably 100 ms.

在第一方案中,容置裝置150適於將半導體晶片B定位在攝影機裝置220前,使得清晰度平面SE至少部分地被投射至CCD晶片230的影像感測器表面231。相應地,影像處理裝置BV透過CCD晶片230首先攝製第一影像BA。隨後,影像處理裝置BV確定第一及第二影像區域B1、B2並在時間點t0前或該時間點上將控制指令發送給控制裝置ECU。控制裝置ECU基於該控制指 令控制第一及/或第二調節驅動裝置120、240,以便在第一時間段(t0-t1)的一半內,將消色差鏡組130及/或CCD晶片230加速至預設速度v1。在第一時間段(t0-t1)的一半結束後,將消色差鏡組130及/或CCD晶片230制動。若消色差鏡組130及/或CCD晶片230停止,則透過CCD晶片230攝製第二影像BB。 In the first solution, the accommodating device 150 is adapted to position the semiconductor chip B in front of the camera device 220 so that the definition plane SE is at least partially projected onto the image sensor surface 231 of the CCD chip 230. Correspondingly, the image processing device BV first captures the first image BA through the CCD chip 230. Subsequently, the image processing device BV determines the first and second image areas B1 and B2 and sends a control command to the control device ECU before or at the time t0. The control device ECU is based on the control instructions The first and/or second adjusting and driving devices 120, 240 are controlled to accelerate the achromatic mirror group 130 and/or the CCD chip 230 to the preset speed v1 within half of the first time period (t0-t1). After half of the first time period (t0-t1) is over, the achromatic mirror group 130 and/or the CCD chip 230 are braked. If the achromatic lens group 130 and/or the CCD chip 230 are stopped, the second image BB is captured through the CCD chip 230.

圖12及13分別示出一時間-焦距曲線圖,其中在不同時間執行不同的步驟310至360及410至460,其中相同的步驟用同一元件符號表示。此外,在圖12及13中攝製半導體晶片B的三個影像。將每個影像分成三個影像區域,其中唯有一個影像區域具有半導體晶片B的一分區的清晰成像。因此,唯有一個影像區域處於景深的區域內。但所攝影像的數目並非僅限於上述數目。在另一方案中,亦可有多個影像區域完全或至少部分地位於景深範圍內以及/或者相交。 12 and 13 respectively show a time-focus curve diagram, in which different steps 310 to 360 and 410 to 460 are executed at different times, and the same steps are represented by the same component symbols. In addition, three images of the semiconductor wafer B are taken in FIGS. 12 and 13. Each image is divided into three image areas, and only one image area has a clear image of a partition of the semiconductor chip B. Therefore, only one image area is within the depth of field. But the number of images taken is not limited to the above number. In another solution, there may be multiple image areas that are completely or at least partially within the depth of field and/or intersect.

在圖12中,在時間點t0前,半導體晶片B被容置裝置150定位在攝影機裝置220前。時間點t0後,在步驟310中,CCD晶片230攝製半導體元件B的第一影像。緊接著步驟310的步驟311中,影像處理裝置BV在第一影像中確定多個第一影像區域中的一第一影像區域,在該第一影像區域中,反射光L的清晰度平面SE的第一分區被投射至CCD晶片230的影像感測器表面231。在步驟311中,影像處理裝置BV還確定該第一影像的第二及第三影像區域,其中,反射光L的清晰度平面SE的第二及第三分區未被投射至CCD晶片230的影像感測器表面231。 In FIG. 12, the semiconductor wafer B is positioned in front of the camera device 220 by the housing device 150 before the time point t0. After the time t0, in step 310, the CCD chip 230 captures the first image of the semiconductor device B. Immediately after step 310, in step 311, the image processing device BV determines a first image area among the plurality of first image areas in the first image. In the first image area, the clarity plane SE of the reflected light L The first partition is projected onto the image sensor surface 231 of the CCD chip 230. In step 311, the image processing device BV further determines the second and third image regions of the first image, wherein the second and third subregions of the clarity plane SE of the reflected light L are not projected to the image of the CCD chip 230 The sensor surface 231.

在步驟310中攝製該第一影像後的一預設時間段後,影像處理裝置BV將一控制指令提供給第一及/或第二調節驅動裝置 120、240。在步驟320中,第一及/或第二調節驅動裝置120、240以一預設行程調節CCD晶片230與消色差鏡組130間的相對距離。相應地,在確定該第一、第二及第三影像區域期間,由影像處理裝置BV來調節CCD晶片230與消色差鏡組130間的相對距離。 After a predetermined period of time after the first image is captured in step 310, the image processing device BV provides a control command to the first and/or second adjustment drive device 120, 240. In step 320, the first and/or second adjustment driving device 120, 240 adjusts the relative distance between the CCD chip 230 and the achromatic mirror group 130 with a predetermined stroke. Correspondingly, during the determination of the first, second, and third image regions, the image processing device BV adjusts the relative distance between the CCD chip 230 and the achromatic mirror group 130.

該預設行程與消色差鏡組130、透鏡160的光學特性以及/或者與元件B之表面O的尺寸相關。較佳根據景深ST來預設該預設行程,使得該預設行程小於、等於或大於景深ST。如圖12所示,經過該預設行程時的速度首先緩慢提高,再大幅提高。在經過一預設之部分行程後,該速度首先大幅降低,再小幅降低。如此便防止消色差鏡組130及/或CCD晶片230因第一及/或第二調節驅動裝置120、240而發生突然的運動及停止,從而防止沿運動方向發生過度振動。 The preset stroke is related to the optical characteristics of the achromatic lens group 130 and the lens 160 and/or the size of the surface O of the element B. Preferably, the preset stroke is preset according to the depth of field ST, so that the preset stroke is less than, equal to, or greater than the depth of field ST. As shown in Figure 12, the speed when passing the preset stroke first slowly increases, and then greatly increases. After a predetermined partial stroke, the speed is first greatly reduced, and then slightly reduced. In this way, the achromatic lens group 130 and/or the CCD chip 230 are prevented from suddenly moving and stopping due to the first and/or second adjusting and driving devices 120, 240, thereby preventing excessive vibration along the moving direction.

在步驟320中調節該相對距離結束後,在步驟330中,藉由CCD晶片230來攝製第二影像。緊接著步驟330的步驟331中,影像處理裝置BV在第二影像中確定多個第二影像區域中的一第四及一第六影像區域,其中,反射光L的清晰度平面SE的第一及第三分區未被投射至CCD晶片230的影像感測器表面231。在步驟331中,影像處理裝置BV還確定該第二影像的第五影像區域,其中,反射光L的清晰度平面SE的第二分區被投射至CCD晶片230的影像感測器表面231。 After adjusting the relative distance in step 320, in step 330, the second image is captured by the CCD chip 230. In step 331 following step 330, the image processing device BV determines a fourth and a sixth image area among the plurality of second image areas in the second image, wherein the first image area of the clarity plane SE of the reflected light L And the third partition is not projected onto the image sensor surface 231 of the CCD chip 230. In step 331, the image processing device BV further determines the fifth image area of the second image, wherein the second subarea of the clarity plane SE of the reflected light L is projected onto the image sensor surface 231 of the CCD chip 230.

