WO2023138022A1 - 一种用于对光源进行散热的装置 - Google Patents

一种用于对光源进行散热的装置 Download PDF

Info

Publication number
WO2023138022A1
WO2023138022A1 PCT/CN2022/108733 CN2022108733W WO2023138022A1 WO 2023138022 A1 WO2023138022 A1 WO 2023138022A1 CN 2022108733 W CN2022108733 W CN 2022108733W WO 2023138022 A1 WO2023138022 A1 WO 2023138022A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
light source
air
temperature
control device
Prior art date
Application number
PCT/CN2022/108733
Other languages
English (en)
French (fr)
Inventor
朱强铭
孙思华
刘军凯
Original Assignee
睿励科学仪器(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿励科学仪器(上海)有限公司 filed Critical 睿励科学仪器(上海)有限公司
Publication of WO2023138022A1 publication Critical patent/WO2023138022A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/54Cooling arrangements using thermoelectric means, e.g. Peltier elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/61Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes

Definitions

  • the invention relates to the field of optical equipment, in particular to a device for dissipating heat from a light source.
  • the temperature is generally controlled through a water cooling system or an air cooling system.
  • the solution of the water-cooling system uses a temperature sensor to control the on-off state of the power supply of the compressor, thereby realizing temperature control.
  • this method has the hysteresis effect of refrigeration, and the temperature adjustment varies greatly, so it cannot be fine-tuned effectively.
  • the air-cooling system is used for temperature control, the flow of wind will disturb the laminar air inside the optical machine, thereby affecting the transmission of light.
  • the object of the present invention is to provide a device for dissipating heat from a light source.
  • An embodiment of the present application provides a device for dissipating heat from a light source, which is characterized in that it includes:
  • Heat dissipation device including temperature sensor, semiconductor refrigeration board, air inlet, heat sink, and air outlet;
  • the sealing device includes a top plate, a bottom mounting surface, a shell, and a heat insulation board, wherein the shell is provided with a concave groove, and the two sides of the shell and the bottom mounting surface are provided with air cavities.
  • the heat dissipation device further includes a control device, the temperature sensor senses the temperature conducted by the light source on the top plate, and if the sensed temperature exceeds a predetermined threshold, the control device makes the semiconductor cooling plate enter the working state, so as to guide the heat on the top plate to the heat sink through the semiconductor cooling plate. Moreover, the control device makes the air inlet start to take in air to dissipate heat from the heat sink, and the hot air is discharged from the air outlet
  • the light source is installed on the sealing device, and the temperature sensor is arranged on the top plate to sense the temperature transmitted by the wide-spectrum light source on the installation top plate; the air inlet and air outlet are located on both sides of the sealing device; the semiconductor refrigeration plate and the heat sink are located in the sealing device.
  • U-shaped fins are used as heat sinks, and the wide surface of the U-shaped fins is parallel to the flow direction of the wind.
  • the upper and lower surfaces of the semiconductor refrigeration board are coated with thermally conductive glue, and the thickness of the thermally conductive glue is 0.1 to 0.15 mm.
  • An embodiment of the present application provides a method for dissipating heat from a light source using the device described in the embodiment of the present application.
  • the method includes: acquiring the temperature sensed by the temperature sensor and conducted by the light source on the top plate; if the sensed temperature exceeds a predetermined threshold, using a control device to enable the semiconductor cooling plate to enter the working state, so as to introduce the heat on the top plate to the heat sink through the semiconductor cooling plate; using the control device to make the air inlet start to enter the air to dissipate heat from the heat sink, and the hot air is discharged from the air outlet.
  • the method includes: configuring the control device, so as to control the working states of the semi-conductor cooling plate, the air inlet and the air outlet through the control device.
  • the method includes: disposing the temperature sensor on the top board to sense the temperature conducted by the light source on the installation top board.
  • the embodiment of the present application has the following advantages: the temperature is controlled by the temperature sensor, and the heat generated by the light source is quickly conducted to the heat sink by using a semiconductor refrigeration plate to dissipate heat, so as to meet the temperature control requirements of the light source, and can avoid the influence of the heat dissipation airflow on the laminar air inside the optical machine; moreover, the airtight housing of the device is provided with concave grooves, which can prevent the leakage of the heat dissipation air flow and disturb the laminar air in the optical machine. environment.
