TWI704674B - 半導體元件及其製造方法 - Google Patents

半導體元件及其製造方法 Download PDF

Info

Publication number
TWI704674B
TWI704674B TW108131966A TW108131966A TWI704674B TW I704674 B TWI704674 B TW I704674B TW 108131966 A TW108131966 A TW 108131966A TW 108131966 A TW108131966 A TW 108131966A TW I704674 B TWI704674 B TW I704674B
Authority
TW
Taiwan
Prior art keywords
barrier layer
gate
layer
recess
semiconductor device
Prior art date
Application number
TW108131966A
Other languages
English (en)
Other versions
TW202111919A (zh
Inventor
張皓筌
任楷
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW108131966A priority Critical patent/TWI704674B/zh
Application granted granted Critical
Publication of TWI704674B publication Critical patent/TWI704674B/zh
Publication of TW202111919A publication Critical patent/TW202111919A/zh

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本發明實施例提供一種半導體元件及其製造方法。半導體元件包括基底、通道層、阻障層、閘極以及絕緣結構。基底具有凹陷。通道層設置於凹陷的表面上。阻障層設置於通道層的表面上。閘極設置於凹陷中且覆蓋阻障層的下部的表面。閘極的頂面低於基底的最頂面。絕緣結構設置於閘極上,且覆蓋阻障層的上部的表面。