在步驟330中成功攝製該第二影像後,影像處理裝置重新將一控制指令提供給第一及/或第二調節驅動裝置120、240。在步驟340中,第一及/或第二調節驅動裝置120、240以一預設行程 調節CCD晶片230與消色差鏡組130間的相對距離。在另一方案中,可在步驟340中以大於或小於步驟320中之預設行程的第二預設行程來調節CCD晶片230與消色差鏡組130間的相對距離。相應地,在確定該第四、第五及第六影像區域期間,由影像處理裝置BV來調節CCD晶片230與消色差鏡組130間的相對距離。 After the second image is successfully captured in step 330, the image processing device again provides a control command to the first and/or second adjustment driving device 120, 240. In step 340, the first and/or second adjusting drive device 120, 240 performs a preset stroke The relative distance between the CCD chip 230 and the achromatic lens group 130 is adjusted. In another solution, in step 340, the relative distance between the CCD chip 230 and the achromatic lens group 130 can be adjusted by a second preset stroke greater or less than the preset stroke in step 320. Correspondingly, during the determination of the fourth, fifth, and sixth image regions, the image processing device BV adjusts the relative distance between the CCD chip 230 and the achromatic lens group 130.

在步驟340中調節該相對距離結束後,在步驟350中,藉由CCD晶片230來攝製第三影像。緊接著成功攝製該第三影像的步驟351中,影像處理裝置BV在第二影像中確定第三影像的第七及第八影像區域,其中,反射光L的清晰度平面SE的第一及第二分區未被投射至CCD晶片230的影像感測器表面231。在步驟351中,影像處理裝置BV還確定該第三影像的第九影像區域,其中,反射光L的清晰度平面SE的第三分區被投射至CCD晶片230的影像感測器表面231。 After adjusting the relative distance in step 340, in step 350, a third image is captured by the CCD chip 230. Immediately after successfully shooting the third image in step 351, the image processing device BV determines the seventh and eighth image regions of the third image in the second image, wherein the first and the second image regions of the clarity plane SE of the reflected light L The two partitions are not projected onto the image sensor surface 231 of the CCD chip 230. In step 351, the image processing device BV further determines the ninth image area of the third image, in which the third subarea of the clarity plane SE of the reflected light L is projected onto the image sensor surface 231 of the CCD chip 230.

在步驟350中攝製該第三影像後,影像處理裝置BV將另一控制指令提供給第一及/或第二調節驅動裝置120、240。在步驟360中,第一及/或第二調節驅動裝置120、240將CCD晶片230與消色差鏡組130間的相對距離調節至初始長度。相應地,在確定該第七、第八及第九影像區域期間,由影像處理裝置BV來調節CCD晶片230與消色差鏡組130間的相對距離。以與步驟320及340中調節該相對距離相同的方式來將CCD晶片230與消色差鏡組130間的相對距離調節至初始長度,但方向相反。 After the third image is captured in step 350, the image processing device BV provides another control command to the first and/or second adjustment driving device 120, 240. In step 360, the first and/or second adjusting drive device 120, 240 adjusts the relative distance between the CCD chip 230 and the achromatic lens group 130 to the initial length. Correspondingly, during the determination of the seventh, eighth and ninth image regions, the image processing device BV adjusts the relative distance between the CCD chip 230 and the achromatic mirror group 130. The relative distance between the CCD chip 230 and the achromatic lens group 130 is adjusted to the initial length in the same manner as the adjustment of the relative distance in steps 320 and 340, but in the opposite direction.

步驟360完畢後,影像處理裝置BV在接連的步驟312、332、352中基於該第一、第二及第三影像的相應確定的影像區域,來檢查半導體晶片B是否具有缺陷。 After step 360 is completed, the image processing device BV checks whether the semiconductor chip B has defects based on the corresponding determined image regions of the first, second, and third images in successive steps 312, 332, and 352.

在另一方案中,影像處理裝置BV可在步驟360、312、332、352中的一個完畢後,在步驟353中產生第四影像,具體方式在於:該第四影像將該第一、第二及第三影像的第一、第五及第九影像區域截出並接合在一起。 In another solution, the image processing device BV may generate a fourth image in step 353 after one of steps 360, 312, 332, and 352 is completed. The specific method is that the fourth image combines the first and second images. The first, fifth, and ninth image regions of the third image and the third image are cut out and joined together.

在另一方案中,影像處理裝置BV在步驟330、331、340、350、351、360中的一個完畢後執行步驟311。影像處理裝置BV亦可在步驟340、350、351、360中的一個完畢後執行步驟331以及/或者在步驟312、332中的一個完畢後執行步驟351。 In another solution, the image processing device BV executes step 311 after one of steps 330, 331, 340, 350, 351, and 360 is completed. The image processing device BV may also perform step 331 after one of steps 340, 350, 351, and 360 is completed and/or perform step 351 after one of steps 312 and 332 is completed.

如此便能將影像處理及半導體晶片B之影像的檢查與攝像的過程分離。透過將半導體晶片B之影像的攝製與影像處理及影像的檢查分離,便能將攝像過程降至數個步驟。從而縮短每個元件的攝像時間,並能在相同時間內達到更大數目的元件及相應之攝像。 In this way, the image processing and the inspection of the semiconductor chip B's image can be separated from the imaging process. By separating the imaging of semiconductor chip B from image processing and image inspection, the imaging process can be reduced to several steps. This shortens the imaging time of each component, and can achieve a larger number of components and corresponding imaging in the same time.

在圖13中,在時間點t0前,半導體晶片B被定位在攝影機裝置220前。時間點t0後,在步驟410中,藉由CCD晶片攝製第一影像並將其提供給影像處理裝置BV。在步驟410期間,影像處理裝置BV將一控制指令提供給第一及/或第二調節驅動裝置120、240,以便以一預設速度調節CCD晶片230與消色差鏡組130間的相對距離。在攝製該第一影像期間,第一及/或第二調節驅動裝置120、240就調節CCD晶片230與消色差鏡組130間的相對距離。 In FIG. 13, the semiconductor wafer B is positioned in front of the camera device 220 before the time point t0. After time t0, in step 410, a first image is captured by the CCD chip and provided to the image processing device BV. During step 410, the image processing device BV provides a control command to the first and/or second adjusting and driving devices 120, 240 to adjust the relative distance between the CCD chip 230 and the achromatic mirror group 130 at a predetermined speed. During the shooting of the first image, the first and/or second adjusting and driving devices 120 and 240 adjust the relative distance between the CCD chip 230 and the achromatic lens group 130.

以該預設速度調節CCD晶片230與消色差鏡組130間的相對距離的時間點,以及該預設速度取決於以下因素:消色差鏡組130、透鏡160、景深ST的光學特性;半導體晶片B之表面O 的尺寸;消色差鏡組130及/或透鏡160及/或影像感測器230的質量;以及上述元件之透過第一及/或第二調節驅動裝置120、240的響應特性。舉例而言,若景深為70μm,則在攝製第一影像期間允許將清晰度平面SE最大移動70μm。從而確保將半導體晶片B的一分區清晰成像在所攝影像的一影像區域上。 The time point at which the relative distance between the CCD chip 230 and the achromatic lens group 130 is adjusted at the preset speed, and the preset speed depends on the following factors: the optical characteristics of the achromatic lens group 130, the lens 160, and the depth of field ST; semiconductor wafer Surface O of B The size of the achromatic lens group 130 and/or the lens 160 and/or the image sensor 230; and the response characteristics of the above-mentioned components through the first and/or second adjusting and driving devices 120, 240. For example, if the depth of field is 70 μm, the sharpness plane SE is allowed to move at most 70 μm during the shooting of the first image. This ensures that a section of the semiconductor chip B is clearly imaged on an image area of the photographed image.

