TWI705664B - Silicon carbide power element, drive circuit and control method - Google Patents

Silicon carbide power element, drive circuit and control method Download PDF

Info

Publication number
TWI705664B
TWI705664B TW109100622A TW109100622A TWI705664B TW I705664 B TWI705664 B TW I705664B TW 109100622 A TW109100622 A TW 109100622A TW 109100622 A TW109100622 A TW 109100622A TW I705664 B TWI705664 B TW I705664B
Authority
TW
Taiwan
Prior art keywords
source voltage
gate
drive signal
silicon carbide
bridge drive
Prior art date
Application number
TW109100622A
Other languages
Chinese (zh)
Other versions
TW202127797A (en
Inventor
許甫任
洪建中
朱國廷
李傳英
Original Assignee
大陸商上海瀚薪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商上海瀚薪科技有限公司 filed Critical 大陸商上海瀚薪科技有限公司
Priority to TW109100622A priority Critical patent/TWI705664B/en
Application granted granted Critical
Publication of TWI705664B publication Critical patent/TWI705664B/en
Publication of TW202127797A publication Critical patent/TW202127797A/en

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

一種碳化矽功率元件,受一驅動器控制且具有一閘極至源極電壓以及一源極電壓,其中,該源極電壓根據該閘極至源極電壓上升而下降,或該源極電壓根據該閘極至源極電壓下降而上升,藉此抑制因該閘極至源極電壓變化而產生的一突波,從而抑制該碳化矽功率元件的串擾現象。A silicon carbide power device controlled by a driver and having a gate-to-source voltage and a source voltage, wherein the source voltage drops according to the increase of the gate-source voltage, or the source voltage according to the The gate-to-source voltage drops and rises, thereby suppressing a surge caused by the gate-to-source voltage change, thereby suppressing the crosstalk phenomenon of the silicon carbide power device.

Description

一種碳化矽功率元件、驅動電路及控制方法Silicon carbide power element, drive circuit and control method

本發明為有關一種功率元件、驅動電路及控制方法,尤指一種碳化矽功率元件、驅動電路及控制方法。The present invention relates to a power element, a driving circuit and a control method, in particular to a silicon carbide power element, a driving circuit and a control method.

碳化矽功率元件具備高工作電壓、可承受較高工作溫度、低導通電阻以及高開關頻率等優點,特別是碳化矽金氧半場效電晶體(SiC MOSFET)以及碳化矽絕緣柵雙極電晶體(SiC IGBT),適合用在近來需求強大的電動車以及5G通訊領域,相關技術可見於美國發明專利公告第US9,018,640 B1號、第US9,373,713 B2號、第US10,020,368 B2號、第US10,483,389 B2 號等。Silicon carbide power components have the advantages of high operating voltage, high operating temperature, low on-resistance and high switching frequency, especially the silicon carbide gold oxide half field effect transistor (SiC MOSFET) and silicon carbide insulated gate bipolar transistor ( SiC IGBT), suitable for use in the field of electric vehicles and 5G communications that are in strong demand recently. Related technologies can be found in the US Patent Publication No. US9,018,640 B1, US9,373,713 B2, US10,020,368 B2, US10, 483,389 B2 etc.

然而,相較於傳統矽功率元件,碳化矽功率元件閘極和源極的耐電壓範圍窄,且耐負壓的能力較差,在高開關頻率下,橋臂電路容易出現串擾現象(Crosstalk)。此問題已在由Binfeng Zhang等人於IEEE Transactions On Industrial Electronics, Vol. 64, No. 11, November 2017所發表的A Magnetic Coupling Based Gate Driver for Crosstalk Suppression of SiC MOSFETs有相關的描述。目前來說,碳化矽功率元件的串擾現象仍無法獲得有效解決。有鑑於此,傳統碳化矽功率元件仍有待改良之處。However, compared with traditional silicon power devices, the gate and source of silicon carbide power devices have a narrow withstand voltage range, and are less capable of withstanding negative voltage. Under high switching frequencies, the bridge arm circuit is prone to crosstalk (Crosstalk). This problem has been described in A Magnetic Coupling Based Gate Driver for Crosstalk Suppression of SiC MOSFETs published by Binfeng Zhang et al. in IEEE Transactions On Industrial Electronics, Vol. 64, No. 11, November 2017. Currently, the crosstalk phenomenon of silicon carbide power devices cannot be effectively solved. In view of this, traditional silicon carbide power components still need to be improved.

本發明的目的,在於改善習知碳化矽功率元件容易發生串擾現象的問題。The purpose of the present invention is to improve the problem of crosstalk in conventional silicon carbide power devices.

為達上述目的,本發明提供一種碳化矽功率元件的控制方法,該方法包括以下步驟:提供一碳化矽功率元件,該碳化矽功率元件受一驅動器控制且具有一閘極至源極電壓以及一源極電壓,該源極電壓至少具有一高準位、一低準位以及一介於該高準位和該低準位之間的中間準位;以及該驅動器交替地輸出一上橋驅動訊號和一下橋驅動訊號至該碳化矽功率元件的一閘極,其中,當該閘極至源極電壓根據該上橋驅動訊號或該下橋驅動訊號上升時,將該源極電壓從該中間準位下降至該低準位或從該高準位下降至該中間準位,當該閘極至源極電壓根據該上橋驅動訊號或該下橋驅動訊號下降時,將該源極電壓從該低準位上升至該中間準位或從該中間準位上升至該高準位。To achieve the above objective, the present invention provides a silicon carbide power device control method. The method includes the following steps: providing a silicon carbide power device, the silicon carbide power device is controlled by a driver and has a gate-to-source voltage and a The source voltage has at least a high level, a low level, and an intermediate level between the high level and the low level; and the driver alternately outputs an upper bridge driving signal and A low-bridge driving signal to a gate of the silicon carbide power device, wherein when the gate-to-source voltage rises according to the high-bridge driving signal or the low-bridge driving signal, the source voltage is from the intermediate level Drop to the low level or from the high level to the intermediate level, and when the gate-to-source voltage drops according to the upper bridge drive signal or the lower bridge drive signal, the source voltage changes from the low level The level rises to the intermediate level or rises from the intermediate level to the high level.

