TWI693229B - 用於含鋯膜氣相沈積的含鋯成膜組成物 - Google Patents

用於含鋯膜氣相沈積的含鋯成膜組成物 Download PDF

Info

Publication number
TWI693229B
TWI693229B TW104141228A TW104141228A TWI693229B TW I693229 B TWI693229 B TW I693229B TW 104141228 A TW104141228 A TW 104141228A TW 104141228 A TW104141228 A TW 104141228A TW I693229 B TWI693229 B TW I693229B
Authority
TW
Taiwan
Prior art keywords
zirconium
ginseng
cyclopentadienyl
trifluoromethyl
butoxy
Prior art date
Application number
TW104141228A
Other languages
English (en)
Other versions
TW201630921A (zh
Inventor
馬特拉斯 克雷門 蘭薩洛
朱利安 賴弗利格
石井華
克里斯均 杜薩拉特
Original Assignee
法商液態空氣喬治斯克勞帝方法研究開發股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 filed Critical 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司
Publication of TW201630921A publication Critical patent/TW201630921A/zh
Application granted granted Critical
Publication of TWI693229B publication Critical patent/TWI693229B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本發明揭示含鋯成膜組成物,其包含具有下式中之一者的含矽及鋯前驅體:
Figure 104141228-A0202-11-0001-1
其中各R1、R2、R3、R4、R5、R6、R7、R8、R9及R10獨立地選自H;C1-C5直鏈、分支鏈或環狀烷基;或C1-C5直鏈、分支鏈或環狀氟烷基。亦揭示合成所揭示組成物及使用其經由氣相沈積製程在基板上沈積含鋯薄膜之方法。

Description

用於含鋯膜氣相沈積的含鋯成膜組成物 【相關申請案之交叉參考】
本申請案主張2014年12月23日申請之美國申請案第14/580,352號之權益,該申請案出於所有目的以全文引用的方式併入本文中。
揭示包含含矽及鋯前驅體之含鋯成膜組成物。亦揭示合成所揭示組成物及使用其經由氣相沈積製程在基板上沈積含鋯膜之方法。
隨著諸如動態隨機存取記憶體(DRAM)之半導體裝置按比例縮小,需要具有高介電常數之新穎材料。實際上,為將足夠電荷存儲於體表面積較小之電容器中,需要電容率較高之電容器。在高k電介質中,諸如HfO2或ZrO2之基於第4族之材料極有前景,因為其介電常數高於SiO2或Al2O3。然而,其介電常數視其結晶形式而變化(Thin Solid Films 486(2005)125-128)。
厚ZrO2層傾向於具有不穩定結晶相且具有較高漏電流(leakage current)(Applied Physics Reviews(2012)14-9-2012版)。為預防此等缺陷,已將Al2O3薄層引入兩個ZrO2層之間,從而形成所謂ZAZ電容器,使結晶相穩定並且降低漏電流(Applied Physics Letters 93,033511(2008);J. Vac.Sci.Techno.A 4(6),1986;Microelectronic Engineering 86(2009)1789-1795)。
具有最高k值之相的ZrO2層之立方體/四方結晶相亦藉由用少量矽或鍺摻雜ZrO2而穩定(關於矽為US2013/0208403A1,且關於鍺為Journal of Applied Physics,2009,106,024107;Microelectronic Engineering,2009,86,1626;Applied Physics Letters,2011,99,121909)。
已研發含有環戊二烯基配位體之第4族烷基醯胺前驅體,諸如下所示者(Dussarrat等人,WO2007/141059;Niinisto等人,Journal of Materials Chemistry(2008),18(43),5243-5247)。此等前驅體相比於肆烷基醯胺前驅體展示較高熱穩定性。
Figure 104141228-A0202-12-0002-3
其中R1=H、Me或Et;R2及R3=C1-C4烷基
與此等化合物類似,文獻中已描述如下所示含有矽基環戊二烯基配位體之第4族前驅體:
Figure 104141228-A0202-12-0002-4
其中R=Cl、NMe2、OSiMe3、CH2SiMe3、C6H5及CH2Ph(對 於Ti甲氧基化合物為Journal of Organometallic Chemistry,2004,689,1503,對於Ti烷基胺基化合物為Tosoh之JP2005/171291,對於Zr化合物為UP Chemical有限公司之KR2008/0101040及Journal of Organometallic Chemistry,1997,547,287)。
仍需要研發適用於高溫下具有受控厚度及組成之氣相薄膜沈積的液態或低熔點(<50℃)、高度熱穩定、低黏度鋯前驅分子。
揭示含鋯成膜組成物,其包含具有下式之含矽及鋯前驅體:
Figure 104141228-A0202-12-0003-5
其中各R1、R2、R3、R4、R5、R6、R7、R8、R9及R10獨立地選自H;C1-C5直鏈、分支鏈或環狀烷基;或C1-C5直鏈、分支鏈或環狀氟烷基。R1、R2及R3可相同或不同。R4、R5、R6及R7可相同或不同。各R8及R9可相同或不同。各R10可相同或不同。所揭示之含鋯成膜組成物可進一步包括以下態樣中之一或多者:˙R1及R2及R3獨立地為H、F、CF3、Me、Et、nPr、iPr、nBu、iBu、sBu或tBu;˙R4、R5、R6及R7獨立地為H、F、CF3、Me、Et、nPr、iPr、nBu、iBu、 sBu或tBu;˙R8及R9獨立地為H、Me、Et、nPr、iPr、nBu、iBu、sBu或tBu;˙R10為Me、Et、nPr、iPr、nBu、iBu、sBu或tBu;˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)(Zr(TMS-Cp)(NMe2)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(甲胺基)鋯(IV)(Zr(TMS-Cp)(NHMe)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(二乙胺基)鋯(IV)(Zr(TMS-Cp)(NEt2)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(乙胺基)鋯(IV)(Zr(TMS-Cp)(NHEt)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(乙基甲胺基)鋯(IV)(Zr(TMS-Cp)(NEtMe)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(二正丙胺基)鋯(IV)(Zr(TMS-Cp)(NnPr2)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(正丙胺基)鋯(IV)(Zr(TMS-Cp)(NHnPr)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(二異丙胺基)鋯(IV)(Zr(TMS-Cp)(NiPr2)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(異丙胺基)鋯(IV)(Zr(TMS-Cp)(NHiPr)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(二正丁胺基)鋯(IV) (Zr(TMS-Cp)(NnBu2)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(正丁胺基)鋯(IV)(Zr(TMS-Cp)(NHnBu)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(二異丁胺基)鋯(IV)(Zr(TMS-Cp)(NiBu2)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(異丁胺基)鋯(IV)(Zr(TMS-Cp)(NHiBu)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(二第二丁胺基)鋯(IV)(Zr(TMS-Cp)(NsBu2)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(第二丁胺基)鋯(IV)(Zr(TMS-Cp)(NHsBu)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(二第三丁胺基)鋯(IV)(Zr(TMS-Cp)(NtBu2)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(第三丁胺基)鋯(IV)(Zr(TMS-Cp)(NHtBu)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(TMS-Cp)(OMe)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(TMS-Cp)(OEt)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(TMS-Cp)(OnPr)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(異丙氧基)鋯(IV) (Zr(TMS-Cp)(OiPr)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(TMS-Cp)(OtBu)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(TMS-Cp)(OsBu)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(TMS-Cp)(OnBu)3);˙含矽及鋯前驅體為(三甲基矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(TMS-Cp)(OiBu)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)(Zr(DMS-Cp)(NMe2)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(甲胺基)鋯(IV)(Zr(DMS-Cp)(NHMe)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(二乙胺基)鋯(IV)(Zr(DMS-Cp)(NEt2)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(乙胺基)鋯(IV)(Zr(DMS-Cp)(NHEt)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(乙基甲胺基)鋯(IV)(Zr(DMS-Cp)(NEtMe)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(二正丙胺基)鋯(IV)(Zr(DMS-Cp)(NnPr2)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(正丙胺基)鋯(IV) (Zr(DMS-Cp)(NHnPr)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(二異丙胺基)鋯(IV)(Zr(DMS-Cp)(NiPr2)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(異丙胺基)鋯(IV)(Zr(DMS-Cp)(NHiPr)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(二正丁胺基)鋯(IV)(Zr(DMS-Cp)(NnBu2)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(正丁胺基)鋯(IV)(Zr(DMS-Cp)(NHnBu)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(二異丁胺基)鋯(IV)(Zr(DMS-Cp)(NiBu2)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(異丁胺基)鋯(IV)(Zr(DMS-Cp)(NHiBu)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(二第二丁胺基)鋯(IV)(Zr(DMS-Cp)(NsBu2)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(第二丁胺基)鋯(IV)(Zr(DMS-Cp)(NHsBu)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(二第三丁胺基)鋯(IV)(Zr(DMS-Cp)(NtBu2)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(第三丁胺基)鋯(IV)(Zr(DMS-Cp)(NHtBu)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(甲氧基)鋯(IV) (Zr(DMS-Cp)(OMe)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(DMS-Cp)(OEt)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(DMS-Cp)(OnPr)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr(DMS-Cp)(OiPr)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(DMS-Cp)(OtBu)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(DMS-Cp)(OsBu)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(DMS-Cp)(OnBu)3);˙含矽及鋯前驅體為(二甲基矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(DMS-Cp)(OiBu)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(二甲胺基)鋯(IV)(Zr(F3Si-Cp)(NMe2)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(甲胺基)鋯(IV)(Zr(F3Si-Cp)(NHMe)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(二乙胺基)鋯(IV)(Zr(F3Si-Cp)(NEt2)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(乙胺基)鋯(IV) (Zr(F3Si-Cp)(NHEt)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(乙基甲胺基)鋯(IV)(Zr(F3Si-Cp)(NEtMe)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(二正丙胺基)鋯(IV)(Zr(F3Si-Cp)(NnPr2)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(正丙胺基)鋯(IV)(Zr(F3Si-Cp)(NHnPr)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(二異丙胺基)鋯(IV)(Zr(F3Si-Cp)(NiPr2)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(異丙胺基)鋯(IV)(Zr(F3Si-Cp)(NHiPr)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(二正丁胺基)鋯(IV)(Zr(F3Si-Cp)(NnBu2)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(正丁胺基)鋯(IV)(Zr(F3Si-Cp)(NHnBu)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(二異丁胺基)鋯(IV)(Zr(F3Si-Cp)(NiBu2)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(異丁胺基)鋯(IV)(Zr(F3Si-Cp)(NHiBu)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(二第二丁胺基)鋯(IV)(Zr(F3Si-Cp)(NsBu2)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(第二丁胺基)鋯(IV) (Zr(F3Si-Cp)(NHsBu)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(二第三丁胺基)鋯(IV)(Zr(F3Si-Cp)(NtBu2)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(第三丁胺基)鋯(IV)(Zr(F3Si-Cp)(NHtBu)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(F3Si-Cp)(OMe)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(F3Si-Cp)(OEt)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(F3Si-Cp)(OnPr)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr(F3Si-Cp)(OiPr)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(F3Si-Cp)(OtBu)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(F3Si-Cp)(OsBu)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(F3Si-Cp)(OnBu)3);˙含矽及鋯前驅體為(三氟矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(F3Si-Cp)(OiBu)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(二甲胺基)鋯(IV) (Zr(F2HSi-Cp)(NMe2)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(甲胺基)鋯(IV)(Zr(F2HSi-Cp)(NHMe)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(二乙胺基)鋯(IV)(Zr(F2HSi-Cp)(NEt2)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(乙胺基)鋯(IV)(Zr(F2HSi-Cp)(NHEt)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(乙基甲胺基)鋯(IV)(Zr(F2HSi-Cp)(NEtMe)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(二正丙胺基)鋯(IV)(Zr(F2HSi-Cp)(NnPr2)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(正丙胺基)鋯(IV)(Zr(F2HSi-Cp)(NHnPr)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(二異丙胺基)鋯(IV)(Zr(F2HSi-Cp)(NiPr2)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(異丙胺基)鋯(IV)(Zr(F2HSi-Cp)(NHiPr)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(二正丁胺基)鋯(IV)(Zr(F2HSi-Cp)(NnBu2)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(正丁胺基)鋯(IV)(Zr(F2HSi-Cp)(NHnBu)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(二異丁胺基)鋯(IV) (Zr(F2HSi-Cp)(NiBu2)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(異丁胺基)鋯(IV)(Zr(F2HSi-Cp)(NHiBu)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(二第二丁胺基)鋯(IV)(Zr(F2HSi-Cp)(NsBu2)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(第二丁胺基)鋯(IV)(Zr(F2HSi-Cp)(NHsBu)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(二第三丁胺基)鋯(IV)(Zr(F2HSi-Cp)(NtBu2)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(第三丁胺基)鋯(IV)(Zr(F2HSi-Cp)(NHtBu)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(F2HSi-Cp)(OMe)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(F2HSi-Cp)(OEt)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(F2HSi-Cp)(OnPr)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr(F2HSi-Cp)(OiPr)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(F2HSi-Cp)(OtBu)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(第二丁氧基)鋯(IV) (Zr(F2HSi-Cp)(OsBu)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(F2HSi-Cp)(OnBu)3);˙含矽及鋯前驅體為(二氟矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(F2HSi-Cp)(OiBu)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(二甲胺基)鋯(IV)(Zr(FH2Si-Cp)(NMe2)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(甲胺基)鋯(IV)(Zr(FH2Si-Cp)(NHMe)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(二乙胺基)鋯(IV)(Zr(FH2Si-Cp)(NEt2)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(乙胺基)鋯(IV)(Zr(FH2Si-Cp)(NHEt)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(乙基甲胺基)鋯(IV)(Zr(FH2Si-Cp)(NEtMe)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(二正丙胺基)鋯(IV)(Zr(FH2Si-Cp)(NnPr2)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(正丙胺基)鋯(IV)(Zr(FH2Si-Cp)(NHnPr)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(二異丙胺基)鋯(IV)(Zr(FH2Si-Cp)(NiPr2)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(異丙胺基)鋯(IV) (Zr(FH2Si-Cp)(NHiPr)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(二正丁胺基)鋯(IV)(Zr(FH2Si-Cp)(NnBu2)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(正丁胺基)鋯(IV)(Zr(FH2Si-Cp)(NHnBu)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(二異丁胺基)鋯(IV)(Zr(FH2Si-Cp)(NiBu2)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(異丁胺基)鋯(IV)(Zr(FH2Si-Cp)(NHiBu)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(二第二丁胺基)鋯(IV)(Zr(FH2Si-Cp)(NsBu2)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(第二丁胺基)鋯(IV)(Zr(FH2Si-Cp)(NHsBu)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(二第三丁胺基)鋯(IV)(Zr(FH2Si-Cp)(NtBu2)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(第三丁胺基)鋯(IV)(Zr(FH2Si-Cp)(NHtBu)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(FH2Si-Cp)(OMe)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(FH2Si-Cp)(OEt)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(正丙氧基)鋯(IV) (Zr(FH2Si-Cp)(OnPr)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr(FH2Si-Cp)(OiPr)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(FH2Si-Cp)(OtBu)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(FH2Si-Cp)(OsBu)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(FH2Si-Cp)(OnBu)3);˙含矽及鋯前驅體為(單氟矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(FH2Si-Cp)(OiBu)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)(Zr(FMe2Si-Cp)(NMe2)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(甲胺基)鋯(IV)(Zr(FMe2Si-Cp)(NHMe)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(二乙胺基)鋯(IV)(Zr(FMe2Si-Cp)(NEt2)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(乙胺基)鋯(IV)(Zr(FMe2Si-Cp)(NHEt)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(乙基甲胺基)鋯(IV)(Zr(FMe2Si-Cp)(NEtMe)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(二正丙胺基)鋯(IV) (Zr(FMe2Si-Cp)(NnPr2)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(正丙胺基)鋯(IV)(Zr(FMe2Si-Cp)(NHnPr)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(二異丙胺基)鋯(IV)(Zr(FMe2Si-Cp)(NiPr2)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(異丙胺基)鋯(IV)(Zr(FMe2Si-Cp)(NHiPr)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(二正丁胺基)鋯(IV)(Zr(FMe2Si-Cp)(NnBu2)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(正丁胺基)鋯(IV)(Zr(FMe2Si-Cp)(NHnBu)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(二異丁胺基)鋯(IV)(Zr(FMe2Si-Cp)(NiBu2)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(異丁胺基)鋯(IV)(Zr(FMe2Si-Cp)(NHiBu)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(二第二丁胺基)鋯(IV)(Zr(FMe2Si-Cp)(NsBu2)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(第二丁胺基)鋯(IV)(Zr(FMe2Si-Cp)(NHsBu)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(二第三丁胺基)鋯(IV)(Zr(FMe2Si-Cp)(NtBu2)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(第三丁胺基)鋯(IV) (Zr(FMe2Si-Cp)(NHtBu)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(FMe2Si-Cp)(OMe)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(FMe2Si-Cp)(OEt)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(FMe2Si-Cp)(OnPr)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr(FMe2Si-Cp)(OiPr)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(FMe2Si-Cp)(OtBu)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(FMe2Si-Cp)(OsBu)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(FMe2Si-Cp)(OnBu)3);˙含矽及鋯前驅體為(氟二甲基矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(FMe2Si-Cp)(OiBu)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(二甲胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NMe2)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(甲胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NHMe)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(二乙胺基)鋯 (IV)(Zr((CF3)3Si-Cp)(NEt2)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(乙胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NHEt)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(乙基甲胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NEtMe)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(二正丙胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NnPr2)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(正丙胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NHnPr)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(二異丙胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NiPr2)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(異丙胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NHiPr)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(二正丁胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NnBu2)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(正丁胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NHnBu)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(二異丁胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NiBu2)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(異丁胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NHiBu)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(二第二丁胺基) 鋯(IV)(Zr((CF3)3Si-Cp)(NsBu2)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(第二丁胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NHsBu)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(二第三丁胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NtBu2)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(第三丁胺基)鋯(IV)(Zr((CF3)3Si-Cp)(NHtBu)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OMe)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OEt)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OnPr)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OiPr)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OtBu)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OSBu)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OnBu)3);˙含矽及鋯前驅體為(參(三氟甲基)矽基)環戊二烯基參(異丁氧基)鋯 (IV)(Zr((CF3)3Si-Cp)(OiBu)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(二甲胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NMe2)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(甲胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NHMe)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(二乙胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NEt2)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(乙胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NHEt)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(乙基甲胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NEtMe)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(二正丙胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NnPr2)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(正丙胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NHnPr)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(二異丙胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NiPr2)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(異丙胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NHiPr)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(二正丁胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NnBu2)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(正丁胺基)鋯 (IV)(Zr((CF3)2HSi-Cp)(NHnBu)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(二異丁胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NiBu2)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(異丁胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NHiBu)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(二第二丁胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NsBu2)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(第二丁胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NHsBu)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(二第三丁胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NtBu2)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(第三丁胺基)鋯(IV)(Zr((CF3)2HSi-Cp)(NHtBu)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr((CF3)2HSt-Cp)(OMe)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OEt)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OnPr)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OiPr)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(第三丁氧基)鋯 (IV)(Zr((CF3)2HSi-Cp)(OtBu)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OsBu)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OnBu)3);˙含矽及鋯前驅體為(雙(三氟甲基)矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OiBu)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NMe2)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(甲胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NHMe)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(二乙胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NEt2)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(乙胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NHEt)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(乙基甲胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NEtMe)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(二正丙胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NnPr2)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(正丙胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NHnPr)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(二異丙胺 基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NiPr2)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(異丙胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NHiPr)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(二正丁胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NnBu2)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(正丁胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NHnBu)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(二異丁胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NiBu2)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(異丁胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NHiBu)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(二第二丁胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NsBu2)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(第二丁胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NHsBu)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(二第三丁胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NtBu2)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(第三丁胺基)鋯(IV)(Zr((CF3)Me2Si-Cp)(NHtBu)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OMe)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(乙氧基)鋯 (IV)(Zr((CF3)Me2Si-Cp)(OEt)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OnPr)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OiPr)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OtBu)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OsBu)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OnBu)3);˙含矽及鋯前驅體為((三氟甲基)二甲基矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OiBu)3);˙含鋯成膜組成物包含大致95% w/w與大致100% w/w之間的前驅體;˙含鋯成膜組成物包含大致98% w/w與大致100% w/w之間的前驅體;˙含鋯成膜組成物包含大致99% w/w與大致100% w/w之間的前驅體;˙含鋯成膜組成物包含大致5% w/w與大致50% w/w之間的前驅體;˙含鋯成膜組成物包含大致0.0% w/w與大致5.0% w/w之間的雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致1.0% w/w之間的雜質;˙雜質包括ZrCp(OR10)3;Zr(OR10)4;ZrCp(NR2)3,其中各R獨立地為H、C1-C5直鏈、分支鏈或環狀烷基或C1-C5直鏈、分支鏈或環狀氟烷基; Zr(NR2)4,其中各R獨立地為H、C1-C5直鏈、分支鏈或環狀烷基或C1-C5直鏈、分支鏈或環狀氟烷基;醇;烷基胺;二烷基胺;烷基亞胺;環戊二烯;二環戊二烯;(矽基)環戊二烯;烷基矽烷;THF;乙醚;戊烷;環己烷;庚烷;苯;甲苯;氯化金屬化合物;烷基胺基鋰、烷基胺基鈉或烷基胺基鉀;烷氧基鋰、烷氧基鈉或烷氧基鉀;及環戊二烯基鋰、環戊二烯基鈉或環戊二烯基鉀;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的ZrCp(OR10)3雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的Zr(OR10)4雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的ZrCp(NR2)3雜質,其中各R獨立地為H、C1-C5直鏈、分支鏈或環狀烷基或C1-C5直鏈、分支鏈或環狀氟烷基;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的Zr(NR2)4雜質,其中各R獨立地為H、C1-C5直鏈、分支鏈或環狀烷基或C1-C5直鏈、分支鏈或環狀氟烷基;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的醇雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的烷基胺雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的烷基亞胺雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的環戊二 烯雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的二環戊二烯雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的(矽基)環戊二烯雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的烷基矽烷雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的THF雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的乙醚雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的戊烷雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的環己烷雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的庚烷雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的苯雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的甲苯雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的氯化金屬化合物雜質; ˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的烷基胺基鋰、烷基胺基鈉或烷基胺基鉀雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的烷氧基鋰、烷氧基鈉或烷氧基鉀雜質;˙含鋯成膜組成物包含大致0.0% w/w與大致2.0% w/w之間的環戊二烯基鋰、環戊二烯基鈉或環戊二烯基鉀雜質;˙含鋯成膜組成物包含大致0ppbw與大致1ppmw之間的金屬雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的金屬雜質;˙金屬雜質包括鋁(Al)、砷(As)、鋇(Ba)、鈹(Be)、鉍(Bi)、鎘(Cd)、鈣(Ca)、鉻(Cr)、鈷(Co)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉿(Hf)、鋯(Zr)、銦(In)、鐵(Fe)、鉛(Pb)、鋰(Li)、鎂(Mg)、錳(Mn)、鎢(W)、鎳(Ni)、鉀(K)、鈉(Na)、鍶(Sr)、釷(Th)、錫(Sn)、鈦(Ti)、鈾(U)及鋅(Zn);˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Al雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的As雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Ba雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Be雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Bi雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Cd雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Ca雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Cr雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Co雜質; ˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Cu雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Ga雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Ge雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Hf雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Zr雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的In雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Fe雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Pb雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Li雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Mg雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Mn雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的W雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Ni雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的K雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Na雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Sr雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Th雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Sn雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Ti雜質;˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的U雜質;且˙含鋯成膜組成物包含大致0ppbw與大致500ppbw之間的Zn雜質。
亦揭示一種含鋯成膜組成物遞送裝置,其包含具有入口管道及出口管道之罐且含有以上所揭示之含鋯成膜組成物中之任一者。所揭示之裝置可包括以下態樣中之一或多者:˙含鋯成膜組成物具有小於10ppmw之總金屬污染物濃度;˙入口管道之末端位於含鋯成膜組成物之表面之上且出口管道之末端位於含鋯成膜組成物之表面之下;˙入口管道之末端位於含鋯成膜組成物之表面之下且出口管道之末端位於含鋯成膜組成物之表面之上;且˙進一步在入口及出口包含膜片閥門。
亦揭示在基板上沈積含鋯膜之方法。將上文揭示之含鋯成膜組成物引入其中安置有基板之反應器中。將至少一部分前驅體沈積於基板上以形成含鋯膜。所揭示方法可進一步包括以下態樣中之一或多者:˙將反應物引入反應器中;˙反應物經電漿處理;˙反應物經遠端電漿處理;˙反應物未經電漿處理;˙反應物選自由以下組成之群:H2、H2CO、N2H4、NH3、SiH4、Si2H6、Si3H8、SiH2Me2、SiH2Et2、N(SiH3)3、其氫基團及其混合物;˙反應物為H2;˙反應物為NH3;˙反應物選自由以下組成之群:O2、O3、H2O、H2O2、NO、N2O、NO2、其氧自由基及其混合物; ˙反應物為O31g單態氧、1Σg +單態氧、3Σg -三重態氧或其組合;˙反應物為H2O;˙反應物為電漿處理之O2;˙反應物為O3;˙反應物為含鋯前驅體;˙含鋯前驅體選自由以下組成之群:ZrCp(NMe2)3、Zr(MeCp)(NMe2)3、Zr(EtCp)(NMe2)3、Zr(iPrCp)(NMe2)3、Zr(tBuCp)(NMe2)3、Zr(Cp)(NMeEt)3;˙含鋯前驅體為ZrCp(NMe2)3;˙混合含鋯成膜組成物及含鋯前驅體以形成混合物,之後引入至反應器中;˙將含鋯成膜組成物及反應物同時引入反應器中;˙反應器經組態以用於化學氣相沈積;˙反應器經組態以用於電漿增強式化學氣相沈積;˙將含鋯成膜組成物及反應物依次引入至腔室中;˙反應器經組態以用於原子層沈積;˙反應器經組態以用於電漿增強式原子層沈積;˙反應器經組態以用於空間原子層沈積;˙含鋯膜為純鋯薄膜;˙純鋯膜具有大致95原子%至大致100原子%之間的Zr濃度;˙含鋯膜為矽化鋯(ZfkSil,其中k及l各為在包括端點1至6之範圍內的整數);˙矽化鋯為ZrSi2; ˙含鋯膜為氧化鋯(ZrmOn,其中m及n各為在包括端點1至6之範圍內的整數);˙氧化鋯為ZrO2;˙含鋯膜為摻雜矽之氧化鋯(ZroSipOq),其中o及p各為在包括端點O至1之範圍內的十進制數且q為在包括端點1至6之範圍內的整數;˙摻雜矽之氧化鋯為Zr(0.99-0.5)Si(0.5-0.01)O2;˙含鋯膜為氮化鋯(ZrqNr,其中q及r各為在包括端點1至6之範圍內的整數);及˙氮化鋯為ZrN。
記號及命名法
在以下說明書及申請專利範圍通篇中使用某些縮寫、符號及術語,且其包括:如本文所用,不定冠詞「一(a/an)」如本文所用,不定冠詞「一(a/an)」意謂一或多個。
如本文所用,術語「大致(approximately)」或「約(about)」或「大約(ca.)」(來自拉丁語「大約(circa)」)意謂所述值之±10%。
如本文所用,術語「獨立地(independently)」在用於描述R基團之情形中時應理解為表示目標R基團不僅相對於帶有相同或不同下標或上標之其他R基團獨立地選擇,但亦相對於任何其他種類之相同R基團獨立地選擇。舉例而言,在式Zr(TMSCp)(NR1R2)3中,三個R1基團可以但無需彼此或與R2相同。
如本文所用,術語「烷基(alkyl group)」係指排他性地含有 碳及氫原子之飽和官能基。另外,術語「烷基」係指直鏈、分支鏈或環狀烷基。直鏈烷基之具體實例包括(但不限於)甲基、乙基、丙基、丁基等。分支鏈烷基之實例包括(但不限於)第三丁基。環狀烷基之實例包括(但不限於)環丙基、環戊基、環己基等。
如本文所用,縮寫「Me」係指甲基;縮寫「Et」係指乙基;縮寫「Pr」係指丙基;縮寫「nPr」係指「正鏈」或直鏈丙基;縮寫「iPr」係指異丙基;縮寫「Bu」係指丁基;縮寫「nBu」係指「正鏈」或直鏈丁基;縮寫「tBu」係指第三丁基,亦稱為1,1-二甲基乙基;縮寫「sBu」係指第二丁基,亦稱為1-甲基丙基;縮寫「iBu」係指異丁基,亦稱為2-甲基丙基;縮寫「amyl」係指戊基;縮寫「tAmyl」係指第三戊基,亦稱為1,1-二甲基丙基;縮寫「Cp」係指環戊二烯基;縮寫「Cp*」係指五甲基環戊二烯基;縮寫「op」係指(開鏈)戊二烯基;縮寫「TMSCp」係指配位體(三甲基矽基)環戊二烯基[Me3SiCp];縮寫「TMSCpH」係指分子(三甲基矽基)環戊二烯[Me3SiCpH];且縮寫「DMSCp」係指配位體(二甲基矽基)環戊二烯基[Me2SiHCp]。
請應注意沈積之膜或層(諸如氧化鋯)列於本說明書及申請專利範圍中而不參考其適當化學計量(亦即ZrO2)。層可包括純(Zr)層、碳化物(ZroCp)層、氮化物(ZrkNl)層、氧化物(ZrnOm)層或其混合物,其中k、l、m、n、p及p在包括端點1至6之範圍內。舉例而言,氧化鋯為ZrkOl,其中k及l各在0.5至5之範圍內。氧化鋯更佳為ZrO2。氧化層可為不同二元或三元氧化物層之混合物。舉例而言,氧化層可為BaZrOx、HfZrOx、ZrYOx、ZrAlOx、ZrErOx、ZrLaOx、ZrDyOx,其中x在1至6之範圍內。氧化 層可為不同氧化物層之堆疊,諸如ZrO2/Al2O3奈米層合物。任何提及之層亦可包括氧化矽層SinOm,其中n在0.5至1.5之範圍內且m在1.5至3.5之範圍內。氧化矽層更佳為SiO2或SiO3。氧化矽層可為基於氧化矽之介電材料,諸如基於有機物或基於氧化矽之低k介電材料,諸如Applied Materials公司之Black Diamond II或III材料。或者,任何提及之含矽層可為純矽。任何含矽層亦可包括摻雜劑,諸如B、C、P、As及/或Ge。
本文使用來自元素週期表之元素的標準縮寫。應瞭解,可藉由此等縮寫提及元素(例如Mn係指錳,Si係指矽,C係指碳等)。
1‧‧‧含鋯成膜組成物遞送裝置
10‧‧‧含鋯成膜組成物
20‧‧‧容器
25‧‧‧視情況存在之加熱元件
30‧‧‧入口管道
31‧‧‧入口管道30之末端
35‧‧‧閥門
40‧‧‧出口管道
41‧‧‧出口管道之末端
45‧‧‧閥門