在圖13中,該預設速度沿用來產生影像的移動路徑保持不變。在另一方案中,為調節CCD晶片230與消色差鏡組間的相對距離,該速度可在一預設速度範圍內或者在至少兩個不同速度間變換。 In Figure 13, the preset speed remains unchanged along the movement path used to generate the image. In another solution, in order to adjust the relative distance between the CCD chip 230 and the achromatic lens group, the speed can be changed within a preset speed range or between at least two different speeds.

清晰度平面SE以一預設行程以及/或者在一預設時間內受到調節後,在步驟430中藉由CCD晶片230來攝製第二影像。以與攝製該第二影像無關的方式,繼續以該預設速度調節CCD晶片230與消色差鏡組130間的相對距離。在另一方案中,在達到一預設清晰度平面位置時,攝製該第二影像。 After the definition plane SE is adjusted with a preset stroke and/or within a preset time, the second image is captured by the CCD chip 230 in step 430. The relative distance between the CCD chip 230 and the achromatic lens group 130 is continuously adjusted at the preset speed in a manner independent of the shooting of the second image. In another solution, the second image is shot when a predetermined definition plane position is reached.

清晰度平面SE繼續以一預設行程以及/或者在一預設時間內受到調節後,在步驟450中藉由CCD晶片230來攝製第三影像。與攝製該第二影像時的情形相同,在攝製該第三影像期間,亦以該預設速度調節CCD晶片230與消色差鏡組130間的相對距離。在另一方案中,在攝製該第三影像期間,降低該預設速度,直至最後不再調節CCD晶片230與消色差鏡組130間的相對距離。 After the definition plane SE continues to be adjusted with a preset stroke and/or within a preset time, a third image is captured by the CCD chip 230 in step 450. As in the case of shooting the second image, during the shooting of the third image, the relative distance between the CCD chip 230 and the achromatic lens group 130 is also adjusted at the preset speed. In another solution, during the shooting of the third image, the preset speed is reduced until the relative distance between the CCD chip 230 and the achromatic lens group 130 is no longer adjusted at the end.

可以圖12中所描述的方式來執行步驟311、312、331、332、351、352、353、360。 Steps 311, 312, 331, 332, 351, 352, 353, 360 can be performed in the manner described in FIG. 12.

如圖13所示,在攝製第一、第二及第三影像期間,僅一次性對消色差鏡組130及/或影像感測器230進行加速及停止。如 此便防止了每次的停止及再次加速,從而進一步縮短每個元件的攝像時間。同樣,透過再次加速及停止而防止了光學元件偵測系統200的振動。 As shown in FIG. 13, during the shooting of the first, second, and third images, the achromatic lens group 130 and/or the image sensor 230 are only accelerated and stopped at one time. Such as This prevents each stop and re-acceleration, thereby further shortening the imaging time of each element. Likewise, by accelerating and stopping again, the vibration of the optical element detection system 200 is prevented.

100‧‧‧調節裝置 100‧‧‧Adjusting device

110‧‧‧鏡管 110‧‧‧Mirror tube

121‧‧‧線圈 121‧‧‧Coil

130‧‧‧消色差鏡組、第一光學有效元件 130‧‧‧Achromatic lens group, first optical effective element

130A‧‧‧冕牌玻璃透鏡 130A‧‧‧Crown glass lens

130B‧‧‧火石玻璃透鏡 130B‧‧‧Flint glass lens

140‧‧‧支架 140‧‧‧Support

141‧‧‧磁軛 141‧‧‧Yoke

142‧‧‧磁軛 142‧‧‧Yoke

ECU‧‧‧控制裝置 ECU‧‧‧Control device

OA‧‧‧光軸 OA‧‧‧Optical axis

Claims (21)

