TWI700399B - 電解液輸送及產生設備 - Google Patents

電解液輸送及產生設備 Download PDF

Info

Publication number
TWI700399B
TWI700399B TW105116202A TW105116202A TWI700399B TW I700399 B TWI700399 B TW I700399B TW 105116202 A TW105116202 A TW 105116202A TW 105116202 A TW105116202 A TW 105116202A TW I700399 B TWI700399 B TW I700399B
Authority
TW
Taiwan
Prior art keywords
anolyte
electrolyte
catholyte
chamber
acid
Prior art date
Application number
TW105116202A
Other languages
English (en)
Other versions
TW201710563A (zh
Inventor
史蒂芬 T 邁爾
貴格瑞 卡恩斯
理查 G 亞伯拉罕
勞倫斯 奧索夫斯基
Original Assignee
美商蘭姆研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘭姆研究公司 filed Critical 美商蘭姆研究公司
Publication of TW201710563A publication Critical patent/TW201710563A/zh
Application granted granted Critical
Publication of TWI700399B publication Critical patent/TWI700399B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • H01L21/445Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

用以自動產生含金屬電解液(例如含Sn2+ 離子與酸的電解液)的設備包括:陽極液腔室,配置以容納活性陽極(例如金屬錫陽極)、陽極液、及量測陽極液中錫離子濃度的感測器(一或多個感測器);陰極液腔室,配置以容納氫產生陰極及陰極液;以及控制器,具有程式指令,用以處理來自感測器的資料並在該陽極液腔室中自動產生金屬離子在目標濃度範圍內的電解液。在一些實施例中,設備與電鍍設備交流,且能夠應需求將產生的電解液輸送到電鍍設備。在一些實施例中,密度計與導電度計一起用作為感測器,且該設備配置以產生含酸的少量α錫電解液。