  • Fig. 1a shows a schematic structural diagram of a device for dissipating heat from a light source according to an embodiment of the present application
  • Fig. 1b shows a schematic structural diagram of a device for dissipating heat from a light source according to an embodiment of the present application
  • Fig. 2 shows a schematic diagram of a device for dissipating heat from a light source according to an embodiment of the present application.
  • the "computer device” referred to in this context also referred to as “computer”, refers to an intelligent electronic device that can perform predetermined processing procedures such as numerical calculations and/or logic calculations by running predetermined programs or instructions, which may include a processor and a memory, and the processor executes pre-stored instructions stored in the memory to perform predetermined processing procedures, or hardware such as ASIC, FPGA, and DSP executes predetermined processing procedures, or is realized by a combination of the above two.
  • Computer equipment includes, but is not limited to, servers, personal computers, laptops, tablets, smartphones, etc.
  • the computer equipment includes user equipment and network equipment.
  • the user equipment includes but is not limited to computers, smart phones, PDAs, etc.
  • the network equipment includes but is not limited to a single network server, a server group composed of multiple network servers, or a cloud based on cloud computing (Cloud Computing) composed of a large number of computers or network servers, wherein cloud computing is a kind of distributed computing, a super virtual computer composed of a group of loosely coupled computer sets.
  • the computer device can operate independently to realize the present application, and can also access the network and realize the present application by interacting with other computer devices in the network.
  • the network where the computer device is located includes, but is not limited to, the Internet, a wide area network, a metropolitan area network, a local area network, a VPN network, and the like.
  • first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • Fig. 1a shows a schematic structural diagram of a device for dissipating heat from a light source according to an embodiment of the present application.
  • Fig. 1b shows a schematic structural diagram of a device for dissipating heat from a light source according to an embodiment of the present application.
  • the device in the embodiment of the present application is suitable for semiconductor measurement equipment.
  • the light source in the embodiment of the present application is a broad-spectrum light source.
  • the device includes heat dissipation means and sealing means.
  • the heat dissipation device includes a temperature sensor 101 , a semiconductor refrigeration board 102 , a heat sink 103 , an air inlet 104 , and an air outlet 105 .
  • the sealing device includes a top plate 106, a housing 107, a bottom mounting surface 108, and a heat shield 109, wherein the housing 107 is provided with a concave groove 110, and both sides of the housing 107 and the bottom mounting surface 108 are provided with an air cavity 111.
  • the upper and lower surfaces of the semiconductor refrigeration board 102 are coated with thermally conductive glue, and the thickness of the thermally conductive glue is 0.1 to 0.15 mm.
  • the heat sink 103 is a plurality of sheet devices arranged in parallel.
  • U-shaped fins are used as the heat sink 103, and the wide surface of the U-shaped fin is parallel to the flow direction of the wind, so as to reduce the impact of the wind on the heat sink and increase the contact area.
  • the housing 107 is made of aluminum.
  • the heat shield 109 is disposed on the side of the housing 107
  • the bottom mounting surface 208 is disposed on the lower side of the housing 107 .
  • the air inlet 104 and the air outlet 105 are respectively arranged on two sides of the housing 107 , and the heat insulation boards and the bottom mounting surface 208 on the two sides are provided with an air cavity 211 .
  • the concave groove 110 is used to prevent the cooling air from leaking
  • the air cavity 111 is used for heat insulation
  • the heat insulation plate is used to isolate the inside and outside of the casing.
  • the light source is installed on the sealing device, and the temperature sensor 101 is arranged on the top plate 106 .
  • the heat dissipation device also includes a control device, the temperature sensor 101 senses the temperature of the light source conducted on the top plate, and if the sensed temperature exceeds a predetermined threshold, the control device makes the semiconductor cooling plate 102 enter the working state, so as to import the heat on the top plate 106 to the heat sink 103 through the semiconductor cooling plate 102.
