TWI713229B - 太陽能電池及其製造方法 - Google Patents

太陽能電池及其製造方法 Download PDF

Info

Publication number
TWI713229B
TWI713229B TW108111764A TW108111764A TWI713229B TW I713229 B TWI713229 B TW I713229B TW 108111764 A TW108111764 A TW 108111764A TW 108111764 A TW108111764 A TW 108111764A TW I713229 B TWI713229 B TW I713229B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
solar cell
layer
substrate
dielectric
Prior art date
Application number
TW108111764A
Other languages
English (en)
Other versions
TW202038476A (zh
Inventor
林金龍
張凱伊
Original Assignee
長生太陽能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長生太陽能股份有限公司 filed Critical 長生太陽能股份有限公司
Priority to TW108111764A priority Critical patent/TWI713229B/zh
Publication of TW202038476A publication Critical patent/TW202038476A/zh
Application granted granted Critical
Publication of TWI713229B publication Critical patent/TWI713229B/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

太陽能電池包含基板、第一介電層、第二介電層以及第三介電層。第一介電層配置於基板上,第一介電層的密度為2-2.9g/cm3。第二介電層配置於第一介電層上。第三介電層配置於第二介電層上。

Description

太陽能電池及其製造方法
本發明係關於太陽能電池。
近年來,環境保護越來越受重視,人們努力研究各種再生能源,太陽能為其中之一。太陽能電池是一種可以將太陽能通過光伏效應轉成電能的裝置。然而,目前現有的太陽能電池的轉換效率較低,使得大部分接收到的太陽能變成廢熱逸散,無法成為電能。因此,提昇太陽能電池的轉換效率是目前需要改善的課題之一。
根據本揭露的一態樣,係提供一種太陽能電池。太陽能電池包含基板、第一介電層、第二介電層以及第三介電層。第一介電層配置於基板上,第一介電層的密度為2-2.9g/cm3。第二介電層配置於第一介電層上。第三介電層配置於第二介電層上。
根據本發明一或多個實施方式,第二介電層的密度小於第一介電層的密度。
根據本發明一或多個實施方式,第一介電層的折射率小於第二介電層的折射率。
根據本發明一或多個實施方式,第二介電層的折射率小於該第三介電層的折射率。
根據本發明一或多個實施方式,第一介電層及第二介電層包含氧化矽。
根據本發明一或多個實施方式,第一介電層的厚度小於30奈米。
根據本揭露的另一態樣,係提供一種太陽能電池的製造方法,包含提供基板;對基板執行氧化製程,以形成第一介電層於基板上,第一介電層的密度為2-2.9g/cm3;形成第二介電層於第一介電層上;以及形成第三介電層於第二介電層上。
根據本發明一或多個實施方式,氧化製程為熱氧化製程,熱氧化製程在700℃-1000℃下執行。
根據本發明一或多個實施方式,氧化製程為化學氧化製程,化學氧化製程使用硝酸或過氧化氫與基板反應。
根據本發明一或多個實施方式,第二介電層的密度小於第一介電層的密度。
100、200‧‧‧太陽能電池
110、410‧‧‧基板
120‧‧‧基極層
130‧‧‧射極層
140、240‧‧‧介電結構
150、250、420‧‧‧第一介電層
160、260、430‧‧‧第二介電層
170、270、440‧‧‧第三介電層
180‧‧‧金屬接觸
190‧‧‧金屬層
L1‧‧‧光線
L2‧‧‧光線
L3‧‧‧光線
L4‧‧‧光線
θ 1、θ 3、θ 5‧‧‧入射角
θ 2、θ 4、θ 6‧‧‧折射角
為讓本發明之上述和其他目的、特徵、優點與實施方式能更明顯易懂,所附圖式之詳細說明如下: 第1圖繪示根據本發明一些實施例的太陽能電池100的剖面示意圖。
第2圖繪示根據本發明一些實施例的基板110以及介電結構140的剖面示意圖。