Description

電解液輸送及產生設備
本發明係關於在半導體製造設備中產生用以將金屬電鍍於半導體基板上的電鍍液體(電解液)的設備與方法。在一實施例中,本發明係關於從錫金屬產生含Sn2+ 電解液的設備與方法。
錫為半導體裝置製造中常用的金屬(例如錫鉛凸塊)。使用含Sn2+ 離子(且通常含酸)的電解液並透過電鍍沉積方法,可將錫及其合金(例如錫-銀)沉積在部分已製成半導體裝置上。然而,錫常被放射α粒子(對半導體裝置的功能有害)的元素汙染。具體而言,一般認為α粒子會使資料儲存裝置發生所謂的「軟體錯誤」。因此,應使用特殊級別與類型的錫電解液(包含非常少量α粒子放射源的電解液)來將錫電鍍於半導體裝置中。此電解液稱為少量α錫電解液。對於如本文中使用的「少量α錫」的規格,係指涉每小時每平方公分之α放射率(α蛻變)小於0.002次的錫。α放射率一般係從已鍍上少量α錫電解液的金屬錫層量測而得。雖然此種電解液可經商業購得,但卻極其昂貴。亦可利用少量α錫形式的錫金屬(指涉零氧化態中的錫),從各種α放射同位素之混合物中純化,並經過一段時間(aged)以確保殘留的放射性同位素已遵循其衰變路徑並結束其裂變過程。金屬少量α錫比少量α錫電解液顯然較不昂貴。少量α錫電解液的高成本係來自於產生、認證、封裝、運送(從酸性危險液態電解液的來源地到使用地)的顯著成本,加上用於產生該電解液的少量α錫原材料的不太高的成本。依據金屬含量,在考慮運送成本後,工業用少量α錫金屬比電解液產物中的錫便宜4到20倍。
提供直接在半導體製造設備中從金屬(零氧化態)產生電解液的方法與設備。該方法與設備可用以分別從錫、鎳、及銅金屬產生包含各種金屬離子(包括錫、鎳、及銅離子)的電解液。在許多說明性實施例中,透過該設備產生錫,更具體而言為少量α錫電解液,但本發明不如此受限。
在半導體製造設備中「現場」產生電解液,有巨大的經濟益處。此外,在一些實施例中,若現場產生電解液,產生電解液的相同工具亦配置以將產生的電解液輸送到電鍍工具。由於將電解液從料桶注入電鍍池的需要被降至最低或消除,此設計之特色在於有利地效率使用設備、材料、及空間,以及現場勞力成本下降、操作者安全改善。在一些實施例中,現場自動化電解液產生與輸送設備經設計以與電鍍工具(例如可得自美國加州佛蒙特(Fremont, CA)的蘭姆研究公司(Lam Research Corp.)的SABRE 3DTM 電鍍工具)交流,以回應操作者與製程協定之額外電解液需求。
在一態樣中,提供用以產生含金屬離子之電解液的設備。在一實施例中,該設備包括:(a)陽極液腔室,配置以容納活性陽極與陽極液,其中該設備配置以將該活性陽極電化學地溶解於該陽極液中;(b)第一陰極液腔室,透過第一陰離子可通透性膜而與該陽極液腔室隔開,其中該第一陰極液腔室配置以容納第一陰極液;以及(c)第二陰極液腔室, 配置以容納陰極與第二陰極液, 其中該第二陰極液腔室透過第二陰離子可通透性膜而與該第一陰極液腔室隔開。該陽極液腔室包含: 用以接收流體的入口;用以排出陽極液的出口;以及一或多個感測器,配置以量測陽極液中金屬離子的濃度。在一些實施例中,該設備配置以產生少量α錫電解液為該陽極液腔室中的陽極液。
在一些實施例中,該第一陰極液腔室與該第二陰極液腔室為可移動式陰極容置組件之部分,其中該可移動式陰極容置組件配置以可卸除式地安置在該陽極液腔室中。
在一些實施例中,該設備配置以透過一流體導管(例如流體管線)將該第一陰極液從該第一陰極液腔室輸送到該陽極液腔室中,及/或配置以將該第一陰極液從該第一陰極液腔室排放到排液埠。應注意,如本文中使用的離子可通透性膜不被歸類為流體導管(但少量的流體可能與離子一起被輸送經過該膜)。
在一些實施例中,該第一陰極液腔室與該第二陰極液腔室透過流體導管而流體地連接,其中該流體導管允許該第二陰極液從該第二陰極液腔室輸送到該第一陰極液腔室。
在一些實施例中,該設備包含單片式金屬陽極,其位於該陽極液腔室中。在其他實施例中,該陽極由複數個金屬片所構成,且該陽極液腔室包括離子可通透性容器,用以容納集體形成該陽極的這些金屬片。在陽極由複數個金屬片形成的實施例中,該陽極液腔室可更包括接收埠口,用以將複數個金屬片接收至該離子可通透性容器中。在一些實施例中,該接收埠口包括重力給料漏斗,且更配備有感測器,其配置以在當埠口中的金屬片為低位準時,傳訊至系統控制器。
所提供之設備一般包含設置在該第二陰極液腔室中的氫產生陰極。該設備可包含稀釋氣體導管,配置以將稀釋氣體輸送到該第二陰極液上方的空間中並稀釋積聚在該空間中的氫氣,其中該第二陰極液上方的空間被第一蓋部覆蓋,該第一蓋部具有一或多個開口,其允許經稀釋的氫氣輸送到該第一蓋部上方的空間中。在一些實施例中,該設備更包含:第二蓋部,其位在該第一蓋部上方並與該第一蓋部相隔,使得該第一與第二蓋部之間存在一空間;以及第二稀釋氣體導管,配置以將稀釋氣體輸送到該第一與第二蓋部之間的空間,並將經稀釋的氫氣從該第一與第二蓋部之間的空間移動到一排氣埠。
在所提供之設備的一些實施例中,該陽極液腔室包含冷卻系統。在一些實施例中,該冷卻系統遠離陽極而設置在該陽極液腔室的冷卻位置。在這些實施例中,該設備可更包含流體導管與相關泵浦,配置以將陽極液從位於陽極附近的該陽極液腔室的出口輸送到該陽極液腔室的冷卻位置。
在一些實施例中,該設備配置以使用該一或多個感測器來量測該陽極液中金屬離子的濃度,並將量測結果傳訊至設備控制器。在一些實施例中,該一或多個感測器包括至少兩個感測器: 一密度計與一導電度計,其允許在酸存在之情況下(其中酸的濃度可能波動)精準地判定金屬離子的濃度。在一些實施例中,該一或多個感測器(例如密度計與導電度計之組合)亦配置以量測陽極液中酸的量。在一些實施例中,較佳的導電度計為感應式探針。
在一些實施例中,該設備包含控制器,其具有程式指令,用以自動產生金屬離子之濃度落在目標範圍內的電解液。
在一些實施例中,該設備更包含儲存容器,其與該陽極液腔室、及一電鍍腔室流體地連接,其中該設備配置以將該陽極液從該陽極液腔室自動輸送到該儲存容器,並從該儲存容器自動輸送到該電鍍腔室。
在一些實施例中,該設備更包含緩衝槽,其與該陽極液腔室、及一可更換運送箱流體地連接,其中該緩衝槽配置以從該可更換運送箱接收酸溶液,並且將酸輸送到該陽極液腔室。在一些實施例中,該設備更配置以識別該可更換運送箱中酸的低位準並提供運送箱更換之訊號。
在另一態樣中,提供自動產生含金屬離子之電解液的設備。其中該設備包含:(a)陽極液腔室,配置以容納活性陽極與陽極液,其中該設備配置以將該活性陽極電化學地溶解於該陽極液中並藉此形成含金屬離子之電解液,其中該陽極液腔室包含:(i)用以接收流體的入口;(ii)用以排出陽極液的出口;以及(iii)一或多個感測器,配置以量測陽極液中金屬離子的濃度;(b)陰極液腔室, 配置以容納陰極與陰極液, 其中該陰極液腔室透過一陰離子可通透性膜而與該陽極液腔室隔開;以及(c)控制器,其具有程式指令,用以使用由該一或多個感測器所提供之資料,而在該陽極液腔室中自動產生金屬離子之濃度落在目標範圍內的電解液。
在另一態樣中,提供一系統,其中該系統包含:(a)電鍍設備,其利用含金屬離子之電解液;(b)電解液產生設備,配置以自動產生電解液,其中該電解液產生設備與該電鍍設備交流;以及(c)一或多個系統控制器,其包含程式指令,用以將電解液需求從該電鍍設備傳訊到該電解液產生設備並產生金屬離子之濃度落在目標範圍內的電解液。
在另一態樣中,提供產生含金屬離子之電解液的方法,其中該方法包含下列步驟:(a)使電流通過一電解液產生設備,其中該設備包含:(i)陽極液腔室,其容納活性金屬陽極與陽極液;以及(ii) 陰極液腔室, 其容納陰極與陰極液, 其中該陰極液腔室透過一陰離子可通透性膜而與該陽極液腔室隔開;其中陽極在電流通過時被電化學地溶解於陽極液中;(b)量測該陽極液中金屬離子的濃度,並將濃度自動傳訊至設備控制器,其中該設備控制器包含程式指令,用以處理金屬離子之濃度方面的資料並且自動指示該設備基於這些資料而動作;並且(c)當陽極液中金屬離子的濃度落在目標範圍內時,將該陽極液的一部份從該陽極液腔室自動輸送到電解液儲存容器。
在一些實施例中,透過密度計與導電度計之組合來量測陽極液中金屬離子的濃度。在一些實施例中,該陽極包含少量α錫金屬,且該陽極液包含Sn2+ 離子。在一些實施例中,該陽極液更包含酸,且該方法更包含量測該陽極液中酸的濃度;將酸的濃度自動傳訊至該設備控制器, 其中該設備控制器包含程式指令,用以處理酸之濃度方面的資料並且指示該設備基於這些資料而動作。例如,若酸的濃度低於目標濃度範圍,該方法可涉及自動添加酸到該陽極液中。
在一些實施例中,該方法更包含下列步驟:在該陽極液的一部份已輸送到該儲存容器之後,以酸性溶液對該陽極液進行配量,並重複執行步驟(a)-(c)。在一些實施例中,每一次(a)-(c)循環中從該陽極液腔室輸送出來的陽極液不多於總容積的10%。在一些實施例中,該方法涉及執行至少三次(a)-(c)循環,其中在每一循環之後將酸添加至該陽極液中。在一些實施例中,該陽極液與陰極液包含由下列所組成之群組中選擇的酸:甲磺酸(MSA)、硫酸、及該者之混合物。
根據另一實施例,提供非暫態電腦機械可讀媒介,其中該媒介包括程式指令,用以控制電解液產生設備。該等指令包括本文中提供之電解液產生方法的程式碼,且可更包括將所產生的電解液儲存在儲存槽中以及將電解液輸送到電鍍設備的指令。
在一些實施例中,本文中提供的系統與方法可與微影圖案化製程整合。在一態樣中,提供一系統,其中該系統包括本文中提供之電解液產生設備及步進器。該系統一般更包括與該電解液產生設備相關的電鍍設備。在一些實施例中,提供一方法,其中該方法包括如本文所述般產生電解液,並更包括使用所產生的電解液而將金屬電鍍在半導體基板上。在一些實施例中,該方法更包括:將光阻劑塗佈於晶圓基板上;將光阻劑曝光;將光阻劑圖案化並轉移圖案至晶圓基板;並且將光阻劑從晶圓基板上選擇性移除。
提供用以產生電鍍設備用之電解液的設備。該設備配置以產生具有期望之金屬離子濃度以及(在一些實施例中)期望濃度之酸的電解液。以從少量α錫陽極產生酸性少量α錫電解液作為範例來說明該設備,但應知悉的係,該設備可用以產生各種電解液,例如從鎳陽極產生含鎳離子的電解液、從銅陽極產生含銅離子的電解液等。該設備亦可用以產生非酸性電解液,如pH值大於7的電解液(例如,含錯合劑的鹼性電解液)。
在一些實施例中,該設備能夠產生金屬離子濃度波動不大於輸出電解液中期望濃度的約15%的電解液,例如不大於約10%(例如不大於7%)。例如,若電解液中期望的錫離子濃度為300g/L,則該設備能夠產生錫離子濃度在255 – 345 g/L範圍內的電解液,例如在 270 – 330 g/L範圍內,更佳的係在280 – 320 g/L範圍內。給定目的可接受之濃度範圍,在本文中稱為目標濃度範圍及「寬目標濃度範圍」。例如,電鍍設備可要求錫電解液存料具有300g/L之期望錫離子濃度、及不大於7%的可接受濃度波動。在此情況下,電鍍設備配置以產生錫離子 (Sn2+ ) 之寬目標濃度範圍介於約280-320g/L的電解液。
在一些實施例中,電解液產生設備亦可用於產生具有穩定濃度的酸(例如硫酸、烷基磺酸(例如MSA)、及該者之混合物)的電解液。給定目的可接受之酸濃度範圍,在本文中稱為目標酸濃度範圍或「寬目標酸濃度範圍」。在一些實施例中,電解液產物中的酸濃度波動不大於期望酸濃度的25%,例如不大於20%。例如,在一些實施例中,電鍍溶液應具有45g/L的目標MSA濃度,其波動不大於10g/L。在此情況下,電解液產生器會產生酸的寬目標濃度範圍介於約35-55g/L的電解液。在一些實施例中,電解液產物中MSA濃度波動應不大於5g/L,使得MSA濃度在介於約40-50g/L的寬目標濃度範圍內。
除了「寬目標濃度範圍」這個用語以外,本文中又使用「窄目標濃度範圍」來代表電解液成分之濃度範圍,窄目標濃度範圍十分接近期望濃度而毋須校正電解液產生之製程參數。例如,若錫離子的寬目標濃度範圍為 280 – 320 g/L,而窄目標濃度範圍介於約290 – 310 g/L,則錫離子濃度為300 g/L(在寬與窄範圍兩者之內)的電解液產物不會引發對設備的任何校正動作;但錫離子濃度為315g/L(在寬範圍之內但在窄範圍之外)的電解液產物,表示所產生之電解液可被接受作為產物,但後續電解液產生中應進行校正動作,以使錫離子濃度降低至窄目標範圍內。
「寬目標濃度範圍」與「窄目標濃度範圍」等用語不只適用在濃度本身,亦適用於和電解液成分之濃度相關的電解液性質,例如密度、導電度、及光密度。這些用語的意義相似於前述該者。因此,「寬目標範圍」表示此範圍係可被接受的且不要求停止製程;「窄目標範圍」表示此範圍不只在量測的時點係可被接受的,且亦未發出任何注意信號以引發對未來批次產生的製程參數調整。例如,若所產生的產物之寬目標密度範圍介於約 1.48 – 1.52 g/cm3 ,這代表密度在此範圍之外的電解液不被接受作為產物。若窄目標密度範圍介於約 1.49 – 1.51 g/cm3 ,這代表密度在此範圍之外但在寬目標範圍之內的電解液可被接受作為產物,但為了使得未來批次的電解液密度在窄目標密度範圍之內,設備需要進行校正動作並修改電解液產生之製程參數。
在一些實施例中,電解液的產生為部分地、或完全地自動化。如本文中使用的自動化係指涉減少或捨棄人工勞力之情況下的處理步驟(例如添加一或多個化學成分、及/或排出所產生之電解液)之執行。例如,在一設備中,可使用如下一或多個自動化範例。在一些實施例中,在產生電解液時,產生的電解液的一或多個物理化學性質由一或多個感測器來自動量測,而這些物理化學性質被用以判定電解液中的金屬離子濃度(亦即,電解液的性質被自動量測),這些資料被電性傳訊至製程控制器,其中該製程控制器具有程式指令,用以進行下列操作:一旦達到目標金屬離子濃度,將電解液排放到儲存容器中;及/或若濃度超過目標濃度範圍,則稀釋電解液。在一些實施例中,控制器經程式化以在定量的電荷通過設備後,將部分的電解液排放到儲存容器,其中電荷的定量為電荷使得電解液中的金屬離子濃度在寬目標範圍內所需要的量。根據法拉第定律 (Faraday’s law)來計算所需電荷。控制器亦可經程式化以在電解液被輸送到儲存容器之前處理來自感測器的資料,其中該感測器量測電解液中的金屬濃度(包括與金屬濃度相關的任何性質)。若濃度在寬目標範圍之內,則控制器可允許輸送進行;若濃度在寬目標範圍之外, 則控制器可不允許輸送進行。該控制器亦可經程式化以在量測的金屬濃度在窄目標範圍之外但仍在寬目標範圍之內時,修改用於未來電解液產生的製程參數。
在一些實施例中,在電解液產生期間,酸濃度由一或多個感測器自動量測,而這些資料被傳訊到控制器,其具有程式指令,用以進行下列操作:若酸濃度不足,則自動添加更多的酸;或若酸濃度太高,則自動以水來稀釋電解液。
應理解由感測器進行的「濃度量測」指涉與濃度相關的任何性質的量測。例如,可透過量測電解液之密度(假設已知酸的濃度)來執行錫離子之濃度量測;且可透過量測電解液之導電度(假設已知錫離子的濃度)來執行酸之濃度量測。在一些實施例中,較佳的係量測電解液(例如陽極液)之導電度與密度兩者,因為此兩參數與金屬離子的濃度及酸的濃度正相關。因此,若量測導電度與密度兩者,則可使用組合資料來精準地判定電解液中金屬離子的濃度與酸的濃度。在一些實施例中,若已知酸的濃度在電解液產生處理期間相當穩定,則單獨的電解液密度量測便足以精準地估計電解液溶液中金屬離子的濃度。在一些實施例中(尤其電解液中酸的濃度相當低時),電解液的密度最大程度地取決於金屬離子濃度,則可使用密度量測來大略地量測金屬離子的濃度,且可毋需量測導電度,或可比密度較不頻繁地量測。在其中一較佳實施例中,量測酸性錫電解液之密度與導電度兩者,以判定陽極液中的錫濃度與陽極液中的酸濃度兩者。
「在電解液產生期間」或「在電解液產生時」量測電解液性質,並非暗指必定只有在施加電流到電解液產生器的電極時才量測電解液性質,因為在施加電流期間、與電流停止(例如,當該產生處理包括含「開啟電流」與「關閉電流」之時期的循環時)之後均可進行量測。
自動化的另一範例為自動補充陽極材料。在一些實施例中,自動添加顆粒狀的金屬至陽極容器中,其中自動化係使用重力給料漏斗來達成:隨著陽極金屬在電解液產生期間被溶解,其他的顆粒因著重力而從漏斗下落至該陽極容器中,以填充因溶解顆粒而空出的空間。此外,感測器可自動量測漏斗中顆粒的位準,並且在當漏斗需要補充時、或當添加的顆粒量過多時,發送訊號給操作者。在一些實施例中,在電解液產生期間以人工執行的步驟僅有周期性(例如一周一次)添加金屬顆粒至重力給料漏斗中;及將提供酸溶液給電解液產生設備的酸乘載容器(運送箱) 換成滿的(full)容器。
在一態樣中,提供一系統,其中該設備包括: 利用含金屬離子之電解液的電鍍設備;以及配置以自動產生電解液的電解液產生設備,其中該電解液產生設備與該電鍍設備交流。交流可為流體的、訊號的、或流體與訊號兩者。若該電鍍設備與該電解液產生設備流體交流,該系統包括配置以將在電解液產生器中產生的電解液輸送到電鍍設備的流體特徵部(例如電解液輸送管線、電解液儲存容器、閥、泵浦等)。 若該電解液產生設備與該電鍍設備之間存在流體交流,則毋須人工地運送電解液並將之注入電鍍工具的容器中,這係因為該電解液產生設備提供並輸送已知濃度的計量(定量)的電解液。若該電鍍設備與該電解液產生設備之間存在訊號交流,則該電鍍設備配置以在需要電解液時傳訊至該電解液產生設備。例如,該系統可包括系統控制器(其可包括一或複數個控制器), 其包含將程式指令,用以將電解液需求從該電鍍設備傳訊到該電解液產生設備並產生具有目標濃度之金屬離子的電解液。在一些實施例中,單一系統控制器可配置以使用電性或無線通訊來與該電鍍設備及電解液產生設備兩者交流,並提供用於兩工具的操作以及該者彼此交流的所有指令。在一替代實施例中,各個工具(該電鍍設備及該電解液產生設備)具有其各自的控制器,其具有用以個別地操作各工具的程式指令,而其中一工具的控制器(例如電鍍工具之控制器)配置以與另一工具(例如電解液產生與輸送工具)交流,且配置以要求另一工具動作。例如,電鍍工具之控制器可配置以要求電解液產生工具輸送電解液,且可包括指令以開啟泵浦並打開輸送閥以允許產生的電解液從電解液產生工具流動到發出要求的電鍍工具以及其相關的電鍍池中。所輸送之電解液「配量」的量,可透過另外中介的系統控制器、接收配量的電鍍工具控制器、或輸送的電解液產生工具控制器來調節。
所提供的方法與設備可用於產生少量α錫電解液,其用於各種電鍍設備中,例如用於具有惰性(尺寸不變)陽極的設備、及含有活性少量α錫陽極的設備中。所當使用惰性陽極時,提供的電解液可作為主要(main)電解液;若使用活性錫陽極,則可作為額外的電解液(作為補償液流或另外添加的液流)。使用活性陽極的電鍍設備之範例記載於Mayer等人於2011年10月28日申請之美國專利申請公開號第2012/0138471號,案名為「ELECTROPLATING APPARATUS AND PROCESS FOR WAFER LEVEL PACKAGING」;以及Lee Peng Chua等人於2013年5月24日申請之美國專利申請公開號第2013/0334052號,案名為「PROTECTING ANODES FROM PASSIVATION IN ALLOY PLATING SYSTEMS」,該等案以全文併入本文之參考資料。
在一實施例中,本文中提供的電解液產生設備經配置以與SABRE 3DTM 設備(可得自美國加州佛蒙特(Fremont, CA)的蘭姆研究公司(Lam Research Corp.))透過介面接合,並且應需求而將具有期望組成(具有期望成分及濃度) 且期望量的電鍍電解液輸送到電鍍設備。應理解,從電解液產生設備輸送到電鍍工具的電解液,可在進入電鍍腔室之前經由(例如)稀釋、濃縮、與酸或電鍍添加劑(例如促進劑、均勻劑、濕潤劑、載體及抑制因子)混合而加以修改,或其可不經修改而進入電鍍腔室。
用以產生電解液、儲存電解液、並將之輸送至電鍍設備的自動化系統之範例的示意圖顯示於圖1A中。在所繪範例中,該系統包括電解液產生設備101,其連接到金屬顆粒來源103、酸來源105(例如在容器中的酸的濃縮水溶液,例如甲磺酸、硫酸、胺磺酸、及該者之組合的水溶液)、及水來源107。電解液產生設備101具有流體地連接至電解液儲存容器109的出口,而電解液儲存容器109流體地連接至三個電鍍設備113、115及117,其中電解液應需求從電解液儲存容器109輸送到電鍍設備113、115及117。電解液配置以電鍍工具113、115及117所需要的量而獨立地輸送到各工具的電鍍池。所繪實施例中提供的系統包含兩個系統控制器: 電解液產生設備之控制器119以及電鍍工具113、115、117之控制器120(在其他實施例中,各電鍍工具具有其獨自的控制器)。控制器119與電解液產生工具之所有元件訊號交流(例如電性及/或無線地),且包括程式指令,用以將酸及水從酸及水來源自動輸送到電解液產生設備,並且在達到目標金屬離子濃度時將電解液排放到儲存容器109。控制器120與控制器119訊號交流,且經程式化以將來自電鍍工具113、115及117的需求傳訊,並根據需求將電解液從儲存容器109輸送到電鍍工具113、115及117的池。
本文中提供之電解液產生設備可併入一模組式系統中以在半導體製造設備中使用。圖1B描繪在模組式設計中系統元件配置之範例。在此範例中,錫電解液係在容置於錫產生器隔室123中的錫電解液產生設備121中產生。錫產生器隔室123更容置電解液儲存槽125,其從電解液產生設備121接收電解液產物。將產生的電解液從電解液產生器121中泵取出來、使其通過容置於錫產生器隔室123中的濾件、並透過複數個流體連接件127中之一者將其引導至儲存槽125中。電解液被儲存在儲存容器中,並在當電鍍設備(未圖示)需要電解液時透過流體導管而引導至該電鍍設備。配置以容置一可移動式容器的酸儲存隔室129與錫產生器隔室123相鄰,該可移動式容器含有酸(例如MSA)的濃縮溶液且可選擇性地連接到酸緩衝容器。該酸緩衝容器的作用為在以酸對該可移動式容器(酸運送箱)進行補充或將之更換時提供不中斷的酸來源。在一些實施例中,該酸運送箱容置在酸儲存隔室129的酸運送箱抽屜中。該酸緩衝容器與可移動式酸容器透過複數個流體連接件127中之一者而流體地連接至電解液產生設備121,且該設備經配置以應需求將定量的酸性溶液輸送到該電解液產生設備。此外,在一些實施例中,來自酸儲存隔室129的相同的酸來源(酸緩衝容器及/或可移動式酸容器) 流體地連接至電鍍設備(未圖示),且該設備經配置以應需求將定量的酸性溶液輸送到該電鍍設備。在其他實施例中,該電鍍設備可使用個別的酸來源,而未與該電解液產生設備共用。
隔室131配置以容置不同的電鍍液體來源、與酸儲存隔室129中者不同的酸來源、或電鍍添加劑來源。在一些實施例中,此電鍍液體可包含銅、鎳、銦、鐵、錫(來自不同來源、或與在儲存槽125中者不同的濃度)、鈷的離子、或任何這些離子的混合物。在一些實施例中,容置在此隔室中的電鍍液體為上列任一金屬的鹽類的酸性溶液。此不同的電解液來源可為可移動式容器(運送箱) 及/或緩衝液容器,其容置預先產生的電解液並流體地連接至電鍍設備。在一些實施例中,含有不同電解液的運送箱被容置在位於隔室131內的運送箱抽屜133中,其中該運送箱流體地連接至同樣容置在隔室131中的電解液緩衝液槽。該設備經配置以應需求將定量的電解液輸送到電鍍設備。除了隔室131以外,所繪模組式系統又包括隔室132,其配置以容置不同的電鍍液體來源、與酸儲存隔室129中者不同的酸來源、或電鍍添加劑來源,其中容置在隔室132中的化學品與容置在隔室131中的化學品不同。隔室132以類似於隔室131的方式被組織,且包括抽屜134,其配置以容置可移動式運送箱(其含有所提供的電鍍溶液、酸、或添加劑)。該可移動式運送箱可流體地連接至緩衝液槽,而緩衝液槽流體地連接至電鍍設備。因此,在所繪型構中,隔室131與132作為電鍍工具用之不同的電鍍化學品來源。