  • the control device makes the air inlet 104 start to take in air to dissipate heat from the cooling fins, and the hot air is discharged through the air outlet 105 .
  • control device includes various devices capable of controlling the semi-conductor cooling plate 102 , the air inlet 104 and the air outlet 105 based on the temperature sensed by the temperature sensor 101 .
  • control device may be a program module contained in a computing device, and the computer device controls the working states of the semiconductor refrigeration board 102 , the air inlet 104 and the air outlet 105 through the program module.
  • Fig. 2 shows a schematic diagram of a device for dissipating heat from a light source according to an embodiment of the present application.
  • the device according to the present embodiment is suitable for semiconductor measuring equipment, and the device includes a heat dissipation device composed of a temperature sensor 201, a semiconductor refrigeration plate 202, a heat sink 203, an air inlet 204 and an air outlet 205, and a sealing device composed of a top plate 206, a housing 207, a bottom mounting surface 208 arranged on the housing, and a heat shield 209.
  • the casing 207 is provided with a concave groove 210
  • the heat insulation boards on both sides of the casing 207 and the bottom mounting surface 208 are provided with an air cavity 211 .
  • the wide-spectrum light source 212 is installed on the sealing device, and the device according to this embodiment controls the influence of the wide-spectrum light source on the temperature of the surrounding environment within ⁇ 0.01 degrees.
  • the temperature sensor 201 is disposed on the top board 206 to sense the temperature transmitted by the broadband light source 212 on the top board 206 .
  • the air inlet 204 and the air outlet 205 are located on both sides of the sealing device.
  • the semiconductor cooling plate 202 and the cooling fin 203 are located in the sealing device.
  • the heat sink 203 is a U-shaped fin, and the wide surface of the U-shaped fin is parallel to the flow direction of the wind.
  • the upper and lower surfaces of the semiconductor cooling plate 202 are coated with thermally conductive glue, and the thickness of the thermally conductive glue is 0.1 mm.
  • the heat dissipation device also includes a control device included in the semiconductor measuring equipment. If the temperature sensed by the temperature sensor 201 exceeds a predetermined threshold, the control device makes the semiconductor cooling plate 202 enter the working state, so as to guide the heat on the top plate 206 to the heat sink 203 through the cooling plate 202. Moreover, the control device makes the air inlet 204 start to take in air to dissipate heat from the cooling fins 203 , and the hot air is discharged through the air outlet 205 .
  • the temperature is controlled by the temperature sensor, and the heat generated by the light source is quickly conducted to the heat sink by using a semiconductor refrigeration plate to dissipate heat, so as to meet the temperature control requirements of the light source, and can avoid the influence of the cooling air flow on the laminar air inside the optical machine; and the airtight housing of the device is provided with concave grooves, which can prevent the leakage of the cooling air flow and disturb the laminar air in the optical machine.
  • the method includes steps S1 to S3.
  • step S1 the temperature sensed by the temperature sensor and conducted by the light source on the top plate is obtained
  • step S2 if the sensed temperature exceeds a predetermined threshold, the control device makes the semiconductor cooling plate enter the working state, so as to guide the heat on the top plate to the heat sink through the semiconductor cooling plate.
  • step S3 the control device causes the air inlet to start to take in air to dissipate heat from the heat sink, and discharge the hot air through the air outlet.
  • the method comprises step S4.
  • step S4 the control device is configured so as to control the working states of the semiconductor refrigeration board, the air inlet and the air outlet through the control device.
  • the method includes step S5.
  • step S5 the temperature sensor is arranged on the top board to sense the temperature conducted by the light source on the installation top board.
  • the temperature is controlled by the temperature sensor, and the heat generated by the light source is quickly conducted to the heat sink by using a semiconductor refrigeration plate to dissipate heat, so as to meet the temperature control requirements of the light source and avoid the influence of the heat dissipation airflow on the laminar air inside the optical machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