第3圖繪示根據本發明一些實施例的太陽能電池200的剖面示意圖。
第4-7圖繪示根據本發明一實施例的太陽能電池的製造方法的各製程階段的剖面示意圖。
以下揭露提供許多不同實施例,或示例,以建置所提供之標的物的不同特徵。以下敘述之成份和排列方式的特定示例是為了簡化本公開。這些當然僅是做為示例,其目的不在構成限制。舉例而言,元件的尺寸不被揭露之範圍或數值所限制,但可以取決於元件之製程條件與/或所需的特性。
除非內容中有其他清楚的指稱,本文所使用的單數詞包含複數的指稱對象。透過參考「一實施例」這樣特定的指稱,在至少其中之一的本揭露的實施例中,表示一種特定的特徵、結構或特色,因此在各處的「在一實施例」,這樣的片語透過特別的指稱出現時,並不需要參考相同的實施方式,更進一步,在一或多實施方式中,這些特別的特徵、結構、或特色可以依合適的情況相互組合。
請參考第1圖,其繪示根據本發明一些實施例的 太陽能電池100的剖面示意圖。太陽能電池100包含基板110以及介電結構140。基板110包含基極層120以及射極層130。在一些實施例中,基板110可以為矽基材或其他合適的材料。在一些實施例中,基極層120以及射極層130可以分別為P型摻雜或N型摻雜。值得注意的是,基極層120與射極層130摻雜類型不同,例如基極層120為P型摻雜(如摻雜硼),而射極層130為N型摻雜(如摻雜磷)。或者,基極層120為N型摻雜(如摻雜磷),而射極層130為P型摻雜(如摻雜硼)。
介電結構140包含第一介電層150、第二介電層160以及第三介電層170。第一介電層150配置於基板110上。在一些實施例中,第一介電層150包含氧化矽(SiOx)。值得注意的是,第一介電層150的密度為2-2.9g/cm3,例如2.1g/cm3、2.2g/cm3、2.4g/cm3、2.6g/cm3或2.8g/cm3。在太陽能電池的製造過程中,容易形成缺陷於基材表面。在基材表面的缺陷會「困住(trap)」電流載子,使光伏效應產生的電流減小。使用較為緻密的第一介電層,可以大幅改善矽基材的表面缺陷,達到較好的鈍化效果,使得太陽能電池的轉換效率(conversion efficiency)得以提昇。在某些實施例中,第一介電層150的厚度小於約30奈米,例如25奈米、20奈米、15奈米或10奈米。
第二介電層160配置於第一介電層150上。在一些實施例中,第二介電層160的密度較第一介電層150低。在某些實施例中,第二介電層160包含多孔性材料,例如多 孔性的氧化矽(SiOx)。第二介電層160的厚度大於約20奈米,例如25奈米、30奈米、35奈米或40奈米。
第三介電層170配置於第二介電層160上。在一些實施例中,第三介電層170包含氮化矽(SiNx)。
在一些實施例中,太陽能電池100更包含金屬接觸180,配置於射極層130上。金屬接觸180與射極層130電性連接。在一些實施例中,金屬接觸180延伸穿過介電結構140而接觸射極層130。
在某些實施例中,太陽能電池100更包含金屬層190,配置於基極層120上與射極層130的相對側。在一些實施例中,金屬層190與基極層120直接接觸。金屬層190可以做為太陽能電池100底部的反射層,使得穿過介電結構140、射極層130及基極層120的光線得以反射再利用,增加太陽能電池100的轉換效率。
請參考第2圖,其繪示根據本發明一些實施例的基板110以及介電結構140的剖面示意圖。介電結構140係為三層結構,由於各層材料及密度的配置,使得各介電層的折射率係以特定的方式搭配,而使介電結構140整體的反射率得以降低。詳細而言,在一些實施例中,第一介電層150的折射率小於第二介電層160的折射率,而第二介電層160的折射率亦小於第三介電層170的折射率。如第2圖所示,光線L1自空氣射入第三介電層170而折射變成光線L2,由於空氣的折射率大於第三介電層170的折射率,入射角θ 1大於折射角θ 2。光線L2再以與折射角θ 2相同的入射角θ 3 射入第二介電層160而變成光線L3。由於第三介電層170的折射率大於第二介電層160的折射率,因此入射角θ 3大於折射角θ 4。同樣地,當光線L3射入第一介電層150而變成光線L4時,由於第二介電層160的折射率大於第一介電層150的折射率,入射角θ 5大於折射角θ 6。綜上,由於各層的折射率自光入射面遞減,因此光線的折射角亦隨之遞減。如此可以大幅降低介電結構140的反射率,因而提昇太陽能電池100的轉換效率。
請參考第3圖,其繪示根據本發明一些實施例的太陽能電池200的剖面示意圖。類似於太陽能電池100,太陽能電池200包含基板110以及介電結構140。與太陽能電池100不同的是,太陽能電池200包含介電結構240。