為達上述目的,本發明還提供一種碳化矽功率元件,受一驅動器控制且具有一閘極至源極電壓以及一源極電壓,其中,該源極電壓根據該閘極至源極電壓上升而下降,或該源極電壓根據該閘極至源極電壓下降而上升,藉此抑制因該閘極至源極電壓變化而產生的一突波。To achieve the above objective, the present invention also provides a silicon carbide power device, controlled by a driver and having a gate-to-source voltage and a source voltage, wherein the source voltage is increased according to the gate-to-source voltage. Decrease, or the source voltage rises according to the drop of the gate-to-source voltage, thereby suppressing a surge caused by the change of the gate-to-source voltage.

為達上述目的,本發明更提供一種驅動電路,包括:一碳化矽功率元件,具有一閘極至源極電壓及一源極電壓;一驅動器,係控制該碳化矽功率元件;以及一補償模組,係根據該閘極至源極電壓上升而控制該源極電壓下降,或根據該閘極至源極電壓下降而控制該源極電壓上升,藉此抑制因該閘極至源極電壓變化而產生的一突波。To achieve the above objective, the present invention further provides a driving circuit, including: a silicon carbide power device with a gate-to-source voltage and a source voltage; a driver for controlling the silicon carbide power device; and a compensation module The group controls the source voltage drop according to the gate-to-source voltage rise, or controls the source voltage rise according to the gate-source voltage drop, thereby suppressing the gate-source voltage change And there is a sudden wave.

本發明藉由控制該源極電壓,以抑制因該閘極至源極電壓的變化而產生的突波,從而解決碳化矽半導體功率元件所發生串擾現象的問題。The present invention controls the source voltage to suppress the surge generated by the change of the gate-to-source voltage, thereby solving the problem of crosstalk phenomenon of silicon carbide semiconductor power devices.

有關本發明的詳細說明及技術內容,現就配合圖式說明如下:The detailed description and technical content of the present invention are described as follows in conjunction with the drawings:

本發明揭示一種碳化矽功率元件的控制方法,應用在包括一碳化矽功率元件的驅動電路,該碳化矽功率元件可以為一絕緣閘極雙極性電晶體(Insulated Gate Bipolar Transistor,IGBT)、一金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)、一接面場效電晶體(Junction gate Field-Effect Transistor,JFET)或其他功率元件。該碳化矽功率元件受一驅動器控制且具有一閘極至源極電壓(Vgs)以及一源極電壓(Vs)。The present invention discloses a control method of a silicon carbide power element, which is applied to a drive circuit including a silicon carbide power element. The silicon carbide power element can be an insulated gate bipolar transistor (IGBT), a metal Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), a Junction gate Field-Effect Transistor (JFET) or other power components. The silicon carbide power device is controlled by a driver and has a gate-to-source voltage (Vgs) and a source voltage (Vs).

請參閱『圖1』,為本發明一實施例應用於半橋電路的示意圖,在此以該碳化矽功率元件應用於一半橋電路作為舉例說明,該半橋電路包括一控制器10、一上橋臂電路20以及一下橋臂電路30,該上橋臂電路20包括一第一驅動器21、一第一碳化矽功率元件22、一第一電感23、一第一電阻24以及複數個第一電容25,該第一電感23和該第一電阻24串接於該第一驅動器21和該第一碳化矽功率元件22之間,該第一電容25包括一閘汲極電容251、一閘源極電容252以及一汲源極電容253。該下橋臂電路30包括包括一第二驅動器31、一第二碳化矽功率元件32、一第二電感33、一第二電阻34以及複數個第二電容35,該第二電感33和該第二電阻34串接於該第二驅動器31和該第二碳化矽功率元件32之間,該第二電容35包括一閘汲極電容351、一閘源極電容352以及一汲源極電容353。Please refer to "FIG. 1", which is a schematic diagram of an embodiment of the present invention applied to a half-bridge circuit. Here, the silicon carbide power device is applied to a half-bridge circuit as an example. The half-bridge circuit includes a controller 10 and a top A bridge arm circuit 20 and a lower bridge arm circuit 30. The upper bridge arm circuit 20 includes a first driver 21, a first silicon carbide power element 22, a first inductor 23, a first resistor 24, and a plurality of first capacitors 25. The first inductor 23 and the first resistor 24 are connected in series between the first driver 21 and the first silicon carbide power element 22, and the first capacitor 25 includes a gate-drain capacitor 251 and a gate-source The capacitor 252 and a drain-source capacitor 253. The lower bridge arm circuit 30 includes a second driver 31, a second silicon carbide power element 32, a second inductor 33, a second resistor 34, and a plurality of second capacitors 35. The second inductor 33 and the first Two resistors 34 are connected in series between the second driver 31 and the second silicon carbide power device 32. The second capacitor 35 includes a gate-drain capacitor 351, a gate-source capacitor 352 and a drain-source capacitor 353.