本文中描繪的模組式形構允許操作者將產生的錫電解液、預先產生的不同類型之電解液、及酸的來源小型化地(compactly)容置在複數個隔室中。此外,所提供的系統可包括隔室135,其為一抽屜,配置以容置可移動式容器(運送箱),並使用電解液產生設備121所產生的電解液來填充此運送箱。該設備經配置,以允許操作者將電解液從錫電解液儲存槽125中取出並將之移動到容置在抽屜135的空運送箱中。例如,為了提供額外的儲存容量,或為將電解液從充滿錫電解液的運送箱以人工方式輸送到未與錫電解液產生器121連接的電鍍工具,可將20公升的電解液從錫電解液儲存槽取出,而移動到放置在站135的空運送箱中。
在一些實施例中,流體地設置在電解液產生器與可移動式酸運送箱之間的酸緩衝槽的存在,允許將酸不中斷地自動供給到該電解液產生器。在一些實施例中,該設備經配置以判定可移動式酸運送箱中的酸為低位準的時間,或偵測運送箱中的酸係舊的,並提供使用滿的運送箱來更換酸運送箱的訊號。該酸緩衝槽經配置以從該酸運送箱接收酸,並將酸運送到電解液產生器(陽極液及/或陰極液腔室),且一般經配置使得其在電解液產生期間不會將酸用盡。
該系統更包括控制器,例如程式邏輯控制器(PLC),其具有程式指令,用以執行電解液產生及輸送、偵測設備之各種錯誤、及互鎖安全(interlock safety)。該控制器與輸出顯示器137(例如觸控螢幕顯示器)電性連接,輸出顯示器137允許操作者偵測系統之操作,並在需要時提供命令給該控制器。該系統與設施139連接,其提供系統操作期間可使用的惰性及/或稀釋氣體(氮氣及加壓乾燥空氣)、及去離子水的來源。亦供給液態冷卻水(LCW)作為透過內部熱交換線圈的產生器熱移除方式。替代地,可由液態冷卻水再循環冷藏單元來供給冷卻循環流體。
將說明電解液產生設備的若干實施例。在一實施例中,該電解液產生設備包括陽極液腔室,其配置以容納活性陽極與陽極液,其中該設備配置以電化學地將活性陽極溶解於陽極液中,而藉此形成含金屬離子的電解液。換句話說,該活性陽極包含金屬,該金屬按照反應(1)被電化學地氧化而形成陽極液中的金屬離子,其中M為金屬, e- 為電子,而n 為在氧化作用中從該金屬離開的電子數。 M → Mn+ + ne- (1) 若活性陽極為錫陽極,則錫按照反應(2)被電化學地氧化而形成錫離子(II)。 Sn → Sn2+ + 2e- (2) 若使用少量α錫作為錫陽極,則陽極材料僅包含少量的α放射雜質,且作為結果的少量α錫金屬電化學溶解作用,如期望般形成具有低濃度的α粒子放射源的少量α錫電解液。
該陽極液腔室具有: 用以接收一或多個流體的入口;用以排出電解液的出口;以及至少一感測器,配置以量測陽極液中的金屬離子濃度。可透過該入口而導入該陽極液腔室中的流體的範例包括水、酸的濃縮水溶液、酸的較稀釋的水溶液、含酸及金屬鹽類的電解液、及該者之組合。該設備一般包括一或多個泵浦,配置以將這些流體中的一或多者輸送到該陽極液腔室中。該陽極液腔室的出口用以將部分的陽極液(其中該部分可具有不同比例)從該陽極液腔室中排出。一泵浦一般用以將陽極液從該陽極液腔室中排出。例如,當陽極液中金屬離子濃度達到目標濃度範圍時,一部分的陽極液可通過該陽極液腔室的出口而從該陽極液腔室中泵抽離開。在一些實施例中,該陽極液腔室更配備有一清潔與排液系統,其允許陽極液被再循環並於在循環期間被過濾。當需要時,相同的系統可適用於將一部分的陽極液排放到排液埠。在陽極液再循環的一範例中,一部分的陽極液通過該陽極液腔室的出口而被從該陽極液腔室中排出、通過濾件以移除微粒、並在過濾後回到該陽極液腔室中。
在一些實施例中,該陽極液腔室可包括多於一個感測器。例如,可包括配置以量測陽極液中金屬離子與酸之濃度的感測器組。此類感測器組的一範例為密度計與導電度計的組合。配置以量測金屬離子濃度與酸濃度的感測器通常可量測與金屬離子及酸濃度相關的任何陽極液性質組。例如,若產生錫電解液,則用以量測錫離子濃度的感測器可為量測陽極液密度的密度計。若密度計與導電度計結合使用,則可精準地判定錫離子濃度與酸濃度兩者。
若陽極液中的酸濃度相當低及/或已知僅具有小波動,則可單獨使用密度計來量測錫離子濃度。這係因為單獨的陽極液密度與重金屬(例如錫)離子濃度的強相關性,及密度對於酸濃度的較弱相依性。顯示密度在酸之各種固定濃度的情況下對於金屬離子濃度之相依性的實驗作圖,表現出密度對於酸濃度的較弱相依性,如圖12A可見得。若相同溶液中除了量測密度以外又量測導電度,則可使用一作圖(其顯示導電度在酸之各種固定濃度的情況下對於金屬離子濃度之相依性)來作出金屬離子濃度的更準確判定。當使用電解液產生器產生之電解液具有對分光光度量測有活性之離子(例如銅或鎳離子),則量測金屬離子濃度的感測器可為分光光度計,其允許以比透過使用密度來量測錫離子濃度更加容易的方式去量測金屬離子濃度。在對分光光度量測有活性之離子的情況下,操作者可使用關於光吸收度對金屬離子濃度之相依性的作圖來精準地判定陽極液中金屬離子的濃度。此外,可使用各種金屬離子濃度與酸濃度之導電度方面的資料來判定酸濃度。
該電解液產生設備更包括陰極液腔室,配置以容納陰極與陰極液,其中該陰極液腔室透過陰離子可通透性膜而與該陽極液腔室隔開。此隔開可為直接的或間接的。例如,若隔開為直接的,則容置陰極的腔室與容置陽極的腔室係彼此直接地相鄰,且在兩個腔室之間存在一膜。若隔開為間接的,則容置陰極的腔室與容置陽極的腔室之間存在一或多個其他的腔室。這些腔室通常亦透過陰離子可通透性膜而彼此隔開。
該陰極液腔室較佳地包含惰性、氫產生催化陰極。此類陰極的範例包括被以鉑或銥氧化物塗層的鈦或不鏽鋼陰極,其中塗層催化陰極反應。此類塗層由(例如)美國加州卡馬里奧(Camarillo, CA)的最佳陽極技術(Optimum Anode Technologies)提供。陰極反應顯示於反應式(3)。 2H+ + 2e- → H2 (3) 隔開的膜允許陰離子通過該膜,但較佳地係阻止金屬離子通過。該膜的用途係維持陰極液實質上無金屬離子,若金屬離子存在,其會在陰極還原並導致陰極溶解。當施加電流至電極時,該膜允許陰離子(例如甲磺酸根離子與硫酸根離子)通過該膜。在一些實施例中,當施加電流時,水與酸(例如MSA)亦可通過該膜。適當陰離子膜的範例包括設置在支撐結構上並帶有四級銨官能基的聚合物。此類聚合的、帶官能基的陰離子膜的一範例為可得自德國比蒂格海姆-比辛根(Bietigheim-Bissingen, Germany)之Fuma-tech的Fumasep® FAB-PK-130 PEEK (聚二醚酮) 強化陰離子交換膜。
以圖2說明電解液產生設備之實施例,其顯示設備之剖面示意圖,其中容置陽極的腔室201與容置陰極的腔室203係直接地由陰離子可通透性膜205隔開。少量α錫陽極207駐留在陽極液209中,陽極液209原先(在施加電流到電極之前)係由酸(例如甲磺酸及/或硫酸)的水溶液(且在一些實施例中除了酸以外更包括Sn2+ 離子)所組成。陽極液中的Sn2+ 離子濃度隨著陽極207在電解液產生處理期間被溶解而增加。在產生處理期間,透過與控制器213交流的密度計211來量測錫離子濃度。替代地,透過密度計和導電度計之組合來量測錫離子濃度。陽極液腔室201具有入口215,用以從酸來源217接收酸(例如甲磺酸及/或硫酸)的水溶液,並從去離子水來源219接收去離子水。在這些實施例中,若陽極液原先包含Sn2+ 離子之溶液,則在一開始透過該入口將預先產生、或商業可購得之含錫鹽類(且較佳地含酸)之溶液添加至該陽極液腔室中,而使得錫離子與酸的起始濃度在期望範圍。
陽極液腔室201更包括出口221,用以將陽極液209排放到電解液儲存槽223(例如當錫離子濃度達到目標濃度時)或排放到排液埠。在一些實施例中,亦存在與該陽極液腔室相關的陽極液再循環迴路。部分的陽極液可通過該出口而從該陽極液腔室中排出,並在過濾後通過該入口而回到該陽極液腔室中。
陰極液腔室203包含陰極液225(一般包含與陽極液相同類型的酸,但通常濃度較高)以及氫產生陰極227。在所繪範例中,陰極液腔室203具有入口229,用以從酸來源217接收酸,並且從去離子水來源219接收去離子水。在一些實施例中,陰極液腔室更包含一出口及相關的流體導管,其允許將部分的陰極液排放到排液埠。膜205對陰離子為可通透性,但對金屬陽離子實質上為不可通透性。因此,陰極液中的錫離子濃度被維持在可忽略的程度。功率供應器231電性連接至陽極207與陰極227,且經配置以相對於陽極而對陰極施加負偏壓以促使錫陽極溶解於陽極液中。控制器213與電鍍設備交流,且具有程式指令,用以調整電解液產生處理之任何參數,例如將電解液從陽極液腔室排放到電解液儲存槽、將酸及水選擇性添加到陽極液與陰極液、功率供應器施加電流之持續期間、所施加之電流的位準等。
根據本文中提供之若干實施例,圖2所示之電解液產生設備可在一或多個態樣中被改良。改良可關於錫離子在電解液中分布的配置、試劑配量與回饋之自動化、釋出之氫的排放、及釋出之熱的配置。應理解,並非參考圖3-5描述的所有改良皆需要存在於單一個設備中,因為設備可包括上述特徵之任何組合。
吾人觀察到位在陽極液腔室與陰極液腔室之間的單一個陰離子可通透性膜可能不足以完整阻擋錫離子從陽極液遷移到陰極液。因為錫離子傾向在陰極還原成錫金屬且(大量地)可能使陰極不可使用,故相當不樂見錫離子存在於陰極液中。為解決此問題,提供除了陰極容置腔室以外又具有額外的一或多個陰極液腔室的設備形構。因此,此類設備包括:第一陰極液腔室,配置以容納第一陰極液並且透過第一陰離子可通透性膜而與該陽極液腔室隔開;第二陰極液腔室,配置以容納陰極與第二陰極液,其中該第二陰極液腔室透過第二陰離子可通透性膜而與該第一陰極液腔室隔開。兩個陰離子可通透性膜均配置以阻止陽離子(例如錫離子)遷移通過該膜,因此,相較於單一個膜之配置,錫離子到陰極之遷移顯然將較不明顯。應理解的係,將該第一陰極液腔室與該陽極液腔室隔開的膜,可直接地或間接地將該者隔開。若隔開為直接的,則該陽極液腔室直接地相鄰於該第一陰極液腔室。若隔開為間接的,則該第一陰極液腔室與該陽極液腔室之間可存在一或多個額外的陰極液腔室。
在一實施例中,該電解液產生設備配備有陰極液到陽極液之串接(cascade),其中該設備包括配置以將陰極液從第一陰極液腔室輸送到陽極液腔室的流體導管。此導管之用途有兩個部分。第一,其可用於以酸對陽極液進行補充 (因為在產生酸性錫電解液的實施例中,陰極液為酸性溶液)。其可與從外部酸來源直接添加酸到陽極液中結合使用,或取而代之。第二,第一陰極液腔室可能包含不經意遷移通過第一陰離子可通透性膜的少量的錫離子。排出部分的第一陰極液有助於將錫離子從該第一陰極液中沖除,而因此降低錫離子遷移通過該第二陰離子可通透性膜而進入容置陰極的第二陰極液腔室的可能性。此設備形構描繪於顯示電解液產生器之示意剖面圖的圖3A中,該電解液產生器具有陰極液到陽極液之串接以及陽極液冷卻能力。
參考圖3A,設備包括大的陽極液腔室301,其容置少量α錫陽極303與陽極液。該陽極液腔室可分成兩個部分: 鄰近陽極反應區的部分305;以及主要用於以冷卻結構309來冷卻陽極液的部分307。雖然在所繪實施例中,部分305與部分307並未透過膜而隔開,但該等部分之間的擴散不太快,且該設備包括具有一相關泵浦(未圖示)的流體導管311,其配置以將陽極液從部分305中的陽極液出口313輸送到冷卻部分307中的陽極液腔室入口315。為避免陽極液腔室之不同部分中的錫離子濃度波動並確保精準量測錫離子濃度,執行將陽極液腔室中的陽極液從陽極附近輸送到冷卻部分,以促進陽極液(因為在電阻性電解質中產生的歐姆熱而被加熱)之冷卻與熱交換並進一步加速陽極液腔室中的陽極液質量輸送。陽極液出口313亦與通到電解液產物儲存槽319的流體導管317連接,且該設備配置以在需要時將陽極液輸送到電解液產物儲存槽319。例如,該設備可配置以在陽極液中的錫離子濃度達到目標濃度後(例如,在定量的電荷通過該設備、且密度計確認達到目標濃度範圍之後)將陽極液輸送到儲存槽。
繪於圖3A中的設備具有可移動式陰極容置組件321,其包括第一陰極液腔室323及第二陰極液腔室325,其中第二陰極液腔室325容置陰極327。可將組件321 安置在陽極液腔室中的部分305與冷卻部分307之間,並將之可卸除式地附接至該陽極液腔室。陰極容置組件的定位以及其為可移動式之事實,提供若干優點,包括小型化、設計簡單性、以及人體工學的接取(以進行陽極液與陰極液腔室兩者之維修)。此外,此類設計消除了陽極液與陰極液腔室之間密封的需要。
陰極容置組件配備有第一陰離子可通透性膜329,在所繪實施例中,其直接地將陽極液腔室與第一陰極液腔室隔開。該膜可安裝在具有一或多個開口的壁上,在安裝了膜之後,該等開口被該膜覆蓋。第一陰極液腔室323及第二陰極液腔室325由第二陰離子可通透性膜331隔開,膜331亦可安裝在具有開口的壁上。第一陰極液腔室具有出口333以及流體導管335,其配置以使陰極液從第一陰極液腔室323通過陽極液腔室入口337而輸送到陽極液腔室中。例如,因為在所繪實施例中,第一陰極液比陽極液更具酸性且可作為酸的來源,所以若陽極液中的酸濃度過低,可使用來自該第一陰極液腔室的第一陰極液對該陽極液進行配量。當需要將錫離子從該第一陰極液腔室中沖除時(錫離子從陽極液不經意地遷移通過第一膜),亦可使用來自該第一陰極液腔室的第一陰極液對陽極液進行配量。當將第一陰極液從該第一陰極液腔室傳送到該陽極液腔室時,第一陰極液的位準會下降,而需要補充第一陰極液。在所繪實施例中,該第一陰極液係經由將該第一陰極液腔室及該第二陰極液腔室連接的流體導管339來補充。在一些實施例中,流體導管339為兩端開通的中空管,其允許第二陰極液自動輸送到該第一陰極液腔室,直到兩個腔室中的壓力相等為止。在一些實施例中,流體導管339為既長又窄的管線,其阻止第一陰極液擴散進入該第二陰極液腔室中,而藉此阻止錫離子不經意輸送到該第二陰極液腔室中。
該第二陰極液腔室具有入口以及與該入口耦接的流體導管341,其中該流體導管連接酸來源343及水來源345。可如期望般透過導管341將酸及水添加至該第二陰極液腔室的第二陰極液中。在所繪實施例中,水來源345亦經由導管347而流體地連接至該陽極液腔室,且該設備允許將水配量進陽極液中。錫陽極303與陰極327電性連接到功率供應器349,其配置以在足以促使陽極溶解之電位下對該陽極施加正偏壓。
圖3A所示之流體形構被稱為串接形構。在此形構中,第二陰極液從第二陰極液腔室透過導管而串接到第一陰極液腔室,而第一陰極液依次地從第一陰極液腔室透過導管串接到陽極液腔室中的陽極液。透過酸及水來源以酸及水對該第二陰極液腔室進料。
在串接形構的一改良中,該設備更包含將酸來源343與陽極液腔室301連接的流體導管。因此,在此形構中,陽極液可從該第一陰極液腔室以及從該酸來源兩者接收酸性溶液。在一些實施例中,該酸來源為可移動式運送箱,其透過配置以提供不中斷的酸供給的一緩衝液槽而連接到該陽極液腔室與第二陰極液腔室。
圖3B中描繪之替代流體形構中,設備包含將酸來源343與陽極液腔室301連接的流體導管,但不具有將第一陰極液腔室與陽極液腔室連接的流體導管335。反而,該設備包括流體導管336,其在出口333與第一陰極液腔室連接,且配置以將一部分或全部的第一陰極液輸送到排液埠或在電解液產生設備之外將之再循環。在此形構中,陽極液僅從酸來源343補充酸。
在圖3A與3B所示之形構中,第一陰極液腔室323不具有導入酸性溶液的專用入口,而係透過導管339從第二陰極液腔室325接收所有需要的酸。在替代流體形構中(其可應用在圖3A與3B兩者所示之形構中),不存在導管339,取而代之地,第一陰極液腔室323包含與酸來源343流體交流的入口,且該設備配置以使用來自此來源的酸對腔室323中的第一陰極液進行配量。選擇性地,在此實施例中,水來源345亦可流體地連接到第一陰極液腔室的入口,且該設備可經配置以在當需要時將水輸送到該第一陰極液腔室。
應注意在一些實施例中,圖3A中描繪的相同串接原則可應用於改良圖2所示之具有單一個陰極液腔室的設備。在一些實施例中,此設備配備有一流體導管(而非膜),其配置以輸送陰極液至陽極液。此流體導管可取代從酸來源到陽極液的輸送管線、或另外使用地。在替代實施例中,圖2所示之設備包括流體管線,其配置以將部分的陰極液輸送到廢液室,或用以在設備之外將之再循環。
除了圖3A與3B所示之流體管線以外,該設備可包括陽極液再循環及過濾系統,其配置以將部分的陽極液從陽極液腔室中排出,並在過濾後將陽極液再導入該陽極液腔室中。此外,該設備可包括流體管線,其配置以在需要時將部分的電解液(例如陽極液、第一陰極液、第二陰極液、及其中之組合)排放到排液埠。
參考圖3A與3B描述的流體管線耦接至一或多個泵浦,且可與閥或閥歧管結合使用,其允許流體到不同目的地之受控制的選擇性導入。為保持清晰性,未圖示這些泵浦、閥、及相關的流量計。在一些實施例中,該設備配置以個別地控制各流體液流。例如,可使用與系統控制器連接的流量計與閥的組合,來個別地控制流體之配量時程、以及所配量之流體的量。在一些實施例中,圖3A與圖3B所示之所有流體導管(除了將第一與第二陰極液腔室連接的導管339以外)皆與泵浦耦接且均配備有閥,而閥配置以維持導管開通與關閉。在一些實施例中,導管339在無泵浦或閥之情況下運作,且第二陰極液到第一陰極液腔室之移動係單獨地因第一與第二陰極液腔室之間的壓力差而達成。在一些實施例中,該設備的一或多個流體導管與濾件連接,且允許將系統中的各種流體液流過濾。例如,在一些實施例中,從陽極液腔室被引導到電解液儲存槽的陽極液,在其進入該電解液儲存槽之前通過濾件,以移除任何不可溶的雜質。
在一些實施例中,本文中呈現之設備更配置以使電解液去氧(deoxygenate)。還原作用較佳地在陽極液腔室中執行,且主要係用於避免Sn2+ 離子氧化成 Sn4+ 離子。形成Sn4+ 離子係相當不樂見的,因為其可能在電解液中產生沉澱而總地劣化所形成之電解液的品質。在一些實施例中,透過使惰性氣體(例如氮或氬)通過陽極液(例如在陽極液腔室中)而起泡來執行還原。因此,在一些實施例中,該設備包括連接至惰性氣體來源的導管,其配置以將惰性氣體擴散進入陽極液腔室中的陽極液中。此外,在一些實施例中,在電解液儲存槽以及(在一些情況下)陰極液腔室(例如第一及/或第二陰極液腔室)中亦執行類似的還原。
在一些實施例中,電解液產生設備的流體特徵部與系統控制器交流,其中控制器亦配置以與該電解液產生設備的一或多個感測器交流。該等感測器提供回饋給該控制器,而該控制器經程式化以回應由該等感測器所提供之資料而產生指令去調整一或多個製程參數。圖4提供電解液產生設備的剖面示意圖,其描繪不同類型的感測器,該等感測器可用以提供資料給控制器以達成電解液之完全或部分自動產生。圖4所示之設備類似於圖3A之設備,且應理解的係,圖3A與圖3B所示之流體特徵部可與圖4所示之一或多個感測器一起使用。圖4所示之設備與圖3A所示之設備不同之處在於,圖3A中的少量α錫陽極為單片式少量α錫金屬(可得自日本東京(Tokyo, Japan)的三菱綜合材料株式會社(Mitsubishi Materials Corporation) 或美國新澤西州(Morristown, NJ)的漢威聯合國際公司(Honeywell International, Inc. );而圖4所示之設備應用放置在離子可通透性容器中的複數個少量α錫顆粒,其中該等顆粒作為陽極。一般而言,該等顆粒小於6mm(涉及最大尺寸),例如,小於3mm。該等顆粒可為圓柱體、球體、或任何其他形狀的微粒,包括任意形狀之顆粒的混合物。適當顆粒的具體範例為圓柱狀顆粒,其中各顆粒之直徑約2.5mm且長約2.5mm。替代地,使用名義上相同尺寸的球型顆粒。兩種類型的陽極均可用於具有圖3A與圖3B所示之流體特徵部的設備中,且可與圖4所示之感測器一起使用(除了僅能用於以顆粒為主之陽極的顆粒位準感測器以外)。
參考圖4,設備包括陽極液腔室301、以及將少量α錫顆粒提供到陽極容器403中的重力給料漏斗401。與功率供應器349電性交流的電荷板和陽極容器403整合並用以對被陽極液包覆的少量α錫顆粒電性地施加偏壓。在電解液產生處理期間,以陽極液潤濕並被電荷板施加偏壓的顆粒集體地作為陽極303,且被溶解而形成錫離子,而錫離子被釋出到該陽極液中。因此,為了使錫離子釋出到該陽極液中,陽極容器403對離子為可通透性。在一些實施例中,電荷板作為陽極容器。在其他實施例中,容器為可通透性膜(例如由聚碸材料形成),其不作為電荷板,而陽極係使用接觸顆粒並且被連接至功率供應器的一導電桿來施加偏壓。
錫顆粒被裝入重力漏斗401中,錫顆粒的位準隨著被陽極液包覆的顆粒在電解液產生期間被溶解而逐漸下移,乾的顆粒受重力作用而從漏斗下落,被陽極液包覆並開始作為陽極。圖4所示之設備包括感測器405,其配置以判定該等顆粒是否沉降至低於臨界位準,並在確實低於臨界位準時發出需要補充顆粒的訊號。感測器405可為光學感測器或電容式感測器,例如可得自美國肯塔基州佛羅倫薩(Florence, KY) 的巴魯夫(Balluff Inc.)的電容式感測器或光學穿透光束感測器。可自動地或手動地實現以錫顆粒對漏斗進行補充。例如,在感測器判定顆粒的位準為臨界值之後,可自動地或手動地以介於約5-30kg之錫顆粒再裝入漏斗中。
在所繪實施例中,陽極液腔室301更包括用以判定錫離子濃度的感測器(一或多個感測器)407、用以判定酸濃度的感測器(一或多個感測器)409、及陽極液位準感測器411。在其中一較佳實施例中,密度計為主要用以判定錫離子濃度的感測器,而導電度計為主要用以判定陽極液中的酸濃度的感測器。吾人觀察到,相較於酸濃度,陽極液之密度更大程度地取決於錫離子濃度,且可使用陽極液密度與陽極液導電度之共同量測來精準地判定陽極液中錫離子與酸兩者的濃度。可針對不同類型的酸,而對在不同的錫離子濃度與酸濃度之情況下的電解液密度與導電度預先製表,並且可被控制器用以從由導電度感測器與密度計提供的資料來判定錫離子與酸的精確濃度。替代地,可使用與目標濃度範圍相關的密度及導電度數值而將控制器程式化,且可毋須精確計算濃度。適當的密度計範例為可得自美國密西根州安娜堡( Ann Arbor, MI)的積體化感測系統(Integrated Sensing Systems )的Micro-LDS 密度計;或可得自美國維吉尼亞州阿什蘭(Ashland, Virginia)的Anton-Paar公司的有相似功能的裝置。吾人發現,在高導電性的電解溶液中(例如在酸性電解溶液中),較佳的係使用感應式導電度計,例如環狀導電度感測器(例如可得自美國加州爾灣(Irvine, CA)的Rosemount Analytical(艾默生電氣公司)的型號228)。雖然在一些實施例中可使用較傳統的導電度計(依賴量測兩個電極之間的導電度),但由於在高導電度的溶液中,電極之間的距離應較大以得到精準量測,故感應式導電度計因較小型而具有優勢。應理解的係,可使用替代量測感測器或系統(分光光度計、折射率感測器、IR或拉曼光譜儀器)來量測陽極液的固有性質,或亦可使用感測器之組合(例如配重/重量感測器與流體容量感測器組合)。陽極液位準感測器411經配置以判定陽極液的位準是否下降至低於臨界位準。在一些實施例中,陽極液位準感測器411為光學感測器。
第二陰極液腔室325包括: 配置以量測酸濃度的感測器413(例如感應式導電度感測器);以及陰極液位準感測器415(例如光學感測器),其配置以判定陰極液腔室中的陰極液之位準下降至低於臨界位準的時間。感測器405、407、409、411、413、及415與控制器417交流,控制器417從該等感測器接收資料並處理這些資料。