Description

半導體元件及其製造方法
本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種埋入式電晶體元件及其製造方法。
近年來發展出具有埋入式字元線的隨機存取記憶體(dynamic random access memory,DRAM),以達到諸如降低字元線與位元線之間的寄生電容、提高DRAM的積集度等目的。然而,對於目前具有埋入式字元線的DRAM而言,電晶體的通道是形成於基底的靠近凹陷的區域中。如此一來,通道中的電荷可能在特定情況下往上移動到基底的頂面附近,或側向移動至鄰近的記憶胞元中,而對電晶體或DRAM的可靠度造成影響。
本發明提供一種半導體元件及其製造方法,可具有較高的可靠度。
根據本發明一些實施例,半導體元件包括基底、通道層、阻障層、閘極以及絕緣結構。基底具有凹陷。通道層設置於凹陷的表面上。阻障層設置於通道層的表面上。閘極設置於凹陷中且覆蓋阻障層的下部的表面。閘極的頂面低於基底的最頂面。絕緣結構設置於閘極上,且覆蓋阻障層的上部的表面。
根據本發明一些實施例,半導體元件包括基底、第一通道層、第一阻障層、第一閘極、第二閘極以及絕緣結構。基底具有凹陷。第一通道層設置於凹陷的表面上。第一阻障層設置於第一通道層的表面上。第一閘極與第二閘極設置於第一阻障層的底部上,且彼此分離。絕緣結構,設置於凹陷中。絕緣結構的至少一部分位於第一閘極與第二閘極之間。
根據本發明一些實施例,一種半導體元件的製造方法包括:在基底的表面形成凹陷;在凹陷中依序形成通道層與阻障層;在凹陷中填入導體材料;移除導體材料的上部,其中導體材料的剩餘部分形成閘極;以及在凹陷中填入絕緣結構。
根據本發明一些實施例,一種半導體元件的製造方法包括:在基底的表面形成凹陷;在凹陷中依序形成第一通道層與第一阻障層;在第一阻障層的垂直延伸部分上形成彼此相對的第一虛設結構與第二虛設結構;在第一虛設結構與第二虛設結構之間形成遮罩結構;移除第一虛設結構與第二虛設結構;在遮罩結構與第一阻障層之間形成第一閘極與第二閘極;移除遮罩結構;以及在凹陷內填入絕緣結構。
基於上述,本發明實施例的半導體元件為埋入式的半導體元件。在本發明實施例的半導體元件中,通道是形成於位在基底的凹陷內側的通道層與阻障層中,而非位於基底內部。因此,可避免通道中的載子經由基底內部移動到基底上的汲極或源極中而造成漏電,故可提高半導體元件的可靠度(reliability)。此外,也可避免通道中的載子經由基底移動至鄰近的元件中,或避免載子由鄰近的元件經由基底移動至半導體元件。換言之,可減少半導體元件與其他元件之間的干擾。在一些實施例中,半導體元件包括硬遮罩圖案。硬遮罩圖案設置於汲極/源極與基底之間,而可進一步阻絕由基底移動至汲極/源極的電荷。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
請參照圖1與圖2A,進行步驟S100,提供基底100。基底100例如是半導體基底。
進行步驟S102,在基底100上形成硬遮罩圖案102。硬遮罩圖案102具有開口W。圖2A僅繪示出單一開口W,但硬遮罩圖案102實際上可具有多個開口W。開口W可定義出後續所形成的凹陷RS(如圖2B所示)的位置、尺寸與形狀。開口W可為長條形,使後續所形成的凹陷RS為長條形的溝槽(trench)。
請參照圖2B,進行步驟S104,以移除基底100的被硬遮罩圖案102暴露出來的一部分,而形成凹陷RS。在一些實施例中,以硬遮罩圖案102為遮罩而對基底100進行蝕刻製程(例如是非等向性蝕刻製程),以形成凹陷RS。如此一來,凹陷RS的側壁可實質上共面於硬遮罩圖案102的開口W之側壁。