請參閱『圖2』,為根據本發明一實施例的碳化矽功率元件的電壓輸出示意圖,該源極電壓(Vs)至少具有一高準位(H)、一低準位(L)以及一介於該高準位(H)和該低準位(L)之間的中間準位(M)。在驅動時,該第一驅動器21和該第二驅動器31交替地輸出一上橋驅動訊號(Gate signal 1)和一下橋驅動訊號(Gate signal 2)至該第一碳化矽功率元件22以及該第二碳化矽功率元件32的一閘極,本發明中,當該第一碳化矽功率元件22以及該第二碳化矽功率元件32的該閘極至源極電壓(Vgs)根據該上橋驅動訊號(Gate signal 1)或該下橋驅動訊號(Gate signal 2)上升時,係控制該源極電壓(Vs)從該中間準位(M)下降至該低準位(L)或從該高準位(H)下降至該中間準位(M);當第一碳化矽功率元件22以及該第二碳化矽功率元件32的該閘極至源極電壓(Vgs)根據該上橋驅動訊號(Gate signal 1)或該下橋驅動訊號(Gate signal 2)下降時,將該源極電壓(Vs)從該低準位上升(L)至該中間準位(M)或從該中間準位(M)上升至該高準位(H)。Please refer to "Figure 2", which is a schematic diagram of the voltage output of a silicon carbide power device according to an embodiment of the present invention. The source voltage (Vs) has at least a high level (H), a low level (L), and a dielectric The middle level (M) between the high level (H) and the low level (L). During driving, the first driver 21 and the second driver 31 alternately output an upper bridge driving signal (Gate signal 1) and a lower bridge driving signal (Gate signal 2) to the first silicon carbide power device 22 and the second A gate of two silicon carbide power devices 32. In the present invention, when the gate-to-source voltage (Vgs) of the first silicon carbide power device 22 and the second silicon carbide power device 32 is based on the upper bridge drive signal When (Gate signal 1) or the lower bridge drive signal (Gate signal 2) rises, the source voltage (Vs) is controlled to drop from the intermediate level (M) to the low level (L) or from the high level The level (H) drops to the intermediate level (M); when the gate-to-source voltage (Vgs) of the first silicon carbide power device 22 and the second silicon carbide power device 32 is based on the upper bridge drive signal (Gate signal 1) or the lower bridge drive signal (Gate signal 2) drops, the source voltage (Vs) rises from the low level (L) to the middle level (M) or from the middle level (M) ) Rise to the high level (H).

如『圖2』所示,在時間點(t1)、(t5)時,該下橋驅動訊號(Gate signal 2)係下降,致使該閘極至源極電壓(Vgs)產生負峰值(negative peak),此時,控制該源極電壓(Vs)從該中間準位(M)上升至該高準位(H),以抑制或降低該閘極至源極電壓(Vgs)的突波(spike);在時間點(t2)、(t6)時,該上橋驅動訊號(Gate signal 1)係上升,致使該閘極至源極電壓(Vgs)產生正峰值(positive peak),此時,控制該源極電壓(Vs)從該中間準位(M)下降至該低準位(L),以抑制或降低該閘極至源極電壓(Vgs)的突波;在時間點(t3)時,該上橋驅動訊號(Gate signal 1)係下降,致使該閘極至源極電壓(Vgs)產生負峰值,此時,控制該源極電壓(Vs)從該中間準位(M)上升至該高準位(H),以抑制或降低該閘極至源極電壓(Vgs)的突波;在時間點(t4)時,該下橋驅動訊號(Gate signal 2)係上升,致使該閘極至源極電壓(Vgs)產生正峰值,此時,控制該源極電壓(Vs)從該中間準位(M)下降至該低準位(L)。『圖2』中,Vgs為未採用本發明方法的閘極至源極電壓,可明顯看到有突波的發生;Vgs’為採用本發明方法的閘極至源極電壓,可明顯看到突波受到抑制和改善。As shown in "Figure 2", at time points (t1) and (t5), the lower bridge drive signal (Gate signal 2) drops, causing the gate-to-source voltage (Vgs) to produce a negative peak (Vgs) ), at this time, the source voltage (Vs) is controlled to rise from the middle level (M) to the high level (H) to suppress or reduce the gate-to-source voltage (Vgs) spike ); At time points (t2) and (t6), the upper bridge drive signal (Gate signal 1) rises, causing the gate-to-source voltage (Vgs) to generate a positive peak. At this time, control The source voltage (Vs) drops from the middle level (M) to the low level (L) to suppress or reduce the gate-to-source voltage (Vgs) surge; at time point (t3) , The upper bridge drive signal (Gate signal 1) drops, causing the gate-to-source voltage (Vgs) to generate a negative peak value. At this time, the source voltage (Vs) is controlled to rise from the middle level (M) to The high level (H) is used to suppress or reduce the gate-to-source voltage (Vgs) surge; at the time point (t4), the lower bridge drive signal (Gate signal 2) rises, causing the gate The pole-to-source voltage (Vgs) generates a positive peak value. At this time, the source voltage (Vs) is controlled to drop from the intermediate level (M) to the low level (L). In "Figure 2", Vgs is the gate-to-source voltage without using the method of the present invention, and the occurrence of surge can be clearly seen; Vgs' is the gate-to-source voltage using the method of the present invention, which can be clearly seen The surge is suppressed and improved.