在一些實施例中,本文中提供的電解液產生設備配備有氫處理系統。因為陰極液腔室中的惰性陰極產生可與空氣形成爆炸性混合物的氫氣,故有利的係提供氫處理系統,其配置以將氫稀釋到安全的濃度(遠低於較低爆炸限度或LEL)並將經稀釋的氫從設備中排出。該氫處理系統可與具有單一個陰極液腔室的設備整合(例如與圖2所示之設備整合),或與具有複數個陰極液腔室的設備整合(例如與圖3A及3B所示之設備整合)。
在一實施例中,該氫處理系統包括稀釋氣體導管,其配置以將稀釋氣體輸送到陰極液上方的空間並稀釋積聚在該空間中的氫氣,其中該陰極液上方的空間被第一蓋部覆蓋,該第一蓋部具有一或多個開口,其允許經稀釋的氫氣輸送到該第一蓋部上方的空間。例如,在圖3A及3B所示之設備中,此類蓋部可覆蓋第二陰極液腔室(其容置陰極產生之氫氣)。在一些實施例中,該氫處理系統更包括第二蓋部,其位在該第一蓋部上方並與該第一蓋部相隔,使得該第一與第二蓋部之間存在一空間;以及第二稀釋氣體導管,配置以將稀釋氣體輸送到該第一與第二蓋部之間的空間,並將經稀釋的氫氣從該第一與第二蓋部之間的空間移動到排氣埠。經由第一與第二導管提供的稀釋氣體可相同或不同。稀釋氣體可為氣體的混合物或為單一氣體。稀釋氣體之範例包括空氣與惰性氣體,例如氮或氬。在其中一較佳實施例中,使用惰性氣體(例如氮或氬)作為第一稀釋氣體以確保低於LEL的氫安全第一稀釋。在使用惰性氣體稀釋氫之後,可安全地使用空氣作為第二稀釋氣體。在另一實施例中,使用惰性氣體作為第一與第二稀釋氣體兩者。
圖5提供配備有氫處理系統的陰極液腔室之範例的示意剖面圖。陰極液腔室501容置浸入陰極液(以流體位準505圖示)中的惰性氫產生陰極503。陰極液腔室具有入口507,其與稀釋氣體導管509連接,且經配置以允許從稀釋氣體來源511提供的稀釋氣體通過此導管而進入陰極液上方的空間中。第一蓋部513設置在陰極液上方且具有一或多個開口515,經稀釋的氫氣可透過開口515而向上輸送。第二蓋部517設置在第一蓋部513上方,且第一與第二蓋部之間的空間配備有入口519,其與稀釋氣體導管521連接且經配置以將來自稀釋氣體來源511的稀釋氣體輸送到此空間中,並以平行的方向將經稀釋的氫氣從空間朝排氣埠523移動,而排氣埠523將經稀釋的氫氣從設備中排出。
電解液產生設備之具體範例以圖6A-6I及圖7A-7C圖示。 圖6A 與6B提供設備的側視圖(從兩對側);圖6C提供設備的剖面圖;且 6D 提供另一剖面圖。圖 6E提供設備的立體圖。
所繪設備包括可移動式陰極容置組件,其中該組件具有第一陰極液腔室與第二陰極容置陰極液腔室,其中兩個腔室透過陰離子可通透性膜而隔開。該設備配備有陰極液到陽極液的流體串接、兩蓋部式氫處理系統、及冷卻系統。圖6F-6I呈現陰極容置組件的不同視圖,其中圖6F呈現陰極容置組件的立體圖,而圖6G-6I呈現相同組件的不同剖面圖,圖解不同視角的氫處理系統。圖7A-7B提供陽極液腔室與第一陰極液腔室之間的介面的視圖。圖7C圖解一部分的設備,呈現具有排液溝(其用以將上方流動的陽極液排放到過濾組件)之實施例。
圖6A-6E所示之設備結合了若干有利特徵。該設備包括將陽極與陰極隔開的兩個陰離子可通透性膜(如先前描繪於圖3A與3B的膜329與331)。當如圖2中描繪之實施例所示般使用單一個分隔件時(假設該分隔件為陰離子可通透性膜),該分隔件通常不完全對錫離子為不可通透性。因此,錫離子可能從陽極液遷移到陰極液並汙染陰極。圖3及圖6A-E所示之實施例提供額外、居間的陰極液腔室,其可被以酸性溶液沖洗,以將不經意遷移到居間的陰極液腔室中的任何錫離子排出。在所繪實施例中,來自第一陰極液腔室(居間的腔室)的陰極液被輸送到陽極液腔室,而居間的腔室被以引導自第二陰極液腔室的陰極液加以補充。在此類反向雙重膜串接中,使用抑制金屬離子(以及較少程度的來自酸的質子)遷移的兩個陰離子膜作為較佳分隔件。
雖然在本文中提供的一些實施例中,該設備包括整塊的單片式陽極(如圖2與圖3A及3B所示),但使用整塊的金屬陽極不允許有效率的自動補充陽極材料。在本文中提供的一些實施例中(例如圖4與圖6A-6E所示),透過設置包含金屬顆粒的重力漏斗來解決此問題。當陽極材料被溶解時,漏斗將顆粒饋送進陽極活性區中。亦即,在漏斗頂部存在乾的金屬顆粒,金屬顆粒被直接饋送進陽極活性區中,而該等顆粒在陽極活性區中被電解液潤濕。隨著潤濕的陽極顆粒在反應中被溶解,乾的顆粒受重力作用而下落到陽極活性區中、被濕潤並且在反應期間被溶解。
此外,如前述,在陰極產生氫氣係危險的,因為氫氣與空氣混和具有爆炸性。在一些實施例中(圖6A-6F所示),該設備包括雙蓋部設計,其配置以將含氫氣體的組成維持在安全規範。例如,可使用將惰性氣體(例如N2 )輸送進設備的導管。
最後,在圖6A-6F所示之設備中,設置若干特徵部,其配置以提供自動化電解液產生、儲存、及輸送。
參考圖6A-6F,提供自動化電解液分配與產生器設備。該設備包括與電解液儲存運送箱601流體地連接的電解液產生器600,電解液儲存運送箱601配置以從該產生器接收所產生的電解液並儲存所產生的電解液。該產生器亦與濃縮酸運送箱603流體地連接,濃縮酸運送箱603配置以透過管線604將濃縮酸輸送到電解液產生器600。在其他實施例中,該產生器透過酸緩衝容器而與濃縮酸運送箱流體地連接,該酸緩衝容器允許在不停止電解液產生處理之情況下更換或補充運送箱。在一些實施例中,濃縮酸運送箱或緩衝液容器包含MSA、硫酸、胺基磺酸、或該等酸之任何組合的水溶液。在一具體實施例中,濃縮酸性溶液實質上由濃度介於約900 – 1000 g/L的MSA溶液所組成。在所繪實施例中,電解液產生器600包括自身調節重力給料漏斗605,其量計進入金屬陽極反應物的垂直向孔洞性床(其形成陽極反應物脊柱606)的金屬(例如少量α錫)顆粒流量。在其他實施例中,可使用鉆(auger)調節漏斗。在以顆粒為主之陽極的電化學溶解期間,該等顆粒被消耗並被來自上方的新的顆粒替代。該設備更包括限制及/或維持顆粒的電荷板607,其與陽極功率匯流排電性連接,而該陽極功率匯流排電性連接至將陽極顆粒床正向極化(positively polarize)的功率供應器。在所繪實施例中,該電荷板之作用有下列兩者:實體地容納陽極顆粒於位置上;將電荷從功率匯流排傳導到顆粒,並提供顆粒與陽極液之間的離子交流,使所產生的金屬離子可被釋出到陽極液中。因此,在所繪實施例中,該電荷板為孔洞性、離子可通透性、導電性元件,其在電解液產生條件下為不可溶性(又稱為惰性)。在其他實施例中,使用離子可通透性膜(例如由聚醚碸材料形成)來容納該等顆粒,離子可通透性膜可使用支撐結構來強化但不一定需要連接到功率匯流排而作為電荷板。在此實施例中,電荷係透過接觸顆粒並被連接到功率供應器的導電性匯流桿來輸送。在一些實施例中,該設備包括:惰性集流器匯流桿;以及具有支撐架的精細的陽極膜(例如孔洞性聚醚碸(PES)膜),其配置以容納陽極顆粒;且可選擇性地包括導電性且孔洞性的集流器孔篩(電荷板),其電性連接到匯流桿。
該設備更包括陽極床再循環流量饋送注入歧管609,在所繪實施例中,其配置以使一部分或全部的再循環陽極液流量從陽極的底部向上移動。然後此陽極液在電解液產生器的頂部透過孔洞性溢流口、及排液溝而離開陽極液腔室、被過濾、然後在陽極床的底部區域透過歧管609回到陽極液腔室中。
在一些實施例中,重力漏斗更包括一感測器或複數感測器(例如電容式或光學感測器),以在當漏斗金屬顆粒供給低且需要補充時指示系統控制器及/或設備操作者。
在所繪實施例中,陽極床為固定填充床,其中金屬顆粒因重力而聚集且被從床之底部區域注入的陽極溶液潤濕。在所繪實施例中,該等顆粒實質上不被陽極液的流量移動。在替代實施例中,可使用金屬顆粒的流體化床。在流體化床中,金屬顆粒不會聚集,而係因為受到陽極液的流量影響而不斷地移動。使用固定填充床提供超越使用流體化床的若干優點。首先,相較於在流體化床中,在填充床中較容易確保顆粒的電性接觸。其次,使用流體化床需要針對添加顆粒的計量裝置。若缺乏此種計量裝置,添加過多金屬顆粒將造成顆粒移動性喪失,而導致床轉變成非流體化的填充形態。若添加太少顆粒,則流體化床中的顆粒無法與電荷板、及彼此形成足夠的電性接觸。因此,在流體化床中,應使用具有計量裝置(例如鉆漏斗或計量閘/閥)的漏斗(而非自身調節重力漏斗),以將所需的顆粒量提供到床,而精準地補償所算出的消耗金屬量。相較之下,當應用固定填充床時,可透過自動補充消耗顆粒之重力漏斗來饋送金屬顆粒。在填充床實施例中,當漏斗感測器指示漏斗中顆粒的位準太低時,可將其他的顆粒添加進重力漏斗中,但添加的顆粒量必須精準地匹配消耗的顆粒量。流體化床可能進一步產生與不同尺寸之顆粒相關之問題。隨著顆粒被消耗,較小的顆粒傾向於上浮,而新添加的顆粒則傾向於下沉到流體化床的底部,這可能導致床不穩定。此外,在流體化床中,不同尺寸的顆粒被陽極液的液流不一致地流體化,且此種不同顆粒的速率係難以控制的。
所繪設備更包括可移動式陰極容置組件611,其被安置在陽極液腔室613中。陰極容置組件611具有透過陰離子可通透性膜而彼此隔開的兩個腔室。第一陰極液腔室615(又稱為居間腔室) 透過第一陰離子可通透性膜617而與陽極液腔室613隔開。第二陰極液腔室619透過第二陰離子可通透性膜621而與第一陰極液腔室615隔開,且配置以容置惰性氫產生陰極623。隔開不一定需要完全(阻止因壓力梯度而產生的所有流體運動),且在一些實施例中,存在一既長且窄的通道(641),其允許第一與第二陰極液腔室之間的流體交流及壓力相等化,同時對位於居間腔室的化合物(例如滲漏到居間腔室的Sn4+ 副產物及Sn2+ 金屬)輸送到第二陰極液腔室呈現出長的擴散路徑。陰極容置組件611(包括第一陰極液腔室615與第二陰極液腔室619) 可從電解液產生器600與陽極液腔室613中移出而成為完整的子組件。陰極容置組件611經設計以從上方的開口中安裝進入陽極液腔室613、並配適於陽極液腔室的容納容積中。陽極液腔室613包含允許安置、架設、及移除陰極液腔室的足夠的容積以及必要的硬體。陽極液腔室613包括各種製程偵測感測器、還原特徵部、及用以維持陽極液中低氧濃度的特徵部。例如,可將與惰性氣體(例如氬或氮)來源連接的惰性氣體擴散器624設置在陽極液腔室中,且惰性氣體擴散器624可經配置以將惰性氣體擴散進入陽極液中,作為陽極液還原用途。陽極液腔室613可經配置以移除製程熱且可包括熱交換器625。在所繪實施例中,該設備亦配置以在電解液產生期間量測陽極液成分之濃度。透過下列方式量測濃度:使用密度計量測陽極液之密度,並且亦使用導電度計(例如陽極液導電度計626)量測陽極液之導電度。可結合這兩個參數(密度與導電度),並根據該等參數來計算陽極液中的酸濃度與金屬離子濃度。使用從這兩個參數算出的濃度(或參數本身)來偵測並進行電解液產生處理,使得產物(電解液)係在成份之濃度落在目標範圍內之情況下產生。量測之參數是否落在目標範圍內的計算及/或判定可由控制器自動執行。陽極液腔室613包含足以接收陽極、相關漏斗、及可移動至陰極容置組件的容積,且亦具有用以儲存所產生之電解液的容積(陽極液冷卻、陽極液還原、陽極液參數(例如密度、導電度、pH、及光吸收度)量測進行之處)。在所繪實施例中,可將陽極液腔室613視為具有鄰近陽極之部分627、以及冷卻部分629,經安排使得陰極容置組件611設置在這兩個部分之間。
在所繪實施例中,該設備更配備有機制與流體特徵部,以達成陰極液(實質上由酸以及少量的錫離子組成)從第一陰極液腔室(居間腔室)到陰極液腔室之串接。串接可避免錫離子到達氫產生陰極,故有利於阻止錫離子朝陰極輸送。因此可避免錫電鍍在陰極上並降低陰極效率。此外,串接避免微粒在第二陰極容置腔室中產生(若錫離子在陰極容置腔室中被還原則會形成錫微粒)。因此,此類串接延長了電解液產生器在操作者介入與維修之間的壽命。在替代實施例中,將第一陰極液腔室中部分的陰極液從居間腔室中排出並輸送到廢液室(輸送到排液埠),並以新的酸對該第一陰極液腔室進料,藉此使第一陰極液中殘留的錫離子濃度降低。
參考產生器之側視圖(圖6A與6B),呈現電解液產生器600位於選擇性的簡易產生器安全殼630中。更一般而言,安全殼為整體工具及系統外殼的一部分,而系統外殼亦容納電子儀器、可程式化邏輯控制器(PLC’s)與電腦、化學饋送接取點、及一般設施,其中一般設施包括去離子水來源、冷卻水供給、壓縮乾空氣來源、氮來源、電性功率來源、及排氣埠。
如圖6A所示般附接到產生器壁的配量與流體輸送泵浦631,被連接到複數個泵浦來源及泵浦目的地控制閥(例如633及635),使得此單一個閥可在產生處理中於不同的時間點進行複數個與產生器相關的流體輸送選擇性任務。配量與流體輸送泵浦631被連接到濃縮液態酸之饋送原料來源603。在一些實施例中,酸來源603包含濃縮酸(例如98%硫酸)或酸的水溶液(例如70%的甲磺酸或30%的胺基磺酸溶液)。在替代實施例中,視所產生之電解液的類型而定,可將不同類型的饋送原料溶液裝入運送箱603中。例如,在一些實施例中,若產生非酸性電解液,可將中性的鹽類溶液、鹼性溶液、或含金屬螯合劑的溶液裝入饋送原料運送箱。透過將氣動閥之位置設定在適當的組合狀態下,可將濃縮酸溶液從酸運送箱603輸送到陰極容置組件腔室611,或輸送到陽極液腔室613。總陽極液之再循環流量部分(其不通過陽極反應區606而回到陽極液腔室613中)在被濾件過濾之前或之後受流量計637偵測。
同一個配量與流體輸送泵浦631經配置以將已知量的流體從陰極液容置組件611中取出並將之移動到廢棄排液埠、或移動到陽極液腔室613。在先前參考圖3A說明的實施例中,泵浦631將陰極液從陰極液容置組件的第一陰極液腔室(居間腔室)中取出,並輸送酸性陰極液,以酸化陽極液腔室613中的陽極液產物。
此過程有三個主要功能。首先,因為陰離子可通透性膜617與621並非總是完全有效抑制正離子(金屬及氫離子)受施加到電解液室的電場影響而遷移通過該等膜,所以少量的遷移的金屬離子與質子可能輸送通過第一陰離子可通透性膜617(最靠近陽極)而開始積聚在第一陰極液腔室615(居間腔室)中。為避免第一陰極液腔室615中的金屬離子積聚到夠高的濃度(濃度甚至可能使其移動跨過第二膜621而到達第二陰極液腔室619並在第二陰極液腔室619中的陰極被還原成金屬),將陰極液週期性地從第一陰極液腔室615中取出並送到廢液室,或在一些實施例中,輸送到陽極液腔室613。相對於陰極容置腔室,第一陰極液腔室615較佳地包含較少量的陰極液。在一些實施例中,陰極液(包括在第一與第二腔室中的陰極液)的總容量約30L,其中在第一腔室中的陰極液容量僅1.5L。在一些實施例中,在第一陰極液腔室中的陰極液容量比陰極液的總容量(第一與第二腔室中的陰極液總和)少約20%,例如少約10%。在一些實施例中,設備中的第一陰極液腔室的容積比陰極液腔室的總容積小約20%,例如小約10%。少容量的第一陰極液係有利的,因為這允許容易沖洗此腔室以移除錫離子,而毋須輸送大量的液體。第一陰極液(居間)腔室615之存在允許以滲漏的金屬離子不會實質接觸陰極623的方式,而將離子性或機械性滲漏的金屬離子從陰極液輸送回陽極液。此型構大大地改善電解液產生處理的持久性、減少維修勞力、並提高電解液產生器的長期可靠性。
陰極液到陽極液之串接的第二優點係關於酸的處理。當酸性陰極液從第一陰極液腔室615輸送到陽極液腔室613時,其作用以替代在電解液處理期間被從陽極液腔室中取出而進入第一陰極液腔室中的質子。酸性陽極液從第一陰極液腔室回到陽極液腔室的物理輸送係改變此陰離子膜的質子「滲漏」效果的有成本效益的方式。
陰極液到陽極液之串接的第三優點亦關於以酸補充陽極液。當小批次的產生之電解液被從陽極液腔室排放到儲存槽時,必須在下一批次的電解液產生之前補充減少的容量。若僅透過添加水來補充減少的陽極液容量,陽極液的酸度將下降。在若干批次的電解液產生並從陽極液排放到儲存槽後,酸度的下降可能變得值得注意且有問題。若酸度繼續下降。由陽極溶解而產生的金屬離子的溶解度傾向於降低。因此,將酸性陰極液從第一陰極液腔室輸送到陽極液腔室之作用為補充陽極腔室中的酸,並維持酸平衡與製程穩定性。較佳地,維持陽極液中的酸平衡使得陽極液中的酸含量不會波動超過目標位準的50%。例如,若使用MSA或硫酸,在電解液產生處理期間(包括個別的批次產生期間及批次產生之間),較佳的酸含量不應從45g/L的目標濃度波動超過15g/L。較佳地,若產生錫電解液,不允許陽極液的酸含量下降到低於15g/L(指涉MSA或硫酸含量)。
當陰極液被從第一陰極液腔室取出,此腔室中的陰極液的位準會隨時間降低,而第一陰極液腔室最終將完全乾涸。因此,該設備配備有以酸及水對第一陰極液腔室進行補充的流體特徵部。在其中一較佳實施例中,第一陰極液腔室經由一流體導管(而非膜)來補充,其中該第一流體導管將第二陰極液腔室與第一陰極液腔室流體地連接。在所繪實施例中,陰極容置腔室611的基座包含既長且窄的導管或通道641,其將第一陰極液腔室615與第二陰極液腔室619流體地連接。例如,該通道可約長30.5 cm,且具有小於 2 cm2 的流量截面積。此通道作為第一陰極液腔室615與容置陰極的第二陰極液腔室619之間的流量安定器連接件,而有效地運作以保持兩個腔室中的陰極液的位準相等。在其中一較佳實施例中,當陰極液被從第一陰極液腔室615取出並輸送到陽極液腔室613時,陰極容置組件中的陰極液會同時地經過連接件導管641從第二陰極液腔室619(在陰極液被從第一陰極液腔室取出之後,具有稍微較高的位準)流入第一陰極液腔室615中。在一實施例中,導管入口643位在陰極容置組件的基座且相對於第一陰極液腔室位在遠端,藉此最大化任何金屬離子的距離與擴散阻力,其中金屬離子可能透過沿著導管641擴散而從第一陰極液腔室615移動進入第二陰極液腔室619並到達陰極623。從第一陰極液腔室排出之材料(例如水與酸)的體積與質量係透過將相等體積與質量之材料添加進第二陰極液腔室中來替代,且係使用(例如)配量與輸送泵浦631來量測。這可透過使用閥633與635的適當配置來達成,其中閥633與635配置以將酸從酸運送箱603中取出並將酸輸送到第二陰極液腔室619。在一替代實施例中,不存在導管641,而新的酸性溶液與去離子(DI)水係直接從酸供應器與DI水供應器添加進第一陰極液腔室中。
圖6A-6E所繪設備更配置以供給去離子水到陽極液腔室613與第二陰極液腔室619兩者。抗擴散閥645與其他的閥結合使用,以將DI水引導到陰極液或陽極液腔室。抗擴散閥645經設計以避免水停滯及返航汙染DI水饋送來源。陽極液腔室613具有位於其基座的排液埠647,陽極液由主要循環泵浦649經由排液埠647而取出。被取出的陽極液可經由管線651而被引導到複數目的地中任一者。當陽極液達到特定於所產生之電解液的所需濃度時,陽極液產物可從陽極液腔室出口被輸送到電解液儲存容器運送箱601。若未達到陽極液中所需的金屬離子濃度,或若因任何原因而毋須輸送產物,則陽極液可從出口被輸送到陽極液腔室的冷卻部分629(熱交換器所在之處)、或其可被注入回到陽極液的陽極孔洞性床區域606。對於陽極液流量從出口的引導,可透過週期性地調整閥的設定來加以控制。例如,若陽極液具有目標成分濃度,則週期性地引導再循環陽極液到電解液儲存運送箱。
流量計653量測總陽極液流量用於再循環的部分。此流量起始於出口647並通過泵浦649。經由位於反應區底部之歧管655進入陽極反應區606、或進入陽極液腔室的冷卻部分629之流量的總量及/或部分,受到控制閥657所調節。在所繪實施例中,此調節係透過開啟陽極反應流量分路之針狀閥旋鈕659而達成。
使用隔膜泵浦661將材料從電解液產生器中排出以進行維修與清潔。視二通閥663的狀態而定,泵浦661可經由管線665將陰極液從第二陰極液腔室中排出,或其可在陽極液出口管線到達主要循環泵浦649之前,將陽極液從該管線中排出。
如前文提及,金屬顆粒經由金屬顆粒漏斗605而被供給至陽極反應區606中。漏斗具有蓋部667、以及從上而下傾斜的一或多個表面,使得從頂部開口供給的顆粒被容納且顆粒的流動被引導通過反應腔室顆粒入口(或喉部)669而進入陽極反應區606中。當「開啟」電解液產生器,並施加陽極電流與電位至陽極匯流排671時,電流通過陽極電荷板607而到達顆粒。兩個陽極匯流排671沿著陽極反應區606的周圍,並使用連接栓通過陽極漏斗605的塑料牆。
圖6A-6F所示之設備經配置以維持低於較低爆炸限度(LEL)之氫程度。該設備包括主要接取蓋部673,其覆蓋電解液產生反應器的頂部並作用以控制空氣的流動,使得腔室中蓋部下方的氫氣程度保持低於空氣中氫的LEL。稀釋空氣(在此例子中作為稀釋氣體)透過入口孔組677(可見於圖6E所示之設備的視圖)在頂部蓋部673與內側蓋部675(覆蓋陰極容置腔室611)之間進入腔室中。稀釋氣體以實質上平行於水平板(其位於蓋部673及675之間的空間)的方向移動、與含氫氣體混合,而含氫氣體透過內側蓋部675中的開口678離開陰極容置腔室611。然後混合的氣體到達排氣歧管分配板679、進入排氣歧管681、並透過排氣埠683離開。
在所繪實施例中,其他的稀釋氣體流量被引導到陰極液上方的空間(陰極623上方及內側蓋部675下方)中。內側蓋部與陰極容置腔室的結構可見於圖6F-6I。第二陰極液腔室619包含氫產生陰極623,又稱為尺寸不變陰極(DSC),其在電解液產生期間產生氫氣。陰極具有外部連接匯流點685,其連接到功率供應器,而功率供應器在電解液產生期間對陰極施加負偏壓。惰性DSC陰極在電合成與燃料電池應用中常作為氫產生電極,以及在氯鹼工業中作為陰極。這些陰極與尺寸不變陽極(DSA)不同,DSA在氯鹼工業中作為常用於電解及氯生成。DSC通常係由底層的鈦(或相似之電化學惰性的基板或板),以相對較薄(例如小於100微米厚、例如10-90微米厚)的材料薄膜塗覆而製成,該材料對於水及酸電解反應(更一般而言對於氫形成)具有催化性質。常見的塗覆材料包括鉑、鈮、釕、二氧化銥、及其混合物。在電解液產生器之操作期間,氫氣泡在陰極之面對陽極的表面與第二陰離子可通透性膜621之間的間隙687中產生。陰極容置組件611中內側蓋部675下方的大氣係由氫(在惰性陰極623產生)與稀釋氣體(例如稀釋空氣)所組成,而該稀釋氣體係經由管線689、通過接頭  691並通過陰極液腔室歧管 693而導入。在冒出氫氣泡的位置上方透過一組歧管孔洞695均勻地導入該稀釋氣體。稀釋氣體的流率經配置,因而在腔室中內側蓋部下方的氫濃度(假設完全且均勻混合) 遠低於氫的較低爆炸限度。在一些實施例中,內側蓋部下方的氫濃度比氫的LEL低4倍或比空氣中4%的氫更少(或少於4000ppm)。所需的稀釋氣體流率可從電解液產生期間使用的電流的量算得,其與在陰極的氫產生速率相關。例如,若反應器的電流為I 安培,則預測之氫產生體積速率(R)(公升/分鐘)為: R = 22.4 × I × 60/ (n×F),         其中22.4 L為一莫耳氣體在標準溫度及壓力下(在1大氣壓及20℃下)的體積;60為一分鐘的秒數;n為產生一莫耳氫產物所需要的電子數(2個電子);而 F為法拉第常數  (一莫耳電子有96500庫侖)。  針對以100安培運作的系統而言,根據此公式算出的氫氣產生速率約為每分鐘0.007公升。若將體積流率為 (0.007×4)/0.04 = 0.7 lpm的空氣稀釋氣流導入歧管693中,則腔室中的氫濃度將平均上來說為LEL程度的¼。在一較佳實施例中,為了提高操作的安全性,使用惰性氣體(例如氮或氬)取代空氣而作為稀釋氣體。 在此例子中,在腔室中實質上不存在氧,且離開腔室的混合物之稀釋程度遠低於若稀釋劑為空氣所需要之稀釋度。在此例子中,任何使用空氣的後續稀釋都將使氫濃度降至低於LEL。此配置使陰極容置組件、及電解液產生器中其他位置的起火與爆炸風險均顯著地降至最低。
在一些實施例中,在內側蓋部675面對陰極的面上設置選擇性特徵部697,其中該特徵部作為噴濺流量隔離防護件。因為氫氣泡在從間隙687冒出時破裂,陰極液的液滴可能會被噴濺在內側蓋部675上並受表面張力的影響而積聚在蓋部的內側部分上(特別係在該間隙的上方)。在其中一實施例中,內側蓋部675相對於該水平板而定位呈一角度,較佳地呈介於約5-20度的角度。蓋部675的坡度允許積聚的陰極液滴受重力而在內側蓋部出口孔洞699的大致方向上移動。噴濺流量隔離防護件697經定位以避免液滴經由孔洞飛出、或避免液滴沿內側蓋部的表面流動而被向上吸引到內側蓋部675的另一側(頂部)表面上。噴濺防護件697亦將內側蓋部675的底部表面上的噴濺陰極液的流量再引導向下而回到下方的陰極液中。這避免噴濺陰極液可能地被氣流吸引離開陰極液腔室。
在所繪實施例中,針對可靠度問題(例如低的電解液位準、及電解液的溢流)主動偵測陽極液腔室與第二陰極液腔室中的流體位準。透過與設備控制器交流的流體位準感測器來執行偵測。尤其有用的低成本位準感測器的一範例為壓力感測器(可得自例如美國北卡羅萊納州威明頓(Wilmington, NC)的 Dwyer )被以T型管連接(teed into a line)又連接到氣體擴散管線701的組合,其中以如下公式將感測到的壓力與擴散管線末端上的流體表面位準「h」產生關聯: P = ρgh 若在此類型的感測器中使用惰性氣體(例如氮或氬)來擴散,則此類擴散感測器具有作為被量測之流體(例如陽極液或陰極液)的還原裝置的額外益處。因此,在一些實施例中,惰性氣體被從惰性氣體來源供給到感測器並擴散到流體中。連續位準偵測感測器的另一範例為超聲波反射深度感測器。相較於跳脫位準型感測器(當流體位準高於或低於一目標位準設定時發送獨特訊號),該等及其他類似功能的感測器可連續地量測流體(例如陽極液或陰極液)的實際位準。應理解,在一些實施例中,可在所提供之設備中使用跳脫位準型感測器。目標(跳脫)位準感測器之範例包括電容型位準感測器及浮控開關。
在其中一較佳實施例中,電解液產生設備包括密度計與導電度計,配置以量測陽極液的密度與導電度兩者。將密度與導電度之組合與陽極液的組成資料產生關聯,以同步判定並控制陽極液中的金屬與酸含量。嵌入式密度計,例如由美國密歇根州伊普西蘭蒂(Ypsilanti, MI)的積體感測系統(Integrated Sensing Systems)所生產的嵌入式MEMS基密度計,可以0.0005 g/cm3 的精準度來量測陽極液的流體密度。在一實施例中,當達到所需錫離子濃度且成為產物電解液時,錫陽極之目標密度約為1.5 g/cm3 。由於金屬離子的部分莫耳密度較高,所以比起對酸含量,含金屬產物電解液之密度一般對金屬離子含量具有較強的相依性。可得到作為金屬離子含量之函數的導電度與密度的資料曲線集合(在不同的固定酸濃度之情況下),並將之用於連續且精準地判定組成物的未知量(例如金屬離子及/或酸濃度)。因此,偵測密度與導電度有用於判定兩個組成物之濃度(例如酸及金屬含量),並且允許製程調整,例如添加酸及水、或提供用以產生額外金屬離子的額外電荷。若使用不同的量測本質量測對,則亦可使用類似的處理。最少量測數等同於被量測的材料數(離子對)(具有單一陰離子的二元系統的最少量測數為二,或具有三種成分及單一陰離子的三元系統的最少量測數為三)。可被一起量測/使用的本質的範例包括密度、黏滯性、滲透壓、導電度、折射係數、pH、及給定頻率之下的光吸收度。因為這些本質變量中的若干者具有強的溫度相依性(流體的密度與光吸收度顯然為例外),所以若在量測期間未固定溫度,則量測溫度並記錄性質回應溫度的變化、並了解回應溫度的不同變化也同樣的重要。許多感測器包括內建熱電偶或熱敏電阻。
電流通過反應器中的電阻性電解液而產生熱。在一些實施例中,在陽極液腔室、陰極液腔室、或兩者中設置熱交換器。在所繪實施例中,熱交換器僅設置在陽極液腔室613的冷卻部分629。所繪熱交換器由主鈦管之入口歧管703組成,其對具有較小直徑的若干(例如4個)焊接的熱交換鈦管704進料,熱交換鈦管704在陽極液反應器之冷卻部分中前後蜿蜒。在腔室的另一端,較小的管904連接到出口埠歧管705。由外部冷卻元件產生並加以循環的冷卻流體(例如設備流體冷卻水或冷卻流體)在熱交換器中循環,以將陽極液冷卻並將之維持在目標溫度下(例如低於約40℃)。在一實施例中,當電解液的溫度超過目標最大溫度時,透過開啟流體冷卻水入口閥來控制陽極液的溫度。在其他實施例中,使用外部流體冷卻元件之回饋控制器以及所感測到的溫度來主動地控制溫度。為此目的設置陽極液溫度感測器。
所繪之電解液產生反應器更包含總流量溢流口707。進入陽極反應區域並向上通過孔洞性陽極之微粒的流體,向上流到總流量孔洞性區域或「溢流口」707。流體到達溢流口後改變方向,然後以水平方向流經陽極容納板組件。在其中一實施例中,設備包括流體與微粒轉向槽或「排液溝」709,其具有傾斜的收集表面,配置以收集並限制流出總流量溢流口707的流體,並將之導向周圍的粗微粒過濾組件711。此流體一般含有在陽極形成的微粒,其應透過過濾而移除。排液溝709將流體排空到可移動式襪型過濾元件(未圖示),其配置以將粗微粒從流體中移除。流體進入襪型濾件的開放部分,而在過濾之後,流體透過主陽極腔室713腔壁中的開口離開過濾組件711。可將過濾襪移除並清潔、或丟掉並更換。帶有可接取的可移動式過濾襪的粗微粒過濾組件711將再循環流量轉向,以將產物中的粗微粒分離並減少精細過濾組件639的負載;並且允許快速且簡易地移除濾件,而毋須將反應器排液或關閉反應器。主要參考圖7C描繪溢流口,圖7C呈現設備之部分的剖面圖,其中該剖面之平面垂直於圖6C中使用的剖面之平面。電解液產生處理
金屬電解液產生與控制處理圖解於圖8A – 8B及9A – 9F中。該等處理在本文描述之電解液產生系統中實現。在繪於圖8A的一批次處理中,處理始於操作801,使電流通過一設備,該設備具有被一膜隔開的主動陽極(例如少量α錫陽極)與氫產生陰極。該設備(陽極液與陰極液腔室)原本已被充滿電解液(例如酸的水溶液),且功率供應器輸送足夠的電流到陽極與陰極,而促使陽極溶解。在一範例中,原本空的具有錫陽極的陽極液腔室被充滿預定之適量的酸(例如甲磺酸及/或硫酸)與水,而陰極液腔室(或複數腔室)亦被充滿定量的酸。在一些實施例中,在施加電流之前,陽極液中酸的濃度低於陰極液中酸的濃度。此外,在其中一較佳實施例中,陽極液(在施加電流之前)除了酸以外又包含錫(II)鹽類。例如,在一實施例中,陽極液原先含有錫(II)甲磺酸鹽及MSA,而陰極液僅含有濃度高於陽極液中MSA之濃度的MSA。吾人發現較佳的係(但非必要),該處理始於在陽極液中提供至少約錫目標濃度之60%的錫離子、更佳的係至少約錫目標濃度之80%、而尤其更佳的係至少約錫目標濃度之90%;並始於陽極液中少於1M的酸濃度,例如介於約0.3 – 0.7 M,例如 0.5 – 0.7 M。例如,在一些實施例中,較佳的係在陽極液(在施加電流之前)中提供至少約200g/L的錫離子,例如至少約250g/L。於施加電流之前在陽極液中提供錫離子,提供改善陽極液及系統穩定度的優點。具體而言,吾人發現含有低濃度之錫離子(以及次高濃度的酸)的溶液,與具有較高錫離子濃度(以及低濃度的酸)的溶液相較之下較不穩定。透過於施加電流之前提供相對較高濃度的錫離子,來確保錫離子濃度在施加電流之後僅會提高,且確保陽極液維持高度穩定。在這些較佳操作性陽極液濃度之下,不樂見之Sn4+ 離子的形成與相關微粒的產生大致上被抑制。此外,若在施加電流之前沒有錫離子存在陽極液中,則錫離子的濃度會從零提高到目標濃度(例如提高到 300 g/L),這可能導致不樂見的滲透效應,並且比適度提高錫離子濃度(例如從250 g/L 到 300 g/L)之情況影響膜更多。維持陽極液中較低的酸濃度 (例如0.3 - 1M 的濃度)亦賦予陽極液更高的穩定度。
再參考圖8A,在操作801中,供給電流到反應器以促使金屬(例如少量α錫)陽極溶解。供給電流使得輸送到系統的總電流足以在陽極液中產生目標濃度範圍的錫離子。例如,若錫離子的寬目標濃度範圍介於約280 – 320 g/L,則以在陽極液中產生所需的錫離子量、並達到已知容量的陽極液的目標濃度所需要的時間量來供給電流。假設供給電流之位準與陽極液的容量為已知參數,則可根據電解的法拉第定律來計算時間。該設備一般包括與該設備控制器透過介面連接的計時器,其中該控制器根據該計時器之輸入來提供開始及停止施加電流的指令。在一範例中,在陽極液中產生456g的錫離子所需要的電流約為206安培。在此範例中,電流可以100A的位準施加約124分鐘。提供到設備的電流的位準可變化,且大致上取決於反應器中的循環流率、及陽極顆粒對於對應之電極的投入面積。
在操作803中量測陽極液中的金屬離子濃度。例如,可單獨地使用密度計來量測錫離子濃度,或與陽極液之導電度量測結合。可在施加電流之前、期間、及之後連續地、或間歇地量測濃度。在一些實施例中,在施加電流停止之後不久量測金屬離子濃度。在達到目標金屬濃度並以金屬濃度感測器確認之後,在操作805中將陽極液輸送到電解液儲存容器中。選擇性地,在將陽極液輸送到電解液儲存容器之前,亦可量測並調整陽極液中的酸濃度。可使用量測陽極液之導電度的導電度感測器來量測酸濃度(假設金屬離子濃度為已知)。在達到陽極液中的目標金屬離子濃度之後,此時的殘餘酸濃度可能在目標位準、過高、或過低。若在操作805中酸濃度在目標位準,則該批次處理完成,並且輸送陽極液(其中全部或其中一部分)到電解液儲存容器中。若酸濃度過低,則將達到酸之目標位準所需的量的額外的酸輸送到陽極液中。若因酸添加造成的稀釋夠小,而不足以使金屬離子濃度低於較低控制目標限度(低於寬金屬離子目標濃度範圍),則該批次產生循環完成,並且輸送陽極液到電解液儲存容器中。若添加的酸稀釋陽極液,使得金屬離子濃度低於目標金屬離子濃度範圍,則施加額外電荷到系統,以使金屬離子濃度進入寬目標濃度範圍。可重複執行此調整處理(添加酸到陽極液、以及使額外電荷通過系統),且若需要,可包括將部分的陽極液從反應器中排放到廢液室,直到達到目標酸及金屬離子濃度為止。若酸濃度過高,則一復原方法為將部分的陽極液排到廢液室、以水來替代一些或全部的被排出的容積、並透過使額外電流通過設備來產生額外金屬離子,直到金屬與酸濃度兩者均在寬目標濃度控制限度內為止。在接下來的循環中,使用與此循環之校正動作相關的資訊來修改循環的初始酸/水量及電荷。金屬離子濃度感測器的作用可為偵測電解液中的金屬離子濃度以進行下列動作:若金屬離子濃度未在寬目標範圍內則避免輸送電解液到儲存容器;若金屬離子濃度在寬目標範圍內但在窄目標範圍外,則在電解液產生期間收集資料以調整後續批次中的製程參數。此外,在一些實施例中,在達到目標金屬離子濃度範圍(例如目標密度範圍)後,金屬濃度感測器會直接傳訊給控制器以停止施加電流。在此實施例中,感測器可用以取代計時器來提供「電流關閉」訊號。
在一些實施例中,以複數循環連續地執行電解液產生處理,其中各循環產生一批次的電解液。圖8B所示之流程圖,圖解電解液產生的循環處理,其中各循環涉及僅將一部分的所產生之電解液產物排放到電解液儲存容器。該處理始於操作809,與圖8A所示之處理類似,使電流通過一設備,該設備具有主動金屬陽極與惰性氫產生陰極;並在操作811偵測金屬離子之濃度。接下來,在達到陽極液中金屬離子之目標濃度之後,在操作813,僅將一部分的陽極液電解液產物)排放到電解液儲存容器。在其中一較佳實施例中,排出的部分相對少量,且較佳地係少於陽極液之總容積的約20%、例如少於約 15%、例如介於約1- 10% (例如約 5%)。接下來,在操作815中,以酸對陽極液腔室進行補充。在此步驟中,將適量的酸及水添加到陽極液中。接下來,再次將電流輸送到電解液室中直到陽極液濃度回到寬目標控制範圍為止,並再次將一部分的電解液排放到儲存容器。因此,如操作815所示,重複執行操作809-813。在一些實施例中,各循環更包括添加需要量的酸到陰極液中。
在單一循環中輸送少量的電解液產物到儲存容器中,具有優於輸送所有陽極液及輸送大量陽極液的若干益處。當將少量的電解液產物輸送到儲存容器中時,來自酸與金屬離子兩者的目標濃度的擾動在各循環過程中係小的,這係因為在循環開始時的稀釋量很少(例如5%)且因為離子強度變化,以及因此陽極液相對於陰極液之滲透壓變化在整個循環中很小。該處理可經設計,使得陰極液側的滲透壓幾乎等於陽極液側的滲透壓,且因滲透壓而造成的水輸送可被降至最低。雖然傾向於使水與移動的離子一起輸送(在此例子中與移動通過陰離子膜的陰離子一起)的電滲作用可能很明顯,但其對各處理順序係可被量測、計算、並再現的。因此,在各循環中陽極液因電滲作用而損失的水量係已知的,且損失的水可輕易地被替代。因此,在一些實施例中,進行該處理使得陽極液中Sn2+ 的濃度波動在若干個產生循環(例如5個產生循環)過程中不大於 10%,例如不大於3 % 。此外,較佳的係,陽極液中酸的濃度在若干個產生循環(例如5個產生循環)的過程中不大於 100%,例如不大於50 % 。
在每一循環中僅排出少量電解液的另一益處為,可在所有循環中將金屬離子濃度維持在較高的位準。吾人觀察到,與具有低濃度的Sn2+ 的電解液相比,具有高濃度的Sn2+ 離子與作為反離子的甲磺酸根的電解液,對於Sn4+ 物種的氧化作用更具抵抗性。此外,在一些實施例中,在一循環期間或在複數循環期間,將Sn2+ 離子濃度維持在至少250 g/L,較佳的係維持在270 g/L。在一些實施例中,在各循環開始時的錫離子濃度為目標錫離子濃度的至少約90% 。在一範例中,錫離子濃度為目標錫離子濃度的約95% 。例如,在各循環開始時,錫離子濃度可為285 g/L,而在產生完成後,陽極液達到 300 g/L的目標錫離子濃度。在整個處理中維持高的陽極液錫濃度,具有與所得到的電解液之純度及製程效率相關的顯著益處。
當使用循環處理時,可連續地或間歇地施加電流到產生器的電極。在其中一實施例中,當施加電流到電極時,未添加酸或水到設備,且未將電解液產物輸送到儲存槽。由於陽極液中金屬離子的濃度在未施加電流時為定值,此實施例因為較容易維持組成物的平衡濃度並編排流體的輸送所以係有益的。在其他實施例中,可在不關閉電流的情況下將酸添加到陽極液中。此實施例的一優點為可以高的頻率來添加少量的酸到陽極液中,藉此將陽極液中的酸濃度波動降至最低並將相關的滲透效應降至最低。最後,在其他實施例中,電流的施加可為連續的,且當在輸送電解液產物到儲存容器時、以及在以酸及水對陽極液與陰極液進行配量時不停止。此實施例之優點為其高的效率。
應理解的係,圖解於圖8A與8B之方法可進一步與前文中結合設備的描述所討論的任何步驟合併。因此,該等方法可涉及提供一或更多稀釋氣體到電解液產生設備,以稀釋所產生的氫氣並透過排氣埠排出被稀釋的氣體。該等方法可更包括透過(例如)擴散惰性氣體來還原陽極液及/或陰極液。此外,該等方法可涉及週期性地將第二陰極液(例如部分的第二陰極液)從第二陰極液腔室中排出並以新的酸性溶液填充該第二陰極液腔室。
自動化多循環電解液產生處理的其中一重要特徵為,維持陽極液及陰極液組成物的穩定濃度,並在所有循環中維持這些組成物的質量平衡。維持質量平衡涉及添加定量的酸及水到陽極液及陰極液中,以精準地補償陽極液與陰極液腔室中被消耗及被輸送的酸及水。例如,施加電流到電極以在陽極液中產生錫離子;之後接著將一部分的陽極液產物從陽極液輸送到儲存槽;並之後接著添加酸性溶液(以及選擇性的水)到陽極液與陰極液中;在涉及以上步驟的循環處理中,添加的水及酸的量經計算,使得陽極液中酸及錫離子的量、以及陰極液中酸的量在施加電流之前係實質上相同於循環結束時(在已施加電流、已輸送一部分的電解液、且已添加酸及/或水到陽極液與陰極液腔室之後)相對應的錫及酸的量。更佳的係,不僅錫離子及酸的量實質上相同,錫離子及酸的濃度亦實質上相同。
為維持複數循環中的質量與濃度平衡而需要被添加到陽極液與陰極液中的酸及水的量可經計算並編程於系統控制器中。例如,在應用錫離子、甲磺酸根(MS)離子及MSA、及陰離子可通透性膜的其中一實施例中,根據一下事實來計算酸及水的量:在施加定量電荷的期間,已知量的MSA從陽極液腔室移動到陰極液腔室,且已知量的MS伴隨著若干量的水,以反方向從陰極液腔室移動到陽極液腔室。此外,此計算考慮陽極液中在施加電荷期間產生的已知量的錫;陰極液中在施加電荷期間因產生氫氣而損失的已知量的酸;以及在輸送到產物儲存槽期間被排出的酸及錫的量。
在三個不同的循環處理中維持質量平衡的三個範例圖解於圖9A-9F 中。這些方案呈現在不同處理階段下,陽極液及陰極液中之成分的量與濃度。圖9A-9B圖解當施加電流到電極時未發生材料輸送的循環,且其中陰極液(第一陰極液腔室)作為陽極液的酸來源(串接實施例)。所繪處理始於組成901,其中304 g/L之目標錫濃度的電解液已在陽極液中產生。當產生電解液時,透過導電度與密度感測器量測陽極液中酸與錫離子的濃度。若產生結束時酸與錫離子的濃度過高,則添加水到該陽極液中以使濃度進入目標。若錫的濃度過低,則使額外的電荷通過系統以達到目標濃度。若酸的濃度不足,則添加酸到該陽極液中。若酸與錫離子的濃度均在寬目標位準,則將總陽極液容量的5%(30 L 陽極液中的1.5 L )輸送到電解液儲存容器中,如圖9A所示。接下來,在組成903,在已將部分的陽極液輸送到儲存容器之後,陽極液容量係低的且為28.5L。檢查陽極液的導電度,若過高則添加更多水到該陽極液中。若導電度過低則添加更多酸。若導電度在寬目標位準,則將1.17L的陰極液(酸)輸送到該陽極液中。1.17L的陰極液用以補償與產物電解液一起從陽極液輸送到儲存容器的0.165L的酸,以及補償在錫離子產生期間透過膜從陽極液遷移到陰極液1.005L的酸。此結果在組成905,其中該陽極液具有所需的酸量。接下來,添加水到該陽極液中直到達到初始陽極液容量(30L)為止,產生組成907,其中該陽極液已預備施加電流。在接下來的步驟中,需要將添加酸到該陰極液中,以補償輸送到該陽極液並與該電解液一起排到儲存槽(0.072L)的酸,以及補償在接下來的運作中用以產生氫氣(0.781L)的酸。因此,將0.853 L 的70 % MSA從酸運送箱配量到陰極液中產生組成909。最後,添加去離子水到該陰極液中直到30L,產生組成911,其中該陽極液與陰極液兩者均預備好產生電解液。接著,施加功率至陽極與陰極,並使預先計算的電荷量(205.9 Ah)通過該系統,以在該陽極液中產生更多錫離子。當施加功率時,416. 9 g 的MSA從該陽極液輸送到該陰極液,且 730.8 g 的甲磺酸透過膜從該陰極液輸送到該陽極液。同時,在電解液產生的過程中,456g的錫離子從該陽極形成在該陽極液中,而7.7g的氫被從陰極液中排出。在電流施加結束時的陽極液與陰極液的最終組成913,和先前施加電流之後的組成901相同。總的來說,將806.8 g 的 MSA從酸運送箱添加到電解液產生器,而456 g 的錫離子從陽極添加到溶液中,結果為1262.8 g 的總添加材料,其中1255.2 g 的產物電解液被排到儲存容器,而 7.7 g 的氫被從設備中排出,結果為 1262.9 g 的排出材料,因此實質上達到質量平衡。
雖然在圖9A及9B圖解之實施例,添加酸及水到陽極液中之動作,係在未提供功率到電極時執行,但在其他實施例中,可在產生電解液的同時(在施加功率到電極時)添加酸到設備中。參考圖9C及9D說明此實施例。此方法的步驟921-923相似於圖9A及9B中圖解之步驟,但在圖9A及9B圖解之方法中,將配量到陽極液與陰極液的酸的量調降比例,以反應所施加的電荷量的10%。因此,在施加電荷時(在10%位準),可將酸配量到陽極液與陰極液(在對應到10%的適當位準)。在施加更多電荷時,可執行此間歇酸配量(例如)10次。此方法被稱為分段式酸方法,以指出與先前描述之方法(其中當施加電流時將酸以100%添加到陽極液與陰極液中)不同的地方在於,在此方法中,酸被分成十份,而在施加電流到設備的電極時以規律的間隔時間添加。在停止電流之後可執行輸送產物到儲存槽的動作。
在一些實施例中,較佳的係將部分的陰極液從第一陰極液腔室排放到排液埠,而非如圖9A-9D中圖示般將之輸送到陽極液腔室。在這些實施例中,第一陰極液腔室不作為陽極液的酸來源。反而,酸係從酸來源(例如酸儲存槽)添加到陽極液與陰極液兩者中。將部分的陰極液從第一陰極液腔室排放到排液埠可係有用的,因為第一陰極液腔室中的陰極液可能被Sn4+ 離子汙染,且將這些部分從系統中排出係經濟上更具可行性的。針對此類實施例說明質量平衡維持之製程方案的範例呈現於圖9E及9F中。現參考圖9E,處理始於步驟941,在定量的電荷以通過產生器之後,指出陽極液以具有足夠的濃度並且預備好被輸送到儲存槽中。此時,檢查陽極液之密度與導電度,若兩者均在寬目標範圍內,則判定該陽極液可被輸送。在所繪範例中,在步驟941(輸送之前),陽極液腔室含有30公升的水溶液,包含Sn2+ 離子 (9120 g)、甲磺酸根離子(14615 g)、及甲磺酸 (1368 g)。陰極液(包括第一與第二陰極液) 為 29.4 L 公升的水溶液,包含甲磺酸 (12445 g)。應注意的係,在此圖式中,陰極液在先前循環期間以流失約 0.6 L的容量到陽極液中,這係因為在先前循環中當施加電流到室中時,水與甲磺酸根離子一起透過膜從陰極液輸送到陽極液中。停止電流之後,將 5% 的總陽極液溶液輸送到儲存槽,留下低容量的陽極液,如步驟 943所示。在下一步驟中,檢查陰極液的導電度,若導電度在寬目標範圍內,則將部分的陰極液從第一陰極液腔室排放到排液埠。如步驟945所示,將 0.1 L的陰極液(含有 42.3 g 的甲磺酸) 從第一陰極液腔室排出,留下29.3 L 的總陰極液容量以及陰極液中12403 g的 MSA (包括第一與第二陰極液腔室中的陰極液,其透過導管(而非膜)流體交流)。下一步驟為補充陽極液,進而維持質量平衡。在此步驟中,以酸對陽極液進行配量,使得添加的酸的量實質上等於從陽極液排到電解液儲存槽的酸量(68.4 g 的MSA)及當施加電流時透過膜從陽極液輸送到陰極液的酸量(416.9g)的總和 。基於在一運作期間通過電解液產生器的已知電荷量,對於使用的特定類型之膜而言,後者的量係已知的。因此,將 含有約485 g 的MSA 的MSA的水溶液從酸槽添加到陽極液中。 以水進一步(0.37 L)完成陽極液,直到, 其容量達到 29.38 L。在此步驟中添加的水量經判定以使陽極液之容量進入期望目標(在此圖中為30L),之後在施加電流到室的期間水將被從陰極液輸送到陽極液。 在添加水及酸到陽極液之後,陽極液預備好進行電解液產生,如步驟947所示。接下來,以酸對陰極液進行補充。在此步驟中,將363.7 g 的 MSA從MSA溶液槽添加到第二陰極液腔室。添加的酸量實質上等於在此循環中為產生H2 而從陰極液流失的MSA量 ,加上在 沖洗步驟945中從第一陰極液腔室輸送到排液埠的MSA量 ,減在此循環期間當施加電流時從陰極液遷移到陽極液的 MSA 量。最終陰極液組成呈現於操作 949。再來,以 0.32 L的水完成陰極液,以使陰極液之容量進入30 L。此時陰極液已預備,如步驟951所示。接下來,使定量的電荷 (205.9 A. h) 通過室,結果為在陽極液中產生456 g 的Sn2+ 離子,並在陰極排出7.7 g 的H2 。同時,在施加電荷到電極的期間, 416.9 g的 MSA透過膜從陽極液輸送到陰極液,且 730.8 g 的甲磺酸伴隨著0.62 L 的水 透過膜從陰極液輸送到陽極液。在通過定量的電荷之後,完成此循環,而步驟953中的陽極液與陰極液之組成,實質上相同於循環開始時步驟941中該者的組成。總的來說,在一循環中進入產生器的錫離子與MSA的質量,等於該循環中離開產生器(到排氣埠、到產物儲存容器、及到排液埠)的錫離子H2 、及MSA的質量。在所繪範例中,1305.2 g的材料如所述般進入並離開系統。
所提供之電解液產生設備的其中一重要特徵係其能夠使用一或多個感測器(例如陽極液密度計、陽極液導電度計、陰極液導電度計、及其中之組合)來提供電解液組成之回饋。在一些實施例中,為調整電解液產生製程參數而使用感測器(若偵測到電解液組成發生不樂見之偏差)。感測器亦用以發出必須停止製程之訊號(若一或多個電解液性質超出寬期望範圍)。例如,若由密度計量測的陽極液密度超出寬期望範圍,指出陽極液中的錫離子濃度係不被接受的,且產生的錫電解液不應被輸送到產物槽。另一方面,若陽極液密度在寬期望範圍內但在窄目標範圍外,指出陽極液仍具有可接受的錫離子濃度且可被輸送到產物儲存槽,但應調整後續產生循環的製程參數,使得密度回到窄目標範圍,並消除密度偏差。
圖10提供基於陽極液密度示量調整電解液產生製程參數的方法的繪圖。圖10呈現陽極液密度數值作為循環數的函數。在各循環中,繪製的密度係在停止電流之後、及調整陽極液與陰極液濃度之前進行量測。在所繪範例中,1.480 – 1.520 g/cm3 的密度範圍為寬目標密度範圍, 而1.490 – 1.510 g/cm3 的密度範圍為窄目標密度範圍。可見得,在最初11個循環中, 陽極液密度在窄及寬目標範圍兩者之內,而毋須調整。在12th 循環,量測之陽極液密度為1.511 g/cm3 ,其超出窄目標範圍但仍在寬目標範圍之內。因此,從 12th 循環之後的陽極液仍輸送到產物槽,但製程參數之調整受到此密度示量而引發。可見得,密度在12循環中從1.500 偏移到 1.511 g/cm3 ,相當於 0.011 g/cm3 的正偏差。此密度偏差對應到 6.6 g/L多出的錫離子濃度。因為此範例中的陽極液容量約30公升, 所以在12循環中產生 6.6 g/L *30 L = 198 g 的多出的錫離子。或是,198g/12循環= 16.5 g的多出的錫離子在觀察到偏差的一循環中產生。
首先,調整下一次循環13中的參數,以產生比在正常循環中少198 g 的錫離子,並藉此使陽極液密度進入1.500 g/cm3 之目標位準。假設一標準 循環產生450 g的錫離子,則13th 循環應產生少 198 g 或 252g的錫離子。在此循環中,電流應施加歷時在標準運作中使用的時間的252/450 = 0.56 (假設所有運作均施加相同位準的電流)。在下一步驟中,基於每一循環觀察到的16.5 g錫的偏差,調整所有後續運作的製程參數。為抵銷此偏差, 各個後續運作之持續期間應為先前運作時間的 (450 – 16.5)/450 = 0.96。替代地,運作的持續期間可維持相同,但因此電流之位準應降低。更一般而言,透過調整運作的持續期間、施加電流的位準、或兩者,來調整應通過系統的電荷量。
以相似的方式解決陽極液導電度與陰極液導電度的偏差,但非調整運作的持續期間,而係調整在各循環期間添加到陽極液與陰極液的酸量。
在一些實施例中,堅持如下規定以提供最佳化製程穩定性並且避免過度校正製程參數。首先,較佳的係即使若干感測器指出不同的電解液性質超出窄目標範圍但在寬目標範圍內,在每一循環中亦不調整多於一個性質偏差。例如,若在一循環中,陽極液密度、陽極液導電度、與陰極液導電度均超出窄目標範圍(但在寬目標範圍內),則此循環中僅為解決陽極液密度偏差而進行參數調整,而非陽極液與陰極液導電度偏差。若陽極液密度在窄目標範圍內,但陽極液與陰極液導電度兩者超出窄目標範圍,則在一循環中解決陽極液導電度偏差。因此,在解決陽極液導電度及/或陰極液導電度偏差之前,執行為解決陽極液密度偏差的參數調整。在解決陰極液導電度偏差之前,執行為解決陽極液導電度偏差的參數調整;且進行調整,使得每一循環僅進行一偏差校正。此外,較佳的係對一類型的參數不進行頻繁校正。例如,若感測器指出一參數(例如陽極液密度)需要在三次循環中被校正多於一次(亦即,若參數在三次循環中超出窄目標範圍多於一次),則不進行參數的自動校正,而由工程師解決此問題。在較高優先度的參數調整之後三次循環內,較低優先度的參數(陽極液及陰極液導電度)被允許超出窄目標範圍(但不超出寬目標範圍)。在所繪範例中,陽極液密度的優先度高於陽極液導電度的優先度,而陽極液導電度的優先度高於陰極液導電度的優先度。最後,若任何感測器指出電解液性質(陽極液密度、陽極液導電度、或陰極液導電度)超出寬目標範圍,則停止製程,並由工程師解決問題。
在錫電解液產生的一實施例中,陽極液密度的寬目標範圍介於約1.4812 - 1.5296 g/cc之間;陽極液導電度的寬目標範圍介於約92 - 96 mS/cm之間;而陰極液導電度的寬目標範圍介於約451 - 491 mS/cm之間。在例示性實施例中,這些參數係在停止施加電流到腔室之後,並且在添加酸到陽極液(以校正陽極液導電度)與陰極液(以校正陰極液導電度)之前量測。
圖11A-11D提供用以偵測電解液性質並用以調整電解液產生處理中的製程參數的方法之範例。在各循環中,在停止施加電流之後,首先判定陽極液密度是否在窄目標範圍內,如圖11A中操作1101所示。若是,則判定陽極液導電度是否在窄目標範圍內,如操作1103所示。接下來,若陽極液導電度在窄目標範圍內,則在操作1105檢查陰極液導電度。若陰極液導電度在窄目標範圍內,則處理可繼續進行到操作1107中的下個運作,包括在下一循環中以酸對陽極液與陰極液進行補充並施加電流。若在操作1101中判定陽極液密度超出窄目標範圍,則接續圖11B所示之方法。參考圖11B,首先在操作1201中判定陽極液密度是否在寬目標範圍內。若陽極液密度超出寬目標範圍,則在操作1209傳訊給工程師。一般而言,此情況下,設備操作者會從控制器接收錯誤訊息,而設備會經配置以不再進一步進行。若陽極液密度在寬目標範圍內,則在操作1203中判定自上一次密度校正之後是否多於三次循環。若自上一次密度校正之後有三次或較少循環,則此密度偏差過快並在操作1209將此問題傳訊給工程師,且此製程不允許繼續進行,直到工程師解決快速偏差問題為止。若自上一次密度校正之後有多於三次循環,則製程繼續進行到操作1205,基於密度偏差計算新的製程參數之常數;調整陽極液密度;並儲存新計算的常數以用於未來運作。可如參考圖10所示般執行計算。新計算的常數可包括新的電流施加持續期間、或新的電流位準。可透過使電流通過室來執行陽極液密度之調整。若陽極液密度過高,可透過運作額外的短暫循環(包括將部分的陽極液排到儲存容器、以酸對陽極液進行配量、並流動電流歷時使密度進入目標數值所需的時間量)來回到目標數值。若密度過低,則以酸對陽極液進行配量;開啟電流;並且繼續進行錫離子產生歷時使密度進入目標數值的所需時間量。在儲存新的製程常數(例如待施加的電流的位準及/或電流施加的持續期間)後,將偵測自上一次密度校正之後之循環次數的計數器重設,而製程繼續進行到操作1207的下個運作。
參考圖11A,若在操作1103判定陽極液導電度超出窄目標範圍,則應接續圖11C所示之方法。首先,在操作1301中判定陽極液導電度是否在寬目標範圍內。若其超出寬目標範圍,則在操作1309傳訊給工程師,且此製程不允許繼續進行。接下來,在操作1303中判定自上一次陽極液導電度校正之後是否多於三次循環。若有三次或較少循環,則在操作1309告知工程師。此製程不允許繼續進行,且工程師解決過快之陽極液導電度偏差問題。若自上一次陽極液導電度校正之後有多於三次循環,則在操作1305判定自上一次陽極液密度校正之後是否多於三次循環。若自上一次陽極液密度校正之後有三次或較少循環,則在此循環中不進行陽極液導電度校正,並在操作1311中開始新的運作,同時維持舊的常數。若自上一次陽極液密度校正之後多於三次循環,則在操作1307中基於陽極液導電度偏差計算新的常數;使陽極液導電度回到目標數值;並儲存新的常數以用於後續循環中。若密度與導電度資料兩者均指出錫離子濃度在窄目標範圍內,但酸濃度超出窄目標範圍,則調整(增加或減少)待於一給定循環中添加的酸量,進而抵銷酸濃度偏差。若陽極液密度受到良好控制(例如在1.48 – 1.52 g/cm3 範圍內),則可單獨考慮陽極液導電度數值來判定是否應調整後續循環中添加之酸量,並產生新的待添加酸量之常數。接下來,在操作1303中開始新的運作,使用新計算的製程常數。
參考圖11A,若在操作1105,陰極液導電度超出窄目標範圍,則應接續圖11D所示之方法。首先,在操作1401中判定陰極液導電度是否在寬目標範圍內。若其超出寬目標範圍,則在操作1409傳訊給工程師,且此製程不允許繼續進行。接下來,在操作1403中判定自上一次陰極液導電度校正之後是否多於三次循環。若有三次或較少循環,則在操作1409告知工程師。此製程不允許繼續進行,且工程師解決過快之陰極液導電度偏差問題。若自上一次陰極液導電度校正之後有多於三次循環,則在操作1405判定自上一次陽極液導電度校正之後是否多於三次循環。若自上一次陽極液導電度校正之後有三次或較少循環,則在此循環中不進行陰極液導電度校正,並在操作1411中開始新的運作,同時維持舊的常數。若自上一次陽極液導電度校正之後多於三次循環,則在操作1407中基於陰極液導電度偏差計算新的常數;使陰極液導電度回到目標數值;並儲存新的常數(待添加到陰極液中的酸量)以用於後續循環中。若觀察到陰極液導電度偏差,則調整(若導電度過高則增加或若導電度過低則減少)各循環(在量測導電度、並將部分的陰極液從第一陰極液腔室中排出之後)中待添加到陰極液的酸量,使得一旦添加水到陰極液後,酸的濃度會維持在窄目標範圍內。接下來,在操作1403中開始新的運作,使用新計算的製程常數。
如前述,本文中揭露之系統與設備可包括製程控制器(或複數控制器),其具有程式指令或內建邏輯,以執行本文中提供的任一方法。具體而言,控制器配置以從一或多個感測器(例如密度計、導電度季、電解液位準感測器)接受資訊、處理這些參數、並基於這些從一或多個感測器得到的資料來對設備產生指令。此外,一或複數個控制器可經程式化以提供整合系統(包括電解液產生器及一或多個電鍍設備)之程式指令,且可經配置以應需求提供期望的量的電解液。
在一些實施例中,控制器可為系統之部分,其可為上述範例之部分。此類系統可包含半導體處理設備,其包括一或複數之處理工具、一或複數之腔室、用於處理的一或複數之工作台、及/或特定處理元件(晶圓支座、氣流系統等)。該等系統可與電子設備結合,該電子設備係用於在半導體晶圓或基板之處理期間或在該處理前後控制其操作。該電子設備可稱為「控制器」,其可控制一或複數之系統的各種元件或子部件。依據製程參數及/或系統之類型,可對控制器編寫程式以控制本文所揭露的製程之任一者,包含處理氣體之輸送、溫度設定(例如加熱及/或冷卻)、壓力設定、真空設定、功率設定、射頻(RF)產生器設定、RF匹配電路設定、頻率設定、流率設定、流體輸送設定、位置及操作設定、進出工具及連接至特定系統或與特定系統透過介面接合的其他傳送工具及/或負載鎖室之晶圓傳送。
廣泛而言,可將控制器定義為具有接收指令、發送指令、控制操作、允許清潔操作、允許終點量測等之各種積體電路、邏輯、記憶體、及/或軟體的電子設備。該積體電路可包含儲存程式指令的韌體形式之晶片、數位信號處理器(DSPs)、定義為特殊應用積體電路(ASICs)之晶片、及/或執行程式指令(例如軟體)之一或多個微處理器或微控制器。程式指令可為以各種個別設定(或程式檔案)之形式傳送到控制器的指令,其定義用以在半導體晶圓上、或針對半導體晶圓、或對系統執行特定製程的操作參數。在一些實施例中,該製程參數可為由製程工程師所定義之配方的部分,該配方係用以在一或更多的層、材料、金屬、氧化物、矽、二氧化矽、表面、電路、及/或晶圓之晶粒的製造期間,完成一或更多的處理步驟。
在一些實施例中,控制器可為電腦的部分或連接至電腦,該電腦係與系統整合、連接至系統、或透過網路連接至系統、或上述之組合。舉例而言,控制器係可位於「雲端」(in the “cloud”)、或為晶圓廠主機電腦系統的全部或部分,其可允許晶圓處理之遠端存取。該電腦能達成對該系統之遠端存取,以監視製造操作之目前製程、查看過去製造操作之歷史、查看來自多個製造操作之趨勢或性能指標,來改變目前處理之參數,以設定處理步驟來接續目前的處理、或開始新的製程。在一些範例中,遠端電腦(例如伺服器)可透過網路提供製程配方至系統,該網路可包含區域網路或網際網路。該遠端電腦可包含可達成參數及/或設定之輸入或編程的使用者介面,該等參數或設定接著自該遠端電腦傳送至該系統。在一些範例中,控制器接收資料形式之指令,在一或更多的操作期間,其針對待執行的處理步驟之每一者而指定參數。應瞭解,該等參數可特定於待執行之製程的類型、及工具(控制器係配置成透過介面與該工具接合或控制該工具)的類型。因此,如上所述,控制器可分散,例如藉由包含一或更多的分離的控制器,其透過網路連接在一起並朝共同的目標而作業,例如本文所敘述之製程及控制。用於此類用途的分開之控制器的範例可為腔室上之一或更多的積體電路,其與位於遠端(例如為平台等級、或為遠端電腦的部分)之一或更多的積體電路連通,其結合以控制該腔室上的製程。
例示性系統可包含電漿蝕刻腔室或模組、沉積腔室或模組、旋轉沖洗腔室或模組、金屬電鍍腔室或模組、潔淨腔室或模組、斜邊蝕刻腔室或模組、物理氣相沉積(PVD)腔室或模組、化學氣相沉積(CVD)腔室或模組、原子層沉積(ALD)腔室或模組、原子層蝕刻(ALE)腔室或模組、離子佈植腔室或模組、徑跡腔室或模組、及與半導體晶圓之加工及/或製造有關或用於其中的任何其他半導體處理系統,但不限於此。
如上所述,依據待由工具執行之製程步驟(或複數製程步驟),控制器可與下列一或多者通訊:其他工具電路或模組、其他工具元件、叢集工具、其他工具介面、牽引工具、鄰近工具、遍及工廠的工具、主要電腦、另一控制器、或將晶圓之容器帶往或帶離半導體製造廠中的工具位置及/或載入埠的用於材料傳送之工具。
前文中所敘述之該裝置/製程可與例如用以製造或生產半導體元件、顯示器、LED、光伏面板等之微影圖案化工具或製程結合使用。一般而言(儘管非必然),此類工具/製程將於共同的製造設施中一起使用或執行。膜的微影圖案化一般包含部分或所有下列操作(每一個操作係以若干合適的工具來達成):(1)使用旋轉塗佈或噴霧塗佈工具將光阻塗佈於工件(即基板)上;(2)使用加熱板、或加熱爐、或UV固化工具將光阻固化;(3)以例如晶圓步進機之工具將光阻曝露於可見光、或UV光、或x射線光;(4)使用例如溼式清洗台之工具將光阻顯影以選擇性地移除光阻,藉以將之圖案化;(5)藉由使用乾式或電漿輔助蝕刻工具將光阻圖案轉移至下層之膜或工件中;及(6)使用例如RF或微波電漿光阻剝除機之工具將光阻移除。
在一態樣中,設置非暫態電腦機械可讀媒介,其包含用以控制電解液產生及分配工具的程式指令,其中該程式指令含有用以執行本文中呈現之任一方法的指令碼。 實驗性密度與導電度量測
在一些實施例中,使用密度與導電度感測器兩者來判定陽極液中金屬與酸濃度落在目標範圍內之時間。吾人認為含Sn2+ 鹽類的溶液之密度與Sn2+ 離子之濃度線性相關,且在改變酸濃度之情況下表現出相當小的變動。圖12A提供實驗性作圖,圖解含甲磺酸錫(II)水溶液之密度對Sn2+ 離子濃度的相關性。圖12A呈現四個線性相關性,其中各個線性函數對應到甲磺酸濃度為定值(0、 30、 45、及60 g/L)的溶液。可見得,在四個情況下,在寬的錫離子濃度範圍中(0 – 300 g/L 的 Sn2+ ) 觀察到對於錫離子濃度之線性相關性,且溶液(具有不同酸濃度但相同的錫離子濃度)之密度變動相當小。圖12B 呈現針對含濃度為45 g/L的甲磺酸及濃度範圍介於 285與304 g/L之間的錫離子的溶液之溶液密度對錫離子濃度之相關性。在一些實施例中,這些濃度為陽極液的工作範圍(亦即,MSA的濃度約45 g/L),而錫離子的濃度介於約 285 – 305 g/L)。
亦呈現的係,在各種錫離子濃度下,含酸及錫鹽類的溶液的導電度與酸的濃度線性相關。圖12C呈現線性曲線組,圖解在含錫離子的MSA水溶液中,導電度對MSA 濃度之相關性。具有最大斜率的線性曲線對應到不含錫離子的MSA溶液;而具有最小斜率的線性曲線對應到含304 g/L錫離子的MSA溶液。其他的線性曲線對應到含 50、100、 150、 200、 250、 及300 g/L錫離子的MSA溶液,其中線性曲線之斜率隨著錫離子濃度增加而降低。圖12D針對MSA濃度介於 30 – 60 g/L之情況,呈現對應到含濃度為250、 300、及304 g/L之錫離子的MSA溶液的線性曲線。在一些實施例中,在電解液產生期間,會經過這些濃度,而這些濃度作為陽極液中MSA與錫離子之工作濃度。當錫離子濃度穩定時,可單獨使用導電度來判定陽極液中的酸濃度,並判定是否需要調整酸濃度。
101‧‧‧設備103‧‧‧金屬顆粒來源105‧‧‧酸來源107‧‧‧水來源109‧‧‧儲存容器113‧‧‧電鍍設備/工具115‧‧‧電鍍設備/工具117‧‧‧電鍍設備/工具119‧‧‧控制器120‧‧‧控制器121‧‧‧電解液產生設備/產生器123‧‧‧錫產生器隔室125‧‧‧儲存槽127‧‧‧流體連接件129‧‧‧酸儲存隔室131‧‧‧隔室132‧‧‧隔室133‧‧‧抽屜134‧‧‧抽屜135‧‧‧隔室/抽屜/站137‧‧‧輸出顯示器139‧‧‧設施201‧‧‧腔室203‧‧‧腔室205‧‧‧膜207‧‧‧陽極209‧‧‧陽極液211‧‧‧密度計213‧‧‧控制器215‧‧‧入口217‧‧‧酸來源219‧‧‧去離子水來源221‧‧‧出口223‧‧‧電解液儲存槽225‧‧‧陰級液227‧‧‧陰極229‧‧‧入口231‧‧‧功率供應器301‧‧‧腔室303‧‧‧陽極305‧‧‧部分307‧‧‧部分309‧‧‧冷卻結構311‧‧‧流體導管313‧‧‧出口315‧‧‧入口319‧‧‧儲存槽321‧‧‧組件323‧‧‧腔室325‧‧‧腔室327‧‧‧陰極329‧‧‧膜331‧‧‧膜333‧‧‧出口335‧‧‧導管336‧‧‧導管337‧‧‧入口339‧‧‧導管341‧‧‧導管343‧‧‧酸來源345‧‧‧水來源347‧‧‧導管349‧‧‧功率供應器401‧‧‧漏斗403‧‧‧陽極容器405‧‧‧感測器407‧‧‧感測器409‧‧‧感測器411‧‧‧感測器413‧‧‧感測器415‧‧‧感測器417‧‧‧控制器501‧‧‧腔室503‧‧‧陰極505‧‧‧位準507‧‧‧入口509‧‧‧導管511‧‧‧來源513‧‧‧蓋部515‧‧‧開口517‧‧‧蓋部519‧‧‧入口521‧‧‧導管523‧‧‧排氣埠600‧‧‧產生器601‧‧‧運送箱603‧‧‧運送箱/饋送原料/酸來源604‧‧‧管線605‧‧‧漏斗606‧‧‧陽極反應物脊柱/陽極反應區/陽極孔洞性床區域607‧‧‧電荷板609‧‧‧歧管611‧‧‧組件(腔室)613‧‧‧腔室615‧‧‧腔室617‧‧‧膜619‧‧‧腔室621‧‧‧膜623‧‧‧陰極624‧‧‧擴散器625‧‧‧交換器626‧‧‧導電度計627 ‧‧‧部分629‧‧‧冷卻部分630‧‧‧安全殼631‧‧‧泵浦633‧‧‧閥635‧‧‧閥637‧‧‧流量計639‧‧‧過濾組件641‧‧‧導管/通道643‧‧‧入口645‧‧‧閥647‧‧‧排液埠/出口649‧‧‧泵浦651‧‧‧管線653‧‧‧流量計657‧‧‧控制閥659‧‧‧針狀閥旋鈕661‧‧‧泵浦663‧‧‧閥665‧‧‧管線667 ‧‧‧蓋部671 ‧‧‧匯流排673‧‧‧ 蓋部675 ‧‧‧蓋部677‧‧‧ 入口孔組678‧‧‧ 開口679‧‧‧分配板681 ‧‧‧歧管683 ‧‧‧排氣埠685 ‧‧‧匯流點687‧‧‧間隙689‧‧‧管線691‧‧‧接頭693‧‧‧歧管695‧‧‧歧管孔洞697‧‧‧特徵部/防護件699‧‧‧孔洞701‧‧‧管線703‧‧‧歧管704‧‧‧管705‧‧‧歧管707‧‧‧溢流口709‧‧‧排液溝711‧‧‧組件713‧‧‧腔室801‧‧‧操作803‧‧‧操作805‧‧‧操作809‧‧‧操作811‧‧‧操作813‧‧‧操作815‧‧‧操作901‧‧‧組成903‧‧‧組成905‧‧‧組成907‧‧‧組成909‧‧‧組成911‧‧‧組成913‧‧‧組成921‧‧‧步驟923‧‧‧步驟941‧‧‧步驟943‧‧‧步驟945‧‧‧步驟947‧‧‧步驟949‧‧‧步驟951‧‧‧步驟953‧‧‧步驟1101‧‧‧操作1103‧‧‧操作1105‧‧‧操作1107‧‧‧操作1201‧‧‧操作1203‧‧‧操作1205‧‧‧操作1207‧‧‧操作1301‧‧‧操作1303‧‧‧操作1305‧‧‧操作1307‧‧‧操作1309‧‧‧操作1311‧‧‧操作1401‧‧‧操作1403‧‧‧操作1405‧‧‧操作1407‧‧‧操作1409‧‧‧操作1411‧‧‧操作
圖1A根據本文中呈現之實施例為系統的示意圖,該系統具有與電鍍設備交流的電解液產生設備。
圖1B根據本文中提供之實施例,為具有電解液產生設備的模組式系統的示意立體圖。
圖2根據本文中提供之實施例,為電解液產生設備的示意剖面圖。
圖3A根據本文中提供之實施例,為電解液產生設備的示意剖面圖,其中該圖描繪流體連接之形構。
圖3B根據本文中提供之實施例,為電解液產生設備的示意剖面圖,其中該圖描繪流體連接之另一形構。
圖4根據本文中提供之實施例,為電解液產生設備的示意剖面圖,其中該圖根據本文中提供之實施例描繪該設備中感測器之形構。
圖5根據本文中提供之實施例,為具有兩蓋部式氫處理系統的陰極液腔室的示意剖面圖。
圖6A根據本文中呈現之實施例,為電解液產生設備的側視圖。
圖6B為圖6A所示之電解液產生設備的側視圖,描繪該設備的另一側。
圖6C為電解液產生設備的剖面圖。
圖6D為電解液產生設備的另一剖面圖。
圖6E為電解液產生設備的立體圖。
圖6F根據本文中提供之實施例,為可移動式陽極容置組件的立體圖。
圖6G為可移動式陽極容置組件的剖面圖。
圖6H為可移動式陽極容置組件的另一視圖。
圖6I為特寫圖,描繪陽極容置組件中的內側蓋部。
圖7A根據本文中呈現之實施例,為電解液產生設備之一部分的側視圖,其中描繪陽極液與陰極液腔室之間的介面。
圖7B根據本文中呈現之實施例,為電解液產生設備之一部分的另一側視圖,其中描繪陽極液與陰極液腔室之間的介面。
圖7C根據本文中提供之實施例,為電解液產生設備之剖面圖。
圖8A根據本文中提供之實施例,為產生電解液之方法的製程流程圖。
圖8B根據本文中提供之實施例,為產生電解液之方法的製程流程圖。
圖9A根據本文中提供之實施例,為說明電解液產生期間的陽極液與陰極液之組成的表格之第一部分。
圖9B為提供於圖9A中的圖表的接續部分。
圖9C根據本文中提供之實施例,為說明分段式酸性電解液產生期間的陽極液與陰極液之組成的表格之第一部分。
圖9D為提供於圖9C中的圖表的接續部分。
圖9E根據本文中提供之另一實施例,為說明電解液產生期間的陽極液與陰極液之組成的表格之第一部分。
圖9F為提供於圖9E中的圖表的接續部分。
圖10根據本文中提供之實施例,為圖解陽極液密度偏移校正的實驗作圖。
圖11A-11D為圖解回應感測器提供之量測而對製程加以調整的製程流程圖。
圖12A-12B為圖解溶液密度對錫離子濃度之線性相關性的實驗作圖。
圖12C-12D為圖解溶液導電度對酸濃度之線性相關性的實驗作圖。
605‧‧‧漏斗
606‧‧‧陽極反應物脊柱/陽極反應區/陽極孔洞性床區域
609‧‧‧歧管
613‧‧‧腔室
615‧‧‧腔室
617‧‧‧膜
619‧‧‧腔室
621‧‧‧膜
623‧‧‧陰極
626‧‧‧導電度計
647‧‧‧排液埠/出口
649‧‧‧泵浦
659‧‧‧針狀閥旋鈕
661‧‧‧泵浦
667‧‧‧蓋部
671‧‧‧匯流排
673‧‧‧蓋部
675‧‧‧蓋部
683‧‧‧排氣埠
685‧‧‧匯流點
689‧‧‧管線
693‧‧‧歧管
701‧‧‧管線
703‧‧‧歧管
704‧‧‧管

Claims (37)

  1. 一種用以產生含金屬離子之電解液的設備,該設備包含:(a)一陽極液腔室,配置以容納活性陽極與陽極液,其中該設備配置以將該活性陽極電化學地溶解於該陽極液中並藉此形成該含金屬離子之電解液,其中該陽極液腔室包含:(i)一入口,用以接收流體;以及(ii)一出口,用以排出該陽極液;(b)第一陰極液腔室,透過第一陰離子可通透性膜而與該陽極液腔室隔開,其中該第一陰極液腔室配置以容納第一陰極液,且該第一陰極液腔室包含用以接收流體之一入口、以及用以自該第一陰極液腔室排出該第一陰極液之一出口;(c)第二陰極液腔室,配置以容納陰極與第二陰極液,其中該第二陰極液腔室透過第二陰離子可通透性膜而與該第一陰極液腔室隔開。
  2. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,其中該第一陰極液腔室與該第二陰極液腔室為一可移動式陰極容置組件之部分,其中該可移動式陰極容置組件配置以可卸除式地安置在該陽極液腔室中。
  3. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,其中該設備配置以透過與該第一陰極液腔室之該出口連接之一流體導管將該第一陰極液從該第一陰極液腔室輸送到該陽極液腔室中,及/或其中該設備配置以經由該第一陰極液腔室之該出口將該第一陰極液從該第一陰極液腔室排放到一排液埠。
  4. 如申請專利範圍第3項之用以產生含金屬離子之電解液的設備,其中該第一陰極液腔室與該第二陰極液腔室透過一流體導管而流體地連接,其中該流體導管允許該第二陰極液透過該第一陰極液腔室中之該入口從該第二陰極液腔室輸送到該第一陰極液腔室。
  5. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,其中該設備包含單片式金屬陽極。
  6. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,其中該陽極液腔室包含一離子可通透性容器,用以容置作為陽極的複數個金屬片。
  7. 如申請專利範圍第6項之用以產生含金屬離子之電解液的設備,其中該陽極液腔室更包含一接收埠口,用以將複數個金屬片接收至該離子可通透性容器中。
  8. 如申請專利範圍第7項之用以產生含金屬離子之電解液的設備,其中該接收埠口包含一重力給料漏斗。
  9. 如申請專利範圍第7項之用以產生含金屬離子之電解液的設備,其中該接收埠口包含一感測器,配置以在當該接收埠口中的金屬片為低位準時,傳訊至一系統控制器。
  10. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,其中該設備包含設置在該第二陰極液腔室中的一氫產生陰極。
  11. 如申請專利範圍第10項之用以產生含金屬離子之電解液的設備,其中該設備包含一稀釋氣體導管,配置以將稀釋氣體輸送到該第二陰極液上方的空間中並稀釋積聚在該空間中的氫氣,其中該第二陰極液上方的空間被第一蓋部覆蓋,該第一蓋部具有一或多個開口,其允許經稀釋的氫氣輸送到該第一蓋部上方的空間中。
  12. 如申請專利範圍第11項之用以產生含金屬離子之電解液的設備,更包含:第二蓋部,其位在該第一蓋部上方並與該第一蓋部相隔,使得該第一與第二蓋部之間存在一空間;以及第二稀釋氣體導管,配置以將稀釋氣體輸送到該第一與第二蓋部之間的空間,並將經稀釋的氫氣從該第一與第二蓋部之間的空間移動到一排氣埠。
  13. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,其中該陽極液腔室包含一冷卻系統。
  14. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,其中該陽極液腔室包含一冷卻系統,其遠離該活性陽極而設置在該陽極液腔室的冷卻位置。
  15. 如申請專利範圍第14項之用以產生含金屬離子之電解液的設備,更包含一流體導管與一相關泵浦,配置以將陽極液從位於該活性陽極附近的該陽極液腔室的出口輸送到該陽極液腔室的冷卻位置。
  16. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,其中該設備配置以使用一或多個感測器來量測該陽極液中金屬離子的濃度,並將量測結果傳訊至一設備控制器。
  17. 如申請專利範圍第16項之用以產生含金屬離子之電解液的設備,其中單一感測器被使用以量測該陽極液中金屬離子的濃度,且該感測器為一密度計。
  18. 如申請專利範圍第16項之用以產生含金屬離子之電解液的設備,其中至少兩個感測器被使用以量測該陽極液中金屬離子的濃度,其中該至少兩個感測器包含一密度計與一導電度計。
  19. 如申請專利範圍第18項之用以產生含金屬離子之電解液的設備,其中該密度計與該導電度計更配置以量測該陽極液中酸的濃度。
  20. 如申請專利範圍第19項之用以產生含金屬離子之電解液的設備,其中該導電度計為感應式探針。
  21. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,更包含一感測器,配置以量測該第二陰極液中酸的濃度。
  22. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,其中該設備包含一控制器,其具有程式指令,用以自動產生金屬離子之濃度落在目標範圍內的電解液。
  23. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,更包含一流體連接件,允許該陽極液從該陽極液腔室自動輸送到一電解液儲存槽,其中該電解液儲存槽流體地連接到一電鍍工具,且其中該設備配置以將電解液從該電解液儲存槽輸送到該電鍍工具。
  24. 如申請專利範圍第1項之用以產生含金屬離子之電解液的設備,更包含一可接取隔室,配置以固持一可更換酸來源,其中該可更換酸來源與該陽極液腔室的入口流體地連接,且該流體連接件包含一酸緩衝槽,其中該設備配置以將來自該可更換酸來源的酸輸送到該酸緩衝槽,並且從該酸緩衝槽輸送到該陽極液腔室。
  25. 一種自動產生含金屬離子之電解液的設備,該設備包含:(a)一陽極液腔室,配置以容納活性陽極與陽極液,其中該設備配置以將該活性陽極電化學地溶解於該陽極液中並藉此形成該含金屬離子之電解液,其中該陽極液腔室包含:(i)一入口,用以接收流體;以及(ii)一出口,用以排出該陽極液;(b)一陰極液腔室,配置以容納陰極與陰極液,其中該陰極液腔室透過一陰離子可通透性膜而與該陽極液腔室隔開;(c)一或多個感測器,配置以量測該陽極液中金屬離子的濃度;以及(d)一控制器,其具有程式指令,用以使用由該一或多個感測器所提供之資料,而在該陽極液腔室中自動產生金屬離子之濃度在目標範圍內的電解液。
  26. 一種半導體處理系統,包含:(a)一電鍍設備,其利用含金屬離子之電解液;(b)一電解液產生設備,配置以自動產生電解液,其中該電解液產生設備與該電鍍設備交流;以及 (c)一或多個系統控制器,其包含程式指令,用以將電解液需求從該電鍍設備傳訊到該電解液產生設備並產生金屬離子之濃度在目標範圍內的電解液。
  27. 一種產生含金屬離子之電解液的方法,該方法包含下列步驟:(a)使電流通過一電解液產生設備,其中該電解液產生設備包含:(i)一陽極液腔室,其容納活性金屬陽極與陽極液;(ii)一陰極液腔室,其容納陰極與陰極液,其中該陰極液腔室透過一陰離子可通透性膜而與該陽極液腔室隔開;其中該活性金屬陽極在電流通過時被電化學地溶解於該陽極液中;(b)量測該陽極液中金屬離子的濃度,並將濃度自動傳訊至一設備控制器,其中該設備控制器包含程式指令,用以處理金屬離子之濃度方面的資料並且自動指示該電解液產生設備基於這些資料而動作;並且(c)當該陽極液中金屬離子的濃度落在目標範圍內時,將該陽極液的一部份從該陽極液腔室自動輸送到一電解液儲存容器。
  28. 如申請專利範圍第27項之產生含金屬離子之電解液的方法,其中在電流通過該電解液產生設備時量測金屬離子的濃度。
  29. 如申請專利範圍第27項之產生含金屬離子之電解液的方法,其中該活性金屬陽極包含少量α錫金屬,且該陽極液包含Sn2+離子。
  30. 如申請專利範圍第27項之產生含金屬離子之電解液的方法,其中該陽極液更包含酸,且其中該方法更包含量測該陽極液中酸的濃度;將酸的濃度自動傳訊至該設備控制器,其中該設備控制器包含程式指令,用以處理酸之濃度方面的資料並且指示該電解液產生設備基於這些資料而動作。
  31. 如申請專利範圍第30項之產生含金屬離子之電解液的方法,更包含下列步驟:若酸的濃度低於目標濃度範圍,則將酸自動添加至該陽極液中。
  32. 如申請專利範圍第27項之產生含金屬離子之電解液的方法,其中該方法更包含下列步驟:在該陽極液的一部份已輸送到該電解液儲存容器之後,以酸性溶液對該陽極液進行配量,並重複執行步驟(a)-(c)。
  33. 如申請專利範圍第32項之產生含金屬離子之電解液的方法,其中每一次(a)-(c)循環中從該陽極液腔室輸送出來的陽極液不多於總容積的10%。
  34. 如申請專利範圍第33項之產生含金屬離子之電解液的方法,包含執行至少三次(a)-(c)循環,其中在每一循環之後將酸添加至該陽極液中。
  35. 如申請專利範圍第33項之產生含金屬離子之電解液的方法,包含執行至少三次(a)-(c)循環,其中在每一次循環之後將酸添加至該陽極液與該陰極液中。
  36. 如申請專利範圍第27項之產生含金屬離子之電解液的方法,其中該陽極液與陰極液包含由下列所組成之群組中選擇的酸:甲磺酸(MSA)、硫酸、及其混合物。
  37. 如申請專利範圍第27項之產生含金屬離子之電解液的方法,更包含使稀釋氣體流入該陰極液腔室中以稀釋由該陰極所產生的氫氣。
TW105116202A 2015-05-29 2016-05-25 電解液輸送及產生設備 TWI700399B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562168198P 2015-05-29 2015-05-29
US62/168,198 2015-05-29
US14/921,602 2015-10-23
US14/921,602 US10011919B2 (en) 2015-05-29 2015-10-23 Electrolyte delivery and generation equipment

