TWI698110B - 相位追蹤參考信號傳輸方法及裝置 - Google Patents

相位追蹤參考信號傳輸方法及裝置 Download PDF

Info

Publication number
TWI698110B
TWI698110B TW107140566A TW107140566A TWI698110B TW I698110 B TWI698110 B TW I698110B TW 107140566 A TW107140566 A TW 107140566A TW 107140566 A TW107140566 A TW 107140566A TW I698110 B TWI698110 B TW I698110B
Authority
TW
Taiwan
Prior art keywords
wtru
density
offset
scheduled
rbs
Prior art date
Application number
TW107140566A
Other languages
English (en)
Other versions
TW201931807A (zh
Inventor
李汶宜
艾爾芬 沙辛
艾爾登 貝拉
愛辛 哈格海爾特
法蘭克 拉西塔
博寇威斯 珍妮特A 史騰
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW201931807A publication Critical patent/TW201931807A/zh
Application granted granted Critical
Publication of TWI698110B publication Critical patent/TWI698110B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一種用於確保相位追蹤參考信號(PT-RS)數量在多個時槽保持相同的系統、方法和裝置。無線傳輸/接收單元(WTRU)可以接收包括被排程的資源塊(RB)的數量的控制資訊,然後可以基於被排程的RB的數量來確定PT-RS密度。該WTRU可以基於WTRU-ID與最大RB偏移值的模數來確定該WTRU的RB偏移值,其中RB偏移值的最大值可以基於被排程的RB的數量和PR-TS密度中的至少一個。然後,WTRU可以基於RB偏移值來傳輸或接收帶有PT-RS的信號。

Description

相位追蹤參考信號傳輸方法及裝置 相關申請的交叉引用
本申請要求享有2017年11月15日提交的臨時美國申請號62/586,642以及2018年8月21日提交的美國申請號62/720,614的權益,該申請的內容在這裡藉參引方式引入。
在先進的無線系統中,為了運用大的可用頻寬,高於6GHz頻率的頻譜有著高的資料需求。使用這些頻率的一個挑戰是因為較高頻率中的較高自由空間路徑損失所導致的顯著傳播損失(尤其是在室外環境中)。這些問題可以藉由使用系統、方法和裝置來解決。
一種用於確保相位追蹤參考信號(PT-RS)數量在多個時槽保持相同的系統、方法和裝置。無線傳輸/接收單元(WTRU)可以接收包括被排程的資源塊(RB)的數量的控制資訊,然後可以基於該被排程的RB的數量來確定PT-RS密度。該WTRU可以基於WTRU-ID與最大RB偏移值的模數來確定該WTRU的RB偏移值,其中該RB偏移值的最大值可以基於被排程的RB的數量和PR-TS密度中的至少一個。然後,WTRU可以基於RB偏移值來傳輸或接收具有PR-TS的信號。
第1A圖是示出了可以實施所揭露的一個或多個實施例的範例通信系統100的圖式。該通信系統100可以是為多個無線使用者提供語音、資料、視訊、消息傳遞、廣播等內容的多重存取系統。該通信系統100可以藉由共用包括無線頻寬在內的系統資源而使多個無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT展開OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路和/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置成在無線環境中操作和/或通信的任何類型的裝置。舉例來說,任一WTRU 102a、102b、102c、102d都可被稱為“站”和/或“STA”,其可以被配置成傳輸和/或接收無線信號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂閱的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如遠端手術)、工業裝置和應用(例如機器人和/或在工業和/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業和/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、102d之任一者被可交換地稱為UE。
通信系統100還可以包括基地台114a和/或基地台114b。每一個基地台114a、114b可以是被配置成與WTRU 102a、102b、102c、102d中的至少一個有無線介面來促進存取一個或多個通信網路(例如CN 106/115、網際網路110、和/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發器(BTS)、節點B、e節點B、本地節點B、本地e節點 B、gNB、NR節點B、網站控制器、存取點(AP)、以及無線路由器等等。雖然每一個基地台114a、114b都被描述成了單個元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台和/或網路元件。
如這裡所述,無線裝置可以是在網路上執行無線通信的任何節點,例如這裡描述的WTRU或基地台。
基地台114a可以是RAN 104/113的一部分,並且該RAN還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a和/或基地台114b可被配置成在名為胞元(未顯示)的一個或多個載波頻率上傳輸和/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的結合之中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,胞元的每一個扇區有一個。在一個實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且可以為胞元的每一個扇區使用多個收發器。例如,藉由使用波束成形,可以在期望的空間方向上傳輸和/或接收信號。
基地台114a、114b可以藉由空中介面116來與WTRU 102a、102b、102c、102d中的一個或多個進行通信,其中該空中介面可以是任何適當的無線通信鏈路(例如射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施無線電技術,例如通用行動電信系統(UMTS)陸地無線電存取(UTRA),其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)和/或高速UL封包存取(HSUPA)。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如演進型UMTS陸地無線電存取(E-UTRA),其可以使用長期演進(LTE)和/或先進LTE(LTE-A)和/或先進LTE Pro(LTE-A Pro)來建立空中介面116。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如NR無線電存取,其可以使用新型無線電(NR)建立空中介面116。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以共同實施LTE無線電存取和NR無線電存取(例如使用雙連接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中介面可以多種類型的無線電存取技術和/或向/從多種類型的基地台(例如eNB和gNB)發送的傳輸為特徵。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如IEEE 802.11(即,無線保真度(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等。
第1A圖中的基地台114b可以是例如無線路由器、本地節點B、本地e節點B或存取點,並且可以使用任何適當的RAT來促成局部區域中的無線連接,例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等。在一個實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在一個實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b和WTRU 102c、102d可藉由使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直連到網際網路110。由此,基地台114b不需要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115進行通信,該CN 106/115可以是被配置成向一個或多個WTRU 102a、102b、102c、102d提供語音、資料、應用和/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛伏期需求、容錯需求、可靠性需求、資料輸送量需求、以及行動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或可以執行使用者驗證之類的高級安全功能。雖然在第1A圖中沒有顯示,然而應該瞭解,RAN 104/113和/或CN 106/115可以直接或間接地和其他那些與RAN 104/113使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用NR無線電技術的RAN 104/113相連之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的別的RAN(未顯示)通信。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了共同通信協定(例如TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料報協定(UDP)和/或網際網路協定(IP))的全球性互聯電腦網路及裝置之系統。網路112可以包括由其他服務供應商擁有和/或操作的有線和/或無線通信網路。例如,網路112可以包括另一個CN,該另一個CN連接到一個或多個RAN,其可以與RAN 104/113使用相同RAT或不同RAT。
通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模式能力(例如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可被配置成與使用基於蜂巢的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。
第1B圖是示出了範例WTRU 102的系統圖式。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136和/或週邊設備138等等。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子結合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、和/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,該收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118和收發器120描述成各別組件,然而應該瞭解,處理器118和收發器120也可以整合在一個電子元件或晶片中。
傳輸/接收元件122可被配置成經由空中介面116來傳輸往或接收來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收RF信號的天線。作為範例,在另一個實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置成傳輸和接收RF和光信號兩者。應該瞭解的是,傳輸/接收元件122可以被配置成傳輸和/或接收無線信號的任何結合。
雖然在第1B圖中將傳輸/接收元件122描述成是單個元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。由此,在一個實施例中,WTRU 102可以包括兩個或更多個藉由空中介面116來傳輸和接收無線電信號的傳輸/接收元件122(例如多個天線)。
收發器120可被配置成對傳輸/接收元件122所要傳輸的信號進行調變,以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包括允許WTRU 102經由多種RAT(例如NR和IEEE 802.11)來進行通信的多個收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130和/或可移記憶體132之類的任何適當的記憶體中存取資訊,以及將資訊存入這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶存放裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實體位於WTRU 102的記憶體存取資訊,及將資料存入記憶體,作為範例,此類記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力,並且可被配置分發和/或控制用於WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該晶片組可被配置成提供與WTRU 102的當前位置相關的位置資訊(例如經度和緯度)。,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的加上或取代GPS晶片組136資訊之位置資訊,和/或根據從兩個或更多個附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以經由任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能和/或有線或無線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片和/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、Bluetooth®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路流覽器、虛擬實境和/或增強實境(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一個或多個感測器,該感測器可以是以下的一個或多個:陀螺儀、加速度計、霍爾效應感測器、計磁器、方位感測器、鄰近感測器、溫度感測器、時間感測器;地理位置感測器、高度計、光感測器、觸摸感測器、計磁器、氣壓計、手勢感測器、生物測定感測器和/或濕度感測器。
WTRU 102可以包括全雙工無線電裝置,其中對於該無線電裝置來說,一些或所有信號(例如與用於UL(例如對傳輸而言)和下鏈(例如對接收而言)的特別子訊框相關聯)的接收和傳輸可以是並行和/或同時的。全雙工無線電裝置可以包括經由硬體(例如扼流圈)或是憑藉處理器(例如各別的處理器(未顯示)或是憑藉處理器118)的信號處理來減小和/或實質消除自干擾的介面管理單元139。在一個實施例中,WTRU 102可以包括傳輸和接收一些或所有信號(例如與用於UL(例如對傳輸而言)或下鏈(例如對接收而言)的特別子訊框相關聯)的半雙工無線電裝置。
第1C圖是示出了根據一個實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以在空中介面116上使用E-UTRA無線電技術來與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 160a、160b、160c都可以包括在空中介面116上與WTRU 102a、102b、102c通信的一個或多個收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用多個天線來向WTRU 102a傳輸無線信號,和/或以及接收來自WTRU 102a的無線信號。
每一個e節點B 160a、160b、160c都可以關聯於一個特別胞元(未顯示),並且可被配置成處理無線電資源管理決定、切換決定、UL和/或DL中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c彼此可以藉由X2介面進行通信。
第1C圖所示的CN 106可以包括行動性管理閘道(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述成是CN 106的一部分,然而應該瞭解,這其中的任一元件都可以由CN操作者之外的實體擁有和/或操作。
MME 162可以經由S1介面連接到RAN 104中的每一個e節點B 160a、160b、160c,並且可以充當控制節點。例如,MME 142可以負責驗證WTRU 102a、102b、102c的使用者,執行承載啟動/去啟動,以及在WTRU 102a、102b、102c的初始附著過程中選擇特別的服務閘道等等。MME 162還可以提供一個用於在RAN 104與使用其他無線電技術(例如GSM和/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面連接到RAN 104中的每一個e節點B 160a、160b、160c。SGW 164通常可以路由和轉發往/來自WTRU 102a、102b、102c的使用者資料封包。並且,SGW 164還可以執行其他功能,例如在eNB間的交接期間中錨定使用者平面,在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼處理,以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 146,該PGW可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以便促成WTRU 102a、102b、102c與賦能IP的裝置之間的通信。
CN 106可以促成與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供電路切換式網路(例如PSTN 108)存取,以便促成WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括一個IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其包括其他服務供應商擁有和/或操作的其他有線和/或無線網路。
雖然在第1A圖至第1D圖中將WTRU描述成了無線終端,然而應該想到的是,在某些代表實施例中,此類終端與通信網路可以使用(例如臨時或永久性)有線通信介面。
在代表的實施例中,其他網路112可以是WLAN。
採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或多個站(STA)。該AP可以存取或是有介面於分散式系統(DS)或是將訊務送入和/或送出BSS的別的類型的有線/無線網路。源於BSS外部且往STA的訊務可以藉由AP到達並被遞送至STA。源自STA且去往BSS外部的目的地的訊務可被發送至AP,以便遞送到相應的目的地。處於BSS內部的STA之間的訊務可以藉由AP來發送,例如在源STA可以向AP發送訊務並且AP可以將訊務遞送至目的地STA的情況下。處於BSS內部的STA之間的訊務可被認為和/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些代表實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS))。使用獨立BSS(IBSS)模式的WLAN可不具有AP,並且處於該IBSS內部或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特設(ad-hoc)”通信模式。
在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳輸信標。該主通道可以具有固定寬度(例如20MHz的頻寬)或是經由傳訊動態設定的寬度。主通道可以是BSS的操作通道,並且可被STA用來與AP建立連接。在某些代表實施例中,所實施的可以是具有衝突避免的載波感測多重存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA來說,包括AP在內的STA(例如每一個STA)可以感測主通道。如果特別STA感測到/偵測到和/或確定主通道繁忙,那麼該特別STA可以回退(back off)。在指定的BSS中,在任何指定時間都有一個STA(例如只有一個站)進行傳輸。
高輸送量(HT)STA可以使用寬度為40MHz的通道來進行通信(例如經由將寬度為20MHz的主通道與寬度為20MHz的相鄰或不相鄰通道相結合來形成寬度為40MHz的通道)。
甚高輸送量(VHT)STA可以支援寬度為20MHz、40MHz、80MHz和/或160MHz的通道。40MHz和/或80MHz通道可以藉由結合連續的20MHz通道來形成。160MHz通道可以藉由結合8個連續的20MHz通道或者藉由結合兩個不連續的80MHz通道(這種結合可被稱為80+80配置)來形成。對於80+80配置來說,在通道編碼之後,資料可被傳遞並經過一個分段解析器,該分段解析器可以將資料非成兩個串流。在每一個串流上可以各別執行反向快速傅立葉變換(IFFT)處理以及時域處理。該串流可被映射在兩個80MHz通道上,並且資料可以由執行傳輸的STA來傳輸。在執行接收的STA的接收器上,用於80+80配置的上述操作可以是相反的,並且結合資料可被發送至媒體存取控制(MAC)。
802.11af和802.11ah支持次1GHz的操作模式。相對於802.11n和802.11ac中使用的那些,在802.11af和802.11ah中通道操作頻寬和載波有所縮減。802.11af在TV白空間(TVWS)頻譜中支援5MHz、10MHz和20MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz和16MHz頻寬。依照代表實施例,802.11ah可以支援儀錶類型控制/機器類型通信(例如巨集覆蓋區域中的MTC裝置)。MTC裝置可以具有某能力,例如包含了支援(例如只支持)某些和/或有限頻寬在內的受限能力。MTC裝置可以包括電池,該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。
可以支援多個通道和通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)包含了一個可被指定成主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大共同操作頻寬。主通道的頻寬可以由STA設定和/或限制,其中該STA源自在支援最小頻寬操作模式的BSS中操作的所有STA。在關於802.11ah的範例中,即使BSS中的AP和其他STA支持2 MHz、4 MHz、8 MHz、16 MHz和/或其他通道頻寬操作模式,支援(例如只支援)1 MHz模式的STA(例如MTC類型的裝置)來說,主通道的寬度可以是1 MHz。載波感測和/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1 MHz操作模式)對AP進行傳輸),那麼即使大多數的頻帶保持空間並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是902 MHz到928 MHz。在韓國,可用頻帶是917.5MHz到923.5MHz。在日本,可用頻帶是916.5MHz到927.5MHz。依照國家碼,可用於802.11ah的總頻寬是6MHz到26MHz。
第1D圖是示出了根據一個實施例的RAN 113和CN 115的系統圖式。如上所述,RAN 113可以在空中介面116上使用NR無線電技術來與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。
RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。每一個gNB 180a、180b、180c都可以包括一個或多個收發器,以便藉由空中介面116來與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形處理來向和/或從gNB 180a、180b、180c傳輸和/或接收信號。由此,舉例來說,gNB 160a可以使用多個天線來向WTRU 102a傳輸無線信號,和/或接收來自WTRU 102a的無線信號。在一個實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTR 102a傳輸多個分量載波(未顯示)。這些分量載波的一個子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在一個實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a和gNB 180b(和/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數配置相關聯的傳輸來與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元和/或不同的無線傳輸頻譜部分來說,OFDM符號間隔和/或OFDM子載波間隔可以是不同的。WTRU 102a、102b、102c可以使用不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號和/或持續不同的絕對時間長度)來與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置成與採用分立配置和/或非分立配置的WTRU 102a、102b、102c進行通信。在分立配置中,WTRU 102a、102b、102c可以在也不存取其他RAN(例如e節點B 160a、160b、160c)的情況下與gNB 180a、180b、180c進行通信。在分立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一個或多個作為行動錨點。在分立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號來與gNB 180a、180b、180c進行通信。在非分立配置中,WTRU 102a、102b、102c會在與別的RAN(例如e節點B 160a、160b、160c)進行通信/相連的同時與gNB 180a、180b、180c進行通信/相連。舉例來說,WTRU 102a、102b、102c可以藉由實施DC原理而以實質同時的方式與一個或多個gNB 180a、180b、180c以及一個或多個e節點B 160a、160b、160c進行通信。在非分立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋和/或輸送量,以便為WTRU 102a、102b、102c提供服務。
每一個gNB 180a、180b、180c都可以關聯於特別胞元(未顯示),並且可以被配置成處理無線電資源管理決定、切換決定、UL和/或DL中的使用者排程、支援網路截割、實施雙連線性、實施NR與E-UTRA之間的交互工作、路由往使用者平面功能(UPF)184a、184b的使用者平面資料、以及路由往存取和行動性管理功能(AMF)182a、182b的控制平面資訊等等。如第1D圖所示,gNB 180a、180b、180c彼此可以藉由Xn介面通信。
第1D圖所示的CN 115可以包括至少一個AMF 182a、182b,至少一個UPF 184a、184b,至少一個會話管理功能(SMF)183a、183b,並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述了CN 115的一部分,但是應該瞭解,這其中的任一元件都可以被CN操作者之外的其他實體擁有和/或操作。
AMF 182a、182b可以經由N2介面連接到RAN 113中的一個或多個gNB 180a、180b、180c,並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者,支援網路截割(例如處理具有不同需求的不同PDU會話),選擇特別的SMF 183a、183b,管理註冊區域,終止NAS傳訊,以及行動性管理等等。AMF 182a、1823b可以使用網路截割處理,以便基於WTRU 102a、102b、102c使用的服務類型來定制為WTRU 102a、102b、102c提供的CN支援。作為範例,針對不同的用例,可以建立不同的網路截割,例如依賴於超可靠低潛伏期(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、和/或用於機器類型通信(MTC)存取的服務等等。AMF 162可以提供用於在RAN 113與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro和/或諸如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並且可以藉由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理和分配WTRU IP位址、管理PDU會話、控制策略實施和QoS,以及提供下鏈資料通知等等。PDU會話類型可以是基於IP的、不基於IP的,以及基於乙太網的等等。
UPF 184a、184b可以經由N3介面連接到RAN 113中的一個或多個gNB 180a、180b、180c,其可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)接,以便促成WTRU 102a、102b、102c與賦能IP的裝置之間的通信。UPF 184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多連接(multi-homed)PDU會話、處理使用者平面QoS、緩衝下鏈封包、以及提供行動性錨定等等。
CN 115可以促成與其他網路的通信。例如,CN 115可以包括或者可以與充當CN 115與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其可以包括其他服務供應商擁有和/或操作的其他有線和/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由到UPF 184a、184b的N3介面以及介於UPF 184a、184b與本地資料網路(DN)185a、185b之間的N6介面而藉由UPF 184a、184b連接到DN 185a、185b。
有鑒於第1A圖至第1D圖以及第1A圖至第1D圖的相應描述,在這裡對照以下的一項或多項描述的一個或多個或所有功能可以由一個或多個模擬裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-ab、UPF 184a-b、SMF 183a-b、DN185 a-b和/或這裡描述的其他任何裝置(一個或多個)。這些模擬裝置可以是被配置成模擬這裡一個或多個或所有功能的一個或多個裝置。舉例來說,這些模擬裝置可用於測試其他裝置和/或模擬網路和/或WTRU功能。
模擬裝置可被設計成在實驗室環境和/或操作者網路環境中實施關於其他裝置的一項或多項測試。例如,該一個或多個模擬裝置可以在被完全或部分作為有線和/或無線通信網路一部分實施和/或部署的同時執行一個或多個或所有功能,以便測試通信網路內部的其他裝置。該一個或多個模擬裝置可以在被臨時作為有線和/或無線通信網路的一部分實施/部署的同時執行一個或多個或所有功能。該模擬裝置可以直接耦合到別的裝置以執行測試,和/或可以使用空中無線通信來執行測試。
一個或多個模擬裝置可以在未被作為有線和/或無線通信網路一部分實施/部署的同時執行包括所有功能在內的一個或多個功能。例如,該模擬裝置可以在測試實驗室和/或未被部署(例如測試)的有線和/或無線通信網路的測試場景中使用,以便實施關於一個或多個組件的測試。該一個或多個模擬裝置可以是測試裝置。該模擬裝置可以使用直接的RF耦合和/或經由RF電路(作為範例,其可以包括一個或多個天線)的無線通信來傳輸和/或接收資料。
通常,在LTE中可以將正交分頻多工(OFDM)用於下鏈(DL)傳輸,同時可以將離散傅立葉變換(DFT)-s-OFDM用於上鏈(UL)傳輸。在常規的循環前綴(CP)DFT-s-OFDM(有時也被稱為具有多重存取的單載波分頻多重存取(SC-FDMA))中,資料符號可以用DFT塊展開,然後可被映射到IDFT塊的相應輸入。CP可被前置於符號開端,以便避免符號間干擾(ISI)以及允許在接收器執行單分接點(tap)頻域均衡(FDE)。
在下鏈傳輸中,參考符號可被分散在特定子載波上(也就是說,一個OFDM符號可以有載有資料和參考符號載之多個子載波)。共同參考符號可以在分佈於系統頻寬之上的子載波上傳輸,而WTRU特定參考信號則可以分佈在被分配給特定WTRU的子帶上。
3GPP討論一種名為新型無線電(NR)的先進無線通信系統。NR的應用可被概括成幾個類別:增強型行動寬頻(eMBB)、大規模機器類型通信(mMTC)以及超可靠及低潛伏期通信(URLLC)。在每一個類別下都有可被考慮用於規定了特定性能需求的不同需要和部署場景的應用廣泛集合。作為範例,mMTC和URLLC應用的範圍可以從汽車到健康、農業、公用事業和物流行業。
為了滿足高資料速率需求,可以使用6 GHz頻率以上的頻譜來運用該頻譜的大頻寬。使用這些較高頻率的一個挑戰是因為較高頻率中的較高自由空間路徑損失所導致的顯著的傳播損失(尤其是在室外環境中)。
由於波束成形可以在不增大傳輸功率的情況下補償路徑損失,因此,波束成形(例如類比波束)是一種解決較高頻率中的顯著路徑損失的解決方案。當使用波束來補償路徑損失時,所有的下鏈和上鏈通道全都可以基於波束。
在一種狀況中,裝置到裝置(D2D)和/或車聯網(V2X)通信可以使用LTE。以下的一個或多個實體通道可被用於側鏈路傳輸和/或接收:SPSS(側鏈路主同步信號)和/或SSSS(側鏈路輔同步信號);PSBCH(實體側鏈路廣播通道);PSCCH(實體側鏈路控制通道);PSSCH(實體側鏈路共用通道);和/或PSDCH(實體側鏈路發現通道)。
側鏈路可以支援一種或多種模式(例如多達4種模式)。第一和/或第二模式(例如模式1和/或模式2)可以用於D2D通信。D2D通信可能需要具有功率效率的可靠傳輸。D2D通信可以容忍延遲,和/或可以用於低行動性。模式1可以基於或者可以使用eNB排程來用於側鏈路傳輸,其中用於側鏈路傳輸的資源可以由eNB經由DCI來排程。模式2可以基於或可以使用可被配置的資源池內的WTRU資源選擇(例如自主資源選擇)。當側鏈路傳輸的WTRU位於eNB覆蓋範圍之下或是其內部而使WTRU能夠接收來自eNB的控制信號時,這時可以使用模式1。當用於側鏈路傳輸的WTRU處於eNB覆蓋範圍之外和/或當其在覆蓋範圍以內時,模式2可以被使用。
第三和/或第四模式(例如模式3和/或模式4)可被用於V2X通信(例如用於支援高行動性和/或低潛伏期)。模式3可以使用eNB排程來用於側鏈路資源確定。模式4可以使用WTRU資源選擇(例如自主資源選擇)。
對於使用排程的模式(例如模式1和/或模式3)來說,側鏈路WTRU可以接收用於側鏈路傳輸的資源許可。WTRU可以在為Uu介面配置的搜尋空間中監控(例如藉由監控以獲取)資源許可。
在一個或多個實施例中,藉由使用相位追蹤參考信號(PT-RS)來測量、追蹤和/或估計相位雜訊,可以在解調實體下鏈共用通道(PDSCH)和/或實體上鏈共用通道(PUSCH)之前補償相位雜訊。該PT-RS是可以與相位雜訊參考信號(PNRS)和參考信號(RS)交換使用的。
在用於PDSCH或PUSCH的排程頻寬內部可以傳輸PT-RS。節點(例如gNB)可以經由較高層傳訊來開啟/關閉在用於PDSCH或PUSCH的排程頻寬中進行的PT-RS傳輸。如果在排程頻寬中開啟PT-RS傳輸,那麼可以基於以下的一項或多項來確定在用於PDSCH或PUSCH的排程頻寬中的PT-RS的存在性和/或PT-RS的密度(例如時間和/或頻率):排程資源塊(RB)(作為範例,其也稱為排程頻寬和/或實體資源塊(PRB))的數量;所指示的用於所排程的PDSCH和/或PUSCH的調變編碼方案(MCS)等級;參數配置(例如子載波間隔、時槽長度等等);WTRU能力(例如是否支援PT-RS);可用於解調的解調參考信號(DM-RS)密度;被排程的層的數量(例如PDSCH或PUSCH的傳輸秩);和/或UCI在PUSCH中的存在性以及其關聯的UCI類型(例如HARQ-ACK或CSI)。
當在用於PDSCH或PUSCH的排程頻寬中存在PT-RS時,所排程的RB的一個子集可以包括、包含或傳輸PT-RS。該PT-RS RB的子集可以基於RB偏移或排程頻寬中的一個或多個來確定。
對於RB偏移來說,在排程頻寬內部,具有PT-RS的RB的子集可以在每第K個RB被定位,其中無論被排程的RB是連續的還是分佈的,該RB都從被排程RB內部的最低RB索引編制索引至具有更高索引的RB。RB偏移可以是包含PT-RS的起始RB索引。如這裡所述,RB偏移、PRB偏移、起始RB偏移和起始RB索引是可以互換使用的。
對於排程頻寬來說,基於該排程頻寬,可以確定可包括、包含或傳輸PT-RS的RB的數量。如果排程頻寬小於第一臨界值,那麼第一數量的RB可以包含PT-RS,以及如果排程頻寬等於或大於第一臨界值並且小於第二臨界值,那麼第二數量的RB可以包含PT-RS。依此類推。該子集可以包括所有被排程的RB(或多個RB)都可以包含、包括或傳輸PT-RS的情況。
當在用於PDSCH或PUSCH的排程頻寬中存在PT-RS時,PT-RS可以包含在符號(例如CP-OFDM符號或DFT-s-OFDM符號)子集中。PT-RS在符號中的存在性可以基於以下的一項或多項來確定:所排程的PDSCH或PUSCH的MCS等級(或調變階數);DM-RS在符號中的存在性(舉例來說,如果符號包含DM-RS,則不會在該符號中傳輸PT-RS);和/或基於一個或多個排程參數確定的PT-RS密度。PT-RS密度、時間/頻率位置和/或DFT預編碼的使用與否可以取決於所使用的波形。
在一個場景中,當使用CP-OFDM波形時,PT-RS可被用於PDSCH或PUSCH傳輸。RB中的一個或多個子載波可被用於PT-RS傳輸;此外也可以使用為PT-RS傳輸確定的連續OFDM符號上的相同子載波位置。
第2圖示出了關於PT-RS時間密度的若干個範例。在三個範例網格202、204和206中,每一個網格的水平軸201可以是OFDM符號,並且垂直軸203是子載波。對每一個範例都存在一個資源元素(RE)網格,其中陰影塊可以代表包含PT-RS的RE。從左到右看,在範例202中,PT-RS可以位於每一個符號(例如OFDM符號)中,在範例204中,每第2個符號就有一個PT-RS,和/或在範例206中,每第4個符號就有一個PT-RS。PT-RS時間密度可以基於MCS臨界值來確定,相關範例如下表1所示。IMCS 可以是MCS等級,其為PUSCH或PDSCH使用、確定或是指示(在相關聯的DCI中)。PT-RSthMCS1、PT-RSthMCS2、PT-RSthMCS3以及PT-RSthMCS4可以經由較高層傳訊或DCI來配置,並且可被稱為是用於確定PT-RS的時間密度的臨界值。如果沒有配置或指示,那麼可以使用預設配置(例如每一個符號)。
Figure 107140566-A0304-0001
1 :以被排程的 MCS 為函數的 PT-RS 的範例時間密度
對於CP-OFDM和DFT-s-OFDM來說,當存在PT-RS時,PT-RS映射圖樣可以始於時槽中包含PDSCH/PUSCH的第一個符號,然後可以映射到每一個L_{PT-RS}符號。PT-RS映射圖樣可以在每一個包含DMRS的符號處重新開始,然後被映射到與包含PT-RS的符號相對的每一個L_{PT-RS}符號。在兩個相鄰的DMRS符號情況中,可以使用兩個DMRS符號中的第二個作為參考來重新開始該PT-RS圖樣。當PT-RS時間密度低於1時,緊跟前載DMRS(front-loaded DMRS)之後的符號和緊跟附加DMRS之後的符號(如果有的話)可不包含PT-RS。依照該映射圖樣,在包含PDSCH/PUSCH DMRS的OFDM符號中不會傳輸PT-RS。根據該映射圖樣,在與所配置的控制通道資源集合(CORESET)重疊的資源元素(RE)中不會傳輸PT-RS。
PT-RS頻率密度可以基於下表2中顯示的排程的RB的數量來確定。NRB 可以是被排程的RB的數量。PT-RSthRB0、PT-RSthRB1、PT-RSthRB2、PT-RSthRB3以及PT-RSthRB4可以是用於確定PT-RS的頻率密度的臨界值,並且可以藉由RRC傳訊來配置,或是可以在相關聯的DCI中被指示。如果沒有配置或指示,那麼可以使用預設配置(例如第二個RB)。
Figure 107140566-A0304-0002
2 :作為排程頻寬的函數的 PT-RS 的頻率密度
第3圖示出了可以使用基於組塊的pre-DFT PT-RS插入處理來產生DFT-s-OFDM波形的範例過程。PT-RS輸入/輸出322是用箭頭和灰色陰影顯示的,資料輸入/輸出321是用黑色箭頭顯示的。通常,在LTE中,形成波形的過程可以涉及最初用DFT塊304來展開資料符號302,然後將其映射到IDFT塊306的相應輸入。CP 308可被前置於符號開端,由此避免符號間干擾(ISI)以及允許在接收器上執行單分接點頻域均衡(FDE)。
PT-RS圖樣(例如基於組塊的pre-DFT PR-RS圖樣)可以基於組塊(X)的數量310、組塊(chunk)大小(V)312以及組塊的位置來確定。在DFT塊304之前可以插入X個PT-RS組塊310,例如PT-RS組塊#1 311。PT-RS組塊和資料會沿著與如上所述的用於形成波形的相同過程前進。組塊包括音調,並且對於每一個組塊來說,其大小可以是V個PT-RS音調。對於每一個組塊來說,在DFT輸入之前會有V個PT-RS音調;在第3圖的範例中,如用於每一個PT-RS組塊的三條長虛線箭頭所示,組塊大小可以是V=3;在DFT-S-OFDM符號313的最終波形中同樣顯示了這一點,其中PT-RS組塊#1 311處於前三個陰影塊中,並且PT-RS組塊#X處於末端。
DFT輸入的組塊的位置可以基於所排程的RB、組塊大小(V)312和/或組塊的數量(X)310來確定。舉例來說,V的兩個值V1 和V2 可以被使用,並且組塊的位置可以如下基於V值來確定:當V=V1 時,DFT域中的採樣可被劃分在X個間隔中,並且組塊可以位於每一個間隔的頭部(前V個樣本)、中間(中間的V個樣本)或尾部(最後的V個樣本);當V=V2 時,DFT域中的樣本被劃分到X個間隔中,其中在第一個間隔,組塊被置於頭部(前V個樣本),在最後一個間隔中,組塊被置於尾部(最後的V個樣本),並且在剩餘間隔中,組塊被置於兩個間隔中的每一個間隔的中間。
PT-RS圖樣可以基於排程頻寬(BW)來確定,而每一個BWP之一組臨界值NRBn ,n=0,1,2,3,4,指示的是WTRU應該根據下表3並依照所排程的BW使用的X和V值。Y代表任何值。在一個範例中,Y的值可以是8。
Figure 107140566-A0304-0003
3 :基於所排程的 BW pre-DFT PT-RS 圖樣( X, V
第4圖示出了具有正常循環前綴(CP)的信號的圖式。時間401被顯示在水平軸上。對於這裡討論的任何附圖,時域信號圖中顯示的任何指定符號的每一個部分可以用圖案遮蓋,以便指示相似性。如所示,存在信號之兩個符號(即DFT-s-OFDM,OFDM),即分別帶有CP 406和CP 407的符號402和符號403。在正常CP操作中,每一個CP的大小可以是G,並且可以藉由前置IDFT輸出的最後一部分的副本來擴展離散傅立葉逆變換(IDFT)輸出:CP 406和CP 407可以複製末尾,並且可以分別跟隨N-IDFT輸出404和N-IDFT輸出405,其中該最後一部分分別是413和415,並且分別是用箭頭410和411指示的。在接收器側,DFT視窗的位置可以位於第一個符號,並且不會捕獲來自後續符號的採樣:每一個N-IDFT輸出404、405可以分別處於接收器(RX)DFT視窗408、409內部。然而,如果CP大小G不小於多徑通道的分接點數量,那麼接收器有可能遭遇到ISI。在某些情況下,正常CP大小有可能是不足的。舉例來說,如果通信環境是室外或者在非視線(LOS)路徑上建立鏈路,那麼多徑通道的最大超量延遲有可能會顯著增大。在這些情況下,CP的持續時間可能不足夠大到能處理通道的延遲展開,並且CP大小不足有可能導致符號間干擾(ISI)。
第5圖示出了具有擴展CP(例如虛擬CP)的信號的圖式。時間501被顯示在水平軸上。如所示,存在帶有CP 506之信號的符號502,其可以擴展到長度523。應該指出的是,具有N-IDFT輸出505和CP 507的第二個符號503被顯示成提供與該擴展相對於整個信號而言源於何處相關的上下文。CP擴展(稱為虛擬CP)可以用於解決CP大小不夠長時的問題。虛擬CP的目標可以是增大基於塊的符號(例如DFT-s-OFDM、OFDM)的有效CP長度,以便提升其相對於多徑通道的強健性。在第5圖顯示的範例中,長度為G的CP 506可被擴展H個採樣,從而達到總的擴展CP長度523。與第4圖顯示的範例相似,IDFT的N-IDFT輸出504可以藉由前置N-IDFT輸出504的最後一部分的副本522來擴展,然而,由於IDFT-輸出的特殊結構,所擴展的CP區域會被迫是相同的。此外還應該指出,RX DFT視窗508可以移位元H 個樣本。
由於這種方法不會改變基本的接收器操作,因此,保持接收器側的硬體複雜性同樣是非常有益的。由於RX DFT視窗中的採樣應該連續,以便在沒有干擾的情況下解碼符號,因此,兩個連續符號同樣被迫連續,由於這一事實,虛擬CP的另一個益處是減小帶外放射(OOBE)。
第6圖示出了一個關於普通唯一字(UW)和循環前綴(CP)結合的範例。在一個方法中,UW和CP可以以如圖所示的方式結合。觀察傳輸(TX)塊圖601,PT-RS 602a和602b可被映射到M-DFT 604(用
Figure 02_image009
表示)的兩端,以便在輸出N-IDFT 606(用
Figure 02_image011
表示,其中
Figure 02_image013
是厄米特運算,以及
Figure 02_image015
N -DFT)及時產生頭部部分612和尾部部分614。在參考符號沒有任何特殊設計的情況下,如果持續時間G的CP 611小於持續時間T的尾部614,那麼所指示的部分可以變得大致相同,並且可被認為是擴展的CP持續時間。
作為範例,查看所產生的時域信號的訊框630,長度Ge 的擴展CP 620可以具有先前符號631i-1 的尾部與當前符號631i 的CP和頭部部分的級聯。雖然這種方法似乎實現了虛擬/擴展CP 620的目標,但是接收器(RX)有可能會受到影響,因為RX DFT視窗621的大小會從𝑁變為𝑁+𝐺,由此,接收器的結構會因為接收擴展CP而受到影響,這一點是很不可取的。由於在沒有任何特殊設計的情況下,當前符號631i 的尾部與下一個符號631i+1 的CP之間的轉變有可能是不連續的,因此,接收器同樣會遭受影響;由此,資料符號(例如613)有可能會受到干擾。因此,接收器可能需要執行額外的操作來恢復資料,而這並不是理想的。
第7圖示出了關於擾動方法的一個範例。在該方法中,每一個OFDM符號都可以藉由某個擾動向量來被擾動,以便實現相鄰符號之間的連續性(也就是說,其同樣實現了CP擴展)。在第7圖顯示的範例中,在左側和右側分別示出了所提出的方法的傳輸器圖式701以及相應的時域信號730。與這裡論述的其他傳輸處理一樣,資料可以進入IDFT塊(用
Figure 02_image011
表示)716,由此導致一個長度N的符號。符號可以藉由擾動向量產生器塊722,和/或在塊720中可以引入延遲。在塊708處可以添加CP,此導致一個長度為N+G的符號。
出於例證目的,所產生的信號730可具有前一個符號731i-1 、當前符號731i 和下一個符號731i+1 。應該指出的是,時域信號730中顯示的任何指定符號的每一個部分都可以用圖案遮蓋,以便指示相似性。更進一步,針對每一個符號,分別存在三個TX IDFT
Figure 02_image017
Figure 02_image019
。bi 可以是所要操作的未擾動信號Xi 的一部分。元素760可以是用ai-1 替換bi 的擾動向量產生器的輸出。在731a,前一個擾動OFDM符號
Figure 02_image017
的頭部可被表示成ai-1 。為了保持前一個(即TX IDFT
Figure 02_image021
)與當前符號(TX IDFT
Figure 02_image023
)之間的連續性,當前或第i個擾動OFDM符號的CP的頭部也可以是
Figure 02_image025
,如731b所示。由於CP是符號TX IDFT
Figure 02_image023
的最後一部分的副本,因此,向量
Figure 02_image023
可以包括位於731bc的尾部相應位置的
Figure 02_image025
。為此目的,IDFT 706輸出(即,
Figure 02_image023
)可以第i-1個擾動OFDM符號的
Figure 02_image025
為函數來被擾動。
這種方法可以適用於任何CP持續時間大小,但是同樣有可能存在一些問題。其中一個問題在於它是一種動態方法(也就是說,擾動取決於資料),並且由此可能需要針對每一個各別的OFDM符號進行計算,而這有可能需要大量處理。此外,由於它是一種動態方法,因此其有可能不相容參考信號(RS)。另一個問題在於不能使用擾動信號作為RS。另一個問題在於擾動向量遵循任意結構,並且由此接收器可能需要執行額外的操作來消除因為擾動向量所導致的干擾的影響。
第8圖示出了一個用於DFT-s-OFDM的動態方法的範例。在該圖的左側和右側可以分別看到範例的傳輸器圖式801以及相應的時域信號830。在該方法中,DFT-s-OFDM的單載波結構可以被使用,並且藉由基於針對某個CP長度和DFT展開大小的某種規則來行動資料符號的位置,以及在前一個和下一個DFT-s-OFDM符號中將其重新使用,可以實現CP擴展。與這裡論述的其他傳輸處理一樣,傳輸器圖式801將一個涉及塊DM (DFT)802、Mf 804、
Figure 02_image011
(IDFT)806以及CP 808的過程按此順序執行。Mf 804可以是將DM 802的輸出映射到
Figure 02_image011
806的輸入的子載波映射操作。在該方法中,位於DFT-s-OFDM塊802的輸入的符號
Figure 02_image027
可以以如下方式排序:
Figure 02_image029
其中
Figure 02_image031
Figure 02_image033
Figure 02_image035
以及
Figure 02_image037
是資料符號,
Figure 02_image039
是DFT-s-OFDM符號索引,以及CP長度應被設定成
Figure 02_image041
出於展示目的,在所產生的時域信號830中可以存在前一個符號831i-1 、當前符號831i 和下一符號831i + 1 。應該指出的是,在時域信號830中顯示的任何指定符號的每一個部分都130可以用圖案遮蓋,以便指示相似性。就所顯示的範例而言,如果是ak ,其中對於符號831i 來說k =2,那麼bk-1 是b1 ,並且對位於傳輸器圖式801的開端的其他輸入來說可以依此類推。然後,可推得對於符號中的每一個元素而言都可以存在一個相應的輸入,例如,在仍舊使用k=2的範例的情況下,
Figure 02_image043
是當前符號831i 的頭部(H)。如所示,該方法可以實現擴展CP 833,其顯示出CP長度(G)加上尾部(T)和(H)將會導致產生取自另一端832的Ge (注意擴展CP 833和另一端832中存在相似圖樣);這種處理可以在傳輸器和接收器上沒有任何複雜操作的情況下實現,然而,這同樣有可能在CP大小G上引入非預期的約束。因此,該方法可能只與某些參數配置相相容。這種方法的另一個潛在問題是有可能是基於資料符號來產生CP擴展。因此,該方法有可能只與某些PT-RS結構相相容。
第9圖示出了用於DFT-s-OFDM的靜態方法的一個範例。在該圖的左側和右側可以分別看到範例傳輸器圖式901以及相應的時域信號930。與這裡論述的其他傳輸處理一樣,傳輸器圖式801將涉及塊DM (DFT)902、Mf 904和
Figure 02_image011
(IDFT)906的過程以此方式執行。在該方法中,DFT-s-OFDM的單載波結構可被使用,並且在傳輸器中,藉由用
Figure 02_image045
Figure 02_image047
這樣的固定RS來取代輸入資料符號,可以用CP塊來實現信號圖901中顯示的CP擴展。
出於展示目的,在所產生的時域信號830中有可能存在前一個符號931i-1 、當前符號931i 和下一符號931i + 1 。應該指出的是,在時域信號930中顯示的任何指定符號的每一個部分都可以用圖案遮蓋,以便指示相似性。正如第8圖顯示的範例那樣,該方法可以實現擴展CP 933,其中顯示出CP長度(G)與尾部(T)和(H)相加將會導致產生取自另一端932的Ge (注意擴展CP 933和另一端932中存在相似圖樣)。雖然這種靜態方法解決了PT-RS設計,但其有可能存在動態方法的缺點,例如CP長度應被設定成
Figure 02_image041
第10圖示出了PT-RS頻率密度(K)如何能與不同的頻寬排程一起操作的範例。特別地,PT-RS頻率密度可以基於RB偏移為“0”時(也就是始於所排程的第一個RB)被排程的RB的數量,並且配置了以下臨界值:{PT-RSthRB0 = 2,PT- RSthRB1 = 6,PT-RSthRB2 = 12,PT-RSthRB3 = 16}。位於底部的RB索引1001顯示了針對任何指定配置的PT-RS 1010所在的RB的編號。所顯示的具有不同PT-RS密度的範例場景有三個:每一個RB 1010(即K = 1);每第2個RB 1020(即K = 2);及每第4個RB 1030(即K = 4)。PT-RS頻率密度不會隨著所排程的RB數量的增大而線性增加。並且,PT-RS頻率密度可以基於RB偏移而存在差異。舉例來說,對於RB偏移= 0的WTRU以及RB偏移= 1的另一個WTRU來說,儘管為這兩個WTRU排程的RB的數量可以是相同的,但是PT-RS的總數有可能是不同的。
RB偏移(例如起始RB索引)可用於隨機化來自共同排程的WTRU的PT-RS干擾(例如因為PT-RS之間的衝突)。RB偏移可以基於一個或多個WTRU特定參數來確定。一個這樣的參數可以是WTRU-ID(例如臨時C-RNTI、C-RNTI、IMSI),並且其中一個或多個WTRU-ID可以被使用。例如,當WTRU處於RRC空閒模式時,可以使用IMSI作為WTRU-ID,而在WTRU處於RRC連接模式時則可以使用C-RNTI。臨時C-RNTI可以用來確定用於RACH msg2、3和/或4的傳輸/接收的RB偏移,並且可以在WTRU接收到C-RNTI配置之後使用C-RNTI。
同樣/另選地,RB偏移可以基於擾頻ID之WTRU特定參數(例如為DM-RS配置或指示的擾頻ID)來確定,其中該擾頻ID可以在WTRU特定的RRC傳訊中配置,或者可以在用於PDSCH或PUSCH排程的關聯DCI中指示。
同樣/另選地,RB偏移可以基於WTRU特定參數胞元ID(例如實體胞元ID)來確定,其中實體胞元ID既可以在初始存取過程中被確定,也可以從同步信號(SS)中偵測。
同樣/另選地,RB偏移可以基於SS塊時間索引之WTRU特定參數(例如SS/PBCH塊索引)來確定,其中SS塊索引可以在初始存取過程期間被確定;如這裡所述,SS塊索引、SS塊時間索引、SS/PBCH塊索引、SS/PBCH塊時間索引是可以互換使用的。
同樣/另選地,RB偏移可以基於頻寬部分(BWP)索引之WTRU特定參數來確定,例如在WTRU可被配置成具有一個或多個BWP並且一次有所配置的BWP的子集是活動的情況下。WTRU被配置或指示成傳輸和/或接收PDSCH或PUSCH所在的在活動BWP索引可以用於確定RB偏移值。如這裡所述,BWP和載波是可以交換使用的。
在RRC連接建立之前或者在WTRU可被配置成具有WTRU特定參數之前可以使用預設RB偏移。該預設RB偏移可以由以下的至少一項來確定:固定RB偏移(例如RB偏移=0);和/或基於一個或多個胞元特定參數(例如實體胞元ID)確定的RB偏移。
為了確定RB偏移值,可以確定、使用、配置或預先定義一個最大RB偏移值。舉例來說,如果使用WTRU-ID來確定RB偏移值,那麼可以使用WTRU-ID與最大RB偏移值(max_RB_offset)的取模(mod)運算(mod代表除法之後的模數)。如這裡所述,取模運算產生餘數,其中A和B的取模運算是將A作為被除數以及將B作為除數,並且可以可交換地表示成A mod B、(A)mod B和/或mod(A,B)。
作為範例,RB偏移值=(nRNTI ) mod max_RB_offset,其中nRNTI 可以是C-RNTI或臨時C-RNTI,或者作為替換,nRNTI 可以是C-RNTI或臨時C-RNTI的最高有效位元(MSB)或最低有效位元(LSB)。無論哪一種情況,max_RB_offset都可以是最大RB偏移值。在一些情況中,max_RB_offset值可以隱性地基於以下的一項或多項來確定:所排程的BW(例如所排程的RB的數量);PT-RS頻率密度(例如PT-RS位於每K個RB內),其中K可以如這裡論述的那樣與
Figure 02_image049
交換使用;和/或WTRU特定參數。在一些情況中,更高層配置的max_RB_offset值可以廢棄隱性確定的max_RB_offset值。
RB偏移值可以侷限於可被配置、確定或使用的RB偏移集合。更進一步,基於所排程的BW、頻率密度和/或WTRU特定參數中的至少一者,可以確定或使用RB偏移集合的一個子集。該RB偏移可以侷限於一個集合/子集,並且可以在這裡論述的一種或多種方法中被確定和/或配置。
在一個方法中,RB偏移集合可以基於max_RB_offset值而被定義、確定或使用。例如,RB偏移集合可以是構成可能值的完整集合的{0,1,..., max_RB_offset}。在一個例子中,max_RB_offset可以是頻率密度K,其中max_RB_offset=K,由此可以產生RB偏移集合{0,1,...,K}。
在另一個方法中,RB偏移的集合和/或子集可以基於排程頻寬NRB 和PT-RS頻率密度K來確定。在一個範例中,如果滿足第一條件,那麼第一子集可以是{0},其中該第一條件是(NRB +1) mod K = 0。在另一個範例中,如果滿足第二條件,那麼可以使用第二子集{0,1},其中該第二條件是(NRB +2) mod K = 0。在另一個範例中,如果滿足第三條件,那麼可以使用RB偏移集合(即全部的){0,1,..., max_RB_offset},其中該第三條件是(NRB ) mod K = 0。
在另一個方法中,RB偏移值可以基於RB偏移值= (nRNTI ) mod max_RB_offset_S來確定,其中max_RB_offset_S可以是子集內部的RB偏移值的數量。
在另一個方法中,RB偏移集合的子集可以經由較高層傳訊來配置。例如,RB偏移集合的子集可以用點陣圖(bitmap)來指示。
在另一種用於限制RB偏移值的途徑中,RB偏移集合的max_RB_offset值可以基於在包含PT-RS的最後一個RB(其中RB偏移=0)之後不包含PT-RS的RB的數量來確定,其中該RB偏移集合是值{0,1,...,max_RB_offset}的全集。作為範例,回過來參考第10圖,在場景1030中排程了16個RB,其中max_RB_offset值可以是3,因為處於最後一個RB 12之後的所有RB(即RB 13、14和15)都不包含PT-RS。在場景1030中顯示的另一個範例中,在排程15個RB時,max_RB_offset值可以是2,因為其為在第12個RB之後之後不包含PT-RS的RB(RB 13和14)的數量。在該方法中,其中一種方法是將max_RB_offset確定成是max_RB_offset = K - NRB mod K - 1,其中K可以基於頻率密度來確定(例如PT-RS可以位於每K個RB中),和/或NRB 可以是所排程的RB的數量。在另一個方法中,RB偏移值=(nRNTI ) mod max_RB_offset。
第11A圖示出了基於所排程的RB和PT-RS頻率密度來確定max_RB_offset值(或限制/約束)的範例。正如第10圖中那樣,陰影塊可以代表RB中的PT-RS。在場景1120中可存在8個RB,及每第2個RB中就的PT-RS(即K=2):如列1121所示,當偏移為0時,PT-RS總數可以是4;並且如列1122所示,當偏移為1時,PT-RS的數量可能仍舊是4。應該指出的是,在場景1120中,PT-RS密度整除為所排程的RB的數量且沒有餘數(即NRB mod K=0),由此導致max_RB_offset等於PT-RS密度K=2;換句話說,當K=2時,RB偏移將是前兩個可能取值,其中該值在0開始,因此該值集合將會是{0,1}。更一般地說,這種情況可被寫成當NRB mod K=0時,max_RB_offset=K。
在場景1110中可以有7個RB以及每第2個RB中之一者的PT-RS密度(即K=2)。在這裡應該指出的是,PT-RS密度不整除成所排程的RB的數量(即NRB mod K≠0)。因此,當RB偏移為0時,如列1111所示,PT-RS的總數可以是4;當該偏移為1時,總PT-RS會減小到3(也就是說,RB偏移值限制了PT-RS的數量)。
在一些情況下,用於排程頻寬的PT-RS的數量較佳是相同的,由此避免WTRU性能降級。由此,可能想要避免這樣的狀況,那就是如列1112所示,用於相同排程頻寬的PT-RS的數量存在差異。為了確保PT-RS的數量保持相同,有必要限制RB偏移值(max_RB_offset)的完整可能集合max_RB_offset。舉例來說,如果如這裡所述,RB偏移可以基於WTRU-ID(即nRNTI mod max_RB_offset),那麼藉由限制max_RB_offset,可以啟用對指定數量的排程RB保持PT-RS數量相同的能力。如場景1120所示,當PT-RS密度沒有整除成所排程的RB數量(即NRB mod K≠0)時,限制max_RB_offset是必要的。在場景1110中,max_RB_offset可被限制成是PT-RS密度和所排程的RB的數量的函數;特別地,max_RB_offset可被限制成是PT-RS密度除成所排程的RB的數量的餘數,其將會是7 mod 2,結果將會等於1。如上所述,max_RB_offset的數值(例如1)會導致產生RB偏移值的有限集合(即子集),其中任一RB偏移值都會在0開始。可推得然後,如果max_RB_offset被限制成1,那麼max_RB_offset的子集將是{0},這意味著任何大於0的RB偏移(如列1112中用RB偏移值{0,1}所示)將會導致具有不同的PT-RS總數。更一般地說,這種情況可被寫成當NRB mod K≠0時,max_RB_offset=NRB mod K。
第11B圖示出了發送PT-RS傳輸來確保PT-RS密度K保持相同的範例處理,由此解決對照第11A圖所論述的可能出現的問題。在第一個步驟1151,確定PT-RS密度K和所排程的RB的數量NRB 。在一種情況下,裝置(例如WTRU)可以讓某個頻寬被排程(也就是在控制通道上接收控制資訊)。WTRU可以基於所排程的頻寬來確定PT-RS密度K。在步驟1152,如果PT-RS密度K整除成所排程RB的數量NRB ,那麼在步驟1152,max_RB_offset可以等於PT-RS密度,或者如果不是的話,那麼max_RB_offset可以是PT-RS密度與所排程的RB的數量的函數。在步驟1154,RB偏移值可以依照步驟1153的結果來確定。在步驟1155,一旦確定了RB偏移,則可以使用該資訊來傳輸和/或接收帶有PT-RS的傳輸。
在另一種用於限制RB偏移值的方法中,如果max_RB_offset值小於K,那麼可能會有一種或多種方法適用於隨機化對RB偏移值的受限/限制集合的干擾。存在一種或多種方法能遵循該方法。
在一種方法中,PT-RS在RB內部的RE位置或子訊框位置可以基於一個或多個WTRU特定參數來確定。例如,當RB偏移值受到約束/限制時,PT-RS在RB內部的RE位置可以基於WTRU特定參數來確定,並且當RB偏移值不受約束/限制(例如max_RB_offset=K)時,PT-RS在RB內部的RE位置可以基於非WTRU特定參數(例如固定、預先定義、胞元特定的參數)來確定。
在另一種方法中,PT-RS擾頻序列可以基於一個或多個WTRU特定參數來確定。例如,當RB偏移值不受約束時,PT-RS擾頻序列可以基於非WTRU特定參數而被初始化,當RB偏移值受到約束時,PT-RS擾頻序列可以基於一個或多個WTRU特定參數而被初始化。
在另一種方法中,PT-RS時間位置可以基於一個或多個WTRU特定參數(例如起始符號索引)來確定。舉例來說,當RB偏移值不受約束時,第一符號索引可被用作PT-RS傳輸的起始符號,並且當RB偏移值受到約束時,第二符號索引可被用作PT-RS傳輸的起始符號。第一符號索引可以是固定的、被配置的和/或預先定義的,並且第二符號索引可以是基於一個或多個WTRU特定參數確定的。
第12圖示出了包含PT-RS的RB的循環移位的一個範例。在該方法中,RB偏移集合可以集合{0,1,...,max_RB_offset}來定義、確定或使用,其中max_RB_offset可以是K(例如PT-RS密度);包含PT-RS的RB可以基於RB偏移值而被循環移位。無論RB偏移值怎樣,包含PT-RS的RB的數量都可以是相同的。場景1210示出了具有7個RB的時槽的若干個實例,而每第2個RB中有一個PT-RS。在一個實例1211中,包含PT-RS的RB可以是均勻分佈的,其中RB偏移為0,由此導致PT-RS密度為4。在另一個實例1212中,RB偏移可以是1,並且包含PT-RS的RB並不是均勻分佈的,其中一個PT-RS RB 1202發生移位並與另一個PT-RS RB相鄰,但是PT-RS密度仍舊是4。此外,循環移位值可以基於一個或多個WTRU特定參數來確定。例如,由於RB偏移值而未被指配給RB的PT-RS可以位於不包含PT-RS的RB的其中之一中,其中該RB位置可以基於WTRU-ID(例如C-RNTI)來確定。
在一些情況中,包含PT-RS的RB的參考位置可以基於RB偏移等於0,其中無論所確定的RB偏移值如何,包含PT-RS的RB的數量與RB偏移等於0的情形都可以是相同的,並且PT-RS密度可以是4。
在一個方法中,與參考RB偏移的相比,當供PT-RS用於RB偏移的RB的數量相對較小,那麼可以使用功率提升PT-RS。例如,參考RB偏移可以在RB偏移等於0的情況下被定義、配置或使用,並且當RB偏移等於0時,用於PT-RS的RB的數量可以是Kp 。如果對於某個RB偏移來說,用於PT-RS的RB的數量小於Kp ,那麼可以使用PT-RS功率提升。在該方法中,針對第一RB偏移值,當包含PT-RS的RB的數量與Kp 相同時,第一功率位準可被用於PT-RS;針對第二RB偏移值,當包含PT-RS的RB的數量小於Kp 時,第二功率位準(例如高於第一功率位準)可被用於PT-RS。第二功率位準可以基於針對某RB偏移值的包含PT-RS的RB的數量與Kp 之間的比率來確定。
此外,在該方法中,星座點可以與偏移值相關,對於第一RB偏移值來說,當包含PT-RS的RB的數量與Kp 相同時,可以將第一星座點(例如QPSK星座)用於PT-RS序列,對於第二RB偏移值來說,當包含PT-RS的RB的數量小於Kp 時,這時可以使用第二星座點(例如16QAM、64QAM或256QAM的最外側星座點)。用於最外側星座點的調變階數(例如16QAM、64QAM或256QAM)可以基於針對某個RB偏移值的包含了PT-RS的RB的數量(Ka )與Kp 之間的比率來確定。作為範例,如果Ka /Kp 大於預先定義的臨界值,那麼可以使用第一調變階數(例如16QAM);如果Ka /Kp 小於預先定義的臨界值,那麼可以使用第二調變階數(例如64QAM)。用於最外側星座點的調變階數可以基於為相關聯的資料通道(例如PDSCH或PUSCH)指示、確定或排程的調變階數來確定。
在一個場景中,RB偏移值可用於將PT-RS從預設RB位置移位到不同的RB(例如與預設RB位置相距固定數量的RB),由此避開來自處於相同RB位置的其他PT-RS傳輸器的胞元內或胞元間干擾源。如果存在顯著的基於PT-RS的干擾,那麼可以修改或改變PT-RS密度的時間和頻率,從而避免或降低干擾位準。舉例來說,下表4示出了在假設所有的兩個傳輸器全都使用PT-RS時間密度=1(例如在每一個符號傳輸PT-RS)的情況下的可能的RB偏移與PT-RS頻率密度的結合。
Figure 107140566-A0304-0004
4 :基於 RB 偏移的 PT-RS 時間 / 頻率密度的
針對這種場景,可以經由較高層傳訊或L1傳訊(例如DCI)來向WTRU指示一個或多個干擾源(例如共同排程的WTRU或相鄰胞元)的頻率密度。對於這種針對WTRU的指示來說,一種或多種方法是可以應用的。
在一個方法中,WTRU可以在用於資料排程的關聯DCI中接收產生干擾的PT-RS的頻率密度,並且該WTRU的PT-RS密度(例如服務PT-RS的時間和/或頻率密度)可以基於產生干擾的PT-RS的頻率密度來確定。如果產生干擾的PT-RS密度增大,那麼服務PT-RS密度同樣也會增大。作為替換,如果產生干擾的PT-RS密度增大,那麼服務PT-RS密度有可能會降低。
在另一種方法中,基於產生干擾的PT-RS密度,可以限制RB偏移值集合。舉例來說,如果產生干擾的PT-RS密度較低,那麼可以使用較小的RB偏移值集合,並且如果產生干擾的PT-RS密度較高,那麼可以使用一個較大的RB偏移值集合。在另一個範例中,如果產生干擾的PT-RS密度很低(例如,1),那麼可以使用RB偏移值的第一子集(例如,{0}),並且如果產生干擾的PT-RS密度為中(例如,2),那麼可以使用RB偏移值的第二子集(例如,{0,1});如果產生干擾PT-RS密度很高(例如,4),那麼可以使用RB偏移值的第三子集(例如,{0,1, 2, 3})。
在另一個方法中,RB偏移值集合可以基於產生干擾的PT-RS密度和服務PT-RS密度來限制。
如果任一傳輸器使用小於1的PT-RS時間密度(例如OFDM符號偏移),那麼用於RB偏移的類似選項將是可能的。並且還有可能需要OFDM符號偏移,以便處理針對PT-RS的基於DM-RS的干擾。另一個可能性是將子載波偏移用於RB內部的PT-RS。
第13圖示出了用於具有不同RB偏移值的7個RB的PT-RS映射的範例。在該方法中,RB偏移可以基於C-RNTI和/或子訊框/時槽號或索引來確定。為了理解,回過來參考第2圖,其中顯示了具有
Figure 02_image049
=1、2和4個RB的不同PT-RS密度的PT-RS映射;由於起始排程RB位置中有一個PT-RS,因此,由於在第一索引中存在PT-RS RB,可以假設RB偏移為0。因此,對於
Figure 02_image051
的任何配置,每個時槽的PT-RS密度可以基於RB偏移值而改變。現在查看第13圖中顯示的範例,針對NRB = 7個RB,那麼對每一個都有PT-RS映射,其中每一者都具有不同的RB偏移值,在場景1310中是0個RB,以及在場景1320中是1個RB。對於場景1310來說,每第2個RB都存在一個PT-RS,並且RB偏移可以為0,由此會導致PT-RS密度為4;對於場景1320,每第2個RB都存在一個PT-RS並且RB偏移可以為1,由此導致PT-RS密度為3。如所示,與RB偏移=0的情形相比,在RB偏移= 1的配置中,PT-RS的總數將會變小,由此會導致某種性能降級。
第14圖示出了具有不同RB排程寬度的PT-RS映射的範例。在場景1410中有7個RB,其中每第2個RB具有一個PT-RS,由此導致密度為4。在場景1420中有13個RB,其中每第4個RB具有一個PT-RS,由此導致密度為4;由於排程如此散開,此類配置有可能會對性能產生更大的影響。
第15圖示出了用於7個動態RB偏移值的範例PT-RS映射。在該方法中,RB偏移值可以基於時間索引而被動態調整或確定,以便在傳輸持續時間具有相等的PT-RS平均值。對於場景1510來說,其中存在7個RB,並且每第2個RB具有一個PT-RS。時間索引可以是訊框編號(nFrame )、時槽編號(nSlot )或符號編號(nSym )中的至少一個。作為範例,初始RB偏移可以基於C-RNTI來確定,然後可以基於nSlot 來應用附加的RB偏移,其中nSlot 是與當前傳輸相對應的時槽編號。場景1510顯示了一個基於偏移值設定的範例實施方式,其中該偏移值設定是以導致時槽中每一遞增(即時槽n,時槽n + 1,時槽n + 2,...時槽n + k)的奇數/偶數(off/even)時槽編號為基礎的,其使RB偏移值交替,而這同樣會影響PT-RS密度(也就是說,該密度會分別基於偏移值0和1而在4與3之間交替)。時槽編號可以是無線電訊框內部的時槽編號或絕對值。在一個替換範例中,RB偏移值可以是基於C-RNTI和時間索引等等而被聯合定義的。在另一個範例中,RB偏移調整可以只應用於呈現不等分佈的配置,或者通用地應用於所有配置,而不用考慮偏移值的影響。
第16圖示出了用於每時槽13個RB且具有動態RB偏移值的PT-RS映射的範例。在該範例中,RB偏移值可以基於時間索引而被動態調整,以便以抵消頻率選擇性衰落的影響。如此一來,無論PT-RS密度具有怎樣的影響,都可以針對所有的配置來動態改變RB偏移,從而避免遭遇到長衰落。場景1610顯示了每一個時槽的13個RB,其中每第4個RB具有一個PT-RS RB(也就是說,其中
Figure 02_image053
)。時間索引可以基於
Figure 02_image055
Figure 02_image057
Figure 02_image059
等等或是其結合。例如,初始RB偏移可以基於C-RNTI來確定,然後則可以應用一個附加的RB偏移,以便在每時槽或基於時槽編號來行動PT-RS RB的位置。該RB偏移可以基於