請參照圖2C,進行步驟S106,以依序形成通道層104與阻障層106。硬遮罩圖案102的頂面、硬遮罩圖案102的側壁以及基底100的凹陷RS的表面被通道層104覆蓋,而通道層104的表面被阻障層106覆蓋。在一些實施例中,形成通道層104的方法與形成阻障層106的方法可分別包括磊晶製程(epitaxial process)。通道層104的材料與阻障層106的材料可分別包括III族氮化物或III-V族化合物半導體材料。舉例而言,通道層104的材料可包括GaN、GaAs、其類似者或其組合,而阻障層106的材料可包括InAlGaN、AlGaN、AlInN、AlN、其類似者或其組合。通道層104與阻障層106所形成的異質接面(hetero junction)可產生自發性極化與壓電極化效應,而在此介面附近形成高濃度的二維電子氣(two dimensional electron gas,2DEG)或二維電洞氣(two dimensional hole gas,2DHG)。如此一來,由通道層104與阻障層106構成的異質接面可作為高電子遷移率電晶體(high electron mobility transistor,HEMT)或高電洞遷移率電晶體(high hole mobility transistor,HHMT)的主動區。在一些實施例中,通道層104與阻障層的厚度分別為3 nm至50 nm。在此些實施例中,阻障層106具有足夠的厚度,因此在通道層104與阻障層106的介面附近可形成連續延伸的二維電子氣或二維電洞氣。
請參照圖2D,進行步驟S108,以薄化阻障層106的水平延伸部分106a。阻障層106具有水平延伸部分106a與垂直延伸部分106b。水平延伸部分106a覆蓋於硬遮罩圖案102的頂面以及凹陷RS的底面上,而垂直延伸部分106b覆蓋於硬遮罩圖案102的側壁以及凹陷RS的側壁上。在一些實施例中,可藉由非等向性蝕刻製程來移除水平延伸部分106a的頂部,而薄化水平延伸部分106a。另一方面,阻障層106的垂直延伸部分106b未被薄化,而可保持原本的厚度。如此一來,此時水平延伸部分106a的厚度可小於垂直延伸部分106b的厚度。舉例而言,此時水平延伸部分106a的厚度T 106a為2 nm至49 nm,而垂直延伸部分106b的厚度T 106b可為3 nm至50 nm。當阻障層106的水平延伸部分106a的厚度T 106a小於通道層104的厚度時,原本形成於水平延伸部106a與通道層104的介面附近的二維電子氣或二維電洞氣不再存在。另一方面,由於阻障層106的垂直延伸部分106b並未被薄化,故可保留形成於垂直延伸部分106b與通道層104的介面附近的二維電子氣或二維電洞氣。如此一來,在未對阻障層106與通道層104構成的異質接面施加偏壓的情況下,二維電子氣或二維電洞氣在垂直方向上延伸,而在水平方向上中斷。因此,由阻障層106與通道層104構成的異質接面可作為增強型(enhancement mode)HEMT/HHMT(或稱為通道常關型(normally off)HEMT/HHMT)的主動區。
請參照圖2E,進行步驟S110,以形成閘極材料層108。閘極材料層108可全面地覆蓋於圖2D所示的結構上,且延伸至凹陷RS中。如此一來,阻障層106的水平延伸部分106a與垂直延伸部分106b均被閘極材料層108覆蓋。在一些實施例中,閘極材料層108填滿凹陷RS。閘極材料層108的材料可包括金屬或金屬氮化物、金屬矽化物或其他可與阻障層106形成蕭特基接觸(schottky contact)的材料。形成閘極材料層的方法可包括化學氣相沈積製程、物理氣相沈積製程或其組合。
請參照圖2F,進行步驟S112,以移除閘極材料層108的一些部分,而形成閘極110。在一些實施例中,閘極材料層108的位於基底100上方的一部分以及位於凹陷RS的上部的另一部分被移除,而保留下來的閘極材料層108形成閘極110。在此些實施例中,閘極110的頂面可低於基底100的最頂面。移除閘極材料層108的方法可以是蝕刻製程或化學機械研磨製程。
請參照圖2G,進行步驟S114,以在閘極110上形成絕緣結構112。在一些實施例中,形成絕緣結構112的方法包括藉由化學氣相沈積法在圖2F所示的結構上形成絕緣材料層(未繪示)。接著,移除絕緣材料層的一些部分,而形成絕緣結構112。絕緣結構112由閘極110的頂面朝上延伸,且絕緣結構112的頂面低於阻障層106的最頂面。在一些實施例中,絕緣結構112的頂面高於基底100的最頂面,且可低於、齊平於或高於硬遮罩圖案102的頂面。舉例而言,絕緣結構112的頂面與阻障層106的最頂面之間的高度差可為30 nm至60 nm。此外,絕緣結構112的材料可包括氧化矽、氮化矽或其組合。