為進一步理解本發明之性質及目標,應結合附圖參考以下【實施方式】,且其中:圖1為本文所揭示之含鋯成膜組成物遞送裝置之一個具體實例之側視圖;圖2為本文所揭示之含鋯成膜組成物遞送裝置之第二具體實例之側視圖;圖3為Zr(TMSCp)(NMe2)31HNMR光譜;圖4為Zr(DMSCp)(NMe2)31HNMR光譜;圖5為Zr(TMSCp)(OiPr)31HNMR光譜;圖6為表明Zr(TMSCp)(NMe2)3隨溫度增加之重量損失(TGA)或溫度差(DTA)之百分比的熱重分析(TGA)/差熱分析(DTA)圖;圖7為表明Zr(DMSCp)(NMe2)3隨溫度增加之重量損失(TGA)或溫度差(DTA)之百分比的TGA/DTA圖;圖8為表明Zr(TMSCp)(OiPr)3隨溫度增加之重量損失(TGA)或溫度差(DTA)百分比的TGA/DTA圖; 圖9為使用前驅體Zr(TMSCp)(NMe2)3得到之氧化鋯薄膜隨溫度而變之ALD生長率之圖;圖10為使用前驅體Zr(TMSCp)(NMe2)3得到之氧化鋯薄膜隨前驅體引入時間而變之ALD生長率之圖;圖11為在300℃下使用前驅體Zr(TMSCp)(NMe2)3製造之膜的X射線光電子光譜(XPS)分析之圖;圖12為在375℃下使用前驅體Zr(TMSCp)(NMe2)3製造之膜的XPS分析之圖;圖13為在325℃下使用前驅體Zr(TMSCp)(NMe2)3在1:10縱橫比圖案化晶圓中沈積之膜的掃描電子顯微鏡(SEM)相片;及圖14為在325℃下使用前驅體Zr(TMSCp)(NMe2)3在1:40縱橫比圖案化晶圓中沈積之膜的SEM相片。
揭示含鋯成膜組成物,其包含具有下式之含矽及鋯前驅體:
Figure 104141228-A0305-02-0037-1
其中各R1、R2、R3、R4、R5、R6、R7、R8、R9及R10獨立地選自H;C1-C5 直鏈、分支鏈或環狀烷基;或C1-C5直鏈、分支鏈或環狀氟烷基。R1、R2及R3可相同或不同。R4、R5、R6及R7可相同或不同。各R8及R9可相同或不同。各R10可相同或不同。
R1、R2、R3、R4、R5、R6及R7較佳為H或Me,因為較小烷基可增加揮發性且降低含矽及鋯前驅體之熔點。R8及R9較佳為H、Me或Et,因為較小烷基可增加揮發性降低含矽及鋯前驅體之熔點。R10較佳地為Me、Et、iPr或tBu,因為較小烷基(Me、Et)可增加揮發性且較大烷基(iPr、tBu)可降低含矽及鋯前驅體之熔點。
例示性式I之含矽及鋯前驅體包括(但不限於)Zr(TMS-Cp)(NMe2)3、Zr(TMS-Cp)(NHMe)3、Zr(TMS-Cp)(NEt2)3、Zr(TMS-Cp)(NHEt)3、Zr(TMS-Cp)(NEtMe)3)、Zr(TMS-Cp)(NnPr2)3、Zr(TMS-Cp)(NHnPr)3、Zr(TMS-Cp)(NiPr2)3、Zr(TMS-Cp)(NHiPr)3、Zr(TMS-Cp)(NnBu2)3)、Zr(TMS-Cp)(NHnBu)3、Zr(TMS-Cp)(NiBu2)3、Zr(TMS-Cp)(NHiBu)3、Zr(TMS-Cp)(NsBu2)3、Zr(TMS-Cp)(NHsBu)3、Zr(TMS-Cp)(NtBu2)3、Zr(TMS-Cp)(NHtBu)3、Zr(DMS-Cp)(NMe2)3、Zr(DMS-Cp)(NHMe)3、Zr(DMS-Cp)(NEt2)3、Zr(DMS-Cp)(NHEt)3、Zr(DMS-Cp)(NEtMe)3、Zr(DMS-Cp)(NnPr2)3、Zr(DMS-Cp)(NHnPr)3、Zr(DMS-Cp)(NiPr2)3、Zr(DMS-Cp)(NHiPr)3、Zr(DMS-Cp)(NnBu2)3、Zr(DMS-Cp)(NHnBu)3、Zr(DMS-Cp)(NiBu2)3、Zr(DMS-Cp)(NHiBu)3、Zr(DMS-Cp)(NsBu2)3、Zr(DMS-Cp)(NHsBu)3、Zr(DMS-Cp)(NtBu2)3、Zr(DMS-Cp)(NHtBu)3、Zr(F3Si-Cp)(NMe2)3、Zr(F3Si-Cp)(NHMe)3、Zr(F3Si-Cp)(NEt2)3、Zr(F3Si-Cp)(NHEt)3、Zr(F3Si-Cp)(NEtMe)3、 Zr(F3Si-Cp)(NnPr2)3、Zr(F3Si-Cp)(NHnPr)3、Zr(F3Si-Cp)(NiPr2)3、Zr(F3Si-Cp)(NHiPr)3、Zr(F3Si-Cp)(NnBu2)3、Zr(F3Si-Cp)(NHnBu)3、Zr(F3Si-Cp)(NiBu2)3、Zr(F3Si-Cp)(NHiBu)3、Zr(F3Si-Cp)(NsBu2)3、Zr(F3Si-Cp)(NHsBu)3、Zr(F3Si-Cp)(NtBu2)3、Zr(F3Si-Cp)(NHtBu)3、Zr(F2HSi-Cp)(NMe2)3、Zr(F2HSi-Cp)(NHMe)3、Zr(F2HSi-Cp)(NEt2)3、Zr(F2HSi-Cp)(NHEt)3、Zr(F2HSi-Cp)(NEtMe)3、Zr(F2HSi-Cp)(NnPr2)3、Zr(F2HSi-Cp)(NHnPr)3、Zr(F2HSi-Cp)(NiPr2)3、Zr(F2HSi-Cp)(NHiPr)3、Zr(F2HSi-Cp)(NnBu2)3、Zr(F2HSi-Cp)(NHnBu)3、Zr(F2HSi-Cp)(NiBu2)3、Zr(F2HSi-Cp)(NHiBu)3、Zr(F2HSi-Cp)(NsBu2)3、Zr(F2HSi-Cp)(NHsBu)3、Zr(F2HSi-Cp)(NtBu2)3、Zr(F2HSi-Cp)(NHtBu)3、Zr(FH2Si-Cp)(NMe2)3、Zr(FH2Si-Cp)(NHMe)3、Zr(FH2Si-Cp)(NEt2)3、Zr(FH2Si-Cp)(NHEt)3、Zr(FH2Si-Cp)(NEtMe)3、Zr(FH2Si-Cp)(NnPr2)3、Zr(FH2Si-Cp)(NHnPr)3、Zr(FH2Si-Cp)(NiPr2)3、Zr(FH2Si-Cp)(NHiPr)3、Zr(FH2Si-Cp)(NnBu2)3、Zr(FH2Si-Cp)(NHnBu)3、Zr(FH2Si-Cp)(NiBu2)3、Zr(FH2Si-Cp)(NHiBu)3、Zr(FH2Si-Cp)(NsBu2)3、Zr(FH2Si-Cp)(NHsBu)3、Zr(FH2Si-Cp)(NtBu2)3、Zr(FH2Si-Cp)(NHtBu)3、Zr(FMe2Si-Cp)(NMe2)3、Zr(FMe2Si-Cp)(NHMe)3、Zr(FMe2Si-Cp)(NEt2)3、Zr(FMe2Si-Cp)(NHEt)3、Zr(FMe2Si-Cp)(NEtMe)3、Zr(FMe2Si-Cp)(NnPr2)3、Zr(FMe2Si-Cp)(NHnPr)3、Zr(FMe2Si-Cp)(NiPr2)3、Zr(FMe2Si-Cp)(NHiPr)3、Zr(FMe2Si-Cp)(NnBu2)3、Zr(FMe2Si-Cp)(NHnBu)3、Zr(FMe2Si-Cp)(NiBu2)3、Zr(FMe2Si-Cp)(NHiBu)3、Zr(FMe2Si-Cp)(NsBu2)3、Zr(FMe2Si-Cp)(NHsBu)3、Zr(FMe2Si-Cp)(NtBu2)3、Zr(FMe2Si-Cp)(NHtBu)3、Zr((CF3)3Si-Cp)(NMe2)3、Zr((CF3)3Si-Cp)(NHMe)3、Zr((CF3)3Si-Cp)(NEt2)3、 Zr((CF3)3Si-Cp)(NHEt)3、Zr((CF3)3Si-Cp)(NEtMe)3、Zr((CF3)3Si-Cp)(NnPr2)3、Zr((CF3)3Si-Cp)(NHnPr)3、Zr((CF3)3Si-Cp)(NiPr2)3、Zr((CF3)3Si-Cp)(NHiPr)3、Zr((CF3)3Si-Cp)(NnBu2)3、Zr((CF3)3Si-Cp)(NHnBu)3、Zr((CF3)3Si-Cp)(NiBu2)3、Zr((CF3)3Si-Cp)(NHiBu)3、Zr((CF3)3Si-Cp)(NsBu2)3、Zr((CF3)3Si-Cp)(NHsBu)3、Zr((CF3)3Si-Cp)(NtBu2)3、Zr((CF3)3Si-Cp)(NHtBu)3、Zr((CF3)2HSi-Cp)(NMe)3、Zr((CF3)2HSi-Cp)(NHMe)3、Zr((CF3)2HSi-Cp)(NEt2)3、Zr((CF3)2HSi-Cp)(NHEt)3、Zr((CF3)2HSi-Cp)(NEtMe)3、Zr((CF3)2HSi-Cp)(NnPr2)3、Zr((CF3)2HSi-Cp)(NHnPr)3、Zr((CF3)2HSi-Cp)(NiPr2)3、Zr((CF3)2HSi-Cp)(NHiPr)3、Zr((CF3)2HSi-Cp)(NnBu2)3、Zr((CF3)2HSi-Cp)(NHnBu)3、Zr((CF3)2HSi-Cp)(NiBu2)3、Zr((CF3)2HSi-Cp)(NHiBu)3、Zr((CF3)2HSi-Cp)(NsBu2)3、Zr((CF3)2HSi-Cp)(NHsBu)3、Zr((CF3)2HSi-Cp)(NtBu2)3、Zr((CF3)2HSi-Cp)(NHtBu)3、Zr((CF3)Me2Si-Cp)(NMe2)3、Zr((CF3)Me2Si-Cp)(NHMe)3、Zr((CF3)Me2Si-Cp)(NEt2)3、Zr((CF3)Me2Si-Cp)(NHEt)3、Zr((CF3)Me2Si-Cp)(NEtMe)3、Zr((CF3)Me2Si-Cp)(NnPr2)3、Zr((CF3)Me2Si-Cp)(NHnPr)3、Zr((CF3)Me2Si-Cp)(NiPr2)3、Zr((CF3)Me2Si-Cp)(NHiPr)3、Zr((CF3)Me2Si-Cp)(NnBu2)3、Zr((CF3)Me2Si-Cp)(NHnBu)3、Zr((CF3)Me2Si-Cp)(NiBu2)3、Zr((CF3)Me2Si-Cp)(NHiBu)3、Zr((CF3)Me2Si-Cp)(NsBu2)3、Zr((CF3)Me2Si-Cp)(NHsBu)3、Zr((CF3)Me2Si-Cp)(NtBu2)3或Zr((CF3)Me2Si-Cp)(NHtBu)3
例示性式II之含矽及鋯前驅體包括(但不限於)Zr(TMS-Cp)(OMe)3、Zr(TMS-Cp)(OEt)3、Zr(TMS-Cp)(OnPr)3、Zr(TMS-Cp)(OiPr)3、Zr(TMS-Cp)(OtBu)3、Zr(TMS-Cp)(OsBu)3、 Zr(TMS-Cp)(OnBu)3、Zr(TMS-Cp)(OiBu)3、Zr(DMS-Cp)(OMe)3、Zr(DMS-Cp)(OEt)3、Zr(DMS-Cp)(OnPr)3、Zr(DMS-Cp)(OiPr)3、Zr(DMS-Cp)(OtBu)3、Zr(DMS-Cp)(OsBu)3、Zr(DMS-Cp)(OnBu)3、Zr(DMS-Cp)(OiBu)3、Zr(F3Si-Cp)(OMe)3、Zr(F3Si-Cp)(OEt)3、Zr(F3Si-Cp)(OnPr)3、Zr(F3Si-Cp)(OiPr)3、Zr(F3Si-Cp)(OtBu)3、Zr(F3Si-Cp)(OsBu)3,Zr(F3Si-Cp)(OnBu)3、Zr(F3Si-Cp)(OiBu)3、Zr(F2HSi-Cp)(OMe)3、Zr(F2HSi-Cp)(OEt)3、Zr(F2HSi-Cp)(OnPr)3、Zr(F2HSi-Cp)(OiPr)3、Zr(F2HSi-Cp)(OtBu)3、Zr(F2HSi-Cp)(OsBu)3、Zr(F2HSi-Cp)(OnBu)3、Zr(F2HSi-Cp)(OiBu)3、Zr(FH2Si-Cp)(OMe)3、Zr(FH2Si-Cp)(OEt)3、Zr(FH2Si-Cp)(OnPr)3、Zr(FH2Si-Cp)(OiPr)3、Zr(FH2Si-Cp)(OtBu)3、Zr(FH2Si-Cp)(OsBu)3、Zr(FH2Si-Cp)(OnBu)3、Zr(FH2Si-Cp)(OiBu)3、Zr(FMe2Si-Cp)(OMe)3、Zr(FMe2Si-Cp)(OEt)3、Zr(FMe2Si-Cp)(OnPr)3、Zr(FMe2Si-Cp)(OiPr)3、Zr(FMe2Si-Cp)(OtBu)3、Zr(FMe2Si-Cp)(OsBu)3、Zr(FMe2Si-Cp)(OnBu)3、Zr(FMe2Si-Cp)(OiBu)3、Zr((CF3)3Si-Cp)(OMe)3、Zr((CF3)3Si-Cp)(OEt)3、Zr((CF3)3Si-Cp)(OnPr)3、Zr((CF3)3Si-Cp)(OiPr)3、Zr((CF3)3Si-Cp)(OtBu)3、Zr((CF3)3Si-Cp)(OsBu)3、Zr((CF3)3Si-Cp)(OnBu)3、Zr((CF3)3Si-Cp)(OiBu)3、Zr((CF3)2HSi-Cp)(OMe)3、Zr((CF3)2HSi-Cp)(OEt)3、Zr((CF3)2HSi-Cp)(OnPr)3、Zr((CF3)2HSi-Cp)(OiPr)3、Zr((CF3)2HSi-Cp)(OtBu)3、Zr((CF3)2HSi-Cp)(OsBu)3、Zr((CF3)2HSi-Cp)(OnBu)3、Zr((CF3)2HSi-Cp)(OiBu)3、Zr((CF3)Me2Si-Cp)(OMe)3、Zr((CF3)Me2Si-Cp)(OEt)3、Zr((CF3)Me2Si-Cp)(OnPr)3、Zr((CF3)Me2Si-Cp)(OiPr)3、Zr((CF3)Me2Si-Cp)(OtBu)3、Zr((CF3)Me2Si-Cp)(OsBu)3、Zr((CF3)Me2Si-Cp)(OnBu)3或Zr((CF3)Me2Si-Cp)(OiBu)3
含矽及鋯前驅體較佳為(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV),因為其氣化會引起大氣熱重分析,留下少量最終殘基(參見實施例1)。藉由實施例3中之(三甲基矽基)環戊二烯基三(異丙氧基)鋯(IV)之TGA結果展示之低殘基量對氣相沈積應用亦為有前景的。
所揭示之含鋯成膜組成物可藉由使對應肆(胺基)鋯(IV)或對應肆(烷氧基)鋯(IV)與對應(矽基)環戊二烯於諸如甲苯、THF或乙醚之適合溶劑中反應來合成。(矽基)環戊二烯典型地根據Catal Lett(2011)141:1625-1634中所述之程序來製備。或者,所揭示之含(矽基)環戊二烯基參(烷氧基)鋯之成膜組成物可藉由於諸如甲苯、THF或乙醚之適合溶劑中用3當量對應醇醇解對應含(矽基)環戊二烯基參(胺基)鋯之化合物來合成。然而,此合成方法中之過量醇可產生未反應之反應物,諸如Zr(NR2)4或Zr(OR)4,及不合需要之反應副產物,諸如未經取代之環戊二烯基反應產物,如環戊二烯基參(烷氧基)鋯或環戊二烯基參(胺基)鋯。下文實施例中提供含有其他細節之例示性合成方法。
所揭示之含鋯成膜組成物之純度在大致95% w/w至大致100% w/w,較佳高於98% w/w,且更佳高於99% w/w之範圍內。一般技術者將認識到純度可藉由H NMR或氣相或液相層析與質譜分析來確定。所揭示之含鋯成膜組成物可含有以下雜質中之任一者:ZrCp(OR10)3;Zr(OR10)4;ZrCp(NR2)3,其中各R獨立地為H、C1-C5直鏈、分支鏈或環狀烷基或C1-C5直鏈、分支鏈或環狀氟烷基;Zr(NR2)4,其中各R獨立地為H、C1-C5直鏈、分支鏈或環狀烷基或C1-C5直鏈、分支鏈或環狀氟烷基;環戊二烯;(矽基)環戊二烯;二環戊二烯;烷基矽烷;烷基胺,諸如第三丁胺;二烷基胺, 諸如二甲胺;烷基亞胺;醇,諸如異丙醇或第三丁醇;THF;乙醚;戊烷;環己烷;庚烷;甲苯;苯;氯化金屬化合物;烷氧基鋰、烷氧基鈉或烷氧基鉀;烷基胺基鋰、烷基胺基鈉或烷基胺基鉀;或環戊二烯基鋰、環戊二烯基鉀或環戊二烯基鈉。此等雜質之總量低於5% w/w,較佳低於2% w/w,且更佳低於1% w/w。組成物可藉由再結晶、昇華、蒸餾及/或使氣體或液體流經諸如4A分子篩之適合吸附劑來純化。
所揭示之含鋯成膜組成物之純化亦可產生0ppbw(重量十億分率)至1ppmw(重量百萬分率)含量,較佳0-500ppbw之金屬雜質。此等金屬雜質包括(但不限於)鋁(Al)、砷(As)、鋇(Ba)、鈹(Be)、鉍(Bi)、鎘(Cd)、鈣(Ca)、鉻(Cr)、鈷(Co)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉿(Hf)、鋯(Zr)、銦(In)、鐵(Fe)、鉛(Pb)、鋰(Li)、鎂(Mg)、錳(Mn)、鎢(W)、鎳(Ni)、鉀(K)、鈉(Na)、鍶(Sr)、釷(Th)、錫(Sn)、鈦(Ti)、鈾(U)、釩(V)及鋅(Zn);含鋯成膜組成物可藉由所揭示之含鋯成膜組成物遞送裝置遞送至半導體加工工具中。圖1圖2展示所揭示之遞送裝置1之兩個非限制性具體實例。
圖1為含鋯成膜組成物遞送裝置1之一個具體實例之側視圖。在圖1中,所揭示之含鋯成膜組成物10含在具有兩個管道,即入口管道30及出口管道40之容器20內。熟悉前驅體技術者將認識到製造容器20、入口管道30及出口管道40以防止甚至在高溫及高壓下氣態形式之含鋯成膜組成物10漏出。
遞送裝置1必須不漏且配備有不允許甚至微小量之物質漏 出之閥門35/45。適合之閥門35/45包括裝彈簧或束縛之膜片閥門。閥門35/45可進一步包含限流孔(RFO)。遞送裝置1可連接至氣體歧管(圖中未示)及外殼(圖中未示)。氣體歧管應允許安全排氣及吹掃替換遞送裝置1時可曝露於空氣之管道,以使得任何剩餘量之含Zr成膜組成物不發生反應。外殼可配備有感測器且具有在物質釋放或反應之情況下控制起火之起火控制能力。氣體歧管亦可配備有分離閥門、真空產生器且允許引入最少之吹掃氣體。
遞送裝置1經由閥門3545流體連接至半導體加工工具之其他組件,諸如上文所揭示之氣體櫃。容器20、入口管道30、閥門35、出口管道40及閥門45較佳由316L EP或304不鏽鋼製成。然而,一般熟習此項技術者將認識到其他非反應性材料亦可用於本文中之教示中且任何腐蝕性含鋯成膜組成物10均可需要使用更耐腐蝕之材料,諸如赫史特合金(Hastelloy)或英高鎳(Inconel)。
圖1中,入口管道30之末端31位於含鋯成膜組成物10之表面之上,然而出口管道40之末端41位於含鋯成膜組成物10之表面之下。在此具體實例中,含鋯成膜組成物10較佳為液體形式。惰性氣體,包括(但不限於)氮氣、氬氣、氦氣及其混合物,可引入至入口管道30中。惰性氣體對遞送裝置20加壓以迫使液體含鋯成膜組成物10穿過出口管道40且進入半導體加工工具中之組件(圖中未示)中。半導體加工工具可包括使用或不使用諸如氦氣、氬氣、氮氣或其混合物之載體氣體下將液體含鋯成膜組成物10變換成氣相之氣化器,以將氣相傳遞至安置有待修補晶圓且處理以氣相發生之腔室中。或者,液體含鋯成膜組成物10可以噴射流或 氣霧劑直接遞送至晶圓表面中。
圖2為含鋯成膜組成物遞送裝置1之第二具體實例之側視圖。在圖2中,入口管道30之末端31位於含鋯成膜組成物10之表面之下,然而出口管道40之末端41位於含鋯成膜組成物10之表面之上。圖2亦包括視情況存在之加熱元件25,其可增加含鋯成膜組成物10之溫度。在此具體實例中,含鋯成膜組成物10可為固體或液體形式。將惰性氣體,包括(但不限於)氮氣、氬氣、氦氣及其混合物引入至入口管道30中。惰性氣體鼓泡通過含鋯成膜組成物10且將惰性氣體與氣化含鋯成膜組成物10帶至出口管道40且達到半導體加工工具中之組件上。
圖1與圖2包括閥門3545。一般熟習此項技術者將認識到使閥門3545可處於打開或閉合位置以允許分別流過管道3040。若含鋯成膜組成物10為氣相形式或若固相/液相之上存在足夠蒸氣壓,則可使用圖1圖2中之遞送裝置1或單一管道於任何固體或液體表面之上終止之較簡單之遞送裝置。在此情況下,藉由打開閥門45使含鋯成膜組成物10以氣相形式簡單遞送穿過管道40。遞送裝置1可例如藉由使用視情況存在之加熱元件25維持於適合溫度下以為待以氣相形式遞送之含鋯成膜組成物10提供足夠蒸氣壓。
儘管圖1圖2揭示含鋯成膜組成物遞送裝置1之兩個具體實例,但一般熟習此項技術者將認識到在不背離本文中之揭示內容下入口管道30與出口管道40可位於含鋯成膜組成物10之表面11之上或之下。此外,入口管道30可為填充孔口。最終,一般熟習此項技術者將認識到可在不背離本文中之教示下使用諸如Jurcik等人之WO 2006/059187中所揭示之 安瓿的其他遞送裝置將所揭示之含鋯成膜組成物遞送至半導體加工工具中。
亦揭示使用氣相沈積製程在基板上形成含鋯層之方法。該方法可適用於製造半導體、光伏打、LCD-TFT或平板型裝置。所揭示之含鋯成膜組成物可用於使用熟習此項技術者已知之任何沈積法沈積含鋯薄膜。
適合沈積法之實例包括(但不限於)化學氣相沈積(CVD)或原子層沈積(ALD)。例示性CVD方法包括熱CVD、電漿增強CVD(PECVD)、脈衝CVD(PCVD)、低壓CVD(LPCVD)、低於大氣壓CVD(SACVD)或大氣壓CVD(APCVD)、熱絲CVD(HWCVD,亦稱為催化CVD,其中熱絲充當沈積法之能量來源)、併有自由基之CVD及其組合。例示性ALD方法包括熱ALD、電漿增強ALD(PEALD)、空間分離ALD、熱絲ALD(HWALD)、併有自由基之ALD及其組合。亦可使用超臨界流體沈積。為提供適合之步階覆蓋及膜厚度控制,沈積方法較佳為ALD、PE-ALD或空間ALD。
ZrO2之立方/四方結晶相提供不同ZrO2結晶形式之最高介電常數(立方、四方、非晶形、單斜、斜方及其組合均為可獲得之結晶相)。以實驗方式報導摻雜量(3-12%)之小離子半徑四價摻雜劑(諸如Si)在穩定四方氧化鋯相中最為有效。與在SiO2中類似,在四方ZrO2結構中藉由Si取代Zr原子會致使Si-O鍵之長度降低。因此,ZrO2為Si之極佳主體,其容易併入至氧化物之「友好」局部環境中(J.Appl.Phys.106,024107,2009)。優勢為Si為四價的,因此其替代晶格中之Zr而不會引入O空位。實施例4中提供之初始R&D測試結果展示使用Zr(Me3SiCp)(NMe2)3沈積產生低於20 原子%之具有極少雜質污染之Si,從而表明此等前驅體能夠沈積所需氧化鋯膜結晶相之可能性。
申請人咸信可控制氣相沈積製程條件以使得單獨Zr或Zr與Si可沈積於含鋯層中。舉例而言,調節ALD參數以呈現一些寄生CVD可適用於將有限量之Si沈積於ZrO2層中。或者,ZrO2膜中之矽含量可藉由交替使用所揭示之含鋯成膜組成物沈積(Zr,Si)O2膜及使用另一含鋯前驅體沈積ZrO2來控制。舉例而言,ZrCp(NMe2)3、Zr(MeCp)(NMe2)3或Zr(EtCp)(NMe2)3可充當含Zr前驅體以產生純ZrO2膜。換言之,x個使用含鋯成膜組成物進行之(Zr,Si)O2沈積子循環可與y個使用含鋯前驅體(諸如ZrCp(NMe2)3)之純ZrO2沈積子循環交替。可重複由x個(Zr,Si)O2子循環及y個純ZrO2子循環組成之超循環以獲得所需厚度之(Zr,Si)O2膜,其中x及y為在包括端點1至20之範圍內的整數。Zr及Si含量可藉由調節xy控制。
或者,ZrO2膜中之矽含量可藉由使用含有所揭示之含鋯成膜組成物與含鋯前驅體之混合物沈積(Zr,Si)O2膜來控制。舉例而言,ZrCp(NMe2)3、Zr(MeCp)(NMe2)3、Zr(EtCp)(NMe2)3、Zr(iPrCp)(NMe2)3或Zr(tBuCp)(NMe2)3可充當含Zr前驅體。Zr及Si含量可藉由調節混合物中含鋯成膜組成物與含鋯前驅體之間的比率來控制。
可提供純淨形式或與諸如乙苯、二甲苯、均三甲苯、癸烷或十二烷之適合溶劑之摻合物形式之所揭示之含鋯成膜組成物。所揭示之組成物可以不同濃度存在於溶劑中。
藉由習知手段,諸如管及/或流量計將純淨或摻合之含鋯成膜組成物以氣相形式引入至反應器中。可藉由經由習知氣化步驟(諸如直 接氣化、蒸餾、直接液體注射或藉由鼓泡或藉由使用昇華器(諸如Xu等人之PCT公開案WO2009/087609中所揭示之昇華器))汽化純淨或摻合之組成物來產生呈氣相形式之組成物。純淨或摻合之組成物可以液態饋入氣化器中,其中其在引入至反應器中之前進行氣化。或者,可藉由將載體氣體傳送至含組成物之容器中或藉由將載體氣體鼓泡至組成物中來使純淨或摻合之組成物氣化。載氣可包括(但不限於)Ar、He、N2及其混合物。用載氣鼓泡亦可移除存在於純或摻合的組成物中之任何溶解氧。載體氣體及組成物接著以氣相形式引入至反應器中。
必要時,可將含有所揭示之組成物的容器加熱至准許組成物呈其液相且具有足夠蒸氣壓之溫度。容器可維持在例如大約0℃至大約150℃範圍內之溫度下。熟習此項技術者認識到可以已知方式調節容器之溫度以控制組成物之汽化量。
該反應器可為發生沈積法之裝置內的任何外殼或腔室,諸如(但不限於)平行板型反應器、冷壁型反應器、熱壁型反應器、單晶圓反應器、多晶圓反應器(亦即分批反應器)或適合於使前驅體反應且形成層之條件下的其他類型之沈積系統。
一般而言,反應器含有其上沈積薄膜之基板。基板一般定義為其上執行方法之材料。基板可為任何適用於半導體、光伏打、平板或LCD-TFT裝置製造之基板。適合基板之實例包括晶圓,諸如矽、二氧化矽、玻璃或GaAs晶圓。晶圓可具有根據先前製造步驟在其上沈積之一層或多層不同材料。舉例而言,晶圓可包括矽層(結晶、非晶形、多孔等)、氧化矽層、氮化矽層、氮氧化矽層、經碳摻雜之氧化矽(SiCOH)層或其組合。另 外,晶圓可包括銅層、鎢層或貴金屬層(例如鉑、鈀、鎳或金)。亦可使用諸如聚(3,4-伸乙二氧基噻吩)聚(苯乙烯磺酸)[PEDOT:PSS]之塑膠層。層可為平面或經圖案化的。
所揭示之方法可直接將含Zr層沈積於晶圓上或直接沈積於晶圓頂上之一個或一個以上(當經圖案化層形成基板時)層上。基板可圖案化為包括具有高縱橫比之通孔或溝槽。舉例而言,諸如ZrO2之保形含Zr膜可使用任何ALD技術沈積於縱橫比在大致20:1至大致100:1範圍內之穿矽通孔(TSV)上。此外,一般熟習此項技術者將認識到,本文所用之術語「膜(film)」或「層(layer)」係指塗抹或散佈於表面上之一些材料之厚度且該表面可為溝槽或線條。在本說明書及申請專利範圍通篇中,晶圓及其上之任何相關層稱為基板。舉例而言,ZrO2膜可沈積於TiN基板上。在後續處理中,錫層可沈積於ZrO2層上,從而形成TiN/ZrO2/TiN堆疊用作DRAM電容器。
反應器內之溫度及壓力保持在適合於氣相沈積之條件下。換言之,在將氣化組成物引入至腔室中之後,室內之條件使得至少一部分前驅體沈積於基板上以形成含鋯膜。舉例而言,反應器中之壓力視每個沈積參數需要可保持在約1Pa與約105Pa之間,更佳在約25Pa與約103Pa之間。同樣,反應器中之溫度可保持在約100℃與約500℃之間,較佳在約150℃與約400℃之間。一般熟習此項技術者將認識到「至少一部分前驅體沈積」意謂所揭示之含Zr成膜組成物中之一些或所有前驅體單獨或藉助於反應物與基板反應或黏附至基板。
可藉由控制基板固持器之溫度或控制反應器壁之溫度來控 制反應器溫度。用於加熱基板之裝置在此項技術中已知。將反應器壁加熱至足夠溫度以獲得呈足夠生長速率且具有所需物理狀態及組成之所需膜。反應器壁可加熱達到之非限制性例示性溫度範圍包括大致100℃至大致500℃。當採用電漿沈積製程時,沈積溫度可在大致150℃至大致400℃之範圍內。或者,當進行熱製程時,沈積溫度可在大約200℃至大約500℃之範圍內。
除所揭示之前驅體以外,亦可將反應物引入至反應器中。反應物可為氧化氣體,諸如O2、O3、H2O、H2O2、NO、N2O、NO2、含氧自由基(諸如O-或OH-)、NO、NO2、羧酸、甲酸、乙酸、丙酸及其混合物中之一者。O2可包括1g單態氧、1Σg +單態氧、習知3Σg -三態氧或其組合。較高能態之O2可如下產生:使用放電;照射感光劑,諸如藉由Ito等人之JP2012/087025中所揭示者;或藉由MEMS晶片,諸如藉由Velásquez-García等人(J Microelecrromechanical Systems第16卷,第6號,2007年12月)所揭示者。申請人咸信單態氧與三態氧及/或臭氧之混合物可提供適合反應性,而不會因較高能態O2之壽命短而損害底層基板。或者,氧化氣體選自由以下組成之群:O2、O3、H2O、H2O2、其含氧自由基(諸如O-或OH-)及其混合物。
或者,反應物可為還原氣體,諸如H2、H2CO、NH3、SiH4、Si2H6、Si3H8、(CH3)2SiH2、(C2H5)2SiH2、(CH3)SiH3、(C2H5)SiH3、苯基矽烷、N2H4、N(SiH3)3、N(CH3)H2、N(C2H5)H2、N(CH3)2H、N(C2H5)2H、N(CH3)3、N(C2H5)3、(SiMe3)2NH、(CH3)HNNH2、(CH3)2NNH2、苯肼、含N分子、B2H6、9-硼雙環[3,3,1]壬烷、二氫笨并呋喃、吡唑啉、三甲基鋁、二甲基鋅、二乙基鋅、其自由 基物質及其混合物。較佳地,還原氣體為H2、NH3、SiH4、Si2H6、Si3H8、SiH2Me2、SiH2Et2、N(SiH3)3、其氫自由基或其混合物。
反應物可經電漿處理,以便使反應物分解成其自由基形式。當用電漿處理時N2亦可用作還原氣體。舉例而言,可以範圍為約50W至約500W、較佳約100W至約400W之功率產生電漿。電漿可在反應器自身內產生或存在。或者,電漿一般可在一位置處(例如在遠端定位電漿系統中)自反應器中移除。熟習此項技術者將認識到適用於此類電漿處理之方法及設備。
舉例而言,可將反應物引入至在反應腔室中產生電漿之直接電漿反應器中,以在反應腔室中產生經電漿處理之反應物。例示性直接電漿反應器包括由Trion Technologies生產之TitanTM PECVD系統。可在電漿處理之前將反應物引入且保持在反應腔室中。或者,電漿處理可與反應物之引入同時發生。原位電漿典型地為13.56MHz RF感應耦合電漿,其產生在噴頭與基板固持器之間。視是否發生正離子碰撞而定,基板或簇視是否發生正離子碰撞而定,基板或噴頭可為供電電極。原位電漿產生器中之典型施加功率為大致30W至大致1000W。較佳地,大致30W至大致600W之功率用於所揭示之方法中。功率更佳在大致100W至大致500W之範圍內。使用原位電漿之反應物解離典型地小於對於相同功率輸入使用遠端電漿源達成之解離,且因此在反應物解離中不與遠端電漿系統一樣有效,可有益於在易受電漿損害之基板上沈積含鋯膜。
或者,經電漿處理之反應物可在反應腔室外部產生。MKS Instruments之ASTRONi®反應氣體產生器可用於在反應物傳送至反應腔室中 之前處理反應物。在2.45GHz、7kW電漿功率及範圍為大約0.5托至大約10托之壓力下操作,反應物O2可分解成兩個O自由基。較佳地,可藉由約1kW至約10kW、更佳約2.5kW至約7.5kW之功率產生遠端電漿。
腔室內之氣相沈積條件允許所揭示之前驅體及反應物反應且在基板上形成含鋯膜。在一些具體實例中,申請人咸信電漿處理反應物可為反應物提供需要與所揭示之前驅體反應之能量。
視需要沈積之膜的類型而定,可將額外前驅化合物引入至反應器中。額外前驅體可用於為含鋯膜提供相同(亦即鋯)或額外元素。額外元素可包括鉿、鈮、鉭、鑭系元素(鐿、鉺、鏑、釓、鐠、鈰、鑭、釔)、鍺、矽、鈦、錳、鈷、鎳、釕、鉍、鉛、鎂、鋁或此等元素之混合物。當利用額外前驅體時,沈積於基板上之所得膜可含有鋯以及至少一種額外元素。
含鋯成膜組成物及反應物可同時(化學氣相沈積)、依次(原子層沈積)或其不同組合引入至反應器中。在引入組成物與引入反應物之間可用惰性氣體吹掃反應器。或者,反應物與組成物可混合在一起以形成反應物/組成物混合物,且接著以混合物形式引入至反應器中。另一實例為連續引入反應物且藉由脈衝(脈衝化學氣相沈積)引入含鋯成膜組成物。
氣化組成物及反應物可依次或同時脈衝(例如脈衝CVD)至反應器中。組成物之各脈衝可持續範圍為約0.01秒至約10秒,或者約0.3秒至約3秒,或者約0.5秒至約2秒之時間段。在另一具體實例中,反應物亦可脈衝至反應器中。在此類具體實例中,各氣體之脈衝可持續範圍為約0.01秒至約10秒,或者約0.3秒至約3秒,或者約0.5秒至約2秒之時間段。 在另一替代方案中,氣化組成物及一或多種反應物可自噴頭同時噴霧,在該噴頭下固持若干晶圓之基座自旋(空間ALD)。
視特定製程參數而定,沈積可進行不同時間長度。一般而言,可使沈積持續所需或所必需長度之時間以產生具有必需特性之膜。視特定沈積製程而定,典型膜厚度可在幾埃至幾百微米範圍內變化。沈積製程亦可進行獲得所需膜厚度所必需之次數。
在一個非限制性例示性CVD型製程中,氣相之所揭示之含鋯成膜組成物及反應物同時引入至反應器中。兩者反應以形成所得含鋯薄膜。當此例示性CVD製程中之反應物經電漿處理時,該例示性CVD製程變為例示性PECVD製程。反應物可在引入至腔室中之前或之後經電漿處理。
在一個非限制性例示性ALD型製程中,將氣相之所揭示含鋯成膜組成物引入至反應器中,在其中使其與適合基板接觸。接著可藉由吹掃及/或抽空反應器自反應器移除過量組成物。將反應物(例如H2)引入至反應器中,在其中使其與物理或化學吸附之前驅體以自限制方式反應。藉由吹掃及/或抽空反應器自反應器移除任何過量反應物。若所需膜為鋯膜,則此兩步製程可提供所需膜厚度或可重複直至已獲得具有必需厚度之膜。
或者,若所需膜含有鋯及第二種元素,則以上兩步製程之後可將氣相之額外前驅化合物引入至反應器中。額外前驅化合物將基於所沈積之鋯膜之性質來選擇。在引入至反應器中之後,使額外前驅化合物與基板接觸。任何過量之前驅化合物藉由吹掃及/或抽空反應器自反應器移除。同樣,可將反應物引入至反應器中以與物理或化學吸附之前驅化合物反 應。藉由吹掃及/或抽空反應器自反應器移除過量反應氣體。若已達成所需膜厚度,則可終止製程。然而,若需要較厚膜,則可重複整個四步製程。藉由交替提供含鋯成膜組成物、額外前驅化合物及反應物,可沈積所需組成及厚度之膜。
當此例示性ALD製程中之反應物經電漿處理時,該例示性ALD製程變為例示性PEALD製程。反應物可在引入至腔室中之前或之後經電漿處理。
在第二非限制性例示性ALD型製程中,將氣相之所揭示之含Zr成膜組成物中之一者,例如(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)引入至反應器中,在其中使其與TiN基板接觸。接著可藉由吹掃及/或抽空反應器自反應器移除過量含Zr成膜組成物。將反應物(例如O3)引入至反應器中,在其中其與物理或化學吸附之前驅體以自限制方式反應以形成ZrO2或(Zr,Si)O2膜。藉由吹掃及/或抽空反應器自反應器移除任何過量反應物。可重複此等兩個步驟直至ZrO2或(Zr,Si)O2膜獲得所需厚度。接著可將TiN層沈積於ZrO2或(Zr,Si)O2層之頂部上。所得TiN/ZrO2/TiN或TiN/(Zr,Si)O2/TiN堆疊可用於DRAM電容器中。
在第三非限制性例示性ALD型製程中,在第一步中將氣相之所揭示之含鋯成膜組成物中之一者,例如(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)引入至反應器中,在其中使其與TiN基板接觸。接著可藉由吹掃及/或抽空反應器自反應器移除過量含Zr成膜組成物。將反應物(例如O3)引入至反應器中,在其中其與物理或化學吸附之前驅體以自限制方式反應以形成(Zr,Si)O2膜。藉由吹掃及/或抽空反應器自反應器移除任何過量 反應物。此等兩個步驟可視為子循環且可重複x次以獲得所需厚度之(Zr,Si)O2膜。
在第二步驟中,將氣相之含Zr前驅體,例如(甲基)環戊二烯基參(二甲胺基)鋯(IV)或(乙基)環戊二烯基參(二甲胺基)鋯(IV)引入至同一反應器中。接著可藉由吹掃及/或抽空反應器自反應器移除過量含鋯前驅體。將反應物(例如O3)引入至反應器中,在其中其與物理或化學吸附之含Zr前驅體以自限制方式反應以形成ZrO2膜。藉由吹掃及/或抽空反應器自反應器移除任何過量反應物。此等兩個步驟可視為子循環且可重複y次以獲得所需厚度之純ZrO2膜。可重複由x個(Zr,Si)O2子循環及y個ZrO2子循環組成之子循環以獲得所需厚度之(Zr,Si)O2膜。Zr及Si含量可藉由調節x及y個循環之數量來控制(x及y可獨立地在1至20之範圍內)。接著可將TiN層沈積於ZrO2或(Zr,Si)O2層之頂部上。所得TiN/ZrO2/TiN或TiN/(Zr,Si)O2/TiN堆疊可用於DRAM電容器中。
在第四非限制性例示性ALD型製程中,將氣相之含有所揭示之含Zr成膜組成物(例如(三甲基矽基)環戊二烯基參(二甲腔基)鋯(IV))及含Zr前驅體(例如(異丙基)環戊二烯基參(二甲胺基)鋯(IV)或(第三丁基)環戊二烯基參(二甲胺基)鋯(IV))混合物引入至反應器中,在其中使其與例如TiN、NbN、Ru、TiO2、MoO2或MoO3之基板接觸。接著可藉由吹掃及/或抽空反應器自反應器移除過量混合物。將反應物(例如O3)引入至反應器中,在其中其與物理或化學吸附之前驅體以自限制方式反應以形成(Zr,Si)O2膜。藉由吹掃及/或抽空反應器自反應器移除任何過量反應物。可重複此等兩個步驟直至(Zr,Si)O2膜獲得所需厚度。Zr及Si含量可藉由調節混合 物中含鋯成膜組成物與含鋯前驅體之間的比率來控制。可將TiN層沈積於(Zr,Si)O2層之頂部上。所得TiN/ZrO2/TiN或TiN/(Zr,Si)O2/TiN堆疊可用於DRAM電容器中。
由如上文所述製程產生之含鋯膜可包括純鋯、矽化鋯(ZrkSil)、氧化鋯(ZrmOn)、摻雜矽之氧化鋯(ZroSipOq)、氮化鋯(ZrrNs)或摻雜矽之氮化鋯(ZrtSiuNv),其中k、l、m、n、o、p、q、r、s、t、u及v為在包括端點1至6之範圍內的整數。一般熟習此項技術者將認識到藉由考慮周密地選擇適當之所揭示之含Zr成膜組成物、視情況存在之前驅化合物及反應物質,可獲得所需膜組成物。
當獲得所需薄膜厚度時,薄膜可經受進一步處理,諸如熱退火、爐退火、快速熱退火、U當獲得所需膜厚度時,膜可經受進一步加工,諸如熱退火、爐退火、快速熱退火、UV或電子束固化及/或電漿氣體暴露。熟習此項技術者識別用於執行此等額外加工步驟之系統及方法。舉例而言,含鋯膜可在惰性氛圍、含H氛圍、含N氛圍、含O氛圍或其組合下,在大致200℃及大致1000℃範圍內之溫度下暴露大致0.1秒至大致7200秒範圍內之時間。最佳在含H氛圍或含O氛圍下400℃溫度持續3600秒。所得膜可含有較少雜質且因此可具有導致改良漏電流之改良密度。可在執行沈積製程之相同反應腔室中執行退火步驟。或者,可自反應腔腔室移除基板,且在獨立設備中執行退火/急驟退火製程。已發現上述後處理方法中之任一者,但尤其熱退火會有效減少含鋯膜之碳及氮污染。此舉又傾向於改良膜之電阻率。
實施例
以下實施例說明結合本文中之揭示內容進行之實驗。該等實施例並不意欲包括所有且並不意欲限制本文所述之發明範疇。
實施例1:(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)合成[Zr(TMS-Cp)(NMe2)3]
在室溫下向Zr(NMe2)4(66.9g,0.25mol)於大約300mL甲苯中之溶液中逐滴添加新近蒸餾之TMSCpH(34.1g,0.25mol)。攪拌混合物隔夜。接著真空移除溶劑得到亮黃色液體。接著藉由在130℃下180毫托下蒸餾來純化物質,得到68.9g(76%)純黃色液體。圖3中提供NMR1H光譜。NMR1H(δ,ppm,C6D6):6.28(m,4H),2.94(s,18H),0.27(s,9H)。
在TGA分析期間在10℃/min之溫度升高速率下在200mL/min流動之氮氣氛圍中量測得到油狀物留下3.6%剩餘質量。此等結果示於圖6中,其為說明溫度增加時重量減輕(TGA)或溫度差(DTA)之百分比的TGA/DTA圖。
實施例2:(二甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)合成[Zr(DMS-Cp)(NMe2)3]
在室溫下向Zr(NMe2)4(1.23g,4.6mol)於大約20mL甲苯中之溶液中逐滴添加新近蒸餾之DMSCp(0.73g,4.6mol)。攪拌混合物隔夜。接著真空移除溶劑得到亮黃色液體。接著藉由在120℃下14毫托下蒸餾來純化物質,得到0.63g(40%)純黃色液體。圖4中提供NMR1H光譜。NMR1H(δ,ppm,C6D6):6.26-6.29(m,4H),4.65(m,1H),2.94(s,18H),0.27(d,6H)。
在TGA分析期間在10℃/min之溫度升高速率下在200 mL/min流動之氮氣氛圍中量測得到油狀物留下27%剩餘質量。此等結果示於圖7中,其為說明溫度增加時重量減輕(TGA)或溫度差(DTA)之百分比的TGA/DTA圖。
實施例3:(三甲基矽基)環戊二烯基參(異丙氧基)鋯(IV)合成[Zr(TMS-Cp)(OiPr)3]
在0℃下向Zr(TMSCp)(NMe2)3(2.00g,5.5mmol)於大約20mL THF中之溶液中逐滴添加無水異丙醇(1.00g,16.6mmol)。在室溫下攪拌混合物隔夜。接著真空移除溶劑,得到黃色油狀物。接著藉由在100℃下蒸餾純化物質得到1.28g(57%)純淡黃色油狀物。圖5中提供NMR1H光譜。NMR1H(δ,ppm,C6D6):6.59(t,2H),6.42(t,2H),4.24(m,3H),1.16(d,18H),0.36(s,9H)。
在TGA分析期間在10℃/min之溫度升高速率下在200mL/min流動之氮氣氛圍中量測得到油狀物留下2.5%剩餘質量。此等結果示於圖8中,其為說明溫度增加時重量減輕(TGA)或溫度差(DTA)之百分比的TGA/DTA圖。
實施例4:(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)(Zr(TMS-Cp)(NMe2)3)之ALD
使用實施例1中製備之(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)進行ALD測試,其置於加熱至60℃且O3作為氧化反應物之之容器中。在固定於約0.5托下之反應器壓力下使用典型ALD條件。在200-450℃之溫度窗中在矽晶圓上評定完全表面飽和及反應情況下之ALD特性。圖9展示使用(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)之ALD模式中隨溫度 而變之ZrO的生長速率。在200℃與375℃(其為前驅體不以熱方式分解之最大ALD溫度)之間生長率經評定為0.56至0.7Å/循環。圖10展示300℃及375℃下使用(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)之ALD模式中隨前驅體引入時間而變之ZrO的生長速率。隨達375℃觀察到之前驅體引入時間生長率穩定之完全飽和表明此前驅體之非凡熱穩定性。
圖11圖12為分別在300℃及375℃下產生之X射線光電子光譜(XPS)分析。圖13展示在325℃下使用(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)沈積於1:10縱橫比圖案化晶圓中之膜的掃描電子顯微鏡分析(SEM)且展示100%步階覆蓋效能。圖14亦展示在325℃下使用(三甲基矽基)環戊二烯基參(二甲胺基)鋯(IV)沈積於1:40縱橫比圖案化晶圓中之膜的SEM且展示85%步階覆蓋效能。
應瞭解,在如所附申請專利範圍中所表述之本發明原理及範疇內,熟習此項技術者可對本文中已描述且說明以便解釋本發明之性質的細節、材料、步驟及部件配置作出許多其他改變。因此,本發明並不意欲限於上文及/或隨附圖式中給出之實施例中的特定具體實例。
1‧‧‧含鋯成膜組成物遞送裝置
10‧‧‧含鋯成膜組成物
20‧‧‧容器
30‧‧‧入口管道
31‧‧‧入口管道30之末端
35‧‧‧閥門
40‧‧‧出口管道
41‧‧‧出口管道之末端
45‧‧‧閥門

Claims (11)

  1. 一種含鋯成膜組合物,其具有式II的含矽及鋯前驅體:
    Figure 104141228-A0305-02-0061-2
    其中各R1、R2、R3、R4、R5、R6、R7及R10獨立地選自H;C1-C5直鏈、分支鏈或環狀烷基;或C1-C5直鏈、分支鏈或環狀氟烷基。
  2. 如申請專利範圍第1項之含鋯成膜組成物,其中該前驅體選自由以下組成之群:(三甲基矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(TMS-Cp)(OMe)3);(三甲基矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(TMS-Cp)(OEt)3);(三甲基矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(TMS-Cp)(OnPr)3);(三甲基矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr(TMS-Cp)(OiPr)3);(三甲基矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(TMS-Cp)(OtBu)3);(三甲基矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(TMS-Cp)(OsBu)3);(三甲基矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(TMS-Cp)(OnBu)3);(三甲基矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(TMS-Cp)(OiBu)3);(二甲基矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(DMS-Cp)(OMe)3);(二甲基矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(DMS-Cp)(OEt)3);(二甲基矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(DMS-Cp)(OnPr)3);(二甲基矽基)環戊二烯基參(異丙氧基)鋯(IV) (Zr(DMS-Cp)(OiPr)3);(二甲基矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(DMS-Cp)(OtBu)3);(二甲基矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(DMS-Cp)(OsBu)3);(二甲基矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(DMS-Cp)(OnBu)3);(二甲基矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(DMS-Cp)(OiBu)3);(三氟矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(F3Si-Cp)(OMe)3);(三氟矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(F3Si-Cp)(OEt)3);(三氟矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(F3Si-Cp)(OnPr)3);(三氟矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr(F3Si-Cp)(OiPr)3);(三氟矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(F3Si-Cp)(OtBu)3);(三氟矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(F3Si-Cp)(OsBu)3);(三氟矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(F3Si-Cp)(OnBu)3);(三氟矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(F3Si-Cp)(OiBu)3);(二氟矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(F2HSi-Cp)(OMe)3);(二氟矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(F2HSi-Cp)(OEt)3);(二氟矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(F2HSi-Cp)(OnPr)3);(二氟矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr(F2HSi-Cp)(OiPr)3);(二氟矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(F2HSi-Cp)(OtBu)3);(二氟矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(F2HSi-Cp)(OsBu)3);(二氟矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(F2HSi-Cp)(OnBu)3);(二氟矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(F2HSi-Cp)(OiBu)3);(單氟矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(FH2Si-Cp)(OMe)3);(單氟矽基)環戊二烯基參(乙氧基)鋯(IV) (Zr(FH2Si-Cp)(OEt)3);(單氟矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(FH2Si-Cp)(OnPr)3);(單氟矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr(FH2Si-Cp)(OiPr)3);(單氟矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(FH2Si-Cp)(OtBu)3);(單氟矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(FH2Si-Cp)(OsBu)3);(單氟矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(FH2Si-Cp)(OnBu)3);(單氟矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(FH2Si-Cp)(OiBu)3);(氟二甲基矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr(FMe2Si-Cp)(OMe)3);(氟二甲基矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr(FMe2Si-Cp)(OEt)3);(氟二甲基矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr(FMe2Si-Cp)(OnPr)3);(氟二甲基矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr(FMe2Si-Cp)(OiPr)3);(氟二甲基矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr(FMe2Si-Cp)(OtBu)3);(氟二甲基矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr(FMe2Si-Cp)(OsBu)3);(氟二甲基矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr(FMe2Si-Cp)(OnBu)3);(氟二甲基矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr(FMe2Si-Cp)(OiBu)3);(參(三氟甲基)矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OMe)3);(參(三氟甲基)矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OEt)3);(參(三氟甲基)矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OnPr)3);(參(三氟甲基)矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OiPr)3);(參(三氟甲基)矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OtBu)3);(參(三氟甲基)矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OsBu)3);(參(三氟甲基)矽 基)環戊二烯基參(正丁氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OnBu)3);(參(三氟甲基)矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr((CF3)3Si-Cp)(OiBu)3);(雙(三氟甲基)矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OMe)3);(雙(三氟甲基)矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OEt)3);(雙(三氟甲基)矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OnPr)3);(雙(三氟甲基)矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OiPr)3);(雙(三氟甲基)矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OtBu)3);(雙(三氟甲基)矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OsBu)3);(雙(三氟甲基)矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OnBu)3);(雙(三氟甲基)矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr((CF3)2HSi-Cp)(OiBu)3);((三氟甲基)二甲基矽基)環戊二烯基參(甲氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OMe)3);((三氟甲基)二甲基矽基)環戊二烯基參(乙氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OEt)3);((三氟甲基)二甲基矽基)環戊二烯基參(正丙氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OnPr)3);((三氟甲基)二甲基矽基)環戊二烯基參(異丙氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OiPr)3);((三氟甲基)二甲基矽基)環戊二烯基參(第三丁氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OtBu)3);((三氟甲基)二甲基矽基)環戊二烯基參(第二丁氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OsBu)3);((三氟甲基)二甲基矽基)環戊二烯基參(正丁氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OnBu)3);及((三氟甲基)二甲基矽基)環戊二烯基參(異丁氧基)鋯(IV)(Zr((CF3)Me2Si-Cp)(OiBu)3)。
  3. 如申請專利範圍第2項之含鋯成膜組成物,其中該前驅體為(三甲基矽 基)環戊二烯基參(異丙氧基)鋯(IV)[Zr(TMS-Cp)(OiPr)3]。
  4. 如申請專利範圍第1項之含鋯成膜組成物,該組成物包含95% w/w與100% w/w之間的該前驅體。
  5. 如申請專利範圍第1項之含鋯成膜組成物,該組成物包含0.0% w/w與5.0% w/w之間的雜質。
  6. 如申請專利範圍第5項之含鋯成膜組成物,該等雜質包括醇;烷基胺;二烷基胺;烷基亞胺;環戊二烯;二環戊二烯;烷基鍺烷;THF;乙醚;戊烷;環己烷;庚烷;苯;甲苯;氯化金屬化合物;烷基醯胺基鋰、烷基醯胺基鈉或烷基醯胺基鉀;烷氧基鋰、烷氧基鈉或烷氧基鉀;及/或環戊二烯基鋰、環戊二烯基鈉或環戊二烯基鉀。
  7. 如申請專利範圍第1項之含鋯成膜組成物,該組成物包含0ppbw與1ppmw之間的金屬雜質。
  8. 如申請專利範圍第7項之含鋯成膜組成物,該等金屬雜質包括鋁(Al)、砷(As)、鋇(Ba)、鈹(Be)、鉍(Bi)、鎘(Cd)、鈣(Ca)、鉻(Cr)、鈷(Co)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉿(Hf)、鋯(Zr)、銦(In)、鐵(Fe)、鉛(Pb)、鋰(Li)、鎂(Mg)、錳(Mn)、鎢(W)、鎳(Ni)、鉀(K)、鈉(Na)、鍶(Sr)、釷(Th)、錫(Sn)、鈦(Ti)、鈾(U)及/或鋅(Zn)。
  9. 一種在基板上沈積含鋯膜之方法,該方法包含以下步驟:將氣相之如申請專利範圍第1項至第8項中任一項之含鋯成膜組成物引入至其中安置有基板之反應器中,且將至少一部分該含矽及鋯前驅體沈積於該基板上。
  10. 如申請專利範圍第9項之方法,其進一步包含將至少一種反應物引入至該反應器中,其中該反應物選自由以下組成之群:H2、H2CO、N2H4、NH3、SiH4、Si2H6、Si3H8、SiH2Me2、SiH2Et2、N(SiH3)3、其氫自由基及其混合物。
  11. 如申請專利範圍第9項之方法,其進一步包含將至少一種反應物引入至該反應器中,其中該反應物選自由以下組成之群:O2、O3、H2O、H2O2、NO、N2O、NO2、其氧自由基及其混合物。
TW104141228A 2014-12-23 2015-12-09 用於含鋯膜氣相沈積的含鋯成膜組成物 TWI693229B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/580,352 2014-12-23
US14/580,352 US9663547B2 (en) 2014-12-23 2014-12-23 Silicon- and Zirconium-containing compositions for vapor deposition of Zirconium-containing films

Publications (2)

Publication Number Publication Date
TW201630921A TW201630921A (zh) 2016-09-01
TWI693229B true TWI693229B (zh) 2020-05-11

Family

ID=53399381

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104141228A TWI693229B (zh) 2014-12-23 2015-12-09 用於含鋯膜氣相沈積的含鋯成膜組成物

Country Status (6)

Country Link
US (1) US9663547B2 (zh)
JP (1) JP6492178B2 (zh)
KR (1) KR102492017B1 (zh)
CN (1) CN107210219A (zh)
TW (1) TWI693229B (zh)
WO (1) WO2016106090A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6501544B2 (ja) * 2015-02-10 2019-04-17 東ソー株式会社 第4族金属錯体、その製造方法、第4族金属含有薄膜の作製方法
WO2018048481A1 (en) * 2016-09-09 2018-03-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Group 4 transition metal-containing film forming compositions for vapor deposition of group 4 transition metal-containing films
KR20180038823A (ko) 2016-10-07 2018-04-17 삼성전자주식회사 유기 금속 전구체, 이를 이용한 막 형성 방법 및 이를 이용한 반도체 장치의 제조 방법
US10106568B2 (en) 2016-10-28 2018-10-23 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films
US10364259B2 (en) * 2016-12-30 2019-07-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US10925804B2 (en) 2017-10-04 2021-02-23 Sundance Spas, Inc. Remote spa control system
CN109338331A (zh) * 2018-11-27 2019-02-15 合肥安德科铭半导体科技有限公司 一种高介电常数的硅掺杂的氧化锆薄膜的制备方法及其产物
KR102679322B1 (ko) * 2021-05-21 2024-06-28 에스케이트리켐 주식회사 4족 전이금속 함유 박막 형성용 전구체, 이를 이용한 4족 전이금속 함유 박막 형성 방법 및 상기 4족 전이금속 함유 박막을 포함하는 반도체 소자.
WO2024116946A1 (ja) * 2022-11-30 2024-06-06 東京エレクトロン株式会社 成膜方法、成膜装置及び半導体装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201311702A (zh) * 2011-07-22 2013-03-16 Air Liquide 雜配位(烯丙基)(吡咯-2-醛亞胺鹽(aldiminate))含金屬前驅物其合成及其氣相沈積以沈積含金屬膜

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931417A (en) 1987-11-09 1990-06-05 Chisso Corporation Transition-metal compound having a bis-substituted-cyclopentadienyl ligand of bridged structure
EP0818472B2 (en) * 1990-10-05 2009-07-29 Idemitsu Kosan Co., Ltd. Cyclic olefin copolymers, compositions and molded articles comprising the copolymers
ATE153680T1 (de) * 1992-03-03 1997-06-15 Idemitsu Kosan Co Pfropfcopolymer, verfahren zu seiner herstellung und harzzusammensetzung, worin es enthalten ist
US6428623B2 (en) 1993-05-14 2002-08-06 Micron Technology, Inc. Chemical vapor deposition apparatus with liquid feed
IT1272939B (it) 1995-02-01 1997-07-01 Enichem Spa Catalizzatore metallocenico supportato per la (co)polimerizzazione delle olefine
KR100326744B1 (ko) 1995-02-28 2002-06-20 로데릭 더블류 루이스 가공물의표면상에막의화학적증착을수행하는방법
US5527752A (en) 1995-03-29 1996-06-18 Union Carbide Chemicals & Plastics Technology Corporation Catalysts for the production of polyolefins
IT1283010B1 (it) * 1996-05-15 1998-04-03 Enichem Spa Complesso metallocenico supportato e procedimento per la sua prepa- razione
US5986533A (en) 1996-06-18 1999-11-16 Dale Electronics, Inc. Monolithic thick film inductor
US6197683B1 (en) 1997-09-29 2001-03-06 Samsung Electronics Co., Ltd. Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using the same
TW383427B (en) 1998-04-03 2000-03-01 United Microelectronics Corp Method for etching tantalum oxide
FI108375B (fi) 1998-09-11 2002-01-15 Asm Microchemistry Oy Menetelmõ eristõvien oksidiohutkalvojen valmistamiseksi
CA2248463A1 (en) 1998-09-28 2000-03-28 Scott Collins Iminophosphonamide complexes for olefin polymerization
US6445023B1 (en) 1999-03-16 2002-09-03 Micron Technology, Inc. Mixed metal nitride and boride barrier layers
US6238734B1 (en) 1999-07-08 2001-05-29 Air Products And Chemicals, Inc. Liquid precursor mixtures for deposition of multicomponent metal containing materials
JP3862900B2 (ja) 1999-10-01 2006-12-27 株式会社トリケミカル研究所 導電性バリア膜形成材料、導電性バリア膜形成方法、及び配線膜形成方法
US6743473B1 (en) 2000-02-16 2004-06-01 Applied Materials, Inc. Chemical vapor deposition of barriers from novel precursors
FI117979B (fi) 2000-04-14 2007-05-15 Asm Int Menetelmä oksidiohutkalvojen valmistamiseksi
US6984591B1 (en) 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
JP4868639B2 (ja) 2000-06-12 2012-02-01 株式会社Adeka 化学気相成長用原料及びこれを用いた薄膜の製造方法
JP2004507551A (ja) 2000-08-28 2004-03-11 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド ソース材料組成物および化学的蒸着法による基板上への金属膜形成方法
JP4693970B2 (ja) 2000-09-14 2011-06-01 株式会社トリケミカル研究所 ゲート酸化膜形成方法
JP3409290B2 (ja) 2000-09-18 2003-05-26 株式会社トリケミカル研究所 ゲート酸化膜形成材料
US6638876B2 (en) * 2000-09-19 2003-10-28 Mattson Technology, Inc. Method of forming dielectric films
US6943224B2 (en) * 2001-04-30 2005-09-13 W. R. Grace & Co.-Conn. Process for preparing supported transition metal catalyst systems and catalyst systems prepared thereby
US6669990B2 (en) 2001-06-25 2003-12-30 Samsung Electronics Co., Ltd. Atomic layer deposition method using a novel group IV metal precursor
AU2002337310A1 (en) 2001-10-26 2003-05-06 Epichem Limited Improved precursors for chemical vapour deposition
US6858547B2 (en) 2002-06-14 2005-02-22 Applied Materials, Inc. System and method for forming a gate dielectric
WO2004010469A2 (en) 2002-07-18 2004-01-29 Aviza Technology, Inc. Atomic layer deposition of multi-metallic precursors
TW200408015A (en) 2002-08-18 2004-05-16 Asml Us Inc Atomic layer deposition of high K metal silicates
US6689675B1 (en) 2002-10-31 2004-02-10 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric
US6844271B2 (en) 2003-05-23 2005-01-18 Air Products And Chemicals, Inc. Process of CVD of Hf and Zr containing oxynitride films
US20050056219A1 (en) 2003-09-16 2005-03-17 Tokyo Electron Limited Formation of a metal-containing film by sequential gas exposure in a batch type processing system
JP2005104994A (ja) 2003-09-26 2005-04-21 Sekisui Chem Co Ltd 無機薄膜成膜方法
KR101012950B1 (ko) 2003-10-15 2011-02-08 삼성전자주식회사 유기 절연체 형성용 조성물 및 이를 이용하여 제조된 유기절연체
JP2005171291A (ja) 2003-12-09 2005-06-30 Tosoh Corp チタン含有薄膜およびその製造方法
JP2005209766A (ja) 2004-01-21 2005-08-04 Mitsubishi Materials Corp ハフニウム含有酸化膜の製造方法
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
JP4666339B2 (ja) 2004-05-14 2011-04-06 株式会社トリケミカル研究所 導電性バリア膜形成材料、導電性バリア膜形成方法、及び配線膜形成方法
US20060062917A1 (en) 2004-05-21 2006-03-23 Shankar Muthukrishnan Vapor deposition of hafnium silicate materials with tris(dimethylamino)silane
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
KR100728962B1 (ko) 2004-11-08 2007-06-15 주식회사 하이닉스반도체 지르코늄산화막을 갖는 반도체소자의 캐패시터 및 그 제조방법
US7307177B2 (en) * 2004-12-17 2007-12-11 Exxonmobil Chemical Patents Inc. Metallocene complexes, their synthesis and use in catalyst systems for olefin polymerization
WO2007005088A2 (en) 2005-07-01 2007-01-11 Honeywell International Inc. Vaporizable metalorganic compounds for deposition of metals and metal-containing thin films
WO2007011459A1 (en) 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same
GB2432363B (en) 2005-11-16 2010-06-23 Epichem Ltd Hafnocene and zirconocene precursors, and use thereof in atomic layer deposition
CN101341155B (zh) 2005-12-06 2012-03-07 Tri化学研究所股份有限公司 铪系化合物、形成铪系薄膜的材料和形成铪系薄膜的方法
WO2007140813A1 (en) 2006-06-02 2007-12-13 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
KR20080101040A (ko) 2007-05-15 2008-11-21 주식회사 유피케미칼 금속 박막 또는 세라믹 박막 증착용 유기 금속 전구체화합물 및 이를 이용한 박막 증착 방법
KR101353824B1 (ko) 2007-06-12 2014-01-21 삼성전자주식회사 유기 절연체 형성용 조성물 및 이를 이용하여 제조된 유기절연체
KR20150139628A (ko) 2007-09-14 2015-12-11 시그마 알드리치 컴퍼니 엘엘씨 하프늄과 지르코늄계 전구체를 이용한 원자층 증착에 의한 박막의 제조 방법
US9034105B2 (en) 2008-01-10 2015-05-19 American Air Liquide, Inc. Solid precursor sublimator
JP5535945B2 (ja) 2008-02-27 2014-07-02 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 原子層蒸着(ald)法を用いる基板上にチタン含有層を形成する方法
WO2011020042A2 (en) 2009-08-14 2011-02-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hafnium- and zirconium-containing precursors and methods of using the same
KR101284664B1 (ko) 2010-12-31 2013-07-11 삼성전자주식회사 실릴아민 리간드가 포함된 유기금속화합물, 및 이를 전구체로 이용한 금속 산화물 또는 금속-규소 산화물의 박막 증착 방법
US8760845B2 (en) 2012-02-10 2014-06-24 Nanya Technology Corp. Capacitor dielectric comprising silicon-doped zirconium oxide and capacitor using the same
TW201410688A (zh) * 2012-05-25 2014-03-16 Air Liquide 用於蒸氣沈積之含鋯前驅物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201311702A (zh) * 2011-07-22 2013-03-16 Air Liquide 雜配位(烯丙基)(吡咯-2-醛亞胺鹽(aldiminate))含金屬前驅物其合成及其氣相沈積以沈積含金屬膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Trimethylsilylcyclopentadienyl tris(dimethylamino)zirconium as a single-source metal precursor for the atomic layer deposition of ZrxSi1-xO4, Thin Solid Films, Vol.564, 2014, pp.140-145 (Available online 1 June 2014) *

Also Published As

Publication number Publication date
US9663547B2 (en) 2017-05-30
TW201630921A (zh) 2016-09-01
US20150176120A1 (en) 2015-06-25
KR20170097677A (ko) 2017-08-28
KR102492017B1 (ko) 2023-01-25
JP2018503247A (ja) 2018-02-01
WO2016106090A1 (en) 2016-06-30
CN107210219A (zh) 2017-09-26
JP6492178B2 (ja) 2019-03-27

Similar Documents

Publication Publication Date Title
TWI693229B (zh) 用於含鋯膜氣相沈積的含鋯成膜組成物
US20170044664A1 (en) Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films
JP6337116B2 (ja) 第5族遷移金属含有膜を蒸着させるための第5族遷移金属含有化合物
KR101560755B1 (ko) 모노시클로펜타디에닐 티타늄계 전구체를 이용한 원자층 증착에 의한 티타늄 함유 박막의 제조 방법
KR101502251B1 (ko) 유전체 필름의 형성 방법, 신규 전구체 및 그의 반도체 제조에서의 용도
CN110073474B (zh) 锆前体、铪前体、钛前体及使用其沉积含第4族的膜
JP6865306B2 (ja) ニオブ含有膜形成用組成物及びニオブ含有膜の蒸着
KR101304760B1 (ko) 증착용 티타늄 함유 전구체
KR20170012129A (ko) 13족 금속 또는 메탈로이드 니트라이드 막을 증착시키는 방법
JP2010539710A (ja) ハフニウム系前駆体およびジルコニウム系前駆体を用いる原子層成長による薄膜の作製方法
JP6681398B2 (ja) ジルコニウム含有膜を蒸着するためのジルコニウム含有膜形成組成物
TW201335417A (zh) 用於ald沈積金屬矽酸鹽膜之含矽化合物
US10106568B2 (en) Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films
US20220205099A1 (en) Group iv element containing precursors and deposition of group iv element containing films
JP2019534939A (ja) 4族遷移金属含有膜の気相成長のための4族遷移金属含有膜形成用組成物
TWI794671B (zh) 用於選擇性形成含金屬膜之化合物及方法