一種用於偵測至少一元件(B)之至少一表面的光學元件偵測系統(200),其中容置裝置(150)適於將該元件(B)定位在攝影機裝置(220)前,以便用該攝影機裝置(220)偵測該元件(B)之第一表面(O),其中該攝影機裝置(220)包括影像感測器(230),該影像感測器適於接收在該元件(B)之該第一表面(O)上的反射光(L);其中該光學元件偵測系統(200)包括第一光學有效元件(130),其配置在該反射光(L)朝該影像感測器(230)的光路中,及用於該第一光學有效元件(130)的調節裝置(100),該調節裝置(100)包括:用於該第一光學有效元件(130)的支架(140),其中該支架(140)固定在空心圓柱形鏡管(110)的內側上,且該鏡管(110)的縱向中心線與該第一光學有效元件(130)的光軸(OA)同軸,且其中該支架(140)至少在鏡管縱向上具有彈性柔性;以及用於調節該第一光學有效元件(130)與該影像感測器(230)間的相對距離的第一調節驅動裝置(120),以便沿該光軸(OA)相對該影像感測器(230)移動該第一光學有效元件(130),其中設置影像處理裝置(BV)適於:藉由該影像感測器(230)來攝製第一影像(BA),將該第一影像提供給該影像處理裝置(BV);將控制指令提供給該控制裝置(ECU)以控制該第一調節驅動裝置(120),以便以預設行程調節該第一光學有效元件(130)與該影像感測器(230)間的相對距離; 藉由該影像感測器(230)來攝製第二影像(BB),將該第二影像提供給該影像處理裝置(BV)。 An optical element detection system (200) for detecting at least one surface of at least one element (B), wherein the accommodating device (150) is adapted to position the element (B) in front of the camera device (220) so that The camera device (220) is used to detect the first surface (O) of the component (B), wherein the camera device (220) includes an image sensor (230), and the image sensor is adapted to be received on the component ( B) the reflected light (L) on the first surface (O); wherein the optical element detection system (200) includes a first optically effective element (130), which is arranged when the reflected light (L) faces the image In the optical path of the sensor (230), and an adjusting device (100) for the first optically effective element (130), the adjusting device (100) includes: a bracket for the first optically effective element (130) (140), wherein the bracket (140) is fixed on the inner side of the hollow cylindrical mirror tube (110), and the longitudinal centerline of the mirror tube (110) is in line with the optical axis (OA) of the first effective optical element (130) ) Coaxial, wherein the bracket (140) has elastic flexibility at least in the longitudinal direction of the lens tube; and a first adjustment for adjusting the relative distance between the first optically effective element (130) and the image sensor (230) The driving device (120) is used to move the first optically effective element (130) relative to the image sensor (230) along the optical axis (OA), wherein an image processing device (BV) is provided for: by the image sensor The detector (230) shoots a first image (BA), and provides the first image to the image processing device (BV); provides control instructions to the control device (ECU) to control the first adjustment drive device (120) ), so as to adjust the relative distance between the first effective optical element (130) and the image sensor (230) with a preset stroke; The second image (BB) is captured by the image sensor (230), and the second image is provided to the image processing device (BV). 如申請專利範圍第1項所述的光學元件偵測系統(200),其中該第一調節驅動裝置(120)包括至少部分地包圍該支架(140)的線圈(121);其中控制裝置(ECU)適於對輸入該線圈(121)之用於產生磁場的電流進行控制;其中該支架(140)具有含軟鐵或永磁的元件(141,142),適於根據輸入該線圈(121)的電流來沿該鏡管(110)的縱向中心線移動該支架(140)。 The optical element detection system (200) described in the first item of the scope of patent application, wherein the first adjustment drive device (120) includes a coil (121) at least partially surrounding the bracket (140); wherein the control device (ECU ) Is suitable for controlling the current input to the coil (121) for generating a magnetic field; wherein the bracket (140) has elements (141, 142) containing soft iron or permanent magnets, suitable for inputting the coil (121) The current to move the bracket (140) along the longitudinal centerline of the mirror tube (110). 如前述申請專利範圍第2或3項所述的光學元件偵測系統(200),還包括:被該控制裝置(ECU)控制之用於調節該影像感測器(230)的第二調節驅動裝置(240),以便沿該光軸(OA)相對該第一光學有效元件(130)移動該影像感測器(230);及/或至少一光源,其適於將光發射至該元件(B)的該第一表面(O);其中,該控制裝置(ECU)適於透過控制該第一及/或該第二調節驅動裝置(120,240)來調節該第一光學有效元件(130)與該影像感測器(230)間的相對距離,以便將該反射光(L)的清晰度平面(SE)投射至該影像感測器(230)之朝向該反射光(L)的影像感測器表面(231)。 The optical element detection system (200) as described in item 2 or 3 of the aforementioned patent application scope, further includes: a second adjustment drive for adjusting the image sensor (230) controlled by the control device (ECU) A device (240) for moving the image sensor (230) along the optical axis (OA) relative to the first optically effective element (130); and/or at least one light source adapted to emit light to the element ( B) the first surface (O); wherein the control device (ECU) is adapted to adjust the first optically effective element (130) by controlling the first and/or the second adjustment drive device (120, 240) The relative distance between the image sensor (230) and the image sensor (230), so that the sharpness plane (SE) of the reflected light (L) is projected to the image sensor (230) facing the reflected light (L) Sensor surface (231). 如申請專利範圍第2項所述的光學元件偵測系統 (200),其中設置影像處理裝置(BV)適於:藉由該影像感測器(230)來攝製第一影像(BA),將該第一影像提供給該影像處理裝置(BV);基於該第一影像(BA),確定該反射光(L)的清晰度平面(SE)是否實質上完全被投射至該影像感測器(230)的影像感測器表面(231);且若該反射光(L)的清晰度平面(SE)未被實質上完全投射至該影像感測器(230)的影像感測器表面(231),則確定該第一影像(BA)之第一多個影像區域(B1,B2)中的一第一影像區域(B1),在該第一影像區域中,該反射光(L)的清晰度平面(SE)的第一分區被投射至該影像感測器(230)的影像感測器表面(231);確定該第一影像(BA)之該第一多個影像區域(B1,B2)中的一第二影像區域(B2),在該第二影像區域中,該反射光(L)的清晰度平面(SE)的第二分區未被投射至該影像感測器(230)的影像感測器表面(231);將控制信號提供給該控制裝置(ECU)以控制該第一及/或該第二調節驅動裝置(120,240),以便調節該第一光學有效元件(130)與該影像感測器(230)間的相對距離並將該反射光(L)的清晰度平面(SE)的第二分區投射至該影像感測器(230)的影像感測器表面(231);藉由該影像感測器(230)來攝製第二影像(BB),將該第二影像提供給該影像處理裝置(BV);確定該第二影像(BB)之第二多個影像區域(B3,B4)中的 一第三影像區域(B3),在該第三影像區域中,該反射光(L)的清晰度平面(SE)的第一分區未被投射至該影像感測器(230)的影像感測器表面(231);及確定該第二影像(BB)之該第二多個影像區域(B3,B4)中的一第四影像區域(B4),在該第四影像區域中,該反射光(L)的清晰度平面(SE)的第二分區被投射至該影像感測器(230)的影像感測器表面(231)。 Optical element detection system as described in item 2 of the scope of patent application (200), wherein an image processing device (BV) is set to be adapted to: use the image sensor (230) to shoot a first image (BA), and provide the first image to the image processing device (BV); The first image (BA) determines whether the definition plane (SE) of the reflected light (L) is substantially completely projected onto the image sensor surface (231) of the image sensor (230); and if the The definition plane (SE) of the reflected light (L) is not substantially completely projected onto the image sensor surface (231) of the image sensor (230), and the first image (BA) is determined A first image area (B1) in one image area (B1, B2), in which the first section of the clarity plane (SE) of the reflected light (L) is projected onto the image The image sensor surface (231) of the sensor (230); determine a second image area (B2) in the first plurality of image areas (B1, B2) of the first image (BA), in the first image (BA) In the second image area, the second subarea of the sharpness plane (SE) of the reflected light (L) is not projected to the image sensor surface (231) of the image sensor (230); the control signal is provided to the A control device (ECU) controls the first and/or the second adjustment drive device (120, 240) to adjust the relative distance between the first optically effective element (130) and the image sensor (230) and Projecting the second subarea of the definition plane (SE) of the reflected light (L) to the image sensor surface (231) of the image sensor (230); filming by the image sensor (230) A second image (BB), providing the second image to the image processing device (BV); determining which of the second plurality of image regions (B3, B4) of the second image (BB) A third image area (B3) in which the first subarea of the definition plane (SE) of the reflected light (L) is not projected to the image sensor of the image sensor (230) A fourth image area (B4) in the second plurality of image areas (B3, B4) of the second image (BB), and in the fourth image area, the reflected light The second division of the definition plane (SE) of (L) is projected onto the image sensor surface (231) of the image sensor (230). 如申請專利範圍第2項所述的光學元件偵測系統(200),其中設置影像處理裝置(BV)適於:將控制指令提供給該控制裝置(ECU)以控制該第二調節驅動裝置(240),以便以預設行程調節該第一光學有效元件(130)與該影像感測器(230)間的相對距離。 The optical element detection system (200) described in item 2 of the scope of patent application, wherein the image processing device (BV) is provided to be adapted to: provide control instructions to the control device (ECU) to control the second adjustment drive device ( 240), so as to adjust the relative distance between the first effective optical element (130) and the image sensor (230) with a preset stroke. 如申請專利範圍第2項所述的光學元件偵測系統(200),其中設置影像處理裝置(BV)適於:藉由該影像感測器(230)來攝製第一影像(BA),將該第一影像提供給該影像處理裝置(BV);將控制指令提供給該控制裝置(ECU)以控制該第一及/或該第二調節驅動裝置(120,240),以便在攝製該第一影像(BA)期間以預設速度調節該第一光學有效元件(130)與該影像感測器(230)間的相對距離;在攝製該第一影像(BA)後或者在攝製該第一影像(BA)後的預設時間段後,且在調節該第一光學有效元件(130)與該影像感測器(230)間的相對距離期間,藉由該影像感測器(230)來攝製第二影像(BB),將該第二影像提供給該影像處理裝置 (BV)。 The optical element detection system (200) described in the second item of the scope of patent application, wherein the image processing device (BV) is adapted to: use the image sensor (230) to shoot the first image (BA), and The first image is provided to the image processing device (BV); the control instruction is provided to the control device (ECU) to control the first and/or the second adjustment drive device (120, 240), so as to film the second During an image (BA) period, the relative distance between the first effective optical element (130) and the image sensor (230) is adjusted at a preset speed; after the first image (BA) is shot or after the first image is shot After a preset period of time after the image (BA), and during the adjustment of the relative distance between the first effective optical element (130) and the image sensor (230), the image sensor (230) Take a second image (BB) and provide the second image to the image processing device (BV). 如申請專利範圍第5或6項所述的光學元件偵測系統(200),其中該影像處理裝置(BV)適於在攝製該第一影像(BA)或在攝製該第二影像(BB)後:確定該第一影像(BA)之第一多個影像區域(B1,B2)中的一第一影像區域(B1),在該第一影像區域中,該反射光(L)的清晰度平面(SE)的第一分區被投射至該影像感測器(230)的影像感測器表面(231);以及/或者確定該第一影像(BA)之該第一多個影像區域(B1,B2)中的一第二影像區域(B2),在該第二影像區域中,該反射光(L)的清晰度平面(SE)的第二分區未被投射至該影像感測器(230)的影像感測器表面(231);以及/或者確定該第二影像(BB)之第二多個影像區域(B3,B4)中的一第三影像區域(B3),在該第三影像區域中,該反射光(L)的清晰度平面(SE)的第一分區未被投射至該影像感測器(230)的影像感測器表面(231);以及/或者確定該第二影像(BB)之該第二多個影像區域(B3,B4)中的一第四影像區域(B4),在該第四影像區域中,該反射光(L)的清晰度平面(SE)的第二分區被投射至該影像感測器(230)的影像感測器表面(231)。 The optical element detection system (200) described in item 5 or 6 of the scope of patent application, wherein the image processing device (BV) is suitable for shooting the first image (BA) or shooting the second image (BB) After: Determine a first image area (B1) in the first plurality of image areas (B1, B2) of the first image (BA), in the first image area, the clarity of the reflected light (L) The first partition of the plane (SE) is projected onto the image sensor surface (231) of the image sensor (230); and/or the first plurality of image areas (B1) of the first image (BA) are determined , B2) in a second image area (B2), in the second image area, the second partition of the definition plane (SE) of the reflected light (L) is not projected to the image sensor (230 ) The image sensor surface (231); and/or determine a third image area (B3) in the second plurality of image areas (B3, B4) of the second image (BB), in the third image In the area, the first section of the definition plane (SE) of the reflected light (L) is not projected to the image sensor surface (231) of the image sensor (230); and/or the second image is determined A fourth image area (B4) in the second plurality of image areas (B3, B4) of (BB), in the fourth image area, the second image area (SE) of the reflected light (L) The two partitions are projected onto the image sensor surface (231) of the image sensor (230). 如申請專利範圍第4項所述的光學元件偵測系統(200),其中該第一影像(BA)的第一及第二影像區域(B1,B2)分別對該元件(B)的一部分進行成像,該部分實質上對應於該第 二影像(BB)的第三及第四影像區域(B3,B4)中之該元件(B)的部分;以及/或者其中該第一影像(BA)中該清晰度平面(SE)的該第一分區以及該第二影像(BB)中該清晰度平面(SE)的該第二分區在一預設景深(ST)內被投射至該影像感測器(230)的影像感測器表面(231);以及其中該第一影像(BA)中該清晰度平面(SE)的該第二分區以及該第二影像(BB)中該清晰度平面(SE)的該第一分區在該預設景深(ST)外被投射至該影像感測器(230)的影像感測器表面(231)。 The optical element detection system (200) described in item 4 of the scope of patent application, wherein the first and second image areas (B1, B2) of the first image (BA) are respectively performed on a part of the element (B) Imaging, this part substantially corresponds to the first The part of the element (B) in the third and fourth image regions (B3, B4) of the second image (BB); and/or the second image (BA) in the definition plane (SE) of the first image (BA) A subarea and the second subarea of the definition plane (SE) in the second image (BB) are projected onto the image sensor surface of the image sensor (230) within a preset depth of field (ST) ( 231); and wherein the second partition of the definition plane (SE) in the first image (BA) and the first partition of the definition plane (SE) in the second image (BB) are in the preset The outside depth of field (ST) is projected onto the image sensor surface (231) of the image sensor (230). 如申請專利範圍第4或8項所述的光學元件偵測系統(200),其中該影像處理裝置(BV)亦適於:將該第一影像區域(B1)自該第一影像(BA)截出且將該第四影像區域(B4)自該第二影像(BB)截出,以及將截出之該第一與該第四影像區域(B1,B4)接合在一起,以產生第三影像(BC);以及/或者基於該第一影像(BA)的該第一影像區域(B1)及/或該第二影像(BB)的第四影像區域(B4)及/或該第三影像(BC)來確定該元件(B)是否具有至少一故障;以及若該影像處理裝置(BV)確定至少一故障,則提供關於該元件(B)的故障資訊。 Such as the optical element detection system (200) described in item 4 or 8 of the scope of patent application, wherein the image processing device (BV) is also adapted to: the first image area (B1) from the first image (BA) Cut out and cut out the fourth image area (B4) from the second image (BB), and join the cut out first and fourth image areas (B1, B4) together to produce a third Image (BC); and/or the first image area (B1) and/or the fourth image area (B4) of the second image (BB) and/or the third image based on the first image (BA) (BC) to determine whether the component (B) has at least one fault; and if the image processing device (BV) determines at least one fault, providing fault information about the component (B). 如申請專利範圍第2、4、5、6或8項所述的光學元件偵測系統(200),亦包括:位置偵測感測器(250),其適於確定該第一光學有效元件 (130)及/或該影像感測器(230)的影像感測器表面(231)的位置及/或方位,以及將關於該第一光學有效元件(130)及/或該影像感測器(230)的影像感測器表面(231)的位置及/或方位的資訊提供給該控制裝置(ECU),該控制裝置基於所提供之該等資訊來控制該第一及/或該第二調節驅動裝置(120,240),其中該位置偵測感測器為光學或電機的位置偵測感測器。 The optical element detection system (200) described in item 2, 4, 5, 6 or 8 of the scope of patent application also includes: a position detection sensor (250), which is suitable for determining the first optically effective element (130) and/or the position and/or orientation of the image sensor surface (231) of the image sensor (230), and will be related to the first optically effective element (130) and/or the image sensor The position and/or orientation information of the image sensor surface (231) of (230) is provided to the control device (ECU), and the control device controls the first and/or the second based on the information provided Adjust the driving device (120, 240), wherein the position detection sensor is an optical or motor position detection sensor. 