類似於介電結構140,介電結構240包含第一介電層250、第二介電層260以及第三介電層270。第一介電層250配置於基極層120上與射極層130的相對側。在一實施例中,第一介電層250包含氧化矽,且密度為2-2.9g/cm3,例如2.1g/cm3、2.2g/cm3、2.4g/cm3、2.6g/cm3或2.8g/cm3。在一些實施例中,第一介電層250的厚度小於30奈米,例如25奈米、20奈米、15奈米或10奈米。
第二介電層260配置於第一介電層250上與基極層120的相對側。在一些實施例中,第二介電層260的密度小於第一介電層250的密度。在某些實施例中,第二介電層260包含多孔性材料,例如多孔性的氧化矽(SiOx)。第二介電層260的厚度大於約20奈米,例如25奈米、30奈米、 35奈米或40奈米。
第三介電層270配置於第二介電層260上與第一介電層250的相對側。在一些實施例中,第三介電層170包含氮化矽(SiNx)。
此外,太陽能電池200亦包含複數個金屬接觸180。與太陽能電池100不同,太陽能電池200的金屬接觸180部分配置於射極層130上,另一部分則配置於基極層120上。進一步說明,配置於射極層130上的金屬接觸180穿過介電結構140而與射極層130接觸並電性連接。配置於基極層120上的金屬接觸180穿過介電結構240而與基極層120接觸並電性連接。因此,太陽能電池200具有雙面進光的特性,既可以自第三介電層170接收光線,亦可以自第三介電層270接收光線。
本發明亦提供一種太陽能電池的製造方法。第4-7圖繪示根據本發明一實施例的太陽能電池的製造方法的各製程階段的剖面示意圖。請參考第4圖,提供基板410。在一些實施例中,基板410包含矽。在一些實施例中,基板410類似於第1圖繪示的基板110,包含基極層與射極層。
請參考第5圖,使用氧化製程氧化基板410的表面,形成第一介電層420。在一些實施例中,氧化製程為熱氧化製程。熱氧化製程係在700℃-1000℃下執行,例如800℃或900℃。詳細而言,熱氧化製程係將基板410置入高溫爐,並通以大量氧氣,使氧氣與基板410的表面反應而形成第一介電層420。此外,在另一些實施例中,氧化製程為化 學氧化製程,化學氧化製程使用硝酸或過氧化氫,使其與基板410的表面反應而形成第一介電層420。值得注意的是,第一介電層420的厚度小於約30奈米,例如25奈米、20奈米、15奈米或10奈米。由於氧化製程相對於化學氣相沉積(chemical vapor deposition,CVD)製程的沉積速度較慢,若第一介電層420的厚度過大,例如大於30奈米,則製程時間會過長,影響太陽能電池的生產效率。第一介電層420包含氧化矽,且密度為2-2.9g/cm3,例如2.1g/cm3、2.2g/cm3、2.4g/cm3、2.6g/cm3或2.8g/cm3。使用結構較為緻密的第一介電層可以提昇鈍化的效果,使得太陽能電池效率提高。
請參考第6圖,形成第二介電層430於第一介電層420上。在一些實施例中,可以使用化學氣相沉積(chemical vapor deposition,CVD)製程來形成第二介電層430,例如電漿化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)。在另一些實施例中,可以使用原子層沉積(atomic layer deposition,ALD)形成第二介電層430。第二介電層430包含氧化矽,且第二介電層430的密度小於第一介電層420的密度。
請參考第7圖,形成第三介電層440於第二介電層430上。在一些實施例中,可以使用化學氣相沉積製程來形成第三介電層440,例如電漿化學氣相沉積。在一些實施例中,第三介電層440包含氮化矽。
如同前述之介電結構140或介電結構240,第 4-7圖所示的製程形成的第一介電層420、第二介電層430以及第三介電層440亦具有特定的折射率配置,使得太陽能電池的轉換效率得以提昇。詳細來說,第一介電層420、第二介電層430以及第三介電層440的折射率由第三介電層440向第一介電層420遞減。需了解到,第4-7圖所示的製程亦可以用於形成第1圖或第3圖繪示的介電結構140或介電結構240。
本發明提供一種新穎的太陽能電池,其具有三層的介電結構,可以降低太陽能電池的反射率,提昇光線的利用率。此外,由於配置較為緻密的氧化層於太陽能電池的基板上,因此可以達到較好的鈍化效果,改善基板表面的缺陷。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技術者,在不脫離本發明之精神與範圍內,當可作各種更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100‧‧‧太陽能電池
110‧‧‧基板
120‧‧‧基極層
130‧‧‧射極層
140‧‧‧介電結構
150‧‧‧第一介電層
160‧‧‧第二介電層
170‧‧‧第三介電層
180‧‧‧金屬接觸
190‧‧‧金屬層