一种用于对光源进行散热的装置,包括:温度传感器(201)、半导体制冷板(202)、进风口(204)、散热片(203)、出风口(205);以及由顶板(206)、壳体(207)、设置在壳体(207)上的底部安装面(208)和隔热板(209)组成的密封装置,其中,壳体(207)设有凹型槽(210),壳体(207)的两侧和底部安装面(208)设有空气腔(211),通过温度传感器(201)进行温度控制,并使用半导体制冷板(202)将光源产生的热量快速地导热至散热片(203)上进行散热,以满足光源的温控要求,并且能够避免散热气流对光机内部层流空气的影响。

Description

一种用于对光源进行散热的装置
关联申请的交叉引用
本专利申请要求2022年1月24日提交的名为“一种用于对光源进行散热的装置”,申请号为202210077499.0的中国发明专利申请的优先权,该在先申请的整体通过引用方式并入本申请。
技术领域
本发明涉及光学设备领域,尤其涉及一种用于对光源进行散热的装置。
背景技术
许多光机设备中都存在对光源的温控要求以及气流波动要求,特别是宽光谱光源,由于其散发出大量的热量,影响周围温度及气流波动,因此需要对光源热量进行散热。
基于现有技术的方案,一般通过水冷系统或风冷系统来进行控温。水冷系统的方案使用温度传感器控制压缩机的电源通断状态,从而实现温度控制。然而,该方式存在制冷的滞后效应,温度调节变化大,因此无法有效进行微调。而风冷系统的方案进行控温时,风的流动会扰动光机内部层流空气,进而影响光的传播。
发明内容
本发明的目的是提供一种用于对光源进行散热的装置。
本申请实施例提供了一种用于对光源进行散热的装置,其特征在于,包括:
散热装置,包括温度传感器、半导体制冷板、进风口、散热片、出风口;
密封装置,包括顶板、底部安装面、壳体、隔热板,其中,所述壳体设有凹型槽,壳体的两侧和底部安装面设有空气腔。
根据本申请的实施例,所述散热装置还包括控制装置,所述温度传感器感应光源传导在顶板上的温度,如果感应到的温度超过预定阈值,则控制装置使得半导体制冷板进入工作状态,以将顶板上的热量通过半导体制冷板导入到散热片上。并且,控制装置使得进风口开始进风,来对散热片进行散热,并由出风口将热空气排出
根据本申请的实施例,光源安装在密封装置之上,所述温度传感器设置于顶板上,以感应宽光谱光源传导在安装顶板上的温度;所述进风口和出风口位于密封装置的两侧;所述半导体制冷板和散热片位于密封装置内。
根据本申请的实施例,采用U型翅片作为散热片,并且U型翅片的宽面与风的流向平行。
根据本申请的实施例,所述半导体制冷板的上下表面涂有导热胶,该导热胶的厚度为0.1至0.15毫米。
本申请实施例提供了一种使用本申请实施例所述的装置对光源进行散热的方法,所述方法包括:获取温度传感器感应到的光源传导在顶板上的温度;如果感应到的温度超过预定阈值,则通过控制装置使得半导体制冷板进入工作状态,以将顶板上的热量通过半导体制冷板导入到散热片上;通过控制装置使得进风口开始进风,来对散热片进行散热,并由出风口将热空气排出。
根据本申请的实施例,所述方法包括:对控制装置进行配置,从而通过控制装置来控制半导体制冷板、进风口和出风口的工作状态。
根据本申请的实施例,所述方法包括:将所述温度传感器设置于顶板上,以感应光源传导在安装顶板上的温度。
与现有技术相比,本申请实施例具有以下优点:通过温度传感器感 进行温度控制,并使用半导体制冷板将光源产生的热量快速地导热至散热片上进行散热,以满足光源的温控要求,并且能够避免散热气流对光机内部层流空气的影响;并且,所述装置的密闭壳体上设有凹型槽,能够防止散热气流泄露而扰动光机中的层流空气,所述装置的壳体的两侧和底部安装面设有空气腔,从而防止热量散发到光机环境中影响光机环境。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1a示出了根据本申请实施例的用于对光源进行散热的装置的结构示意图;
图1b示出了根据本申请实施例的用于对光源进行散热的装置的结构示意图;
图2示出了根据本申请实施例的用于对光源进行散热的装置的示意图。