如申請專利範圍第1、2、4、5、6或8項所述的光學元件偵測系統(200),其中該攝影機裝置(220)在該第一光學有效元件(130)與該影像感測器(230)間的光路中包括第二光學有效元件(160),該第二光學有效元件(160)的光軸與該第一光學有效元件(130)的光軸同軸;以及/或者其中該第一光學有效元件(130)為消色差鏡組;以及/或者其中該第二光學有效元件(160)為聚光透鏡。 According to the optical element detection system (200) described in items 1, 2, 4, 5, 6 or 8 of the scope of patent application, the camera device (220) is connected between the first optical effective element (130) and the image sensor The optical path between the detectors (230) includes a second optically effective element (160), the optical axis of the second optically effective element (160) is coaxial with the optical axis of the first optically effective element (130); and/or therein The first effective optical element (130) is an achromatic lens group; and/or the second effective optical element (160) is a condenser lens. 一種用於偵測至少一元件(B)之至少一表面的光學元件偵測系統(200),其中容置裝置(150)適於將該元件(B)定位在攝影機裝置(220)前,以便用該攝影機裝置(220)偵測該元件(B)之第一表面(O),其中該攝影機裝置(220)包括影像感測器(230),該影像感測器適於接收在該元件(B)之該第一表面(O)上的反射光(L);其中該光學元件偵測系統(200)包括第一光學有效元件(130),其配置在該反射光(L)朝該影像感測器(230)的該光路中,及用於該第一光學有效元件(130)的調節裝置(100),該調節裝置(100)包括: 用於該第一光學有效元件(130)的支架(140),其中該支架(140)藉由線性導引裝置固定在空心圓柱形鏡管(110)的內側上,且該鏡管(110)的縱向中心線與該第一光學有效元件(130)的光軸(OA)同軸,且其中該線性導引裝置適於平行於該光軸(OA)地導引該支架(140),用於調節該影像感測器(230)與該第一光學有效元件(130)間的相對距離的第一調節驅動裝置(120),以便相對該影像感測器(230)移動該第一光學有效元件(130),其中設置影像處理裝置(BV)適於:藉由該影像感測器(230)來攝製第一影像(BA),將該第一影像提供給該影像處理裝置(BV);將控制指令提供給該控制裝置(ECU)以控制該第一調節驅動裝置(120),以便以預設行程調節該第一光學有效元件(130)與該影像感測器(230)間的相對距離;藉由該影像感測器(230)來攝製第二影像(BB),將該第二影像提供給該影像處理裝置(BV)。 An optical element detection system (200) for detecting at least one surface of at least one element (B), wherein the accommodating device (150) is adapted to position the element (B) in front of the camera device (220) so that The camera device (220) is used to detect the first surface (O) of the component (B), wherein the camera device (220) includes an image sensor (230), and the image sensor is adapted to be received on the component ( B) the reflected light (L) on the first surface (O); wherein the optical element detection system (200) includes a first optically effective element (130), which is arranged when the reflected light (L) faces the image In the optical path of the sensor (230), and an adjusting device (100) for the first optically effective element (130), the adjusting device (100) includes: A bracket (140) for the first optically effective element (130), wherein the bracket (140) is fixed on the inner side of the hollow cylindrical mirror tube (110) by a linear guide device, and the mirror tube (110) The longitudinal centerline of is coaxial with the optical axis (OA) of the first optically effective element (130), and the linear guiding device is adapted to guide the bracket (140) parallel to the optical axis (OA) for A first adjusting and driving device (120) for adjusting the relative distance between the image sensor (230) and the first effective optical element (130), so as to move the first effective optical element relative to the image sensor (230) (130), wherein an image processing device (BV) is provided which is adapted to: use the image sensor (230) to shoot a first image (BA), and provide the first image to the image processing device (BV); Control instructions are provided to the control device (ECU) to control the first adjustment drive device (120) to adjust the relative distance between the first optically effective element (130) and the image sensor (230) with a preset stroke The second image (BB) is captured by the image sensor (230), and the second image is provided to the image processing device (BV). 一種偵測至少一元件(B)之至少一表面的方法,包括以下步驟:將該元件(B)對準攝影機裝置(220);藉由該攝影機裝置(220)偵測該元件(B)之第一表面(O);藉由該攝影機裝置(220)的影像感測器(230)來接收在該元件(B)之該第一表面(O)上的反射光(L);藉由沿縱向具有彈性柔性的支架(140)來將第一光學有效元件(130)保持在該反射光(L)的光路中,其中該縱向平行於該 第一光學有效元件(130)的光軸(OA);攝製第一影像(BA);以預設行程調節該影像感測器(230)與該第一光學有效元件(130)間的相對距離,以便沿該光軸相對該影像感測器(230)移動該第一光學有效元件(130);攝製第二影像(BB)。 A method for detecting at least one surface of at least one component (B), including the following steps: aligning the component (B) with a camera device (220); detecting the component (B) by the camera device (220) The first surface (O); the image sensor (230) of the camera device (220) receives the reflected light (L) on the first surface (O) of the element (B); A support (140) with elastic flexibility in the longitudinal direction holds the first optically effective element (130) in the optical path of the reflected light (L), wherein the longitudinal direction is parallel to the Optical axis (OA) of the first effective optical element (130); shoot a first image (BA); adjust the relative distance between the image sensor (230) and the first effective optical element (130) with a preset stroke , So as to move the first optically effective element (130) relative to the image sensor (230) along the optical axis; to shoot a second image (BB). 如申請專利範圍第13項所述的方法,包括以下步驟:調節該影像感測器(230)與該第一光學有效元件(130)間的相對距離,以便沿該光軸(OA)相對該第一光學有效元件(130)移動該影像感測器(230);以及,調節該影像感測器(230)與該第一光學有效元件(130)間的相對距離,以便將該反射光(L)的清晰度平面(SE)投射至該影像感測器(230)之朝向該反射光(L)的影像感測器表面(231)。 The method described in item 13 of the scope of patent application includes the following steps: adjusting the relative distance between the image sensor (230) and the first effective optical element (130) so as to be relative to the optical axis (OA) along the optical axis (OA). The first effective optical element (130) moves the image sensor (230); and adjusting the relative distance between the image sensor (230) and the first effective optical element (130) so that the reflected light ( The definition plane (SE) of L) is projected onto the image sensor surface (231) of the image sensor (230) facing the reflected light (L). 如申請專利範圍第13項所述的方法,包括以下步驟:攝製第一影像(BA);基於該第一影像(BA)來確定該反射光(L)的清晰度平面(SE)是否實質上完全被投射至該影像感測器(230)的影像感測器表面(231);且若該反射光(L)的清晰度平面(SE)未被實質上完全投射至該影像感測器(230)的影像感測器表面(231),則確定該第一影像(BA)之第一多個影像區域(B1,B2)中的一第一影像區域(B1),在該第一影像區域中,該反射光(L)的清晰度平面(SE)的第一分區被投射至該影像感測器(230)的影像感測器表面(231); 確定該第一影像(BA)之該第一多個影像區域(B1,B2)中的一第二影像區域(B2),在該第二影像區域中,該反射光(L)的清晰度平面(SE)的第二分區未被投射至該影像感測器(230)的影像感測器表面(231);調節該影像感測器(230)與該第一光學有效元件(130)間的相對距離,以便將該反射光(L)的清晰度平面(SE)的第二分區投射至該影像感測器(230)的影像感測器表面(231);攝製第二影像(BB);確定該第二影像(BB)之第二多個影像區域(B3,B4)中的一第三影像區域(B3),在該第三影像區域中,該反射光(L)的清晰度平面(SE)的第一分區未被投射至該影像感測器(230)的影像感測器表面(231);確定該第二影像(BB)之該第二多個影像區域(B3,B4)中的一第四影像區域(B4),在該第四影像區域中,該反射光(L)的清晰度平面(SE)的第二分區被投射至該影像感測器(230)的影像感測器表面(231)。 