請參閱『圖3』,為本發明一實施例的邏輯方塊示意圖,用以說明控制方法的判斷和操作機制。本實施例中,先經由方塊41或方塊42判斷該上橋驅動訊號(Gate signal 1)為上升或下降,以及方塊43或方塊44判斷該下橋驅動訊號(Gate signal 2)為上升或下降。方塊41以及方塊43判斷後將關聯於驅動訊號上升的一第一結果傳送至方塊45,方塊42以及方塊44判斷後將關聯於驅動訊號下降的一第二結果傳送至方塊46,本實施例中,方塊45和方塊46為一或閘。若任一該第一結果的輸出為有效時,則將觸發方塊47,即控制該源極電壓(Vs)下降;反之,若任一該第二結果的輸出為有效時,則將觸發方塊48,即控制該源極電壓(Vs)上升,從而達到抑制或降低該閘極至源極電壓(Vgs)的突波的效果。Please refer to "FIG. 3", which is a schematic logic block diagram of an embodiment of the present invention to illustrate the judgment and operation mechanism of the control method. In this embodiment, firstly, block 41 or block 42 determines whether the upper bridge driving signal (Gate signal 1) is rising or falling, and block 43 or block 44 determines whether the lower bridge driving signal (Gate signal 2) is rising or falling. After the judgment of block 41 and block 43, a first result related to the increase of the driving signal is transmitted to block 45. After the judgment of block 42 and block 44, a second result related to the decrease of the driving signal is transmitted to block 46. In this embodiment , Block 45 and Block 46 are an OR gate. If the output of any of the first results is valid, block 47 will be triggered, that is, the source voltage (Vs) will be controlled to drop; on the contrary, if the output of any of the second results is valid, block 48 will be triggered , That is, the source voltage (Vs) is controlled to rise, so as to achieve the effect of suppressing or reducing the gate-to-source voltage (Vgs) surge.

請參閱『圖4』,為本發明另一實施例的邏輯方塊示意圖,相較於『圖3』,本實施例多了方塊491、方塊492以及方塊493,當方塊491偵測到該上橋驅動訊號(Gate signal 1)或該下橋驅動訊號(Gate signal 2)的波形發生變化時將改變輸出(即邊緣觸發(Edge trigger)),而透過方塊492致使該源極電壓(Vs)的上升或下降發生一延遲,該延遲即該源極電壓(Vs)的上升或下降持續的時間,最終觸發方塊493而讓該源極電壓(Vs)的上升或下降持續一段時間。Please refer to "FIG. 4", which is a schematic diagram of the logic block of another embodiment of the present invention. Compared with "FIG. 3", this embodiment has more blocks 491, 492, and 493. When block 491 detects the upper bridge When the waveform of the driving signal (Gate signal 1) or the lower bridge driving signal (Gate signal 2) changes, the output (ie, edge trigger) will be changed, and the source voltage (Vs) will rise through block 492 Or, a delay occurs when the source voltage (Vs) rises or falls. The delay is the duration of the rise or fall of the source voltage (Vs), and finally block 493 is triggered to allow the source voltage (Vs) to rise or fall for a period of time.

發明中,該上橋驅動訊號(Gate signal 1)及該下橋驅動訊號(Gate signal 2)的偵測以及該閘極至源極電壓(Vgs)的控制可由一補償模組來執行,該補償模組包括一第一補償單元以及一第二補償單元,該第一補償單元偵測該上橋驅動訊號(Gate signal 1)以及該下橋驅動訊號(Gate signal 2),當該閘極至源極電壓(Vgs)基於該上橋驅動訊號(Gate signal 1)或該下橋驅動訊號(Gate signal 2)上升時,控制該源極電壓(Vs)下降,該第二補償單元偵測該上橋驅動訊號(Gate signal 1)或該下橋驅動訊號(Gate signal 2),當該閘極至源極電壓(Vgs)基於該上橋驅動訊號(Gate signal 1)或該下橋驅動訊號(Gate signal 2)下降時,控制該源極電壓上升(Vs)。請參閱『圖5』,為本發明一實施例的電路結構示意圖,本實施例採用一三階閘極驅動器(Three level gate driver)作為該補償模組舉例說明,包括一驅動器21、一碳化矽功率元件22、一第一電感23、一第一電阻24、複數個第一電容25、一第一放大器26以及一第二放大器27,該第一電感23和該第一電阻24串接於該驅動器21和該碳化矽功率元件22之間,該第一電容25包括一閘汲極電容251、一閘源極電容252以及一汲源極電容253。該驅動器21輸出一驅動訊號至該碳化矽功率元件22,該驅動訊號可為一正電壓或一負電壓。該第一放大器26和該第二放大器27分別接收一第一輸入訊號261以及一第二輸入訊號271,該第一輸入訊號261以及該第二輸入訊號271係關聯於該驅動訊號,舉例來說,當該驅動訊號為該正電壓時,該第一輸入訊號261以及該第二輸入訊號271均為一低電平,該源極電壓下降;當該驅動訊號為該負電壓時,該第一輸入訊號261以及該第二輸入訊號271均為一高電平,該源極電壓上升(第0階);當該驅動訊號為該正電壓時,該第一輸入訊號261以及該第二輸入訊號271均為一低電平,該源極電壓下降(第1階);當該驅動訊號變化為該負電壓或變化為該正電壓後,該第一輸入訊號261以及該第二輸入訊號271分別為該高電平以及該低電平,或該低電平以及該高電平,該源極電壓保持不變(第2階)。In the invention, the detection of the gate signal (Gate signal 1) and the gate signal (Gate signal 2) and the control of the gate-to-source voltage (Vgs) can be performed by a compensation module. The compensation The module includes a first compensation unit and a second compensation unit. The first compensation unit detects the upper bridge drive signal (Gate signal 1) and the lower bridge drive signal (Gate signal 2), and when the gate goes to the source When the pole voltage (Vgs) rises based on the upper bridge drive signal (Gate signal 1) or the lower bridge drive signal (Gate signal 2), the source voltage (Vs) is controlled to decrease, and the second compensation unit detects the upper bridge Drive signal (Gate signal 1) or the lower bridge drive signal (Gate signal 2), when the gate-to-source voltage (Vgs) is based on the upper bridge drive signal (Gate signal 1) or the lower bridge drive signal (Gate signal) 2) When it falls, the source voltage is controlled to rise (Vs). Please refer to "FIG. 5", which is a schematic diagram of the circuit structure of an embodiment of the present invention. This embodiment uses a three-level gate driver as an example of the compensation module, including a driver 21, a silicon carbide The power element 22, a first inductor 23, a first resistor 24, a plurality of first capacitors 25, a first amplifier 26 and a second amplifier 27 are connected in series with the first inductor 23 and the first resistor 24 Between the driver 21 and the silicon carbide power device 22, the first capacitor 25 includes a gate-drain capacitor 251, a gate-source capacitor 252 and a drain-source capacitor 253. The driver 21 outputs a driving signal to the silicon carbide power device 22, and the driving signal can be a positive voltage or a negative voltage. The first amplifier 26 and the second amplifier 27 respectively receive a first input signal 261 and a second input signal 271. The first input signal 261 and the second input signal 271 are related to the driving signal, for example , When the driving signal is the positive voltage, the first input signal 261 and the second input signal 271 are both a low level, the source voltage drops; when the driving signal is the negative voltage, the first The input signal 261 and the second input signal 271 are both a high level, and the source voltage rises (0th order); when the driving signal is the positive voltage, the first input signal 261 and the second input signal 271 is a low level, the source voltage drops (first order); when the driving signal changes to the negative voltage or changes to the positive voltage, the first input signal 261 and the second input signal 271 are respectively For the high level and the low level, or the low level and the high level, the source voltage remains unchanged (second order).