附图中相同或相似的附图标记代表相同或相似的部件。
具体实施方式
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
在上下文中所称“计算机设备”,也称为“电脑”,是指可以通过运行预定程序或指令来执行数值计算和/或逻辑计算等预定处理过程的智能电子设备,其可以包括处理器与存储器,由处理器执行在存储器中 预存的存续指令来执行预定处理过程,或是由ASIC、FPGA、DSP等硬件执行预定处理过程,或是由上述二者组合来实现。计算机设备包括但不限于服务器、个人电脑、笔记本电脑、平板电脑、智能手机等。
所述计算机设备包括用户设备与网络设备。其中,所述用户设备包括但不限于电脑、智能手机、PDA等;所述网络设备包括但不限于单个网络服务器、多个网络服务器组成的服务器组或基于云计算(Cloud Computing)的由大量计算机或网络服务器构成的云,其中,云计算是分布式计算的一种,由一群松散耦合的计算机集组成的一个超级虚拟计算机。其中,所述计算机设备可单独运行来实现本申请,也可接入网络并通过与网络中的其他计算机设备的交互操作来实现本申请。其中,所述计算机设备所处的网络包括但不限于互联网、广域网、城域网、局域网、VPN网络等。
需要说明的是,所述用户设备、网络设备和网络等仅为举例,其他现有的或今后可能出现的计算机设备或网络如可适用于本申请,也应包含在本申请保护范围以内,并以引用方式包含于此。
后面所讨论的方法(其中一些通过流程图示出)可以通过硬件、软件、固件、中间件、微代码、硬件描述语言或者其任意组合来实施。当用软件、固件、中间件或微代码来实施时,用以实施必要任务的程序代码或代码段可以被存储在机器或计算机可读介质(比如存储介质)中。(一个或多个)处理器可以实施必要的任务。
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
应当理解的是,虽然在这里可能使用了术语“第一”、“第二”等等来描述各个单元,但是这些单元不应当受这些术语限制。使用这些术语仅仅是为了将一个单元与另一个单元进行区分。举例来说,在不背离示例性实施例的范围的情况下,第一单元可以被称为第二单元,并且类似地第二单元可以被称为第一单元。这里所使用的术语“和/或”包括 其中一个或更多所列出的相关联项目的任意和所有组合。
应当理解的是,当一个单元被称为“连接”或“耦合”到另一单元时,其可以直接连接或耦合到所述另一单元,或者可以存在中间单元。与此相对,当一个单元被称为“直接连接”或“直接耦合”到另一单元时,则不存在中间单元。应当按照类似的方式来解释被用于描述单元之间的关系的其他词语(例如“处于...之间”相比于“直接处于...之间”,“与...邻近”相比于“与...直接邻近”等等)。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
还应当提到的是,在一些替换实现方式中,所提到的功能/动作可以按照不同于附图中标示的顺序发生。举例来说,取决于所涉及的功能/动作,相继示出的两幅图实际上可以基本上同时执行或者有时可以按照相反的顺序来执行。
下面结合附图对本发明作进一步详细描述。
图1a示出了根据本申请实施例的用于对光源进行散热的装置的结构示意图。
图1b示出了根据本申请实施例的用于对光源进行散热的装置的结构示意图。
优选地,本申请实施例的装置适用于半导体测量设备。
优选地,本申请实施例的光源为宽光谱光源。
参照图1a和1b,所述装置包括散热装置和密封装置。
所述散热装置包括温度传感器101、半导体制冷板102、散热片103、进风口104、出风口105。所述密封装置包括顶板106、壳体107、底部 安装面108、隔热板109,其中,所述壳体107设有凹型槽110,壳体107的两侧和底部安装面108设有空气腔111。
优选地,所述半导体制冷板102的上下表面涂有导热胶,该导热胶的厚度为0.1至0.15毫米。
优选地,所述散热片103为多个平行设置的片状装置。
优选地,采用U型翅片作为散热片103,并且U型翅片的宽面与风的流向平行,从而减少风对散热片的冲击并增大接触面积。