請參照圖2H,進行步驟S116,以在絕緣結構112上形成遮罩結構114。在一些實施例中,遮罩結構114的頂面可實質上共面於阻障層106的最頂面。例如,遮罩結構114的厚度T 114可為約30 nm至約60 nm。此外,遮罩結構114的材料相對於絕緣結構112的材料而具有適當的蝕刻選擇比。例如,絕緣結構112的材料可為氮化矽,而遮罩結構114的材料可為氧化矽。
請參照圖2I,進行步驟S118,以移除阻障層106的位於硬遮罩圖案102上的部分。在一些實施例中,可以遮罩結構114作為遮罩而對阻障層106進行蝕刻,且以硬遮罩圖案102作為蝕刻停止層,而移除阻障層106的位於硬遮罩圖案102上的部分。此時,硬遮罩圖案102、通道層104與阻障層106的頂面可實質上共面。
請參照圖2J,進行步驟S120,以在遮罩結構114的相對兩側形成汲極116與源極118。在一些實施例中,形成汲極116與源極118的方法包括在圖2I所示的結構上形成導體材料層(未繪示)。導體材料層覆蓋硬遮罩圖案102的頂面、通道層104的頂面、阻障層106的頂面以及遮罩結構114的頂面。接著,對導體材料層進行平坦化製程(例如是化學機械研磨製程)。在進行平坦化製程時,遮罩結構114可作為平坦化製程的停止層。隨後,可圖案化此經平坦化的導體材料層,而形成汲極116與源極118。汲極116與源極118彼此分離,且分別覆蓋位於遮罩結構114的相對兩側的阻障層106、通道層104與硬遮罩圖案102。在一些實施例中,汲極116的材料與源極118的材料分別包括金屬或其他可與阻障層106形成歐姆接觸(ohmic contact)的材料。汲極116的厚度與源極118的厚度可實質上等於遮罩結構114的厚度T 114,例如是30 nm至60 nm。
請參照圖2K,進行步驟S122,以移除遮罩結構114。在一些實施例中,可藉由蝕刻製程(例如是等向性蝕刻製程或非等向性蝕刻製程)移除遮罩結構114。由於遮罩結構114的材料可相對於絕緣結構112的材料而具有適當的蝕刻選擇比,故在對遮罩結構114進行蝕刻時,可以下方的絕緣結構112作為蝕刻停止層。在移除遮罩結構114後,可暴露出絕緣結構112的頂面以及汲極116、源極118的彼此相對的側壁。
請參照圖2L,進行步驟S124,以在絕緣結構112上形成另一絕緣結構120。絕緣結構120的頂面可實質上共面於汲極116、源極118的頂面。絕緣結構120的材料可包括氧化矽、氮化矽、類似者或其組合。
至此,已完成本發明一些實施例的半導體元件10。半導體元件10可為埋入式HEMT/HHMT,而至少部分地埋入於基底100的凹陷中。當閘極110未經施加偏壓或所接收的電壓小於特定閥值時,在通道層104與阻障層106所構成的異質接面中的二維電子氣或二維電洞氣不連續,使半導體元件10處於關閉狀態(off state)。另一方面,當閘極110所接收到的電壓大於上述特定閥值時,在通道層104與阻障層106構成的異質接面中形成連續的二維電子氣或二維電洞氣,而使半導體元件10處於導通狀態(on state)。此外,在一些實施例中,半導體元件10可應用於DRAM積體電路,而可在半導體元件10的汲極116或源極118上形成電容結構(未繪示)。
基於上述,半導體元件10的通道(亦即上述的二維電子氣或二維電洞氣)是形成於基底100的凹陷RS內側,而非位於基底100的靠近凹陷的區域中。因此,可避免通道中的載子經由基底100內部移動到基底100上的汲極116或源極118中而造成的漏電,而可提高半導體元件10的可靠度。此外,也可避免通道中的載子經由基底100移動至鄰近的元件中,或避免載子由鄰近的元件經由基底100移動至半導體元件10。換言之,可減少半導體元件10與其他元件之間的干擾。在一些實施例中,半導體元件10包括硬遮罩圖案102。硬遮罩圖案102設置於汲極116/源極118與基底100之間,而可進一步阻絕由基底100移動至汲極116/源極118的電荷。
請參照圖3與圖4A,在進行步驟S100至步驟S108(如圖2A至圖2D所示)之後,進行步驟S200,以在阻障層106的垂直延伸部分106b的表面上形成虛設結構(dummy structure)200。形成虛設結構200的方法例如形成實質上全面覆蓋阻障層106的虛設材料層(未繪示)。接著,對虛設材料層進行非等向性蝕刻,而移除虛設材料層的水平延伸部分。如此一來,虛設材料層的覆蓋阻障層106的水平延伸部分106a的部分被移除,而覆蓋阻障層106的垂直延伸部分106b的部分保留下來而形成虛設結構200。在一些實施例中,虛設結構200的頂面實質上共面於阻障層106的最頂面。虛設結構200的材料可包括氧化矽、氮化矽或其組合。此外,虛設結構200的厚度T 200可為3 nm至50 nm。
請參照圖4B,進行步驟S202,以在基底100的凹陷RS中形成遮罩結構202。在一些實施例中,遮罩結構202的頂面可實質上共面於虛設結構200、阻障層106的最頂面。遮罩結構202的材料相對於虛設結構200的材料而具有適當的蝕刻選擇比。舉例而言,遮罩結構202的材料可為氮化矽,而虛設結構200的材料可為氧化矽。
請參照圖4C,進行步驟S204,以移除虛設結構200。在一些實施例中,可藉由等向性蝕刻或非等向性蝕刻製程移除虛設結構200。使遮罩結構202與兩側的阻障層106之間具有間隙G。在一些實施例中,間隙G環繞凹陷RS。
請參照圖4D,進行步驟S206,以在凹陷RS中形成彼此分離的第一閘極204與第二閘極206。形成第一閘極204與第二閘極206的方法可包括在圖4C的結構上以化學氣相沈積製程或物理氣相沈積製程形成閘極材料層。閘極材料層覆蓋阻障層106的最頂面,且填入間隙G中。接著,移除閘極材料層的位於阻障層106最頂面上方的部分以及位於間隙G中的上部,而留下閘極材料層的位於間隙G底部的部分。此時,閘極材料層的保留部分可環繞凹陷RS。隨後,可對閘極材料層的保留部分進行圖案化製程,以形成位於凹陷RS的兩相對側壁上且彼此分離的第一閘極204與第二閘極206。第一閘極204與第二閘極206分別位於間隙G的底部,且第一閘極204與第二閘極206的頂面低於基底100的最頂面。在一些實施例中,第一閘極204的厚度T 204可實質上等於第二閘極206的厚度T 206,而可分別為3 nm至50 nm。另外,第一閘極204、第二閘極206的材料可相似於圖2F所示的閘極110的材料。
請參照圖4E,進行步驟S208,以移除遮罩結構202。例如可藉由等向性蝕刻或非等向性蝕刻來移除遮罩結構202。在移除遮罩結構202之後,暴露出阻障層106的底部,且暴露出第一閘極204、第二閘極206的相對於阻障層106的垂直延伸部分106b的側壁。
請參照圖4F,進行步驟S210,以依序形成通道層208以及阻障層210。此時所形成的通道層208及阻障層210可分別稱為第二通道層與第二阻障層,而先前形成的通道層104與阻障層106可分別稱為第一通道層與第一阻障層。在一些實施例中,通道層208與阻障層210依序且共形地形成於圖4E所示的結構上。換言之,阻障層106、第一閘極204以及第二閘極206的暴露出的表面被通道層208覆蓋,且通道層208被阻障層210覆蓋。通道層208及阻障層210的材料以及形成方法相似於通道層104及阻障層106的材料及形成方法。相似於通道層104與阻障層106所形成的異質接面,通道層208與阻障層210可形成另一異質接面。請參照圖4F,第一閘極204位於兩個異質接面之間。相似地,第二閘極206也位於此兩個異質接面之間。如此一來,第一閘極204與第二閘極206均可經配置以接收閘極電壓,而控制此兩個異質接面。
請參照圖4G,進行步驟S212,以薄化阻障層210的水平延伸部分210a。此步驟可與S108相似。
請參照圖4H,進行步驟S214,以形成絕緣結構212。絕緣結構212填入於由阻障層210的底部以及垂直延伸部分210b定義出的凹陷中。由圖4H可看出,絕緣結構212具有對應於第一閘極204、第二閘極206的位置的下部以及位於下部上方的上部。絕緣結構212的下部之寬度小於絕緣結構212的上部之寬度。在一些實施例中,絕緣結構212的頂面低於阻障層210的最頂面。此外,絕緣結構212的頂面可高於基底100的最頂面,且可低於、齊平於或高於硬遮罩圖案102的頂面。舉例而言,絕緣結構212的厚度T 212可為3 nm至60 nm。另外,絕緣結構212的材料與形成方法可相似於圖2G所示的絕緣結構112之材料與形成方法,此處不再贅述。
隨後,進行步驟S216,以在絕緣結構212上方形成遮罩結構214。遮罩結構214填於阻障層210的垂直延伸部分210b與絕緣結構212的頂面所定義出的凹陷中。此步驟可與S116相似。
請參照圖4I,進行步驟S218,以移除通道層104、阻障層106、通道層208與阻障層210的位於硬遮罩圖案102上的部分。此時,硬遮罩圖案102、通道層104、阻障層106、通道層208與阻障層210的頂面可實質上共面。
請參照圖4J,進行步驟S220,以在遮罩結構214的相對兩側形成汲極216與源極218。汲極216與源極218彼此分離,且分別覆蓋位於遮罩結構214的相對兩側的阻障層210、通道層208、阻障層106、通道層104與硬遮罩圖案102。汲極216與源極218的材料、厚度及形成方法相似於圖2J所示的汲極116與源極118,此處不再贅述。
隨後,進行步驟S222,以移除遮罩結構214。在移除遮罩結構214後,可暴露出絕緣結構212的頂面以及汲極216、源極218的彼此相對的側壁。
請參照圖4K,進行步驟S224,以在絕緣結構212上形成另一絕緣結構220。絕緣結構220填入於汲極216、源極218的側壁與絕緣結構212的頂面所定義出來的凹陷中。
至此,已完成本發明一些實施例的半導體元件20。半導體元件20包括由通道層104與阻障層106構成的異質接面,且更包括由通道層208與阻障層210構成的另一異質接面。第一閘極204與第二閘極206分別位於此兩個異質接面之間,而均可經配置以接收電壓而控制分別形成於此兩個異質接面中的二維電子氣或二維電洞氣。
請參照圖5,所示的半導體元件30相似於圖4K所示的半導體元件20。以下僅描述半導體元件20與半導體元件30之間的差異,兩者相似處則不再贅述。半導體元件30並未包括通道層208與阻障層210。絕緣結構212可接觸阻障層106、第一閘極204與第二閘極206。絕緣結構220位於絕緣結構212上,且可接觸阻障層106以及汲極216、源極218的側壁。
綜上所述,本發明實施例的半導體元件為埋入式的半導體元件。在本發明實施例的半導體元件中,通道(亦即上述的二維電子氣或二維電洞氣)是形成於基底的凹陷內側,而非位於基底內部。因此,可避免通道中的載子經由基底內部移動到基底上的汲極或源極中而造成的漏電,故可提高半導體元件的可靠度。此外,也可避免通道中的載子經由基底移動至鄰近的元件中,或避免載子由鄰近的元件經由基底移動至半導體元件。換言之,可減少半導體元件與其他元件之間的干擾。在一些實施例中,半導體元件包括硬遮罩圖案。硬遮罩圖案設置於汲極/源極與基底之間,而可進一步阻絕由基底移動至汲極/源極的電荷。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10、20、30:半導體元件 100:基底 102:硬遮罩圖案 104、208:通道層 106、210:阻障層 106a、210a:水平延伸部分 106b、210b:垂直延伸部分 108:閘極材料層 110:閘極 112、120、212、220:絕緣結構 114、202、214:遮罩結構 116、216:汲極 118、218:源極 200:虛設結構 204:第一閘極 206:第二閘極 G:間隙 RS:凹陷 S100、S102、S104、S106、S108、S110、S112、S114、S116、S118、S120、S122、S124、S200、S202、S204、S206、S208、S210、S212、S214、S216、S218、S220、S222、S224:步驟 T 106a、T 106b、T 114、T 120、T 200、T 204、T 206、T 210a、T 210b、T 212:厚度 W:開口
圖1是本發明一些實施例的半導體元件的製造方法的流程圖。 圖2A至圖2L是圖1所示的半導體元件的製造方法中各階段的結構的剖視示意圖。 圖3是本發明一些實施例的半導體元件的製造方法的流程圖。 圖4A至圖4K是圖3所示的半導體元件的製造方法中各階段的結構的剖視示意圖。 圖5是本發明一些實施例的半導體元件的剖視示意圖。
10:半導體元件
100:基底
102:硬遮罩圖案
104:通道層
106:阻障層
106a:水平延伸部分
106b:垂直延伸部分
110:閘極
112、120:絕緣結構
116:汲極
118:源極
RS:凹陷

Claims (17)

  1. 一種半導體元件,包括:基底,具有凹陷;第一通道層,設置於所述基底的所述凹陷內的表面上;第一阻障層,設置於所述凹陷內的所述第一通道層的表面上;閘極,設置於所述凹陷中且覆蓋所述第一阻障層的下部的表面,其中所述閘極的頂面低於所述基底的最頂面;以及絕緣結構,設置於所述凹陷內並覆蓋所述閘極與所述第一阻障層的上部的表面,其中所述第一通道層的材料與所述第一阻障層的材料分別包括III族氮化物或III-V族化合物半導體材料。
  2. 如申請專利範圍第1項所述的半導體元件,更包括汲極與源極,設置於所述第一通道層與所述第一阻障層的頂面上,且位於所述閘極的相對兩側。
  3. 如申請專利範圍第1項所述的半導體元件,其中所述第一阻障層的水平延伸部分的厚度小於所述第一阻障層的垂直延伸部分的厚度。
  4. 如申請專利範圍第1項所述的半導體元件,其中所述第一通道層的材料包括GaN、GaAs或其組合。
  5. 如申請專利範圍第1項所述的半導體元件,其中所述第一阻障層的材料包括InAlGaN、AlGaN、AlInN、AlN或其組合。
  6. 如申請專利範圍第1項所述的半導體元件,其中所述閘極包括第一閘極與第二閘極,所述第一閘極與所述第二閘極設置於所述第一阻障層的底部上且彼此分離,且所述絕緣結構的至少一部分位於所述第一閘極與所述第二閘極之間。
  7. 如申請專利範圍第6項所述的半導體元件,更包括:第二通道層與第二阻障層,設置於所述絕緣結構與所述第一阻障層之間,其中所述第二通道層覆蓋所述第一阻障層、所述第一閘極與所述第二閘極的表面,且所述第二阻障層設置於所述第二通道層與所述絕緣結構之間。
  8. 如申請專利範圍第6項所述的半導體元件,更包括汲極與源極,設置於所述第一通道層與所述第一阻障層的頂面,且位於所述絕緣結構的相對兩側。
  9. 如申請專利範圍第8項所述的半導體元件,其中所述絕緣結構延伸至所述汲極與所述源極的彼此面向的側壁上。
  10. 如申請專利範圍第6項所述的半導體元件,更包括硬遮罩圖案,設置於所述基底的所述凹陷外的表面上,其中所述硬遮罩圖案的側壁與所述凹陷的側壁實質上共面,所述第一通道層與所述第一阻障層更延伸至所述硬遮罩圖案的所述側壁上。
  11. 一種半導體元件的製造方法,包括:在基底的表面形成凹陷;在所述凹陷中依序形成通道層與阻障層;在所述凹陷中填入導體材料; 移除所述導體材料的上部,其中所述導體材料的剩餘部分形成閘極;以及在所述凹陷中填入絕緣結構。
  12. 如申請專利範圍第11項所述的半導體元件的製造方法,更包括:薄化所述阻障層的水平延伸部分。
  13. 如申請專利範圍第11項所述的半導體元件的製造方法,更包括在所述通道層與所述阻障層的頂面上形成汲極與源極,其中所述汲極與所述源極位於所述閘極的相對兩側。
  14. 如申請專利範圍第13項所述的半導體元件的製造方法,其中形成所述汲極與所述源極的方法包括:在所述絕緣結構上形成遮罩結構;形成覆蓋所述遮罩結構的導體材料層;移除所述導體材料層的位於所述遮罩結構上方的部分,其中所述導體材料層的保留下來的部分形成所述汲極與所述源極;以及移除所述遮罩結構。
  15. 如申請專利範圍第14項所述的半導體元件的製造方法,其中在形成所述導體材料層之前,更包括移除所述通道層與所述阻障層的高於所述絕緣結構的部分。
  16. 一種半導體元件的製造方法,包括:在基底的表面形成凹陷;在所述凹陷中依序形成第一通道層與第一阻障層,其中所述 第一通道層的材料與所述第一阻障層的材料分別包括III族氮化物或III-V族化合物半導體材料;在所述第一阻障層的垂直延伸部分上形成彼此相對的第一虛設結構與第二虛設結構;在所述第一虛設結構與所述第二虛設結構之間形成遮罩結構;移除所述第一虛設結構與所述第二虛設結構;在所述遮罩結構與所述第一阻障層之間形成第一閘極與第二閘極;移除所述遮罩結構;以及在所述凹陷內填入絕緣結構。
  17. 如申請專利範圍第16項所述的半導體元件的製造方法,在填入所述絕緣結構之前,更包括:在所述第一阻障層、所述第一閘極與所述第二閘極上依序形成第二通道層與第二阻障層。
TW108131966A 2019-09-04 2019-09-04 半導體元件及其製造方法 TWI704674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108131966A TWI704674B (zh) 2019-09-04 2019-09-04 半導體元件及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108131966A TWI704674B (zh) 2019-09-04 2019-09-04 半導體元件及其製造方法

Publications (2)

Publication Number Publication Date
TWI704674B true TWI704674B (zh) 2020-09-11
TW202111919A TW202111919A (zh) 2021-03-16

Family

ID=73643991

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108131966A TWI704674B (zh) 2019-09-04 2019-09-04 半導體元件及其製造方法

Country Status (1)

Country Link
TW (1) TWI704674B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085671A (ja) * 1999-09-09 2001-03-30 Murata Mfg Co Ltd 電界効果型半導体装置
KR20060128489A (ko) * 2005-06-10 2006-12-14 주식회사 하이닉스반도체 리세스게이트공정을 이용한 반도체소자의 제조 방법
KR20070079813A (ko) * 2006-02-03 2007-08-08 주식회사 하이닉스반도체 반도체 소자의 리세스 게이트 형성방법
KR20080000980A (ko) * 2006-06-28 2008-01-03 주식회사 하이닉스반도체 벌브 타입의 리세스 채널을 갖는 반도체 소자의 제조방법
TW201639150A (zh) * 2015-04-28 2016-11-01 旺宏電子股份有限公司 半導體結構及其製造方法
TW201735265A (zh) * 2015-12-15 2017-10-01 台灣積體電路製造股份有限公司 半導體結構及其製造方法
TW201814793A (zh) * 2016-09-30 2018-04-16 台灣積體電路製造股份有限公司 半導體元件及其製造方法與閘極結構的形成方法
TW201838175A (zh) * 2017-04-10 2018-10-16 聯穎光電股份有限公司 高電子遷移率電晶體
TW201904027A (zh) * 2017-06-06 2019-01-16 旺宏電子股份有限公司 記憶體元件及其製作方法
TW201905979A (zh) * 2017-06-30 2019-02-01 台灣積體電路製造股份有限公司 半導體裝置之製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085671A (ja) * 1999-09-09 2001-03-30 Murata Mfg Co Ltd 電界効果型半導体装置
KR20060128489A (ko) * 2005-06-10 2006-12-14 주식회사 하이닉스반도체 리세스게이트공정을 이용한 반도체소자의 제조 방법
KR20070079813A (ko) * 2006-02-03 2007-08-08 주식회사 하이닉스반도체 반도체 소자의 리세스 게이트 형성방법
KR20080000980A (ko) * 2006-06-28 2008-01-03 주식회사 하이닉스반도체 벌브 타입의 리세스 채널을 갖는 반도체 소자의 제조방법
TW201639150A (zh) * 2015-04-28 2016-11-01 旺宏電子股份有限公司 半導體結構及其製造方法
TW201735265A (zh) * 2015-12-15 2017-10-01 台灣積體電路製造股份有限公司 半導體結構及其製造方法
TW201814793A (zh) * 2016-09-30 2018-04-16 台灣積體電路製造股份有限公司 半導體元件及其製造方法與閘極結構的形成方法
TW201838175A (zh) * 2017-04-10 2018-10-16 聯穎光電股份有限公司 高電子遷移率電晶體
TW201904027A (zh) * 2017-06-06 2019-01-16 旺宏電子股份有限公司 記憶體元件及其製作方法
TW201905979A (zh) * 2017-06-30 2019-02-01 台灣積體電路製造股份有限公司 半導體裝置之製造方法

Also Published As

Publication number Publication date
TW202111919A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US10566331B1 (en) Semiconductor devices
CN103456781B (zh) 具有自对准栅的化合物半导体晶体管
KR100745894B1 (ko) 반도체 소자의 리세스 게이트 형성 방법
US8507349B2 (en) Semiconductor device employing fin-type gate and method for manufacturing the same
US10199260B1 (en) Contact hole structure and method of fabricating the same
US20190131430A1 (en) Hybrid spacer integration for field-effect transistors
US11164949B2 (en) Semiconductor structure and method formation method thereof
KR20150111722A (ko) 반도체 소자 및 그 제조 방법
US20230079098A1 (en) Field effect transistors with gate fins and method of making the same
CN109841673B (zh) 半导体装置及其制造方法
JP3802530B2 (ja) 半導体装置及びその製造方法
US11923449B2 (en) Manufacturing method for semiconductor device
CN112582413B (zh) 半导体元件及其制造方法
TWI704674B (zh) 半導體元件及其製造方法
US20130146966A1 (en) Semiconductor structure with enhanced cap and fabrication method thereof
US20220336661A1 (en) Semiconductor device
US20200152518A1 (en) Integrated gate contact and cross-coupling contact formation
US20020123208A1 (en) Method of fabricating a self-aligned shallow trench isolation
US20050142780A1 (en) Method of fabricating a fin transistor
KR100668741B1 (ko) 반도체 소자의 게이트 및 그 형성 방법
US20230132891A1 (en) Method for Manufacturing Isolation Structure of Hybrid Epitaxial Area and Active Area in FDSOI
KR100745924B1 (ko) 반도체 소자의 제조 방법
US12046518B2 (en) Method for manufacturing fin field effect transistor
US12015084B2 (en) Field effect transistors with gate fins and method of making the same
US20230056668A1 (en) Semiconductor structure and method for forming same