請參閱『圖6』,為本發明又一實施例的邏輯方塊示意圖,係以Cambridge Scanner單擊電路舉例說明,方塊61(G1 Rising Flag)和方塊62(G2 Rising Flag)分別表示該上橋驅動訊號(Gate signal 1)和該下橋驅動訊號(Gate signal 2)為上升,方塊63採用一反或閘,方塊64則為一第一單擊觸發器。方塊65(G1 Dropping Flag)和方塊66(G2 Dropping Flag)分別表示該上橋驅動訊號(Gate signal 1)和該下橋驅動訊號(Gate signal 2)為下降,方塊67採用一或閘,方塊68則為一第二單擊觸發器。其中,方塊64的第一單擊觸發器包括一反及閘641、一電容642、一電阻643以及一反閘644,方塊68的第二單擊觸發器包括一或閘681、一電容682、一電阻683以及一反閘684。Please refer to "FIG. 6", which is a schematic diagram of a logic block diagram of another embodiment of the present invention. The Cambridge Scanner click circuit is taken as an example. Block 61 (G1 Rising Flag) and block 62 (G2 Rising Flag) respectively represent the upper bridge drive The signal (Gate signal 1) and the lower bridge drive signal (Gate signal 2) are rising, block 63 uses an inverted OR gate, and block 64 is a first click trigger. Block 65 (G1 Dropping Flag) and block 66 (G2 Dropping Flag) respectively indicate that the upper bridge drive signal (Gate signal 1) and the lower bridge drive signal (Gate signal 2) are falling. Block 67 uses an OR gate, and block 68 It is a second click trigger. Wherein, the first click trigger in block 64 includes an inverter 641, a capacitor 642, a resistor 643, and an inverter 644, and the second click trigger in block 68 includes an OR gate 681, a capacitor 682, A resistor 683 and a reverse gate 684.

請參閱『圖7』,為本發明另一實施例的電路結構示意圖,相較於『圖5』,本實施例中採用一D型正反器(D-latch flip-flop)28,該D型正反器(D-latch flip-flop)28耦接至一邏輯單元70,其中,該D型正反器28根據該邏輯單元70產生的一第一輸入訊號281以及一第二輸入訊號282而決定一輸出283,該邏輯單元70的邏輯方塊示意圖則參閱『圖8』,方塊71、72分別代表該上橋驅動訊號(Gate signal 1)和該下橋驅動訊號(Gate signal 2),方塊73為一延遲器,方塊74、75為一或閘,方塊76、77為一反向器。該上橋驅動訊號(Gate signal 1)和該下橋驅動訊號(Gate signal 2)輸入該邏輯單元70後將產生CLK訊號、/CLK訊號、DCLK訊號以及/DCLK訊號,其中,CLK訊號、DCLK訊號係該第一輸入訊號281,而輸入該D型正反器28的D端子,/CLK訊號、/DCLK訊號係該第二輸入訊號282,而輸入該D型正反器28的CLK端子,『圖9』為根據『圖7』的實施例的電壓輸出示意圖。Please refer to "FIG. 7", which is a schematic diagram of the circuit structure of another embodiment of the present invention. Compared with "FIG. 5", a D-latch flip-flop 28 is used in this embodiment. The D-latch flip-flop 28 is coupled to a logic unit 70. The D-latch flip-flop 28 is based on a first input signal 281 and a second input signal 282 generated by the logic unit 70 To determine an output 283, the logic block diagram of the logic unit 70 is shown in "Figure 8." Blocks 71 and 72 represent the upper bridge drive signal (Gate signal 1) and the lower bridge drive signal (Gate signal 2), respectively. 73 is a retarder, blocks 74 and 75 are an OR gate, and blocks 76 and 77 are an inverter. After the upper bridge drive signal (Gate signal 1) and the lower bridge drive signal (Gate signal 2) are input to the logic unit 70, a CLK signal, a /CLK signal, a DCLK signal, and a /DCLK signal are generated. Among them, the CLK signal, the DCLK signal The first input signal 281 is input to the D terminal of the D-type flip-flop 28, and the /CLK signal and /DCLK signal are the second input signal 282, which is input to the CLK terminal of the D-type flip-flop 28, " Fig. 9 is a schematic diagram of voltage output according to the embodiment of Fig. 7.