The method described in item 13 of the scope of patent application includes the following steps: filming a first image (BA); determining whether the sharpness plane (SE) of the reflected light (L) is substantially based on the first image (BA) Is completely projected to the image sensor surface (231) of the image sensor (230); and if the definition plane (SE) of the reflected light (L) is not substantially completely projected to the image sensor ( 230) of the image sensor surface (231), it is determined that a first image area (B1) of the first plurality of image areas (B1, B2) of the first image (BA) is in the first image area , The first subarea of the definition plane (SE) of the reflected light (L) is projected onto the image sensor surface (231) of the image sensor (230); Determine a second image area (B2) in the first plurality of image areas (B1, B2) of the first image (BA), and in the second image area, the definition plane of the reflected light (L) The second partition of (SE) is not projected to the image sensor surface (231) of the image sensor (230); adjust the gap between the image sensor (230) and the first optical effective element (130) Relative distance, so as to project the second subarea of the sharpness plane (SE) of the reflected light (L) to the image sensor surface (231) of the image sensor (230); to shoot the second image (BB); Determine a third image area (B3) in the second plurality of image areas (B3, B4) of the second image (BB), in the third image area, the definition plane (L) of the reflected light (L) The first partition of SE) is not projected onto the image sensor surface (231) of the image sensor (230); determine that the second image (BB) is in the second plurality of image regions (B3, B4) A fourth image area (B4) in the fourth image area, in which the second section of the definition plane (SE) of the reflected light (L) is projected to the image sensor of the image sensor (230)器surface (231). 如申請專利範圍第13項所述的方法,包括以下步驟:攝製第一影像(BA);在攝製該第一影像(BA)期間以一預設速度調節該影像感測器(230)與該第一光學有效元件(130)間的相對距離;在攝製該第一影像(BA)後或者在攝製該第一影像(BA)後的預設時間段後,且在調節該影像感測器(230)與該第一光學有效元件(130)間的相對距離期間,攝製該第二影像(BB)。 The method described in item 13 of the scope of patent application includes the following steps: filming a first image (BA); adjusting the image sensor (230) and the image sensor (230) at a predetermined speed during the filming of the first image (BA) The relative distance between the first optically effective elements (130); after the first image (BA) is captured or after a preset period of time after the first image (BA) is captured, and the image sensor ( 230) During the relative distance between the first effective optical element (130) and the second image (BB). 如申請專利範圍第13或16項所述的方法,包括以下 步驟:確定該第一影像(BA)之第一多個影像區域(B1,B2)中的一第一影像區域(B1),在該第一影像區域中,該反射光(L)的清晰度平面(SE)的第一分區被投射至該影像感測器(230)的影像感測器表面(231);以及/或者確定該第一影像(BA)之該第一多個影像區域(B1,B2)中的一第二影像區域(B2),在該第二影像區域中,該反射光(L)的清晰度平面(SE)的第二分區未被投射至該影像感測器(230)的影像感測器表面(231);以及/或者確定該第二影像(BB)之第二多個影像區域(B3,B4)中的一第三影像區域(B3),在該第三影像區域中,該反射光(L)的清晰度平面(SE)的第一分區未被投射至該影像感測器(230)的影像感測器表面(231);以及/或者確定該第二影像(BB)之該第二多個影像區域(B3,B4)中的一第四影像區域(B4),在該第四影像區域中,該反射光(L)的清晰度平面(SE)的第二分區被投射至該影像感測器(230)的影像感測器表面(231)。 The method described in item 13 or 16 of the scope of the patent application includes the following Step: Determine a first image area (B1) in the first plurality of image areas (B1, B2) of the first image (BA), in the first image area, the clarity of the reflected light (L) The first partition of the plane (SE) is projected onto the image sensor surface (231) of the image sensor (230); and/or the first plurality of image areas (B1) of the first image (BA) are determined , B2) in a second image area (B2), in the second image area, the second partition of the definition plane (SE) of the reflected light (L) is not projected to the image sensor (230 ) The image sensor surface (231); and/or determine a third image area (B3) in the second plurality of image areas (B3, B4) of the second image (BB), in the third image In the area, the first section of the definition plane (SE) of the reflected light (L) is not projected to the image sensor surface (231) of the image sensor (230); and/or the second image is determined A fourth image area (B4) in the second plurality of image areas (B3, B4) of (BB), in the fourth image area, the second image area (SE) of the reflected light (L) The two partitions are projected onto the image sensor surface (231) of the image sensor (230). 如申請專利範圍第15項所述的方法,其中該第一影像(BA)的第一及第二影像區域(B1,B2)分別對該元件(B)的一部分進行成像,該部分實質上對應於該第二影像(BB)的第三及第四影像區域(B3,B4)中之該元件(B)的部分;以及/或者其中該第一影像(BA)中該清晰度平面(SE)的該第一分區以及該第二影像(BB)中該清晰度平面(SE)的該第二分區在一 預設景深(ST)內被投射至該影像感測器(230)的影像感測器表面(231);以及其中該第一影像(BA)中該清晰度平面(SE)的該第二分區以及該第二影像(BB)中該清晰度平面(SE)的該第一分區在該預設景深(ST)外被投射至該影像感測器(230)的影像感測器表面(231)。 The method described in item 15 of the scope of patent application, wherein the first and second image areas (B1, B2) of the first image (BA) respectively image a part of the element (B), and this part substantially corresponds to The part of the element (B) in the third and fourth image regions (B3, B4) of the second image (BB); and/or the definition plane (SE) in the first image (BA) The first partition of the second image (BB) and the second partition of the definition plane (SE) in a The image sensor surface (231) projected to the image sensor (230) within a preset depth of field (ST); and the second partition of the definition plane (SE) in the first image (BA) And the first partition of the definition plane (SE) in the second image (BB) is projected to the image sensor surface (231) of the image sensor (230) outside the preset depth of field (ST) . 如申請專利範圍第15項所述的方法,包括以下步驟:將該第一影像區域(B1)自該第一影像(BA)截出且將該第四影像區域(B4)自該第二影像(BB)截出,以及將截出之該第一與該第四影像區域(B1,B4)接合在一起,以產生第三影像(BC);以及/或者基於該第一影像(BA)的該第一影像區域(B1)及/或該第二影像(BB)的第四影像區域(B4)及/或該第三影像(BC)來確定該元件(B)是否具有至少一故障;以及若該元件(B)具有至少一故障,則提供關於該元件(B)的故障資訊。 The method described in item 15 of the scope of patent application includes the following steps: cutting out the first image area (B1) from the first image (BA) and the fourth image area (B4) from the second image (BB) Cut out, and join the cut out first and fourth image areas (B1, B4) together to generate a third image (BC); and/or based on the first image (BA) The first image area (B1) and/or the fourth image area (B4) of the second image (BB) and/or the third image (BC) to determine whether the component (B) has at least one fault; and If the component (B) has at least one fault, provide fault information about the component (B). 如申請專利範圍第13至16、18與19項中任一項所述的方法,其中若該支架(140)具有含軟鐵的元件,則透過該所產生的磁場來使得該支架(140)沿該光軸(OA)朝第一方向相對該影像感測器(230)發生變形。 The method according to any one of items 13 to 16, 18, and 19 of the scope of patent application, wherein if the stent (140) has an element containing soft iron, the stent (140) is made to be made by the generated magnetic field Deformed relative to the image sensor (230) along the optical axis (OA) toward the first direction. 如申請專利範圍第13至16、18與19項中任一項所述的方法,其中若該支架(140)具有永磁的元件,則根據該電流在線圈 (121)中的電流方向,透過該所產生的磁場來使得該支架(140)朝該第一方向或一第二方向相對該影像感測器(230)發生變形,其中該第二方向反向於該第一方向。Such as the method described in any one of items 13 to 16, 18 and 19 in the scope of the patent application, wherein if the stent (140) has a permanent magnet element, the coil is The direction of the current in (121), through the generated magnetic field, causes the bracket (140) to deform relative to the image sensor (230) in the first direction or in a second direction, wherein the second direction is reversed In the first direction.
TW107111652A 2017-04-03 2018-04-02 Optical component detection system and method for detecting optical component TWI714839B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017003231.9A DE102017003231A1 (en) 2017-04-03 2017-04-03 Optical component detection system and method for detecting at least one component
DE102017003231.9 2017-04-03
??102017003231.9 2017-04-03