Publications (2)

Publication Number Publication Date
TW201710563A TW201710563A (zh) 2017-03-16
TWI700399B true TWI700399B (zh) 2020-08-01

Family

ID=57398152

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105116202A TWI700399B (zh) 2015-05-29 2016-05-25 電解液輸送及產生設備

Country Status (6)

Country Link
US (2) US10011919B2 (zh)
JP (1) JP6794138B2 (zh)
KR (1) KR102634096B1 (zh)
CN (1) CN106191934B (zh)
SG (1) SG10201603606SA (zh)
TW (1) TWI700399B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI592518B (zh) 2015-08-11 2017-07-21 Miz Company Ltd 氫氣生成裝置
DK3384364T3 (da) * 2015-12-02 2022-04-19 Dug Tech Australia Pty Ltd Fluidkølesystem og fremgangsmåde til elektronisk udstyr
CN108232246B (zh) * 2016-12-15 2020-03-10 中国科学院大连化学物理研究所 一种铝空气电池系统及其工作方法
CN108179437B (zh) * 2017-11-30 2023-12-29 一生氢松(深圳)科技有限公司 一种阳极湿润电解装置及含有其的器具
US10998571B2 (en) * 2018-02-20 2021-05-04 Nuvera Fuel Cells, LLC High-voltage fuel-cell stack
CN110755727B (zh) * 2018-07-26 2023-11-28 林信涌 可电耦接云端监控系统的氢气产生器及其云端监控系统
DE102018129192A1 (de) * 2018-11-20 2020-05-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. System und Verfahren zur Bestimmung der Konzentration von Metallionen in einer Lösung
JP7202230B2 (ja) * 2019-03-20 2023-01-11 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP7291223B2 (ja) * 2019-08-01 2023-06-14 Jx金属株式会社 酸化第一錫の溶解方法
CN112378838A (zh) * 2020-08-18 2021-02-19 万向一二三股份公司 一种评测极耳可靠性的装置
CN112251775A (zh) * 2020-10-23 2021-01-22 珠海格力电器股份有限公司 一种电解装置的控制方法、控制装置及电解装置
CN112701072B (zh) * 2021-03-25 2021-10-22 西安奕斯伟硅片技术有限公司 晶圆处理装置及晶圆缺陷评价方法
CN113391554B (zh) * 2021-06-16 2022-06-17 江苏东南环保科技有限公司 一种基于人工智能的电镀方法
EP4254590A1 (de) * 2022-03-31 2023-10-04 HOPPECKE Batterien GmbH & Co. KG. Füllvorrichtung für batteriezellen und verfahren
US20230313406A1 (en) * 2022-04-04 2023-10-05 Applied Materials, Inc. Electroplating systems and methods with increased metal ion concentrations
US20230313405A1 (en) * 2022-04-04 2023-10-05 Applied Materials, Inc. Electroplating systems and methods with increased metal ion concentrations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137994A (zh) * 2013-03-12 2013-06-05 上海新源动力有限公司 一种降低燃料电池系统尾排氢气峰值浓度的方法
US20140166492A1 (en) * 2012-12-13 2014-06-19 Ebara Corporation Sn ALLOY PLATING APPARATUS AND METHOD
CN104160067A (zh) * 2012-02-08 2014-11-19 奥图泰(芬兰)公司 操作电解槽的方法以及阴极框架
TW201500598A (zh) * 2013-05-09 2015-01-01 Ebara Corp 錫合金鍍膜裝置以及錫合金鍍膜方法
US20150008133A1 (en) * 2013-07-03 2015-01-08 Tel Nexx, Inc. Electrochemical deposition apparatus and methods for controlling the chemistry therein
TW201518556A (zh) * 2013-10-31 2015-05-16 Ebara Corp 錫合金鍍覆裝置及錫合金鍍覆方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530739A (en) * 1984-03-09 1985-07-23 Energy Conversion Devices, Inc. Method of fabricating an electroplated substrate
NL8602730A (nl) 1986-10-30 1988-05-16 Hoogovens Groep Bv Werkwijze voor het electrolytisch vertinnen van blik met behulp van een onoplosbare anode.
JPH04116200A (ja) * 1990-09-05 1992-04-16 Kawasaki Steel Corp 電気めっきにおける金属イオンの供給装置
US5104496A (en) * 1990-10-18 1992-04-14 Optical Radiation Corporation Low mist chromium plating method and system
US5082538A (en) 1991-01-09 1992-01-21 Eltech Systems Corporation Process for replenishing metals in aqueous electrolyte solutions
JPH05186899A (ja) * 1992-01-10 1993-07-27 Kawasaki Steel Corp 成分管理装置付錫めっき装置
US5312539A (en) * 1993-06-15 1994-05-17 Learonal Inc. Electrolytic tin plating method
JP3316606B2 (ja) * 1994-03-30 2002-08-19 川崎製鉄株式会社 錫めっき装置および錫めっき方法
US5618404A (en) * 1994-05-17 1997-04-08 Daiwa Fine Chemicals Co., Ltd. Electrolytic process for producing lead sulfonate and tin sulfonate for solder plating use
ITMI20011374A1 (it) * 2001-06-29 2002-12-29 De Nora Elettrodi Spa Cella di elettrolisi per il ripristino della concentrazione di ioni metallici in processi di elettrodeposizione
US6833124B2 (en) * 2002-01-31 2004-12-21 University Of Dayton Recovery process for wastes containing hexavalent chromium
US7368043B2 (en) * 2003-04-10 2008-05-06 Applied Intellectual Capital Configurations and methods of electrochemical lead recovery from contaminated soil
JP4242248B2 (ja) * 2003-10-22 2009-03-25 石川金属工業株式会社 不溶性陽極を使用する錫めっき方法
US7743783B2 (en) 2006-04-04 2010-06-29 Air Liquide Electronics U.S. Lp Method and apparatus for recycling process fluids
FR2919619B1 (fr) * 2007-07-30 2009-10-09 Siemens Vai Metals Tech Sas Installation et procede pour l'etamage electrolytique de bandes d'acier,mettant en oeuvre une anode insoluble
EP2194165A1 (en) 2008-10-21 2010-06-09 Rohm and Haas Electronic Materials LLC Method for replenishing tin and its alloying metals in electrolyte solutions
US9017528B2 (en) * 2011-04-14 2015-04-28 Tel Nexx, Inc. Electro chemical deposition and replenishment apparatus
US20130341196A1 (en) 2012-06-20 2013-12-26 Honeywell International Inc. Refining process for producing low alpha tin
DE102012112388A1 (de) * 2012-12-17 2014-07-03 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Induktiver Leitfähigkeitssensor und Verfahren zu dessen Herstellung
US9303329B2 (en) * 2013-11-11 2016-04-05 Tel Nexx, Inc. Electrochemical deposition apparatus with remote catholyte fluid management

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160067A (zh) * 2012-02-08 2014-11-19 奥图泰(芬兰)公司 操作电解槽的方法以及阴极框架
US20140166492A1 (en) * 2012-12-13 2014-06-19 Ebara Corporation Sn ALLOY PLATING APPARATUS AND METHOD
TW201435147A (zh) * 2012-12-13 2014-09-16 Ebara Corp Sn合金鍍敷裝置及方法
CN103137994A (zh) * 2013-03-12 2013-06-05 上海新源动力有限公司 一种降低燃料电池系统尾排氢气峰值浓度的方法
TW201500598A (zh) * 2013-05-09 2015-01-01 Ebara Corp 錫合金鍍膜裝置以及錫合金鍍膜方法
US20150008133A1 (en) * 2013-07-03 2015-01-08 Tel Nexx, Inc. Electrochemical deposition apparatus and methods for controlling the chemistry therein
TW201518556A (zh) * 2013-10-31 2015-05-16 Ebara Corp 錫合金鍍覆裝置及錫合金鍍覆方法

Also Published As

Publication number Publication date
US20160348265A1 (en) 2016-12-01
US20180274123A1 (en) 2018-09-27
KR102634096B1 (ko) 2024-02-07
KR20160140483A (ko) 2016-12-07
US10011919B2 (en) 2018-07-03
JP6794138B2 (ja) 2020-12-02
CN106191934B (zh) 2019-10-25
SG10201603606SA (en) 2016-12-29
JP2017020102A (ja) 2017-01-26
CN106191934A (zh) 2016-12-07
TW201710563A (zh) 2017-03-16

Similar Documents

Publication Publication Date Title
TWI700399B (zh) 電解液輸送及產生設備
TWI657168B (zh) 用以保持鎳電鍍浴中之ph値的設備與方法
TWI565840B (zh) 電鍍系統之分離陽極室中具壓力調節之電解液迴路
TWI585823B (zh) 電鍍裝置及晶圓級封裝製程
KR102144127B1 (ko) 합금 도금 시스템에서 패시베이션으로부터 애노드 보호
EP1052311A1 (en) Plating machine
US20200165737A1 (en) Copper oxide powder for use in plating of a substrate
US11610782B2 (en) Electro-oxidative metal removal in through mask interconnect fabrication
JP2017020102A5 (zh)
KR101551049B1 (ko) 황산 전해 장치 및 황산 전해 방법
TW200540300A (en) Method for electroplating bath chemistry control
TWI798281B (zh) 在電化學電鍍設備上控制鍍電解液濃度
US20170016137A1 (en) Inert anode electroplating processor and replenisher
JP5859287B2 (ja) 超純水中の微量過酸化水素の濃度測定方法
JP2012178424A (ja) エッチング液濃度管理装置
KR20060095640A (ko) 약액 혼합 공급 장치 및 방법
US20050274620A1 (en) Copper replenishment system for interconnect applications
TW201413059A (zh) 氟氣生成裝置及氟氣生成裝置之控制方法
TW202141614A (zh) 處理液溫度調整方法、基板處理方法、處理液溫度調整裝置、及基板處理系統
CN111936675A (zh) 具有惰性和活性阳极的电镀系统
KR20150138757A (ko) 플로우 배터리에 적용 가능한 전해액 농도 조절 모듈 및 이를 이용한 플로우 배터리의 전해액 농도 균형 조절 방법
KR20070073481A (ko) 처리액 공급 장치
JPS61288100A (ja) 鋼板の電解処理におけるph制御方法
JPH09268400A (ja) めっき液成分濃度制御方法