Claims (8)

  1. 一種太陽能電池,包含:一基板;一第一介電層,配置於該基板上,該第一介電層的密度為2-2.9g/cm3;一第二介電層,配置於該第一介電層上,其中該第二介電層的密度小於該第一介電層的密度;以及一第三介電層,配置於該第二介電層上。
  2. 如請求項1所述之太陽能電池,其中該第一介電層的折射率小於該第二介電層的折射率。
  3. 如請求項1所述之太陽能電池,其中該第二介電層的折射率小於該第三介電層的折射率。
  4. 如請求項1所述之太陽能電池,其中該第一介電層及該第二介電層包含氧化矽。
  5. 如請求項1所述之太陽能電池,其中該第一介電層的厚度小於30奈米。
  6. 一種太陽能電池的製造方法,包含:提供一基板;對該基板執行一氧化製程,以形成一第一介電層於該基板上,該第一介電層的密度為2-2.9g/cm3; 形成一第二介電層於該第一介電層上,其中該第二介電層的密度小於該第一介電層的密度;以及形成一第三介電層於該第二介電層上。
  7. 如請求項6所述之製造方法,其中該氧化製程為一熱氧化製程,該熱氧化製程在700℃-1000℃下執行。
  8. 如請求項6所述之製造方法,其中該氧化製程為一化學氧化製程,該化學氧化製程使用硝酸或過氧化氫與該基板反應。
TW108111764A 2019-04-02 2019-04-02 太陽能電池及其製造方法 TWI713229B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108111764A TWI713229B (zh) 2019-04-02 2019-04-02 太陽能電池及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108111764A TWI713229B (zh) 2019-04-02 2019-04-02 太陽能電池及其製造方法

Publications (2)

Publication Number Publication Date
TW202038476A TW202038476A (zh) 2020-10-16
TWI713229B true TWI713229B (zh) 2020-12-11

Family

ID=74091111

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111764A TWI713229B (zh) 2019-04-02 2019-04-02 太陽能電池及其製造方法

Country Status (1)

Country Link
TW (1) TWI713229B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201125137A (en) * 2009-10-27 2011-07-16 Calisolar Inc Polarization resistant solar cell with oxygen rich interface
TW201246600A (en) * 2010-11-18 2012-11-16 S O I Tec Method for forming a buried metal layer structure
CN102903785A (zh) * 2011-07-28 2013-01-30 中国科学院沈阳科学仪器研制中心有限公司 一种采用增氢钝化提高太阳能电池片转换效率的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201125137A (en) * 2009-10-27 2011-07-16 Calisolar Inc Polarization resistant solar cell with oxygen rich interface
TW201246600A (en) * 2010-11-18 2012-11-16 S O I Tec Method for forming a buried metal layer structure
CN102903785A (zh) * 2011-07-28 2013-01-30 中国科学院沈阳科学仪器研制中心有限公司 一种采用增氢钝化提高太阳能电池片转换效率的方法

Also Published As

Publication number Publication date
TW202038476A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
AU2020363658B2 (en) Efficient back passivation crystalline silicon solar cell and manufacturing method therefor
TW201003934A (en) Method for manufacturing solar cell
JP2008181965A (ja) 積層型光電変換装置及びその製造方法
US20120227805A1 (en) Solar cell
TWI590473B (zh) 太陽能電池及其製造方法
TW201234614A (en) Optoelectronic device and method of fabricating the same
US20110061729A1 (en) Solar Cell and Method of Manufacturing the Same
KR100994924B1 (ko) 태양전지 및 그 제조방법
TWI713229B (zh) 太陽能電池及其製造方法
KR100906748B1 (ko) 태양 전지 및 이의 제조 방법
US20140048130A1 (en) Crystalline silicon solar cell water, and solar cell employing the same
CN215183999U (zh) 一种应用于隧穿型太阳能电池上的接触结构及带有该接触结构的太阳能电池
TW201327862A (zh) 導電基板及其製造方法,以及太陽能電池
CN216161746U (zh) 一种太阳电池的膜层结构
CN112349791B (zh) 太阳能电池及其制备方法
KR100999177B1 (ko) 태양 전지 및 이의 제조 방법
US8628991B2 (en) Solar cell and method for manufacturing the same
TWI701845B (zh) 太陽能電池結構以及太陽能電池氧化層的製造方法
CN115274871B (zh) 一种应用于隧穿型太阳能电池上的接触结构、带有该接触结构的太阳能电池及其制造方法
TWI701841B (zh) 太陽能電池、其表面鈍化結構及其表面鈍化方法
TW201240128A (en) Solar cell fabrication method
CN103107237B (zh) 单晶硅太阳能电池及其制作方法
JP3382141B2 (ja) 光電変換素子
CN114744051B (zh) 太阳能电池的生产方法及太阳能电池、光伏组件
TW200952185A (en) Solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees