TWI692635B - 光學量測穩定性控制系統 - Google Patents

光學量測穩定性控制系統 Download PDF

Info

Publication number
TWI692635B
TWI692635B TW108122429A TW108122429A TWI692635B TW I692635 B TWI692635 B TW I692635B TW 108122429 A TW108122429 A TW 108122429A TW 108122429 A TW108122429 A TW 108122429A TW I692635 B TWI692635 B TW I692635B
Authority
TW
Taiwan
Prior art keywords
optical measurement
heat
flow
control system
stability control
Prior art date
Application number
TW108122429A
Other languages
English (en)
Other versions
TW202018286A (zh
Inventor
蘇文賢
温峻明
林家慶
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201910789689.3A priority Critical patent/CN111121651A/zh
Priority to US16/575,416 priority patent/US11454537B2/en
Application granted granted Critical
Publication of TWI692635B publication Critical patent/TWI692635B/zh
Publication of TW202018286A publication Critical patent/TW202018286A/zh

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一種光學量測穩定性控制系統,其包括機殼、循環流場、光學量測系統以及散熱流場。機殼具有密閉空間。循環流場位於密閉空間中且適於產生在密閉空間中流動的氣流。光學量測系統位於密閉空間中且位於氣流的流動路徑上。散熱流場與機殼連接且位於流動路徑的終端。散熱流場藉由熱傳導及強制對流將熱排出密閉空間。

Description

光學量測穩定性控制系統
本發明是有關於一種光學系統,且特別是有關於一種光學量測穩定性控制系統。
光學量測系統以非接觸式量測方式測量物體的表面形貌(高度或深度等資訊),因此可避免對物體造成破壞。此外,光學量測系統還具有高檢測效率、能夠進行全尺寸檢測以及適用於產線等優點。架設在具有通風孔的機殼中的光學量測系統可有效排熱,但其影像品質容易受到灰塵或水等的影響,導致量測結果不利判讀。另一方面,架設在密閉機殼中的光學量測系統具有高防塵、防水效果,但因無法有效排出密閉空間中的熱,且受產線環境温度變異影響,使得量測結果因溫度飄移效應而不穩定。
本發明提供一種光學量測穩定性控制系統,其具有提升量測穩定性。
本發明的一種光學量測穩定性控制系統包括機殼、循環流場、光學量測系統以及散熱流場。機殼具有密閉空間。循環流場位於密閉空間中且適於產生在密閉空間中流動的氣流。光學量測系統位於密閉空間中且位於氣流的流動路徑上。散熱流場與機殼連接且位於流動路徑的終端。散熱流場藉由熱傳導及強制對流,將熱排出密閉空間。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
本文中所提到的方向用語,例如:「上」、「下」、「前」、「後」、「左」、「右」等,僅是參考附圖的方向。因此,使用的方向用語是用來說明,而並非用來限制本發明。在附圖中,各圖式繪示的是特定實施例中所使用的方法、結構及/或材料的通常性特徵。然而,這些圖式不應被解釋為界定或限制由這些實施例所涵蓋的範圍或性質。舉例來說,為了清楚起見,各膜層、區域及/或結構的相對尺寸、厚度及位置可能縮小或放大。
在本文中,相同或相似的元件將採用相同或相似的標號,且將省略其贅述。此外,不同實施例中的特徵在沒有衝突的情況下可相互組合,且依本說明書或申請專利範圍所作之簡單的等效變化與修飾,皆仍屬本專利涵蓋之範圍內。另外,本說明書或申請專利範圍中提及的「第一」、「第二」等用語僅用以命名分立(discrete)的元件或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限,也並非用以限定元件的製造順序或設置順序。
圖1是依照本發明的一實施例的一種光學量測穩定性控制系統1的示意圖。圖2是圖1的光學量測穩定性控制系統1中的氣流AF的流動路徑的示意圖。
請參照圖1及圖2,光學量測穩定性控制系統1適於測量待測物體O的表面形貌。舉例來說,當待測物體O具有盲孔(未繪示)時,光學量測穩定性控制系統1可測量所述盲孔的深度;當待測物體O的表面具有高低起伏時,光學量測穩定性控制系統1可測量所述高低起伏的斷差;當待測物體O具有凸出部(未繪示)時,光學量測穩定性控制系統1可測量所述凸出部的高度。
光學量測穩定性控制系統1是以非接觸式(光學)量測方式測量待測物體O的表面形貌,即無須以探針接觸待測物體O即可量測待測物體O的表面形貌。因此,光學量測穩定性控制系統1可避免傳統接觸式量測方式對於待測物體O造成的破壞。對應地,光學量測穩定性控制系統1可測量任何耐光照射且具有反光特性的物體,而不限於堅硬的物體。
光學量測穩定性控制系統1包括機殼10、循環流場11、光學量測系統12以及散熱流場13。機殼10具有適於容置元件的空間S。空間S可以是密閉空間。具體地,機殼10可採用氣密設計(無通風孔設計),即機殼10可不具有讓內外氣體流通的通風孔。如此,除了可提高防塵、防水的效果之外,還可降低外部環境(利如風或溫度)對於機殼10內部環境的影響及干擾。
依據不同的需求,機殼10可包括多種材質的多個部件組裝而成。所述多種材質可包括金屬、玻璃或塑膠等,但不以此為限。舉例來說,機殼10可包括透光部100。透光部100適於讓光束(如光束B1以及光束B2)通過,以利表面形貌的量測。此外,機殼10還可包括多個遮光部101。多個遮光部101與透光部100共同圍設出空間S。多個遮光部101適於遮蔽光束(如環境光束,未繪示),以避免環境光束干擾量測結果。多個遮光部101可具有由易釋放輻射熱的材質(深色或表面粗糙的材質)製成的本體,以藉由熱輻射將熱排出密閉空間(空間S)。另一方面,多個遮光部101也可具有由不易吸收輻射熱的材質(如玻璃或塑膠等)製成的本體,以避免吸收輻射熱。依據不同的需求,透光部100以及多個遮光部101中的每一個的本體的至少一表面上可形成有粗糙化結構、塗層、光學膜、裝飾層、其他結構及/或膜層等。
循環流場11位於密閉空間(空間S)中且適於產生在密閉空間中流動的氣流AF(參照圖2)。舉例來說,循環流場11可包括主動式散熱元件110以及多通路流道(例如包括循環流場流道結構111至循環流場流道結構116等)。
密閉空間中的氣流AF由主動式散熱元件110產生。主動式散熱元件110適於克服密閉空間(空間S)中的高靜壓,且能帶動足夠的流場流速,進而達到熱導引的效果。舉例來說,主動式散熱元件110可包括合成噴流裝置、壓電噴流裝置、微型鼓風機(micro-blower)、微型扇(micro-fan)、微型泵(micro-pump)或其他能夠產生氣流AF的元件。微型扇可包括軸流扇、離心扇或其他適於架設在密閉空間(空間S)中的風扇。
多通路流道(例如包括循環流場流道結構111至循環流場流道結構116)在密閉空間(空間S)中形成多個流道。這些流道有助於導引氣流AF,使氣流AF朝規定的流動方向或依照規定的流動路徑流動。此外,這些流道位於光束(如光束B1以及光束B2)的傳遞路徑之外,亦即這些流道不位在光束的傳遞路徑上,以避免影響光束的傳遞或造成光束的偏折或介面反射等。
圖2示出循環流場流道結構111至循環流場流道結構116在密閉空間中形成第一流道(如外側流道,參見由多個粗實線箭頭連線所形成的流動路徑)以及第二流道(如內側流道,參見由多個細實線箭頭連線所形成的流動路徑),其中氣流AF的第一部分P1在第一流道中流動,且氣流AF的第二部分P2在第二流道中流動。然而,密閉空間中的循環流場流道結構以及流道各自的數量以及多個流道的布置方式可依需求改變,而不以此為限。
光學量測系統12位於密閉空間中且位於氣流AF的流動路徑上。舉例來說,光學量測系統12可包括第一光源120、第二光源121以及影像感測器122。第一光源120適於輸出光束B1,第二光源121適於輸出光束B2,且影像感測器122適於接收被待測物體O反射的光束B1以及光束B2。藉由第一光源120輸出的光束B1以及第二光源121輸出的光束B2照射待測物體O,並以影像感測器122接收被待測物體O反射的光束B1以及光束B2,可利用三角量測法計算出待測物體O的表面高度或深度變化。
第一光源120以及第二光源121可包括雷射源;對應地,光束B1以及光束B2可為雷射光束,但光源的種類不以此為限。此外,影像感測器122可包括互補式金氧半導體(Complementary Metal-Oxide Semiconductor,CMOS)元件,但影像感測器122的種類也不以此為限。
第一光源120、第二光源121以及影像感測器122在工作時(開啟狀態下)會產生熱。多通路流道可依照這些熱源(包括第一光源120、第二光源121以及影像感測器122)的分布進行設計,使主動式散熱元件110所產生的氣流AF流經每一個熱源並將這些分散的熱源所產生的熱導向散熱流場13,藉此使密閉空間達到均熱的效果。舉例來說,第一光源120可位於第一流道中,且第一光源120工作所產生的熱可經由氣流AF的第一部分P1導向散熱流場13;第二光源121可位於第二流道中,且第二光源121工作所產生的熱可經由氣流AF的第二部分P2導向散熱流場13;影像感測器122可位於第一流道以及第二流道中,且影像感測器122工作所產生的熱可經由氣流AF的第一部分P1以及第二部分P2導向散熱流場13。
依據不同的需求,光學量測系統12可進一步包括其他元件。舉例來說,光學量測系統12可進一步包括合光元件123以及聚焦鏡組124。合光元件123設置在第一光源120輸出的光束B1以及第二光源121輸出的光束B2的傳遞路徑上,且合光元件123適於將光束B1以及光束B2合併。舉例來說,合光元件123可包括至少一稜鏡,但不以此為限。聚焦鏡組124設置在被待測物體O反射的光束B1以及光束B2的傳遞路徑上,且聚焦鏡組124適於將被待測物體O反射的光束B1以及光束B2匯聚至影像感測器122。舉例來說,聚焦鏡組124可包括至少一透鏡。
散熱流場13與機殼10連接且位於流動路徑的終端(影像感測器122的後方可視為流動路徑的終端)。散熱流場13可藉由熱傳導及強制對流將熱排出密閉空間(空間S)。具體地,散熱流場13可包括熱交換器130以及散熱模組131。
熱交換器130位於密閉空間中且位於流動路徑的終端。舉例來說,熱交換器130可包括熱傳導基材、散熱座、熱交換鰭片或上述至少兩個的組合。圖1及圖2示意性繪示出熱交換器130包括熱傳導基材1300以及熱交換鰭片1301,但熱交換器130的組成不以此為限。
熱傳導基材1300可固定(例如鎖固)於機殼10的側壁上且包括鋁合金基板、銅合金基板、雙相流導熱基板或雙相流導熱管,但不以此為限。在另一實施例中,機殼10可具有容置孔(未繪示),且熱傳導基材1300可嵌於機殼10的容置孔中。在此架構下,熱傳導基材1300可視為機殼10的部件之一。在一實施例,熱交換器130可包括致冷晶片(未繪示),且致冷晶片可嵌於機殼10的容置孔中。在包括致冷晶片的架構下,熱交換器130可包括也可不包括熱交換鰭片1301。經由多通路流道導引至散熱流場13的熱H可藉由多面積的熱交換鰭片1301傳導至熱傳導基材1300(或致冷晶片)。熱傳導基材1300(或致冷晶片)可將傳導至熱交換鰭片1301的熱H均勻化並利用熱傳導將熱H傳導至位於機殼10外部的散熱模組131。
散熱模組131可包括主動式散熱元件、散熱座、熱交換鰭片、水冷模組、感溫裝置或上述至少兩個的組合。圖1及圖2示意性繪示出散熱模組131包括主動式散熱元件1310、熱交換鰭片1311以及感溫裝置1312,但散熱模組131的組成不以此為限。
主動式散熱元件1310適於提供足夠的流場F,以將經由熱傳導而導引至熱交換鰭片1311的熱H傳遞至外部環境。舉例來說,主動式散熱元件1310可包括合成噴流裝置、壓電噴流裝置、鼓風機、風扇、泵或其他能夠產生氣流的元件。風扇可包括軸流扇、離心扇或其他合適的風扇。
感溫裝置1312可包括溫度感測元件,以偵測密閉空間(空間S)中的溫度。將感溫裝置1312設置在機殼10的外部可方便感溫裝置1312的組裝以及替換。
在一實施例中,散熱模組131可與溫度控制系統整合,使密閉空間(空間S)維持恆溫。如此,除了有助於維持光學元件的操作特性(如波長、頻率、光功率及暗電流等)的一致性之外,還可降低溫度飄移所導致的量測誤差,並提升量測精度以及量測穩定性。
圖3是可應用於圖1的光學量測穩定性控制系統1的溫度控制系統33的方塊圖。請參照圖3,溫度控制系統33可包括顯示模組330、輸入模組331、通訊模組332、微處理器333、溫度感測元件334、驅動器335、散熱模組336、電源供應元件337以及電源供應元件338。
顯示模組330可顯示溫度控制指令、受控體(如温度感測元件)的溫度以及散熱模組336的運轉狀態(如轉速)等。輸入模組331與顯示模組330耦接,且使用者可通過輸入模組331輸入控制指令。顯示模組330與輸入模組331可整合於一電子裝置中。所述電子裝置可包括桌上型電腦或任何種類的可攜式電子裝置,如筆記型電腦、平板電腦或手機等。顯示模組330可為例如螢幕等,輸入模組331可為例如鍵盤或觸控螢幕等。
通訊模組332耦接於輸入模組331、顯示模組330以及微處理器333。通訊模組332適於將控制指令轉換成微處理器333所能接收與發送的訊號,並將訊號傳送至微處理器333。通訊模組332可為無線通訊器或無線網路或藍芽等等。
微處理器333耦接於通訊模組332、溫度感測元件334、驅動器335、散熱模組336以及電源供應元件337。微處理器333將來自通訊模組332的訊號轉換為控制訊號並將控制訊號傳遞至驅動器335。散熱模組336可為主動式散熱器件,例如風扇、泵或致冷晶片等等。
驅動器335耦接於微處理器333以及散熱模組336。驅動器335根據控制訊號調節散熱模組336(如主動式散熱元件1310)的輸出功率(如轉速)且可向微處理器333回授調節訊號。
溫度感測元件334耦接於微處理器333,且溫度感測元件334可向微處理器333回授受控體的溫度訊號,讓微處理器333進行訊號分析以及控制訊號調節。舉例來說,當受控體的溫度較高時,可對應提升散熱模組336的轉速。相反地,當受控體的溫度較低時,可對應降低散熱模組336的轉速。
散熱模組336耦接於微處理器333,且散熱模組336可向微處理器333回授訊號(如轉速)。微處理器333可依據散熱模組336回授的訊號確認散熱模組336的運轉狀態(如轉速是否異常)。
電源供應元件337耦接於微處理器333,以提供微處理器333所需的電力。電源供應元件338耦接於散熱模組336,以提供散熱模組336所需的電力。
利用溫度控制系統33,光學量測穩定性控制系統可維持穩定的溫度、提升量測精度並大幅降低量測誤差。傳統的光學量測系統在環境溫度變化超過攝氏4度時,會造成12μm的量測誤差。相較之下,本發明實施例的光學量測穩定性控制系統在環境溫度變化超過攝氏5度時,有2.3μm的量測誤差。
綜上所述,在本發明的實施例中,光學量測系統設置在密閉空間中,除了可提高防塵、防水的效果之外,還可降低外部環境(利如風或溫度)對於機殼內部環境的影響及干擾。此外,光學量測系統工作所產生的熱可經由循環流場導引至散熱流場,再經由散熱流場將熱排出密閉空間。因此,本發明的光學量測穩定性控制系統可維持相對小的溫度變化,而能夠降低溫度飄移對於量測結果的負面影響,從而具有提升量測穩定性。在一實施例中,散熱模組可與溫度控制系統整合,使密閉空間維持恆溫。如此,除了有助於維持光學元件的操作特性的一致性之外,還可進一步降低溫度飄移所導致的量測誤差,並提升量測精度以及量測穩定性。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
1:光學量測穩定性控制系統 10:機殼 11:循環流場 12:光學量測系統 13:散熱流場 33:溫度控制系統 100:透光部 101:遮光部 110、1310:主動式散熱元件 111、112、113、114、115、116:循環流場流道結構 120:第一光源 121:第二光源 122:影像感測器 123:合光元件 124:聚焦鏡組 130:熱交換器 131、336:散熱模組 330:顯示模組 331:輸入模組 332:通訊模組 333:微處理器 334:溫度感測元件 335:驅動器 337、338:電源供應元件 1300:熱傳導基材 1301、1311:熱交換鰭片 1312:感溫裝置 AF:氣流 B1、B2:光束 F:流場 H:熱 O:待測物體 P1:第一部分 P2:第二部分 S:空間
圖1是依照本發明的一實施例的一種光學量測穩定性控制系統的示意圖。 圖2是圖1的光學量測穩定性控制系統中的氣流的流動路徑的示意圖。 圖3是可應用於圖1的光學量測穩定性控制系統的溫度控制系統的方塊圖。
1:光學量測穩定性控制系統
10:機殼
11:循環流場
12:光學量測系統
13:散熱流場
100:透光部
101:遮光部
110、1310:主動式散熱元件
111、112、113、114、115、116:循環流場流道結構
120:第一光源
121:第二光源
122:影像感測器
123:合光元件
124:聚焦鏡組
130:熱交換器
131:散熱模組
1300:熱傳導基材
1301、1311:熱交換鰭片
1312:感溫裝置
B1、B2:光束
O:待測物體
S:空間