請參閱『圖10』,為本發明一實施例的流程示意圖。將該上橋驅動訊號(Gate signal 1)和該下橋驅動訊號視為一脈衝寬度調變訊號(PWM signal),當該脈衝寬度調變訊號的狀態發生變化(方塊81)時,會被偵測到且調整源極電壓(Vs)為上升或下降(方塊82),且,將引發該閘極至源極電壓(Vgs)發生變化(方塊83),而該閘極至源極電壓(Vgs)的改變將使汲極至源極電壓(Vds)也發生變化(方塊84),並造成該閘極至源極電壓(Vgs)發生振鈴(Ringing)現象(方塊85),其中,該汲極至源極電壓(Vds)的變化將產生密勒效應(Miller effect)(方塊86)。最終,由於該源極電壓(Vs)會基於該脈衝寬度調變訊號的變化而調整,從而抑制或降低該閘極至源極電壓(Vgs)的突波(方塊87)。Please refer to "Figure 10", which is a schematic flowchart of an embodiment of the present invention. The upper bridge driving signal (Gate signal 1) and the lower bridge driving signal are regarded as a pulse width modulation signal (PWM signal), and when the state of the pulse width modulation signal changes (block 81), it will be detected Measure and adjust the source voltage (Vs) to rise or fall (Block 82), and cause the gate-to-source voltage (Vgs) to change (Block 83), and the gate-to-source voltage (Vgs) ) Will cause the drain-to-source voltage (Vds) to also change (block 84), and cause the gate-to-source voltage (Vgs) to ring (block 85), wherein the drain The change to the source voltage (Vds) will produce the Miller effect (block 86). Finally, since the source voltage (Vs) is adjusted based on the change of the pulse width modulation signal, the gate-to-source voltage (Vgs) surge is suppressed or reduced (block 87).

綜上,本發明藉由控制該源極電壓,以抑制因該閘極至源極電壓(Vgs)的變化而產生的突波,從而解決碳化矽半導體功率元件所發生串擾現象的問題。In summary, the present invention controls the source voltage to suppress the surge caused by the change of the gate-to-source voltage (Vgs), thereby solving the problem of crosstalk phenomenon of silicon carbide semiconductor power devices.

10:控制器 20:上橋臂電路 21:第一驅動器 22:第一碳化矽功率元件 23:第一電感 24:第一電阻 25:第一電容 251:閘汲極電容 252:閘源極電容 253:汲源極電容 26:第一放大器 261:第一輸入訊號 27:第二放大器 271:第二輸入訊號 28:D型正反器 281:第一輸入訊號 282:第二輸入訊號 283:輸出訊號 30:下橋臂電路 31:第二驅動器 32:第二碳化矽功率元件 33:第二電感 34:第二電阻 35:第二電容 351:閘汲極電容 352:閘源極電容 353:汲源極電容 41、42、43、44、45、46、47、48、491、492、493:方塊 61、62、63、64、65、66、67、68:方塊 641:反及閘 642:電容 643:電阻 644:反閘 681:或閘 682:電容 683:電阻 684:反閘 70:邏輯單元 71、72、73、74、75、76、77、81、82、83、84、85、86、87:方塊 Gate signal 1:上橋驅動訊號 Gate signal 2:下橋驅動訊號 Vs:源極電壓 Vgs 、Vgs’:閘極至源極電壓 H:高準位 M:中間準位 L:低準位 10: Controller 20: Upper arm circuit 21: first drive 22: The first silicon carbide power element 23: The first inductance 24: first resistance 25: The first capacitor 251: gate and drain capacitance 252: gate source capacitance 253: Drain source capacitance 26: The first amplifier 261: First input signal 27: second amplifier 271: second input signal 28: D-type flip-flop 281: The first input signal 282: second input signal 283: Output signal 30: lower arm circuit 31: second drive 32: The second silicon carbide power element 33: second inductor 34: second resistor 35: second capacitor 351: gate and drain capacitance 352: gate source capacitance 353: Drain source capacitance 41, 42, 43, 44, 45, 46, 47, 48, 491, 492, 493: cube 61, 62, 63, 64, 65, 66, 67, 68: cube 641: reverse and gate 642: Capacitor 643: Resistance 644: Reverse Gate 681: or gate 682: Capacitor 683: Resistance 684: Reverse Gate 70: Logic Unit 71, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87: cube Gate signal 1: Upper bridge drive signal Gate signal 2: lower bridge drive signal Vs: source voltage Vgs, Vgs’: gate-to-source voltage H: High level M: Middle level L: Low level