优选地,所述壳体107采用铝材料。
其中,隔热板109设置于壳体107的侧面,底部安装面208设置于壳体107的下面。
其中,进风口104和出风口105分别设置于壳体107的两侧,该两侧的隔热板和底部安装面208设有空气腔211。
其中,所述凹型槽110用于防止冷却风泄漏,所述空气腔111用于隔热,所述隔热板用于隔绝壳体的内外。
根据一个实施例,光源安装在密封装置之上,所述温度传感器101设置于顶板106上。所述散热装置还包括控制装置,所述温度传感器101感应光源传导在顶板上的温度,如果感应到的温度超过预定阈值,则控制装置使得半导体制冷板102进入工作状态,以将顶板106上的热量通过半导体制冷板102导入到散热片103上。并且,控制装置使得进风口104开始进风,来对散热片进行散热,并由出风口105将热空气排出。
其中,所述控制装置包括各种可基于温度传感器感101应到的温度来控制半导体制冷板102、进风口104和出风口105的装置。
例如,所述控制装置可以是包含于计算设备的程序模块,该计算机设备通过该程序模块来控制半导体制冷板102、进风口104和出风口105的工作状态。
图2示出了根据本申请实施例的用于对光源进行散热的装置的示意图。
参照图2,根据本实施例的装置适用于半导体测量设备,该装置 包括由温度传感器201、半导体制冷板202、散热片203、进风口204和出风口205构成的散热装置,以及由顶板206、壳体207、设置在壳体上的底部安装面208和隔热板209构成的密封装置。其中,壳体207设有凹型槽210,壳体207两侧的隔热板和底部安装面208设有空气腔211。
其中,宽光谱光源212安装在密封装置之上,根据本实施例的装置将宽光谱光源对周围环境的温度影响控制在±0.01度内。温度传感器201设置于顶板206上,以感应宽光谱光源212传导在顶板206上的温度。进风口204和出风口205位于密封装置的两侧。半导体制冷板202和散热片203位于密封装置内。
其中,散热片203为U型翅片,并且U型翅片的宽面与风的流向平行。半导体制冷板202的上下表面涂有导热胶,该导热胶的厚度为0.1毫米。
所述散热装置还包括包含于半导体测量设备的控制装置,如果温度传感器201感应到的温度超过预定阈值,则控制装置使得半导体制冷板202进入工作状态,以将顶板206上的热量通过制冷板导202入到散热片203上。并且,控制装置使得进风口204开始进风,来对散热片203进行散热,并由出风口205将热空气排出。
根据本申请实施例的装置,通过温度传感器感进行温度控制,并使用半导体制冷板将光源产生的热量快速地导热至散热片上进行散热,以满足光源的温控要求,并且能够避免散热气流对光机内部层流空气的影响;并且,所述装置的密闭壳体上设有凹型槽,能够防止散热气流泄露而扰动光机中的层流空气,所述装置的壳体的两侧和底部安装面设有空气腔,从而防止热量散发到光机环境中影响光机环境。
下面对使用本申请实施例的装置对光源进行散热的方法进行描述。
所述方法包括步骤S1至步骤S3。
在步骤S1中,获取温度传感器感应到的光源传导在顶板上的温度;
在步骤S2中,如果感应到的温度超过预定阈值,则通过控制装置使得半导体制冷板进入工作状态,以将顶板上的热量通过半导体制冷板导入到散热片上。
在步骤S3中,通过控制装置使得进风口开始进风,来对散热片进行散热,并由出风口将热空气排出。
根据一个实施例,所述方法包括步骤S4。
在步骤S4中,对控制装置进行配置,从而通过控制装置来控制半导体制冷板、进风口和出风口的工作状态。
根据一个实施例,所述方法包括步骤S5。
在步骤S5中,将所述温度传感器设置于顶板上,以感应光源传导在安装顶板上的温度。
根据本申请实施例的方法,通过温度传感器感进行温度控制,并使用半导体制冷板将光源产生的热量快速地导热至散热片上进行散热,以满足光源的温控要求,并且能够避免散热气流对光机内部层流空气的影响。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。系统权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