Claims (10)

  1. 一種光學量測穩定性控制系統,包括: 一機殼,具有一密閉空間; 一循環流場,位於該密閉空間中且適於產生在該密閉空間中流動的一氣流; 一光學量測系統,位於該密閉空間中且位於該氣流的一流動路徑上;以及 一散熱流場,與該機殼連接且位於該流動路徑的終端,其中該散熱流場藉由熱傳導及強制對流將熱排出該密閉空間。
  2. 如申請專利範圍第1項所述的光學量測穩定性控制系統,其中該機殼採用無通風孔設計,且該機殼包括多種材質的多個部件組裝而成。
  3. 如申請專利範圍第1項所述的光學量測穩定性控制系統,其中該循環流場包括一主動式散熱元件以及一多通路流道,該密閉空間中的該氣流由該主動式散熱元件產生,該多通路流道在該密閉空間中形成一第一流道以及一第二流道,該氣流的一第一部分在該第一流道中流動,且該氣流的一第二部分在該第二流道中流動。
  4. 如申請專利範圍第3項所述的光學量測穩定性控制系統,其中該主動式散熱元件包括合成噴流裝置、壓電噴流裝置、微型鼓風機、微型扇或微型泵。
  5. 如申請專利範圍第3項所述的光學量測穩定性控制系統,其中該光學量測系統包括一第一光源、一第二光源以及一影像感測器,該第一光源位於該第一流道中,該第二光源位於該第二流道中,且該影像感測器位於該第一流道以及該第二流道中。
  6. 如申請專利範圍第1項所述的光學量測穩定性控制系統,其中該散熱流場包括一熱交換器以及一散熱模組。
  7. 如申請專利範圍第6項所述的光學量測穩定性控制系統,其中該熱交換器位於該密閉空間中且位於該流動路徑的終端,該熱交換器包括一熱傳導基材、一散熱座、一熱交換鰭片或上述至少兩個的組合。
  8. 如申請專利範圍第7項所述的光學量測穩定性控制系統,其中該熱傳導基材固定於該機殼的側壁上且包括一鋁合金基板、一銅合金基板、一雙相流導熱基板或一雙相流導熱管。
  9. 如申請專利範圍第6項所述的光學量測穩定性控制系統,其中該熱交換器包括一致冷晶片,該機殼具有一容置孔,且該致冷晶片嵌於該機殼的該容置孔中。
  10. 如申請專利範圍第6項所述的光學量測穩定性控制系統,其中該散熱模組包括一主動式散熱元件、一散熱座、一熱交換鰭片、一水冷模組、一感溫裝置或上述至少兩個的組合。
TW108122429A 2018-10-31 2019-06-26 光學量測穩定性控制系統 TWI692635B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910789689.3A CN111121651A (zh) 2018-10-31 2019-08-26 光学测量稳定性控制系统
US16/575,416 US11454537B2 (en) 2018-10-31 2019-09-19 Optical measurement stability control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862753087P 2018-10-31 2018-10-31
US62/753,087 2018-10-31