『圖1』,為本發明一實施例應用於半橋電路的電路結構示意圖。 『圖2』,為根據本發明的碳化矽功率元件的電壓輸出示意圖。 『圖3』,為本發明一實施例的邏輯方塊示意圖。 『圖4』,為本發明另一實施例的邏輯方塊示意圖。 『圖5』,為本發明一實施例的電路結構示意圖。 『圖6』,為本發明又一實施例的邏輯方塊示意圖。 『圖7』,為本發明另一實施例的電路結構示意圖。 『圖8』,為『圖7』的邏輯方塊示意圖。 『圖9』,為根據『圖7』的實施例的電壓輸出示意圖。 『圖10』,為本發明一實施例的操作流程示意圖。 "Figure 1" is a schematic diagram of a circuit structure applied to a half-bridge circuit according to an embodiment of the present invention. "Figure 2" is a schematic diagram of the voltage output of the silicon carbide power device according to the present invention. "Figure 3" is a schematic diagram of a logic block of an embodiment of the present invention. "Figure 4" is a schematic diagram of a logic block of another embodiment of the present invention. "Figure 5" is a schematic diagram of the circuit structure of an embodiment of the present invention. "Figure 6" is a schematic diagram of a logic block of another embodiment of the present invention. "Figure 7" is a schematic diagram of the circuit structure of another embodiment of the present invention. "Figure 8" is the logical block diagram of "Figure 7". "Figure 9" is a schematic diagram of voltage output according to the embodiment of "Figure 7". "Figure 10" is a schematic diagram of the operation flow of an embodiment of the present invention.

Gate signal 1:上橋驅動訊號 Gate signal 1: Upper bridge drive signal

Gate signal 2:下橋驅動訊號 Gate signal 2: lower bridge drive signal

Vs:源極電壓 Vs: source voltage

Vgs、Vgs’:閘極至源極電壓 Vgs, Vgs’: gate-to-source voltage

H:高準位 H: High level

M:中間準位 M: Middle level

L:低準位 L: Low level

Claims (6)

一種碳化矽功率元件的控制方法,該方法包括以下步驟:提供一碳化矽功率元件,該碳化矽功率元件受一驅動器控制且具有一閘極至源極電壓以及一源極電壓,該源極電壓至少具有一高準位、一低準位以及一介於該高準位和該低準位之間的中間準位;以及該驅動器交替地輸出一上橋驅動訊號和一下橋驅動訊號至該碳化矽功率元件的一閘極,其中,當該閘極至源極電壓根據該上橋驅動訊號或該下橋驅動訊號上升時,將該源極電壓從該中間準位下降至該低準位或從該高準位下降至該中間準位,當該閘極至源極電壓根據該上橋驅動訊號或該下橋驅動訊號下降時,將該源極電壓從該低準位上升至該中間準位或從該中間準位上升至該高準位。 A method for controlling a silicon carbide power element, the method comprising the following steps: providing a silicon carbide power element, the silicon carbide power element is controlled by a driver and has a gate-to-source voltage and a source voltage, the source voltage At least a high level, a low level, and an intermediate level between the high level and the low level; and the driver alternately outputs an upper bridge driving signal and a lower bridge driving signal to the silicon carbide A gate of a power device, wherein when the gate-to-source voltage rises according to the upper bridge drive signal or the lower bridge drive signal, the source voltage drops from the intermediate level to the low level or from The high level drops to the intermediate level, and when the gate-to-source voltage drops according to the upper bridge drive signal or the lower bridge drive signal, the source voltage rises from the low level to the intermediate level Or rise from the middle level to the high level. 一種碳化矽功率元件,受一驅動器控制且具有一閘極至源極電壓以及一源極電壓,該驅動器交替地輸出一上橋驅動訊號和一下橋驅動訊號至該碳化矽功率元件的一閘極,其中,該源極電壓根據該閘極至源極電壓上升而下降,或該源極電壓根據該閘極至源極電壓下降而上升,藉此抑制因該閘極至源極電壓變化而產生的一突波。 A silicon carbide power device controlled by a driver and having a gate-to-source voltage and a source voltage. The driver alternately outputs an upper bridge drive signal and a lower bridge drive signal to a gate of the silicon carbide power device , Wherein the source voltage drops according to the gate-to-source voltage rise, or the source voltage rises according to the gate-source voltage drop, thereby suppressing the gate-to-source voltage change. Of a sudden wave. 如請求項2所述的碳化矽功率元件,其中,該源極電壓至少具有一高準位、一低準位以及一介於該高準位和該低準位之間的中間準位,其中,當該閘極至源極電壓根據該上橋驅動訊號或該下橋驅動訊號上升時,將該源極電壓從該中間準位下降至該低準位或從該高準位下降至該中間準位,當該閘極至源極電壓根據該上橋驅動訊號或該下橋驅動訊號下降時,將該源極電壓從該低準位上升至該中間準位或從該中間準位上升至該高準位。 The silicon carbide power device according to claim 2, wherein the source voltage has at least a high level, a low level, and an intermediate level between the high level and the low level, wherein, When the gate-to-source voltage rises according to the upper bridge drive signal or the lower bridge drive signal, the source voltage drops from the intermediate level to the low level or from the high level to the intermediate level When the gate-to-source voltage drops according to the upper bridge drive signal or the lower bridge drive signal, the source voltage rises from the low level to the intermediate level or from the intermediate level to the High level. 一種驅動電路,包括: 一碳化矽功率元件,具有一閘極至源極電壓及一源極電壓;一驅動器,係控制該碳化矽功率元件;以及一補償模組,該補償模組接收由該驅動器交替地輸出的一上橋驅動訊號和一下橋驅動訊號,且該補償模組根據該上橋驅動訊號和該下橋驅動訊號致使該閘極至源極電壓上升而控制該源極電壓下降,或根據該閘極至源極電壓下降而控制該源極電壓上升,藉此抑制因該閘極至源極電壓變化而產生的一突波。 A driving circuit, including: A silicon carbide power device having a gate-to-source voltage and a source voltage; a driver that controls the silicon carbide power device; and a compensation module that receives an alternate output from the driver The upper bridge drive signal and the lower bridge drive signal, and the compensation module causes the gate-to-source voltage to rise according to the upper-bridge drive signal and the lower-bridge drive signal to control the source voltage to drop, or according to the gate-to-source voltage The source voltage drops to control the source voltage to rise, thereby suppressing a surge caused by the gate-to-source voltage change. 如請求項4所述的驅動電路,其中,該補償模組包括一第一補償單元以及一第二補償單元,該第一補償單元偵測該上橋驅動訊號以及該下橋驅動訊號,當該閘極至源極電壓基於該上橋驅動訊號或該下橋驅動訊號上升時,控制該源極電壓下降,該第二補償單元偵測該上橋驅動訊號以及該下橋驅動訊號,當該閘極至源極電壓基於該上橋驅動訊號或該下橋驅動訊號下降時,控制該源極電壓上升。 The driving circuit according to claim 4, wherein the compensation module includes a first compensation unit and a second compensation unit, and the first compensation unit detects the upper bridge driving signal and the lower bridge driving signal, and when the When the gate-to-source voltage rises based on the upper bridge drive signal or the lower bridge drive signal, the source voltage is controlled to drop, the second compensation unit detects the upper bridge drive signal and the lower bridge drive signal, and when the gate When the pole-to-source voltage is lowered based on the upper bridge driving signal or the lower bridge driving signal, the source voltage is controlled to rise. 如請求項4所述的驅動電路,其中,該補償模組包括一D型正反器。 The driving circuit according to claim 4, wherein the compensation module includes a D-type flip-flop.
TW109100622A 2020-01-08 2020-01-08 Silicon carbide power element, drive circuit and control method TWI705664B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109100622A TWI705664B (en) 2020-01-08 2020-01-08 Silicon carbide power element, drive circuit and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109100622A TWI705664B (en) 2020-01-08 2020-01-08 Silicon carbide power element, drive circuit and control method