Publications (2)

Publication Number Publication Date
TW201842300A TW201842300A (en) 2018-12-01
TWI714839B true TWI714839B (en) 2021-01-01

Family

ID=61691955

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107111652A TWI714839B (en) 2017-04-03 2018-04-02 Optical component detection system and method for detecting optical component

Country Status (6)

Country Link
JP (1) JP7128881B2 (en)
CN (1) CN110651165B (en)
DE (1) DE102017003231A1 (en)
SG (1) SG11201909202QA (en)
TW (1) TWI714839B (en)
WO (1) WO2018184792A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030050A1 (en) * 2001-01-26 2003-02-13 Byung-Kon Choi Apparatus and method of inspecting semiconductor wafer
JP2004097292A (en) * 2002-09-05 2004-04-02 Olympus Corp Imaging device for endoscope
JP3831318B2 (en) * 2002-08-22 2006-10-11 オリンパス株式会社 Endoscopic imaging device
JP5274733B1 (en) * 2011-10-13 2013-08-28 オリンパスメディカルシステムズ株式会社 Imaging unit and endoscope
US20150282692A1 (en) * 2012-12-21 2015-10-08 Olympus Winter & Ibe Gmbh Electromagnetic actuator for a surgical instrument
US20150297311A1 (en) * 2013-12-23 2015-10-22 Camplex, Inc. Surgical visualization systems
JP2016206408A (en) * 2015-04-22 2016-12-08 オリンパス株式会社 Imaging device and endoscope

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539778B2 (en) * 1984-11-22 1996-10-02 株式会社日立製作所 Inspection method and inspection device
JPS61241605A (en) * 1985-04-19 1986-10-27 Yoshiaki Ihara Image processing device
US5289318A (en) * 1990-07-31 1994-02-22 Canon Kabushiki Kaisha Optical apparatus provided with a driving unit for moving a lens
JPH04166906A (en) * 1990-10-31 1992-06-12 Sony Corp Original position detecting device for lens barrel
JP3701353B2 (en) * 1995-09-29 2005-09-28 大日本印刷株式会社 Image acquisition device
JP4081806B2 (en) * 1999-10-18 2008-04-30 富士フイルム株式会社 Autofocus camera and photographing method
TW556038B (en) * 2001-06-29 2003-10-01 Arc Design Inc Control system of zoom lens for digital still cameras
DE102008018586A1 (en) 2008-04-12 2009-11-05 Mühlbauer Ag Optical detection device and method for detecting surfaces of components
GB0809037D0 (en) * 2008-05-19 2008-06-25 Renishaw Plc Video Probe
JP5402277B2 (en) * 2009-06-16 2014-01-29 コニカミノルタ株式会社 Actuator, drive device, and imaging device
DK2442720T3 (en) * 2009-06-17 2016-12-19 3Shape As Focus scan devices
JP5079049B2 (en) * 2009-11-17 2012-11-21 台湾東電化股▲ふん▼有限公司 Lens drive device
DE102011078631A1 (en) * 2011-07-05 2013-01-10 Robert Bosch Gmbh Arrangement and method for determining an imaging deviation of a camera
DE102011089055A1 (en) * 2011-12-19 2013-06-20 Technische Universität Berlin Instrument e.g. medical instrument e.g. endoscope for e.g. medical investigation, has actuator that is provided to adjust adjusting element along longitudinal axis of runner relative to stator and is designed as reluctance motor
JP5932343B2 (en) * 2012-01-13 2016-06-08 エイチエスティ・ビジョン株式会社 Observation equipment
KR101500034B1 (en) * 2012-06-29 2015-03-06 엘지이노텍 주식회사 Camera module
WO2014094828A1 (en) * 2012-12-18 2014-06-26 Carl Zeiss Industrielle Messtechnik Gmbh Zoom lens having setting error correction
US9031393B2 (en) * 2013-06-12 2015-05-12 Nvidia Corporation Methods for enhancing camera focusing performance using camera orientation
JP5954757B2 (en) 2015-01-09 2016-07-20 上野精機株式会社 Appearance inspection device
DE102015117276B4 (en) * 2015-10-09 2018-09-06 Carl Zeiss Industrielle Messtechnik Gmbh Method and device for measuring a test object with improved measuring accuracy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030050A1 (en) * 2001-01-26 2003-02-13 Byung-Kon Choi Apparatus and method of inspecting semiconductor wafer
JP3831318B2 (en) * 2002-08-22 2006-10-11 オリンパス株式会社 Endoscopic imaging device
JP2004097292A (en) * 2002-09-05 2004-04-02 Olympus Corp Imaging device for endoscope
JP5274733B1 (en) * 2011-10-13 2013-08-28 オリンパスメディカルシステムズ株式会社 Imaging unit and endoscope
US20150282692A1 (en) * 2012-12-21 2015-10-08 Olympus Winter & Ibe Gmbh Electromagnetic actuator for a surgical instrument
US20150297311A1 (en) * 2013-12-23 2015-10-22 Camplex, Inc. Surgical visualization systems
JP2016206408A (en) * 2015-04-22 2016-12-08 オリンパス株式会社 Imaging device and endoscope

Also Published As

Publication number Publication date
DE102017003231A1 (en) 2018-10-04
WO2018184792A1 (en) 2018-10-11
TW201842300A (en) 2018-12-01
CN110651165A (en) 2020-01-03
CN110651165B (en) 2021-07-23
JP2020518832A (en) 2020-06-25
SG11201909202QA (en) 2019-11-28
JP7128881B2 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
JP4471853B2 (en) Digital camera
US9473703B2 (en) Blur correction apparatus
US7352477B2 (en) Two dimensional position detecting device
CN1831622B (en) Image vibration reduction apparatus and camera equipped with the same
US7548257B2 (en) Optical apparatus for correcting vibration using ball-guides and method of resetting thereof
KR102177005B1 (en) Machine vision systems and alignment devices for substrate alignment
TWI714839B (en) Optical component detection system and method for detecting optical component
JPH11271833A (en) Shake correction device and shake correction camera
TWI634309B (en) Optical inspection apparatus
JP2020101783A (en) Image blur correction device, imaging device, and lens barrel
JPWO2013153645A1 (en) Imaging apparatus and image processing apparatus
US11001461B2 (en) Component mounting apparatus
US11796608B2 (en) Magnetic property measurement apparatus
JP2000164680A (en) Position adjusting device for wafer
JP2001174687A (en) Movable lens position detector
TWM551280U (en) Optical inspection apparatus
JP2018105899A (en) Image blur correction device and optical instrument using the same
JP2000193863A (en) Connection structure of a plurality of members, and its connection method
JP4963410B2 (en) Optical equipment
KR101861293B1 (en) Apparatus for inspecting optical lense and control mothod thereof
US20150207981A1 (en) Imaging apparatus
WO2014082298A1 (en) Projection objective lens system with infrared monitoring
JP2021089387A (en) Imaging apparatus and control method for the same
US20150264227A1 (en) Measuring apparatus and measuring method thereof
JPH1114899A (en) Lens position setting device