Publications (2)

Publication Number Publication Date
TWI692635B true TWI692635B (zh) 2020-05-01
TW202018286A TW202018286A (zh) 2020-05-16

Family

ID=71895744

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108122429A TWI692635B (zh) 2018-10-31 2019-06-26 光學量測穩定性控制系統

Country Status (1)

Country Link
TW (1) TWI692635B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644296B1 (en) 2021-12-17 2023-05-09 Industrial Technology Research Institute 3D measuring equipment and 3D measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118769A1 (en) * 2007-03-23 2008-10-02 Particle Measuring Systems, Inc. Optical particle sensor with exhaust-cooled optical source
TW201421005A (zh) * 2012-11-16 2014-06-01 Foxconn Tech Co Ltd 發光二極體檢測量具
CN106256176A (zh) * 2015-04-03 2016-12-21 三菱电机株式会社 电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118769A1 (en) * 2007-03-23 2008-10-02 Particle Measuring Systems, Inc. Optical particle sensor with exhaust-cooled optical source
TW201421005A (zh) * 2012-11-16 2014-06-01 Foxconn Tech Co Ltd 發光二極體檢測量具
CN106256176A (zh) * 2015-04-03 2016-12-21 三菱电机株式会社 电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644296B1 (en) 2021-12-17 2023-05-09 Industrial Technology Research Institute 3D measuring equipment and 3D measuring method

Also Published As

Publication number Publication date
TW202018286A (zh) 2020-05-16

Similar Documents

Publication Publication Date Title
US11454537B2 (en) Optical measurement stability control system
CN108508686B (zh) 投影装置及显示系统
US9958760B2 (en) Projection apparatus with heat dissipating module
CN108882615A (zh) 具有散热结构的电子装置
TWI405026B (zh) 投影機及其鏡頭
KR20090129654A (ko) 액정표시장치
JP2011077314A (ja) 電子機器の冷却構造
US9924114B2 (en) Integrated radiation shield and radiation stop
TWI692635B (zh) 光學量測穩定性控制系統
US20090153805A1 (en) Portable projector with a heat dissipation system
US8356656B2 (en) Heat dissipation device and method
KR100881713B1 (ko) 진공 흑체 소스 패키지
TW201626878A (zh) 具有風扇的顯示裝置
US20240090174A1 (en) Control device
US10705412B2 (en) Thermal management system for 3D imaging systems, opto-mechanical alignment mechanism and focusing mechanism for 3D imaging systems, and optical tracker for 3D imaging systems
WO2023138022A1 (zh) 一种用于对光源进行散热的装置
TW202016685A (zh) 模組化電腦冷卻泵浦
JP2010091509A (ja) 光学特性測定装置
TWI647562B (zh) 具有散熱系統之電子設備及其散熱裝置
CN113703207B (zh) 电光装置和电子设备
US11169433B2 (en) Light source module and projection apparatus
JP2015082582A (ja) 電子機器
CN211478843U (zh) 投影机
TWI678143B (zh) 感溫變色疊層及包含其之散熱模組
CN107797195B (zh) 光组件定位调整装置