Figure 02_image057
Figure 02_image049
來確定,其中附加偏移可被定義成
Figure 02_image061
。如所示,RB偏移會隨著每一個時槽編號而增大;因此,在時槽n,RB偏移是0,在時槽n+1,該偏移是1,在時槽n+2,RB偏移是2,以及在時槽n+3,RB偏移是3。應該指出的是,一旦RB偏移是3,那麼在下一個時槽n+4,由於PT-RS密度僅僅為4,並且在沒有至少為5的PT-RS密度(在本範例中並未設想這種情況)的情況下你將無法具有4的RB偏移,因此,該RB偏移將會返回到0。
在一個實施例中,PT-RS密度可以取決於頻率資源分配類型。被調變的資訊符號有時可以在傳輸前被映射到時間和頻率資源。多個資訊符號可被映射到離散、連續的時間和頻率塊。在LTE和NR中,被調變的資訊符號可被映射到名為資源元素(RE)的時間和頻率單元。RE可以在一個OFDM符號中包含一個子載波。一個塊RE會藉由7個OFDM符號包含12個連續子載波(也就是在頻率中)(也就是說,一個時槽可以包含一個RB)。當在時間和頻率中連續或非連續地映射各別或多個RB時,它們將被認為分別具有集中式或分散式資源分配類型。由於PT-RS可以映射在具有集中式或分散式資源分配類型的所分配的RB內部,因此,時間和頻率中的PT-RS密度可以取決於該類型。由此,在至少一些情況中,有必要使得PT-RS時間和頻率密度也取決於所使用的是集中式還是分散式資源分配類型。
第17圖示出了基於符號位置的PT-RS頻率位置的一個範例。與第2圖中一樣,水平軸1704是符號(即,OFDM),並且垂直軸1705是子載波。無論NR資源分配類型0和1是否表明需要集中式或分散式分配,都可以保持PT-RS時間和頻率密度。如第17圖所示,如果RB在傳輸間隔期間在時間上是分佈的,那麼PT-RS時間密度(其在一些情況下可以應用於集中式分配)可以各別應用於每一個時間區域。如果RB在傳輸間隔期間在頻率上是分佈的,那麼PT-RS頻率密度(其在一些情況下可以應用於集中式分配)可以各別應用於連續分配的資源塊或資源塊群組(RBG)的每一個頻率區域(也就是用於所使用的載波頻寬部分)。以1701為例,每一個符號都可以具有一個PT-RS密度,其並未顯現出任何變化。以1702為例,每隔一個符號(也就是每第二個符號)會有一個PT-RS,其可以在因為不同頻率區域始於中途1712而導致頻率改變的時候重啟。以1703為例,每第4個符號會有一個PT-RS符號,其可以在不同頻率區域始於中途1713而導致頻率改變的時候重啟。
第18圖示出了基於RBG的PT-RS頻率密度的範例。該頻率密度可以基於已被配置或確定的RBG大小來確定,並且第18圖的每一個場景都可以具有不同的RBG。在場景1810中,每一個RB都具有PT-RS(有每一個RB的密度)。對於場景1820來說,有可能存在具有每第2個RB的不同密度的不同RBG。對於場景1830來說,同樣有可能存在具有每第4個RB的不同密度的不同RBG。
在一個實施例中,在包含PT-RS的RB內部,PT-RS的RE位置(例如子載波位置、RE偏移)可以基於實體胞元ID、WTRU-ID(例如C-RNTI、臨時C-RNTI或IMSI)、PT-RS頻率密度、PT-RS時間密度以及max_RB_offset值中的至少一個來確定。舉例來說,如果max_RB_offset值是第一個值(例如0),那麼可以基於WTRU-ID來確定RE位置(或RE偏移),並且如果max_RB_offset值是第二個值(例如大於 0),那麼可以基於胞元ID來確定RE位置(或RE偏移)。作為替換,如果max_RB_offset值是第一個值,那麼可以基於PT-RS頻率密度確定RE位置(或RE偏移),並且如果max_RB_offset值是第二個值,那麼可以基於胞元ID來確定RE位置(或RE偏移)。
第19圖示出了用於π/ 2-BPSK資料調變的PT-RS產生的範例。對於二進位相移鍵控(BPSK)調變1912來說,基於以下等式,可以將位元序列
Figure 02_image063
映射到複數值的調變符號x:
Figure 02_image065
在π/2-BPSK調變1914情況,基於以下等式,可以將位元序列
Figure 02_image063
,(其中n 是索引(即位置))映射到複數值調變符號
Figure 02_image067
Figure 02_image069
Figure 02_image071
如這裡所述,π和pi是可以互換使用的。在第19圖中可以看出,存在這樣一種PT-RS序列設計,其中用於相關聯的資料(例如PDSCH或PUSCH)的調變階數可以是pi/2 BPSK。由0和1組成的PT-RS位元可以根據預定圖樣與資料位元1910多工。所得到的多工位元b 1902可以經歷BPSK調變1912,這導致d 1904,然後則會經歷pi/2調變1914,這導致c 1906。如果在PT-RS位元上應用正交覆蓋碼(OCC),那麼去耦合BPSK和pi/2調變將會是有益的。在pi/2調變1914之後,所產生的符號可以由DFT塊1916以及可選的頻域頻譜整形(FDSS)1918(其既可以在DFT 1916之後也可以在其之前實施)處理。然後,經過整形的符號可被映射1920到所分配的子載波,並且將會藉由IDFT處理塊1922,以便預備在OFDM符號中傳輸。
第19圖可以藉由以下範例而被進一步詳細說明:假設DFT大小因為所分配的資源而被設定成N = 12(例如資料和PT-RS位元的總數),並且PT-RS位元將被插入位於序列b 1902的頭部和尾部的兩個組塊,以及每一個組塊由2個位元組成;於是,資料和PT-RS 1910 的多工向量可被寫成b = [X, X, 8個資料位元, Y, Y],其中X、Y和資料位元是0或1。應該指出的是,通常,每一個組塊中的PT-RS位元通常不必是相同的,因此,其在該範例中可以是數值X1、X2、Y1以及Y2,其中不同的X值和Y值都是存在的。為了展示,可以存在b = [1,1,0,0,1,1,0,1,0,1,11]的值,並且在b 1902的BPSK調變1912之後,如下表5所示,經過調變的序列可以變成d 1904,其中以下注釋將被使用:
Figure 02_image073
Figure 107140566-A0304-0005
5 BPSK 調變之後的資料和 PT-RS 位元的範例
然後,序列d 1904會逐元素地與向量
Figure 02_image075
相乘(Hadamard乘積),以便執行pi/2調變1914,由此產生c 1906。應該指出的是,p(n) (只要其代表pi/2調變)可以用略微不同的方式寫。在下表6中給出了關於
Figure 02_image077
的計算值的範例。
Figure 107140566-A0304-0006
6 :關於 p(n) 的範例
然後,如下表7所示,我們會得到
Figure 02_image079
Figure 107140566-A0304-0007
7 :關於 pi/2 BPSK 調變的 PT-RS/ 資料位元的範例
第20圖示出了用於pi/2 BPSK資料調變和OCC的PT-RS產生的範例。如這裡所述,如果一些元素使用了相同的最後兩數字(如在第19圖和第20圖中),那麼可以將其解釋成是相似的。更進一步,第20圖可以與第19圖相類似,但是,當在組塊中傳輸PT-RS位元時,在該組塊內部的PT-RS位元上可以應用正交覆蓋碼(OCC)。應該指出的是,與OCC相乘的位元可以是相同的。在這樣的場景中,OCC會在BPSK調變2012之後但在pi/2調變2013之前(也就是在序列d 2004上)應用於PT-RS位元,由此導致經過OCC的PT-RS(OCC’ PT RS)位元e 2005(即,向量e )。應該指出的是,在pi/2調變之後應用OCC將會破壞信號的相位連續性,並且會導致具有較大的峰均功率比的信號。
為了進一步詳細說明,假設這樣一個範例,其中組塊大小為2並且所要應用的OCC是[1 1]和[1 -1]。在d 2004中,每一個組塊中的兩個PT-RS位元都可以與這些OCC 2013中的一個相乘。繼續該範例,如果OCC是[1 1],那麼向量e 2005將會如下表8所示。
Figure 107140566-A0304-0008
8 :在 BPSK 調變後在 PT-RS 位元上應用 [1 1] OCC 的範例
如果OCC是[1 -1],那麼向量e 2005將會如下表9所示。
Figure 107140566-A0304-0009
9 :在 BPSK 調變之後在 PT-RS 位元上應用 [1 -1] OCC 的範例
被指定WTRU應用於每一個PT-RS位元組塊的OCC可以對於所有組塊而言是相同的,或可以對於一個或多個組塊而言可以是不同的。以兩個組塊和兩個位元為例,WTRU應用的OCC碼可以是{[1 1],[1 1}或{[1 -1],[1 -1]}或{[1 1],[1 -1}或{[1 -1],[1 1]}。
如果在所有組塊上應用相同的OCC,那麼可以使用另一個參數(例如WTRU ID)來隱性地用信號通告或確定該碼的索引。例如,mod(WTRU ID,2)可以確定兩個OCC中的一個OCC,而mod(WTRU ID,4)則可以確定四個OCC中的一個OCC。通常,mod(WTRU ID,k )可以確定k 個OCC中的一個OCC。
在組塊上應用的OCC的索引可以藉由規則(例如藉由碼的重複循環)來確定。舉例來說,假設有4個組塊並且每一個組塊具有2個PT-RS位元。然後,WTRU可以按照指定順序在這四個組塊上應用以下碼:{[1 1],[1 -1],[1 1],[1 -1]}或{[1 -1],[ 1 1],[1 -1],[1 1]}。第一個碼的索引可以隱性地用信號通告或確定,例如藉由WTRU ID。
第21圖示出了藉由OCC循環的範例。該循環操作可以以順時針2101或逆時針2102的方式執行,其中OCC的索引被置於圓上。作為範例,OCC#1 = [1 1 1 1];OCC#2 = [1 1 -1 -1];OCC#3 = [1 -1 1 -1];OCC#4 = [1 -1 -1 1]。
在一個方法中,OCC可以基於參考信號(例如PT-RS)的調變階數而被用於參考信號序列(例如在組塊內部)。舉例來說,如果將第一調變階數(例如pi/2 BPSK)用於參考信號,那麼將不會使用OCC(作為範例,所使用的可以是具有全‘1’條目的OCC);如果將第二調變階數(例如QPSK)用於參考,那麼可以使用OCC,並且可以基於以下的一項或多項來確定OCC:一個或多個WTRU特定參數(例如WTRU-ID(例如C-RNTI)、擾頻ID等等);較高層配置的參數;層(例如傳輸層);層數;一個或多個胞元特定參數(例如,胞元ID);和/或使用特定OCC(例如全‘1’條目)可被稱為不使用OCC。
關於針對所有調變類型(例如QPSK調變)的共同PT-RS設計,位元
Figure 02_image063
Figure 02_image081
的配對可以依照以下等式映射到複數值的調變符號x:
Figure 02_image083
第22圖示出了關於pi/2 BPSK和QPSK星座的範例。應該指出的是,如上所述的pi/2 BPSK調變和QPSK調變都可以具有第22圖所示的相同的星座圖。在水平軸上測量的是實數2201,並且在垂直軸上測量的是虛數2202。考慮到pi/2 BPSK和QPSK具有相同的星座,較為理想的是具有一種對包括pi/2 BPSK以及QPSK、16QAM等等的所有資料調變類型所共同的PT-RS序列設計。這樣一來,一般而言,在一個DFT-s-OFDM符號中,PT-RS所需要的位元數可以等於V * X(V乘以X),其中V是組塊大小,X是組塊數量。
第23圖示出了共同PT-RS設計採樣。就該範例而言,PT-RS位元2310可以具有p(0)、p(1)、p(2)和p(3)的值。一旦藉由BPSK調變2302進行了處理,則可以依照2303顯示的以下等式來產生PT-RS序列:
Figure 02_image085
並且n 是DFT 2304輸入的索引(n = 0,1, …, N-1),其中第i個PT-RS位元
Figure 02_image087
將被插入。
作為範例,如果DFT大小是12並且將PT-RS插入DFT 2304的輸入n = 0,1(頭部)以及n = 10,11(尾部);那麼被插入這些DFT 2304輸入的PT-RS可被寫成:
Figure 02_image089
Figure 02_image091
Figure 02_image093
Figure 02_image095
第24圖示出了用於群組中的最低的n 的PT-RS設計的OCC應用的範例,且第25圖示出了相同的情況,除了群組中的最大的n 。應該指出的是,如對照第21圖說明的那樣,如果要在組塊中的PT-RS位元上應用OCC,並且如果資料的調變類型是pi/2 BPSK,那麼可以在BPSK調變之後但在pi/2調變之前應用OCC。當資料調變類型不是pi/2 BPSK時,相同的方法也是可以使用的。作為替換,如第24圖的範例所示,當資料調變類型不是pi/2 BPSK時,這時可以在pi/2 BPSK調變的PT-RS位元上應用OCC。在第24圖中,O1和O2 2405可以表示OCC位元(例如[O1 O2] = [1 1];或者[1 -1])。
有了OCC,所需要的PT-RS位元2410的數量有可能是(X * V)/ L,其中L是OCC的長度。在對這些位元進行了BPSK調變2402之後,每一個位元可以被重複L次,並且可以被映射到DFT 2404的相應輸入。第24圖中的範例使用的是L = 2。然後,每一個大小為L的群組中的位元都可以乘以相同的係數
Figure 02_image097
2403,其中m 可以基於與大小為L的群組相對應的DFT 2404的輸入的索引來確定。舉例來說,m 可以是第24圖所示的群組中的最低的n (也就是說,
Figure 02_image097
會轉到
Figure 02_image099
Figure 02_image101
)或是第25圖所示的群組中的最大的n (也就是說,
Figure 02_image097
會轉到
Figure 02_image103
Figure 02_image105
)。除了n 值之外,對照第24圖描述的處理可以與第25圖相類似。作為替換,m 可被設定成等於i(PT-RS位元索引,i = 0, 1, …, (X * K) / L)。
PT-RS位元
Figure 02_image107
可以用偽亂數產生器(例如LTE中使用的Gold定序器)來產生。
在一個場景中,OCC可以取決於資料調變階數。對於資料位元的pi/2 BPSK調變來說,在PT-RS組塊上可以應用一個預設OCC向量(例如全1向量,比方說[1 1]或[1 1 1 1])。
如果以如下方式定義pi/2 BPSK調變:
Figure 02_image109
那麼,星座將會變成如第26圖的範例所示的形式,其中水平軸顯示實數2601,而垂直軸則顯示虛數2602。在這種情況下,在將PT-RS符號與e^(jπ/4)相乘以創建第26圖所示的星座之後,如果資料調變是QPSK或更高階的QAM調變,那麼可以使用pi/2 BPSK調變的PT-RS。
在另一個場景中,第一RS序列可以基於pi/2 BPSK,第二RS序列可以是第一RS序列的相移版本。在這樣的場景中,以下的一項或多項可以應用:可以使用第一RS序列,當其相關聯的資料通道的調變階數是一階調變階數(例如pi/2 BPSK)時;和/或當調變或其相關聯的資料通道是二階調變階數(例如高於pi/2 BPSK的調變階數)時,這時可以使用第一RS序列的相移版本(例如第二RS序列),其中相移值可以是預先定義的、預先配置的、或者是基於pi/2 BPSK和QPSK的星座確定的。
在一個實施例中,用於NR中的虛擬CP(即,擴展CP)的PT-RS可以被考慮,其中波形和訊框結構可被標準化:CP DFT-s-OFDM和CP OFDM可以是上鏈方向上的波形;pre-DFT PT-RS可被用於DFT-s-OFDM;並且多個參數配置可以具有被定義成
Figure 02_image111
的子載波間隔,其在下表10中也被製成了表格。對於不同的子載波間隔,CP大小可以以下等式給出的公式為基礎:
Figure 02_image113
10 NR 中的子載波間隔的範例
基於這些考慮,如果NR中的子載波間隔較大,CP大小將會以指數方式減小。這意味著如果子載波間隔較高,那麼OFDM或DFT-s-OFDM符號會很容易受到多徑延遲展開的影響,並且在某些情況下(例如室外場景或是具有NLOS鏈路的場景),如果子載波間隔較高,那麼接收器有可能遭遇到ISI。現有的解決方案有可能會提升傳輸器和接收器的複雜度(例如UW和CP結合、擾動方法),並且有可能不相容NR使用的參數配置(也就是用於DFT-s-OFDM的動態方法和靜態方法)。例如,固有地允許pre-DFT PT-RS的靜態方法可以規定CP長度是
Figure 02_image041
。然而,這種方法有可能無法藉由用於NR的一種或多種可能的參數配置來實現。因此,如果對在相容CP大小的可能約束(例如關於NR)的同時允許CP擴展的虛擬CP解決方案加以考慮,那麼將是非常有益的。
第27圖示出了以CP擴展器塊而基於預定RS來產生CP擴展RS的範例方法。在該方法中,藉由使用CP擴展器塊2708以及映射到DFT-s-OFDM的輸入來擴展正常CP持續時間,可以基於其他預先確定的RS來計算CP擴展RS。在第27圖中所示的範例圖中可以看到用於該方法的詳細的傳輸器框圖以及相應的時域符號(即三個緊接著的DFT-s-OFDM符號2731i-1、2731i以及2731i+1 )。在TX框圖2701中,
Figure 02_image115
是包含收據符號的資料向量,
Figure 02_image117
Figure 02_image119
是可以包含預定RS或PT-RS的向量,以及
Figure 02_image121
Figure 02_image123
是可以包含藉由CP擴展器塊2708產生的CP擴展RS的向量。CP擴展器塊的輸入可以是
Figure 02_image125
Figure 02_image125
(即,
Figure 02_image127
Figure 02_image129
)之大小、時域中的擴展量(即,
Figure 02_image131
Figure 02_image133
)、預定RS或PT-RS(即,
Figure 02_image135
Figure 02_image137
)、正常CP大小
Figure 02_image139
、和/或將向量
Figure 02_image141
Figure 02_image143
Figure 02_image137
Figure 02_image125
以及
Figure 02_image145
映射到M 點DFT矩陣
Figure 02_image009
的輸入的符號映射矩陣
Figure 02_image147
查看第27圖,CP擴展器塊2708可以基於最小化準則來產生向量
Figure 02_image125
Figure 02_image145
,以便實現虛擬CP。由於CP擴展器塊2708在該方法中作用於固定值,因此可以離線計算CP擴展器塊270的輸出,並且可以將其保存在傳輸器的記憶體(未顯示)中。在產生
Figure 02_image125
Figure 02_image145
之後,經由符號映射矩陣
Figure 02_image149
2710,可以將
Figure 02_image141
Figure 02_image143
Figure 02_image137
Figure 02_image125
Figure 02_image145
映射到M -DFT的輸入。然後則可以計算所映射的向量
Figure 02_image141
Figure 02_image143
Figure 02_image137
Figure 02_image125
Figure 02_image145
M -DFT。在後續步驟中,
Figure 02_image151
2712會導致大小為M 的DFT(M-DFT)的輸出,其可以經由
Figure 02_image153
所表示的頻域映射矩陣而被映射到子載波,並且所映射的M -DFT的輸出的N -IFDT可以藉由IDFT矩陣
Figure 02_image155
2716來計算,由此將會給出時域信號向量
Figure 02_image157
。然後,x的最後G個採樣會被前置於信號向量
Figure 02_image159
,並且可以傳輸所產生的向量,由此導致時域信號圖2730。
產生向量x的整體操作可被表述成:
Figure 02_image161
其中
Figure 02_image163
是從向量
Figure 02_image141
Figure 02_image143
Figure 02_image137
Figure 02_image125
Figure 02_image145
中產生向量x的波形矩陣。
第28圖示出了被設計成以CP擴展器塊來實現虛擬CP的信號結構的範例。為了說明起見,關於CP擴展部分的導出可以基於預定RS(例如PT-RS)。具有CP部分G的信號結構可被用於實現在資料向量
Figure 02_image165
被設定成零向量時顯示的虛擬CP。對於指定的CP長度Ght 以及映射矩陣
Figure 02_image149
,CP擴展器塊可以產生 ,由此,信號圖2830中顯示的的向量
Figure 02_image159
之最後的T 個採樣(用
Figure 02_image167
表示)以及前H 個樣本(用
Figure 02_image169
表示)分別近似等於x的T 個採樣直到第
Figure 02_image171
個採樣(用
Figure 02_image173
表示)以及從x的第
Figure 02_image171
個採樣開始的H 個採樣(用
Figure 02_image175
表示),其中
Figure 02_image177
以及
Figure 02_image179
。CP可以藉由操作值
Figure 02_image125
Figure 02_image145
而被虛擬擴展。為了實現這個目的,我們可以對波形矩陣A 進行分區。
第29圖示出了用於導出CP擴展塊的波形矩陣A的分區範例。第29圖可以在這裡論述的變數(例如對照第27圖 和第28圖所述)的上下文中閱讀。子矩陣可被定義成:
Figure 02_image181
Figure 02_image183
Figure 02_image185
Figure 02_image187
Figure 02_image189
Figure 02_image191
Figure 02_image193
Figure 02_image195
其中
Figure 02_image197
給出了源自A中從
Figure 02_image199
Figure 02_image201
的列以及從
Figure 02_image203
Figure 02_image205
的行的子矩陣。
藉由使用如上所述的子矩陣,可以將向量
Figure 02_image207
Figure 02_image209
以及
Figure 02_image211
分別表述成:
Figure 02_image213
Figure 02_image215
Figure 02_image217
以及
Figure 02_image219
由於目標可以是
Figure 02_image221
以及
Figure 02_image223
,,因此,藉由重新排序這些子矩陣,CP擴展器塊中的目標函數可被寫成:
Figure 02_image225
條件為
Figure 02_image227
其中
Figure 02_image229
是限制CP擴展RS的能量的非負值。在以下公式(1)的封閉形式中可以得到一種用於指定的
Figure 02_image229
的等價方法。
Figure 02_image231
(1) 其中
Figure 02_image233
是CP擴展器塊的非負的內部參數。
第30圖示出了用於進一步說明與CP擴展器塊相關的概念的具有假設值的範例傳輸(TX)塊框圖。第30圖可以在這裡論述的變數和處理(例如相關於第27圖、第28圖和第29圖)的上下文中閱讀。
第31圖示出了導自第30圖所示的傳輸塊的假設值的範例信號。第31圖可以在這裡論述的變數和處理(例如相關於第27圖、第28圖、第29圖和第30圖)的上下文中閱讀。
參考第30圖,假設M =96(也就是6個RB,因為NR中可能會有96個子載波),N =512,G =36,以及CP大小被擴展成
Figure 02_image235
(例如,
Figure 02_image237
)個採樣,由此提升DFT-s-OFDM符號對抗多徑通道干擾的強健性。對於該範例來說,假設獨立RS長度由
Figure 02_image239
以及
Figure 02_image241
給出,並且它們的值被設定成1(
Figure 02_image243
應該大於
Figure 02_image245
,由此避免資料符號洩漏)。對於該映射來說,可以假設
Figure 02_image247
以及
Figure 02_image249
。可以將依附的RS的大小設定成
Figure 02_image251
以及
Figure 02_image253
。內部λ可被設定成0.0001。有鑒於這些參數,參考第31圖,所產生的信號可被顯示在時域中,其中振幅被顯示在垂直軸3102上,並且樣本被顯示在水平軸3101上。有了這些設定,CP擴展器塊會產生以下的CP擴展RS:
Figure 02_image255
從時域信號中可以看出,擴展CP部分3114在3110a和3110b看起來大致相同。因此,該範例顯示出可以這裡揭露的方法來改善DFT-s-OFDM對抗多徑通道的強健性。
第32圖示出了藉由CP擴展RS來將CP擴展加倍的範例。對該範例來說,
Figure 02_image257
可以等於
Figure 02_image139
。為了減小等式(1)中的誤差,可以對符號映射矩陣
Figure 02_image259
進行最佳化。例如,該映射矩陣
Figure 02_image259
可以有介面於CP擴展RS和預定RS。
第33圖示出了關於CP擴展PT-RS設計的一個範例。在一個實施例中,藉由使用CP擴展器塊3308,可以計算出具有能量約束的所有RS或PT-RS,並且該所有RS或PT-RS可被映射到DFT-s-OFDM的輸入。詳細的傳輸器框圖3301以及相應的時域符號3330(即三個緊接著的DFT-s-OFDM符號3331i-1 、3331i 和3331i+1 )可以如圖所示。CP擴展器塊3308可以基於最小化準則來產生向量 ,以便實現虛擬CP。CP擴展器塊的輸出可以被離線計算,並且可被保存在傳輸器的記憶體中。在產生 之後,藉由符號映射矩陣Mt ,可以將d 映射到M -DFT的輸入。產生向量x的整體操作可被表示成:
Figure 02_image261
其中
Figure 02_image263
是從向量d
Figure 02_image125
Figure 02_image145
中產生向量x的波形矩陣。
第34圖示出了以CP擴展器塊來實現虛擬CP的信號結構的範例。顯示了在資料向量
Figure 02_image165
被設定成零向量的時候具有用於實現虛擬CP的CP擴展部分的信號結構3430。對於指定的CP長度G 以及映射矩陣
Figure 02_image149
來說,CP擴展器塊可以產生
Figure 02_image125
Figure 02_image145
,由此,向量x的最後T 個採樣(用
Figure 02_image169
表示)以及前H 個採樣(用
Figure 02_image167
表示)可以分別近似等於x的T個採樣直到第
Figure 02_image171
個採樣(用
Figure 02_image173
表示)以及從x的第
Figure 02_image171
個採樣開始的H 個採樣(用
Figure 02_image175
表示),也就是說,
Figure 02_image177
以及
Figure 02_image179
。CP可以藉由操作值
Figure 02_image125
Figure 02_image145
而被虛擬擴展。為了實現這個目的,我們可以對波形矩陣
Figure 02_image265
進行分區。
第35圖示出了用於導出針對完整的PT-RS的CP擴展器塊的波形矩陣
Figure 02_image265
。子矩陣可被定義成:
Figure 02_image267
Figure 02_image269
Figure 02_image271
Figure 02_image273
Figure 02_image275
Figure 02_image277
Figure 02_image279
Figure 02_image281
其中
Figure 02_image197
給出了
Figure 02_image265
中的源自從
Figure 02_image199
Figure 02_image201
的列以及從
Figure 02_image203
Figure 02_image205
的行的子矩陣。
藉由使用如上所述的子矩陣,向量
Figure 02_image207
Figure 02_image283
、以及
Figure 02_image211
可被分別表述成:
Figure 02_image285
Figure 02_image287
Figure 02_image289
以及
Figure 02_image291
由於一個目標可以是
Figure 02_image177
以及
Figure 02_image179
,因此,藉由重新排序這些子矩陣,CP擴展器塊中的目標函數可被寫成:
Figure 02_image293
其中
Figure 02_image295
其中α是避免平凡解的非負值。由於該問題是凸型的,因此可以使用任何凸最佳化工具箱來解決該問題。
在另一種方法中,元素
Figure 02_image145
Figure 02_image125
的值可以藉由引入另一個約束條件來量化。
在一個實施例中,PT-RS可被用於側鏈路傳輸或側鏈路通道,或是與側鏈路傳輸或側鏈路通道一起使用。側鏈路通道可以是在WTRU之間使用的通道。
PT-RS是關於可供使用的RS的非限制性範例。在這裡描述的實施例和範例中,別的RS(例如DM-RS)可以替換PT-RS,並且仍舊與本揭露相符合。舉例來說,用於確定PT-RS的存在性、密度和/或位置的解決方案同樣適用於確定別的RS(例如DM-RS)針對通道(例如側鏈路通道)的存在性、密度和/或位置。
側鏈路通道或傳輸是可供WTRU(其可以具有相同或不同的類型)之間的通信使用的通道或傳輸的非限制性範例。舉例來說,回載通道或傳輸可以取代這裡描述的範例和實施例中的側鏈路通道或傳輸,並且仍舊與本揭露相一致。回載通道或傳輸可以介於gNB、中繼和gNB(例如施體gNB)、整合存取回載(IAB)節點、gNB和/或IAB節點等等之間。
在一個方法中,PSCCH和PSSCH可以使用相同的結構(例如RB或是被排程的RB內部的DM-RS RE位置和資料RE位置)。側鏈路傳輸可以包括PSCCH以及與其關聯的PSSCH,其中PSCCH可以提供用於PSSCH的排程資訊。
PT-RS在PSCCH中的存在性(例如傳輸)可以基於PT-RS在PSSCH中的存在性來確定。舉例來說,當在相關聯的PSSCH(例如PSCCH排程的PSSCH)中存在PT-RS時,在PSCCH中將會存在(例如傳輸)PT-RS。
PT-RS在PSCCH中的存在性可以基於PT-RS在相關聯的PSSCH中的存在性以及相關聯的PSCCH中的時間位置來確定。舉例來說,如果PSCCH以及其關聯的PSSCH(例如被PSCCH排程的PSSCH)位於相同的時槽或者相同的時間位置,並且相關聯的PSSCH包含PT-RS,那麼PSSCH會包含PT-RS。如果PSCCH以及其關聯的PSSCH位於不同的時槽或不同的時間位置,那麼PSCCH不會包含PT-RS。
PT-RS在PSSCH中的存在性可以基於以下的至少一項來確定:用於側鏈路傳輸(例如用於PSSCH)的載波或頻寬部分的頻率範圍(例如FR1、FR2);用於PSSCH傳輸的載波或BWP的子載波間隔,或是可用於PSSCH傳輸的子載波間隔;為PSSCH指示或使用的MCS等級和/或排程頻寬;都普勒頻率(或是兩個WTRU之間的相對速度);和/或較高層配置。
用於PSCCH的PT-RS的密度(例如時間和/或頻率密度)可以基於用於相關聯的PSSCH的PT-RS的密度來確定。作為補充/作為替換,用於PSCCH的PT-RS的密度與用於相關聯的PSSCH的PT-RS的密度可以是相同的。作為補充/作為替換,用於相關聯PSSCH的PT-RS密度可以基於較高層配置來確定。作為補充/作為替換,用於相關聯的PSSCH的PT-RS的密度可以基於兩個WTRU之間的距離或鄰近度來確定,其中WTRU可被告知來自與可以許可側鏈路資源的gNB的距離資訊或鄰近度資訊。作為補充/作為替換,用於相關聯的PSSCH的PT-RS的密度可以基於一個或多個排程參數(例如MCS等級、排程頻寬)來確定。
可以確定PSSCH和/或PSCCH的PT-RS密度的PSSCH的一個或多個排程參數可以是在WTRU發送PSCCH之前配置(例如預先配置)或指示的。舉例來說,PDCCH(例如許可一個或多個側鏈路資源的PDCCH)可以提供或指示關於PSSCH的一則或多則資訊,其可以確定或者可以用於確定PSCCH和/或PSSCH的PT-RS密度。
一個或多個PSCCH可以與PSSCH相關聯,其中排程PSSCH的側鏈路控制資訊(SCI)可被分割成一個或多個PSCCH。舉例來說,SCI的第一子集可以在第一PSCCH中傳輸,並且SCI的第二子集可以在第二PSCCH中傳輸,依此類推。第一PSCCH可以包括PT-RS。第一PSCCH的PT-RS的密度和/或位置可以被配置或預先確定。作為替換,第一PSCCH可以不包含PT-RS。作為補充/作為替換,第一PSCCH可以包括關於PSSCH的一條或多條排程資訊,其可以確定或者可以用於確定PSSCH的PT-RS密度和/或PT-RS位置。包含在PSCCH(例如第一PSCCH)中的一條或多條排程資訊可以確定或者可以用於確定另一個PSCCH(例如一個或多個(例如全部的)剩餘PSCCH)的PT-RS密度和/或PT-RS位置。
用於PSCCH的PT-RS的存在性和/或密度可以基於PSCCH配置來確定或預先確定。關於PSSCH的PT-RS的存在性和/或密度可以基於相關聯的PSCCH提供的排程參數來確定。
在一個場景中,在使用PSCCH來排程PSSCH時,PSSCH的排程參數(例如MCS或排程頻寬)並不是已知的(例如直至接收到PSCCH之後)。排程參數(例如用於PSSCH)的最大或最小值可被配置和/或用於確定關於PSCCH的PT-RS的存在性和/或密度。
在一個方法中,PSCCH和/或PSSCH資源可以由PDCCH確定、指示和/或許可。關於PSCCH的PT-RS的存在性和/或密度可以基於相關聯的PDCCH所提供的資訊來確定。關於PSSCH的PT-RS的存在性和/或密度可以基於相關聯的PSCCH提供的資訊來確定。
用於PSCCH資源分配或許可的PDCCH(例如DCI)可以包括以下的一項或多項:一個或多個PSCCH的時間/頻率位置;用於PSCCH傳輸的RB的數量;DM-RS配置資訊(例如PSCCH的DM-RS密度、PSCCH內部的DM-RS位置等等);和/或PT-RS配置資訊(例如PT-RS的存在性、PT-RS密度、包含RB偏移的PT-RS位置以及子載波位置)。
用於PSSCH排程的PSCCH可以包括以下的一項或多項:被排程的PSSCH的時間/頻率位置;用於所排程的PSSCH的RB的數量;DM-RS配置資訊(例如PSSCH的DM-RS密度、PSSCH內部的DM-RS位置等等);PT-RS配置資訊(例如PT-RS的存在性、PT-RS密度、包含RB偏移的PT-RS位置以及子載波位置);和/或,如果相關聯的PSCCH沒有提供PT-RS配置資訊,那麼PT-RS配置與用於PSCCH的可以是相同的。
側鏈路可以使用一種或多種操作模式。在第一側鏈路模式(例如SL模式-1)中,用於PSCCH和/或PSSCH的資源可以由gNB動態許可(例如使用PDCCH)。在第二側鏈路模式(例如SL模式-2)中,用於PSCCH和/或PSCCH的一個或多個資源可以被配置(例如預先配置),並且WTRU可以確定和/或使用其中一個所配置的資源。
在這裡描述的範例和實施例中,第一模式可以是具有動態許可的資源的模式(例如SL模式-1),第二模式可以是具有WTRU從配置池或集合選擇的資源的模式(例如SL模式-2),和反過來。
在一個解決方案中,用於側鏈路通道(例如PSCCH和/或PSSCH)的PT-RS的存在性、密度和/或位置可以基於側鏈路操作模式來確定。舉例來說,PT-RS在側鏈路通道中的存在性可以基於側鏈路操作模式來確定。PT-RS可以存在於處於第一側鏈路模式的側鏈路通道中,並且不會存在於處於第二側鏈路模式的側鏈路通道中。
用於側鏈路通道的PT-RS的密度和/或位置既可以被配置(例如經由較高層傳訊),也可以採用這裡的範例所描述的方式來確定(例如基於一個或多個傳輸參數,比方說頻率範圍、子載波間隔、MCS等級或排程頻寬等等)。
用於確定側鏈路通道的PT-RS之密度和/或位置的手段(例如使用哪一種手段來確定)可以基於側鏈路模式來確定。該手段可以是顯性手段,例如配置或傳訊(例如關於密度和/或位置的配置或傳訊)。該手段也可以是隱性手段,例如以一個或多個參數(例如其並非顯性地為密度和/或位置)為基礎的確定。作為範例,側鏈路通道的PT-RS的密度和/或位置可被配置成(例如藉由較高層傳訊)用於第一側鏈路模式。對於第二側鏈路模式,側鏈路通道的PT-RS密度和/或位置可以基於一個或多個傳輸參數來確定,例如頻率範圍、子載波間隔、MCS等級以及排程頻寬等等。
在一個解決方案中,用於側鏈路通道(例如PSCCH和/或PSSCH)的PT-RS的存在性、密度和/或位置可以基於以下的一個或多個傳輸參數來確定:WTRU之間的相對速度;WTRU之間的覆蓋水平(例如鄰近程度);WTRU(例如Tx WTRU)在胞元中的地理位置;供側鏈路通道使用的符號的數量;頻率範圍;所確定的側鏈路資源的時間/頻率位置或側鏈路資源索引或身份,其中該側鏈路資源可以基於排程、配置和/或選擇來確定;DM-RS密度(例如供DM-RS使用的符號的數量);和/或供通道或相關聯的通道使用的搜尋空間(例如當在PSSCH中傳輸PT-RS或是將PT-RS與PSSCH一起傳輸時的相關聯的PSCCH通道的搜尋空間)。
在一個範例中,一個或多個側鏈路資源可以被配置(例如預先配置),並且(例如每一個)側鏈路資源可以與側鏈路資源身份(例如SL-id)相關聯。WTRU可以確定用於傳輸或接收的側鏈路資源。用於側鏈路通道(例如PSCCH、PSSCH)的PT-RS的存在性、密度和/或位置可以基於所確定的側鏈路資源身份來確定。
PT-RS的位置可以包括一個或多個RB位置和/或一個或多個子載波位置。
在一個解決方案中,用於側鏈路通道(例如PSCCH和/或PSSCH)的PT-RS的存在性、密度和/或位置可以基於DM-RS密度(例如供DM-RS使用的符號的數量)來確定。在一個範例中,如果側鏈路通道的DM-RS密度低於臨界值,那麼在該側鏈路通道中不會存在PT-RS;否則在該側鏈路通道中將會存在PT-RS。在另一個範例中,如果側鏈路通道的DM-RS密度低於臨界值,那麼可以為該側鏈路通道使用第一PT-RS密度;否則可以為該側鏈路通道使用第二PT-RS密度。在用於側鏈路通道資源分配的相關聯的PDCCH(例如SL模式-1)中可以指示側鏈路通道的DM-RS密度。
在一個解決方案中,用於側鏈路通道的PT-RS的RB偏移可以基於傳輸器WTRU或接收器WTRU的WTRU身份(WTRU-id)來確定。作為替換,用於側鏈路通道的PT-RS的RB偏移可以基於目的地身份來確定,其中該目的地身份可以是傳輸側鏈路通道所針對的群組ID(例如ProSe群組ID)。WTRU-id可以是指配給WTRU(即傳輸器WTRU或接收器WTRU)的RNTI(例如,C-RNTI、SL-RNTI)。在用於側鏈路傳輸的資源許可(例如來自PDCCH)中可以提供WTRU-id和/或群組ID。
在另一個解決方案中,用於通道(例如側鏈路通道)的PT-RS的RB偏移可以基於以下的至少一項來確定:可用於通道傳輸的擾頻碼或序列(例如擾頻碼或序列的索引或身份);可以與通道一起傳輸的DM-RS(例如DM-RS的索引或身份,比方說DM-RS序列的索引或身份);和/或供通道或相關聯的通道使用的搜尋空間(例如當在PSSCH中傳輸PT-RS或是將PT-RS與PSSCH一起傳輸時的相關聯的PSCCH通道的搜尋空間)。
雖然在上文中描述了採用特定結合的特徵和元件,但是本領域普通技術人員將會認識到,每一個特徵或元件既可以單獨使用,也可以與其他特徵和要素進行任何結合。此外,這裡描述的方法可以在引入電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。關於電腦可讀媒體的範例包括電信號(經由有線或無線連接傳輸)以及電腦可讀儲存媒體。關於電腦可讀儲存媒體的範例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、磁媒體(例如內部硬碟和可移除磁片)、磁光媒體、以及光媒體(例如CD-ROM碟片和數位多用途碟片(DVD))。與軟體關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何電腦主機使用的射頻收發器。
CP、308、406、407、506、507、611、808、‧‧‧正常循環前綴 DFT、2304、2404‧‧‧離散傅立葉變換 G‧‧‧CP長度 IDFT、706‧‧‧離散傅立葉逆變換 OCC‧‧‧正交覆蓋碼 OFDM‧‧‧正交分頻多工 PT-RS、602a、602b、1010‧‧‧相位追蹤參考信號 RB‧‧‧資源塊 N2、N3、N4、N6、N11、S1、X2、Xn‧‧‧介面 100‧‧‧通信系統 102、102a、102b、102c、102d‧‧‧無線傳輸/接收單元(WTRU) 104、113‧‧‧無線電存取網路(RAN) 106、115‧‧‧核心網路(CN) 108‧‧‧公共交換電話網路(PSTN) 110‧‧‧網際網路 112‧‧‧其他網路 114a、114b‧‧‧基地台 116‧‧‧空中介面 118‧‧‧處理器 120‧‧‧收發器 122‧‧‧傳輸/接收元件 124‧‧‧揚聲器/麥克風 126‧‧‧小鍵盤 128‧‧‧顯示器/觸控板 130‧‧‧非可移記憶體 132‧‧‧可移記憶體 134‧‧‧電源 136‧‧‧全球定位系統(GPS)晶片組 138‧‧‧週邊設備 160a、160b、160c‧‧‧e節點B 162‧‧‧行動性管理閘道(MME) 164‧‧‧服務閘道(SGW) 166‧‧‧封包資料網路(PDN)閘道(或PGW) 180a、180b、180c‧‧‧gNB 182a、182b‧‧‧存取和行動性管理功能(AMF) 183a、183b‧‧‧會話管理功能(SMF) 184a、184b‧‧‧使用者平面功能(UPF) 185a、185b‧‧‧資料網路(DN) 302‧‧‧資料符號 304‧‧‧DFT塊 306‧‧‧IDFT塊 310‧‧‧PT-RS組塊 311‧‧‧PT-RS組塊#1 312‧‧‧組塊大小(V) 313‧‧‧DFT-S-OFDM符號 321‧‧‧資料輸入/輸出 322‧‧‧PT-RS輸入/輸出 401、501‧‧‧時間 402、403、502、503‧‧‧符號 404、405、504、505‧‧‧N-IDFT輸出 408、409、508、509、621‧‧‧接收器(RX)DFT視窗 410、411‧‧‧箭頭 522‧‧‧副本 601‧‧‧傳輸(TX)塊圖 604‧‧‧M-DFT(用
Figure 02_image009
表示) 606‧‧‧ N-IDFT(用
Figure 02_image011
表示) 612‧‧‧頭部部分 614‧‧‧尾部部分 630‧‧‧訊框 701、801、901‧‧‧傳輸器圖式 708、720‧‧‧塊 722‧‧‧擾動向量產生器塊 730、830、930‧‧‧時域信號 731i-1、831i-1、931i-1‧‧‧前一個符號 731i、831i、931i‧‧‧當前符號 731i+1、831i + 1、931i + 1‧‧‧下一個符號 760‧‧‧元素 802、902‧‧‧塊DM(DFT) 804、904‧‧‧Mf 806、906‧‧‧
Figure 02_image011
(IDFT) 833、933‧‧‧擴展CP 1910‧‧‧圖樣與資料位元 1912、2012、2302、2402‧‧‧二進位相移鍵控(BPSK)調變 1914、2013‧‧‧pi/2調變 1916‧‧‧DFT塊 1918‧‧‧頻域頻譜整形(FDSS) 1920‧‧‧映射 1922‧‧‧IDFT處理塊 2101‧‧‧順時針 2102‧‧‧逆時針 2201、2601‧‧‧實數 2202、2602‧‧‧虛數 2310、2410‧‧‧PT-RS位元 2701‧‧‧TX框圖 2708、3308‧‧‧CP擴展器塊 2730‧‧‧時域信號圖 2731i-1、2731i、2731i+1、3331i-1、3331i、3331i+1 ‧‧‧DFT-s-OFDM符號 3101‧‧‧水平軸 3102‧‧‧垂直軸 3114‧‧‧擴展CP部分 3301‧‧‧傳輸器框圖 3330‧‧‧時域符號
更詳細的理解可以從以下結合附圖舉例給出的描述中得到,其中附圖中的同樣參考符號指示的是同樣的元件,並且其中:第1A圖是示出了可以實施所揭露的一個或多個實施例的範例通信系統的系統圖式;第1B圖是示出了根據一個實施例的可以在第1A圖所示的通信系統內部使用的範例無線傳輸/接收單元(WTRU)的系統圖式;第1C圖是示出了根據一個實施例的可以在第1A圖所示的通信系統內部使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖式;第1D圖是示出了根據一個實施例的可以在第1A圖所示的通信系統內部使用的另一個範例RAN和另一個範例CN的系統圖式;第2圖是關於範例的PT-RS時間密度的例圖;第3圖是用於具有N個組塊的DFT-s-OFDM的範例的基於組塊的且先pre-DFT PT-RS的圖式;第4圖是範例的正常循環前綴(CP)的圖式;第5圖是範例的擴展CP(虛擬CP)的圖式;第6圖是範例的普通UW與CP結合的圖式集合;第7圖是範例的擾動方法的圖式;第8圖是用於DFT-s-OFDM的範例動態方法的圖式;第9圖是用於DFT-s-OFDM的範例動態方法的圖式;第10圖是關於PT-RS頻率密度的範例的圖式;第11A圖是關於RB偏移值的範例的圖式; 第11B圖是用於為所排程的頻寬保持相同數量的PT-RS的範例過程的圖式; 第12圖是包含PT-RS的RB的範例循環移位的圖式; 第13圖是用於具有不同RB偏移值的7個RB的PT-RS映射範例的圖式; 第14圖是用於寬度為7個RB和13個RB的排程處理的範例PT-RS映射的圖式; 第15圖是用於具有動態RB偏移值的7個RB的範例PT-RS映射的圖式; 第16圖是用於具有動態RB偏移值的13個RB的傳輸的PT-RS映射範例的圖式; 第17圖是基於符號位置的範例PT-RS頻率位置的圖式; 第18圖是基於RBG的範例PT-RS頻率密度的圖式; 第19圖是用於pi/2 BPSK資料調變的範例PT-RS產生處理的圖式; 第20圖是用於pi/2 BPSK資料調變和OCC的範例PT-RS產生處理的圖式; 第21圖是循環藉由OC的範例的圖式; 第22圖是關於pi/2 BPSK和QPSK星座的範例星座圖; 第23圖是共同PT-RS設計範例的圖式; 第24圖是關於範例的OCC應用的圖式; 第25圖是關於範例的OCC應用的圖式; 第26圖是備選的pi/2 BPSK星座的範例星座圖; 第27圖是使用CP擴展器塊並基於預定的RS來產生CP擴展RS的範例的圖式; 第28圖是使用CP擴展器塊來實現虛擬CP的範例信號結構的圖式; 第29圖是用於導出CP擴展器塊的波形矩陣的範例分區的圖式; 第30圖是具有虛擬CP的範例NR參數配置的傳輸圖; 第31圖是具有虛擬CP的範例NR參數配置的信號圖; 第32圖是具有CP擴展RS的範例的雙倍CP擴展的圖式; 第33圖是範例的CP擴展PT-RS設計的示圖; 第34圖是用於具有CP擴展器塊的虛擬CP的範例信號結構的圖式;以及 第35圖是用來導出用於完整的PT-RS的CP擴展器塊的波形矩陣分區範例的圖式。
CP、308:正常循環前綴
DFT:離散傅立葉變換
IDFT:離散傅立葉逆變換
OFDM:正交分頻多工
PT-RS:相位追蹤參考信號
302:資料符號
304:DFT塊
306:IDFT塊
310:PT-RS組塊
311:PT-RS組塊#1
312:組塊大小(V)
313:DFT-S-OFDM符號
321:資料輸入/輸出
322:PT-RS輸入/輸出

Claims (18)

  1. 一種由一無線傳輸/接收單元(WTRU)執行的方法,該方法包括: 接收包含所排程的資源塊(RB)的一數量的控制資訊; 基於所排程的RB的該數量來確定一相位追蹤參考信號(PT-RS)密度; 基於所排程的RB的該數量以及該PT-RS密度中的至少一個來確定一最大RB偏移值; 基於一WTRU-ID與該最大RB偏移值的模數來確定該WTRU的一RB偏移值;以及 基於該RB偏移值來傳輸或接收帶有PT-RS的一信號。
  2. 如申請專利範圍第1項所述的方法,其中該PT-RS密度是2或4。
  3. 如申請專利範圍第1項所述的方法,其中如果被排程的RB的該數量與該PT-RS密度的模數為零,則該最大RB偏移值基於該PT-RS密度。
  4. 如申請專利範圍第1項所述的方法,其中當被排程的資源塊的該數量與該PT-RS密度的模數不為零時,該最大RB偏移值基於所排程的資源塊的該數量以及該PT-RS密度兩者。
  5. 如申請專利範圍第1項所述的方法,其中該控制資訊與該WTRU身份相關聯。
  6. 如申請專利範圍第1項所述的方法,其中該WTRU身份是一C-RNTI。
  7. 如申請專利範圍第1項所述的方法,其中該RB偏移包括從零開始的一組數字。
  8. 如申請專利範圍第1項所述的方法,其中該PT-RS密度是一RB索引中的RB的一數量,在此之後一PT-RS可以重複。
  9. 如申請專利範圍第1項所述的方法,其中帶有PT-RS的該信號是在一所排程的PUSCH中傳輸或是在一所排程的PDSCH中接收的。
  10. 一種無線傳輸/接收單元(WTRU)裝置,該WTRU包括: 可操作地與一處理器相連的一收發器,該收發器和處理器被配置成:接收包含所排程的資源塊(RB)的一數量的控制資訊; 基於所排程的RB的該數量來確定一相位追蹤參考信號(PT-RS)密度; 基於所排程的RB的該數量以及該PT-RS密度中的至少一個來確定一最大RB偏移值; 基於一WTRU-ID與該最大RB偏移值的模數來確定該WTRU的一RB偏移值;以及 基於該RB偏移值來傳輸或接收帶有PT-RS的一信號。
  11. 如申請專利範圍第10項所述的裝置,其中該PT-RS密度是2或4。
  12. 如申請專利範圍第10項所述的裝置,其中如果被排程的RB的該數量與該PT-RS密度的模數為零,則該最大RB偏移值基於該PT-RS密度。
  13. 如申請專利範圍第10項所述的裝置,其中當被排程的資源塊的該數量與該PT-RS密度的模數不為零時,該最大RB偏移值基於所排程的資源塊的該數量以及該PT-RS密度兩者。
  14. 如申請專利範圍第10項所述的裝置,其中該控制資訊與該WTRU身份相關聯。
  15. 如申請專利範圍第10項所述的裝置,其中該WTRU身份是一C-RNTI。
  16. 如申請專利範圍第10項所述的裝置,其中該RB偏移包括從零開始的一組數字。
  17. 如申請專利範圍第10項所述的裝置,其中該PT-RS密度是一RB索引中的RB的一數量,在此之後一PT-RS可以重複。
  18. 如申請專利範圍第10項所述的裝置,其中帶有PT-RS的一信號是在一所排程的PUSCH中傳輸或是在一所排程的PDSCH中接收的。
TW107140566A 2017-11-15 2018-11-15 相位追蹤參考信號傳輸方法及裝置 TWI698110B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762586642P 2017-11-15 2017-11-15
US62/586642 2017-11-15
US201862720614P 2018-08-21 2018-08-21
US62/720614 2018-08-21

Publications (2)

Publication Number Publication Date
TW201931807A TW201931807A (zh) 2019-08-01
TWI698110B true TWI698110B (zh) 2020-07-01

Family

ID=64572573

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107140566A TWI698110B (zh) 2017-11-15 2018-11-15 相位追蹤參考信號傳輸方法及裝置

Country Status (8)

Country Link
US (3) US11283567B2 (zh)
EP (1) EP3711228A1 (zh)
JP (3) JP7090154B2 (zh)
KR (1) KR20200099133A (zh)
CN (3) CN111357226B (zh)
IL (1) IL274659B2 (zh)
TW (1) TWI698110B (zh)
WO (1) WO2019099535A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102283375B1 (ko) 2016-02-09 2021-07-30 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 복조 기준 신호들을 사용하는 위상 잡음 추적 기준 신호 시퀀스 생성을 위한 시스템들 및 방법들
CN108282284B (zh) 2017-01-05 2024-04-16 华为技术有限公司 一种发送参考信号的方法和通信设备
EP4221113A1 (en) * 2017-03-22 2023-08-02 InterDigital Patent Holdings, Inc. Method and apparatus for channel state information reference signal for next generation wireless communication systems
CN109150444B (zh) * 2017-06-16 2022-01-11 华为技术有限公司 资源单元的设置、传输方法及装置
US20200396047A1 (en) * 2017-11-13 2020-12-17 Nec Corporation Methods and apparatuses for demodulation reference signal configuration
GB2568672B (en) * 2017-11-17 2021-08-04 Samsung Electronics Co Ltd Improvements in and relating to BWP setup and signalling in a telecommunication system
GB2568943B (en) * 2017-12-01 2022-02-09 Samsung Electronics Co Ltd Improvements in and relating to integrated access and backhaul and non terrestrial networks
GB201802543D0 (en) * 2018-02-16 2018-04-04 Samsung Electronics Co Ltd Reference signal configuration in a telecommunication system
US11272502B2 (en) * 2018-08-06 2022-03-08 Hyundai Motor Company Method for configuring sidelink resource in communication system and apparatus for the same
JP7200386B2 (ja) * 2019-01-07 2023-01-06 アップル インコーポレイテッド 単一キャリア波形の位相追跡基準信号設計
WO2020144944A1 (ja) * 2019-01-10 2020-07-16 ソニー株式会社 通信制御装置、通信制御方法及びコンピュータプログラム
WO2020143756A1 (en) * 2019-01-10 2020-07-16 Mediatek Singapore Pte. Ltd. Sidelink synchronization signal block (s-ssb) design
US10750337B1 (en) * 2019-02-15 2020-08-18 Dish Wireless L.L.C. Coexistence of multiple air interface side-links on adjacent channels
US10681691B1 (en) 2019-02-15 2020-06-09 Dish Wireless L.L.C. Coexistence of multiple air interface side-links on a channel
US11452078B2 (en) * 2019-02-22 2022-09-20 Huawei Technologies Co., Ltd. Method and apparatus for sidelink transmission and resource allocation
US11522661B2 (en) * 2019-04-12 2022-12-06 Qualcomm Incorporated Reference signal patterns based on relative speed between a transmitter and receiver
WO2021016853A1 (zh) * 2019-07-30 2021-02-04 北京小米移动软件有限公司 信息配置方法及装置、信道估计方法及装置和发送设备
WO2021029737A1 (ko) * 2019-08-14 2021-02-18 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN112566248A (zh) * 2019-09-25 2021-03-26 华为技术有限公司 一种通信方法及装置
CN115915468A (zh) * 2019-09-26 2023-04-04 苹果公司 用于无线通信中的两步随机接入信道过程的框架
EP4018741A4 (en) * 2019-09-29 2023-03-22 Apple Inc. DUAL-MODE SIDE LINK OPERATION
JP6877508B2 (ja) * 2019-10-03 2021-05-26 シャープ株式会社 端末装置、基地局装置、および、通信方法
EP4040706B1 (en) * 2019-11-03 2024-03-20 LG Electronics Inc. Method and device for performing sl transmission in nr v2x
US11737037B2 (en) 2019-11-27 2023-08-22 Qualcomm Incorporated Sidelink tracking considerations with multi-panel operation
WO2021134523A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 一种参考信号的传输方法、装置及系统
US20210376978A1 (en) * 2020-06-02 2021-12-02 Qualcomm Incorporated Amplitude-modulated phase tracking reference signals for a multilayer communication link
WO2022047797A1 (zh) * 2020-09-07 2022-03-10 华为技术有限公司 一种参考信号传输方法及装置
WO2023110112A1 (en) * 2021-12-17 2023-06-22 Nokia Technologies Oy Phase tracking reference signal configuration for single-carrier waveforms
US11616676B1 (en) * 2022-02-23 2023-03-28 Qualcomm Incorporated Phase tracking reference signal phase noise tracking
US11737044B1 (en) * 2022-12-12 2023-08-22 Ultralogic 6G, Llc Mid-symbol timestamp point for precision synchronization in 5G and 6G

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101449502A (zh) * 2006-05-19 2009-06-03 松下电器产业株式会社 无线通信设备和无线通信方法
US20170019914A1 (en) * 2013-12-17 2017-01-19 Telefonaktiebolaget L M Ericsson (Publ) Method and device for proactive allocation of uplink resources
WO2017188591A1 (ko) * 2016-04-25 2017-11-02 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음 추정을 위한 신호 전송 방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809364B (zh) * 2011-09-30 2022-03-29 交互数字专利控股公司 用于无线通信系统中的多点传输的方法及装置
US9008167B2 (en) * 2012-12-29 2015-04-14 Intel Corporation Methods and arrangements for phase tracking for multi-mode operation in wireless networks
US9900872B2 (en) 2013-04-17 2018-02-20 Futurewei Technologies, Inc. Systems and methods for adaptive transmissions in wireless network
KR102054318B1 (ko) * 2013-07-26 2020-01-22 삼성전자 주식회사 무선 통신 시스템에서 단말 대 단말 통신을 위한 발견 신호 자원 재탐색 방법 및 장치
CN111818651A (zh) 2014-04-09 2020-10-23 Idac控股公司 由wtru执行的控制信令的方法及wtru
CN106560011B (zh) * 2015-07-27 2019-12-17 华为技术有限公司 应答信息发送、接收方法,及接收设备,发送设备及通信系统
CN106549738B (zh) * 2015-09-17 2020-02-14 华为技术有限公司 一种物理下行控制信道的传输方法及装置
US10390245B2 (en) * 2015-09-25 2019-08-20 Motorola Mobility Llc Enhanced measurements in a wireless communication system
US10812238B2 (en) * 2016-04-20 2020-10-20 Convida Wireless, Llc Configurable reference signals
US10412710B2 (en) * 2016-09-08 2019-09-10 Samsung Electronics Co., Ltd. Method and system for implementing multiple-access in wireless communication system
CN110313156B (zh) * 2016-12-26 2022-10-14 株式会社Ntt都科摩 用户终端以及无线通信方法
JP2020057827A (ja) * 2017-02-02 2020-04-09 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
US10849022B2 (en) * 2017-03-17 2020-11-24 Ofinno, Llc Cell selection of inactive state wireless device
JP2020109882A (ja) * 2017-04-27 2020-07-16 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
GB2562117B (en) * 2017-05-05 2021-07-28 Samsung Electronics Co Ltd Phase tracking reference signal
CN108989003B (zh) * 2017-06-02 2024-06-25 华为技术有限公司 一种通信的方法及装置
CN109088840B (zh) * 2017-06-13 2023-10-20 华为技术有限公司 一种信息传输方法和装置
US10727996B2 (en) * 2017-06-13 2020-07-28 Qualcomm Incorporated Null resource elements for dynamic and bursty inter-cell interference measurement in new radio
CN109150444B (zh) * 2017-06-16 2022-01-11 华为技术有限公司 资源单元的设置、传输方法及装置
EP3654710B1 (en) * 2017-08-08 2021-12-29 Huawei Technologies Co., Ltd. Downlink control information monitoring method, terminal, and base station
CN109391448B (zh) * 2017-08-11 2021-10-01 华为技术有限公司 一种信息传输方法及装置
CN117914665A (zh) 2017-08-25 2024-04-19 华为技术有限公司 一种信号传输的方法、设备及系统
GB2566306B (en) * 2017-09-08 2021-06-16 Samsung Electronics Co Ltd Phase tracking reference signal
US20200396047A1 (en) * 2017-11-13 2020-12-17 Nec Corporation Methods and apparatuses for demodulation reference signal configuration
EP4009567A1 (en) * 2017-11-17 2022-06-08 Telefonaktiebolaget LM Ericsson (publ) Technique for configuring a phase tracking reference signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101449502A (zh) * 2006-05-19 2009-06-03 松下电器产业株式会社 无线通信设备和无线通信方法
US20170019914A1 (en) * 2013-12-17 2017-01-19 Telefonaktiebolaget L M Ericsson (Publ) Method and device for proactive allocation of uplink resources
WO2017188591A1 (ko) * 2016-04-25 2017-11-02 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음 추정을 위한 신호 전송 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG Electronics,"On PT-RS design",3GPP TSG RAN WG1 Meeting 90bis, R1-1717947, Prague, CZ, 9th~13th, October 2017. *
Research In Motion, "On Remaining Details of Association between DMRS Port and E-PDCCH Transmission", 3GPP TSG RAN WG1 Meeting 71, R1-125064, New Orleans, USA, Nov 12-16, 2012. *

Also Published As

Publication number Publication date
JP2023174768A (ja) 2023-12-08
CN111357226A (zh) 2020-06-30
CN111357226B (zh) 2023-05-09
US20210058207A1 (en) 2021-02-25
JP2021503224A (ja) 2021-02-04
US20220200755A1 (en) 2022-06-23
EP3711228A1 (en) 2020-09-23
IL274659A (en) 2020-06-30
IL274659B1 (en) 2024-01-01
IL274659B2 (en) 2024-05-01
TW201931807A (zh) 2019-08-01
CN116545598A (zh) 2023-08-04
KR20200099133A (ko) 2020-08-21
JP7090154B2 (ja) 2022-06-23
CN116566566A (zh) 2023-08-08
US11882072B2 (en) 2024-01-23
WO2019099535A1 (en) 2019-05-23
JP2022120117A (ja) 2022-08-17
US11283567B2 (en) 2022-03-22
US20240121058A1 (en) 2024-04-11
JP7395098B2 (ja) 2023-12-11

Similar Documents

Publication Publication Date Title
TWI698110B (zh) 相位追蹤參考信號傳輸方法及裝置
TWI826953B (zh) 無線傳輸/接收單元及由其執行的方法
US20210345263A1 (en) Methods for flexible resource usage
JP6849793B2 (ja) ミリメートル波(mmW)システムのためのマルチチャネルセットアップメカニズムおよび波形設計
CN109952728B (zh) 用于新无线电的控制信道
US20200036470A1 (en) Common control channel and reference symbol for multiple waveform data transmission
US20240063950A1 (en) SHORT PHYSICAL UPLINK CONTROL CHANNEL (sPUCCH) STRUCTURE
US11502887B2 (en) Method and apparatus for collision mitigation and complexity reduction for NOMA
US20220109600A1 (en) Coexistence of ofdm and on-off keying (ook) signals in wlan
US11716746B2 (en) Scheduling and transmission for NOMA
CN113475018A (zh) 用于dft扩展ofdm的低papr dmrs和低小区间干扰
WO2017047210A1 (ja) 装置及び方法
CN113475025A (zh) 用于可靠多传输系统的方法和装置
TW201941554A (zh) 非正交多重存取參考信號裝置