Publications (2)

Publication Number Publication Date
TWI705664B true TWI705664B (en) 2020-09-21
TW202127797A TW202127797A (en) 2021-07-16

Family

ID=74091536

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109100622A TWI705664B (en) 2020-01-08 2020-01-08 Silicon carbide power element, drive circuit and control method

Country Status (1)

Country Link
TW (1) TWI705664B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285378A1 (en) * 2010-05-18 2011-11-24 Shuji Tamaoka Drive device
US9059697B2 (en) * 2013-04-08 2015-06-16 Fujitsu Semiconductor Limited Drive circuit and drive method for driving normally-on-type transistor
US20190158084A1 (en) * 2017-11-23 2019-05-23 Infineon Technologies Ag Method and electronic circuit for driving a transistor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285378A1 (en) * 2010-05-18 2011-11-24 Shuji Tamaoka Drive device
US9059697B2 (en) * 2013-04-08 2015-06-16 Fujitsu Semiconductor Limited Drive circuit and drive method for driving normally-on-type transistor
US20190158084A1 (en) * 2017-11-23 2019-05-23 Infineon Technologies Ag Method and electronic circuit for driving a transistor device

Also Published As

Publication number Publication date
TW202127797A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
JP5047377B2 (en) Switching gate driver
CN109494969A (en) A kind of driving circuit of manufacturing silicon carbide semiconductor field-effect tube
KR20120030411A (en) Gate driver for enhancement-mode and depletion-mode wide bandgap semiconductor jefts
KR20090014402A (en) Switching circuit arrangement
CN112821730B (en) Novel driving topology, driving method thereof and crosstalk suppression method
CN113541461B (en) Gate inductance matching method for inhibiting silicon carbide MOSFET voltage overshoot
JP2009055696A (en) Gate drive circuit of semiconductor device and gate drive method
CN111342642B (en) Flyback power control method for driving silicon carbide MOSFET
US10615779B1 (en) Adaptive threshold control system for detecting and adjusting the duration of regions of operation during transistor turn on and turn off
TWI762412B (en) Totem-pole pfc circuit
US9293284B1 (en) Soft-switching gate control
TWI705664B (en) Silicon carbide power element, drive circuit and control method
CN113541455A (en) SiC MOSFET module continuously adjustable multi-level driving circuit
CN117713511A (en) Single-power-supply-adjustable driving resistor SiC MOSFET driving circuit
CN216699815U (en) Novel driving topology
US11695408B2 (en) Gate drive apparatus and method thereof
Frank Simple slew-rate control technique cuts switching losses
JPH05161343A (en) Driving circuit for mos gate transistor
US11108388B1 (en) Silicon carbide power device, driving circuit and control method
JP7038633B2 (en) Power converter
CN113162377A (en) Silicon carbide power assembly, driving circuit and control method
JP2018007373A (en) Power conversion device
TWI676355B (en) Hybrid drive circuit
US10027218B2 (en) Power semiconductor element driving circuit
JP7384409B2 (en) Gate drive circuit and power supply circuit