Claims (8)

  1. 一种用于对光源进行散热的装置,其特征在于,包括:
    散热装置,包括温度传感器、半导体制冷板、进风口、散热片、出风口;
    密封装置,包括顶板、底部安装面、壳体、隔热板,其中,所述壳体设有凹型槽,壳体的两侧和底部安装面设有空气腔。
  2. 根据权利要求1所述的装置,其特征在于,散热装置还包括控制装置,所述温度传感器感应光源传导在顶板上的温度,如果感应到的温度超过预定阈值,则控制装置使得半导体制冷板进入工作状态,以将顶板上的热量通过半导体制冷板导入到散热片上;并且,控制装置使得进风口开始进风,来对散热片进行散热,并由出风口将热空气排出。
  3. 根据权利要求1所述的装置,其特征在于,光源安装在密封装置之上,所述温度传感器设置于顶板上,以感应宽光谱光源传导在安装顶板上的温度;
    所述进风口和出风口位于密封装置的两侧;
    所述半导体制冷板和散热片位于密封装置内。
  4. 根据权利要求1所述的装置,其特征在于,采用U型翅片作为散热片,并且U型翅片的宽面与风的流向平行。
  5. 根据权利要求1所述的装置,其特征在于,所述半导体制冷板的上下表面涂有导热胶,该导热胶的厚度为0.1至0.15毫米。
  6. 一种使用如权利要求1至5的装置对光源进行散热的方法,所述方法包括:
    获取温度传感器感应到的光源传导在顶板上的温度;
    如果感应到的温度超过预定阈值,则通过控制装置使得半导体制冷板进入工作状态,以将顶板上的热量通过半导体制冷板导入到散热片上;
    通过控制装置使得进风口开始进风,来对散热片进行散热,并由出风口将热空气排出。
  7. 根据权利要求6所述的方法,其中,所述方法包括:
    对控制装置进行配置,从而通过控制装置来控制半导体制冷板、进风口和出风口的工作状态。
  8. 根据权利要求6或7所述的方法,其中,所述方法包括:
    将所述温度传感器设置于顶板上,以感应光源传导在安装顶板上的温度。
PCT/CN2022/108733 2021-02-05 2022-07-28 一种用于对光源进行散热的装置 WO2023138022A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202120341852 2021-02-05
CN202210077499.0 2022-01-24
CN202210077499.0A CN114607989A (zh) 2021-02-05 2022-01-24 一种用于对光源进行散热的装置

Publications (1)

Publication Number Publication Date
WO2023138022A1 true WO2023138022A1 (zh) 2023-07-27

Family

ID=81858007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108733 WO2023138022A1 (zh) 2021-02-05 2022-07-28 一种用于对光源进行散热的装置

Country Status (2)

Country Link
CN (1) CN114607989A (zh)
WO (1) WO2023138022A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114607989A (zh) * 2021-02-05 2022-06-10 睿励科学仪器(上海)有限公司 一种用于对光源进行散热的装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053868A1 (en) * 2008-08-28 2010-03-04 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
CN202285078U (zh) * 2011-10-31 2012-06-27 深圳雅图数字视频技术有限公司 防烟尘投影机
CN104143882A (zh) * 2014-06-12 2014-11-12 无锡商业职业技术学院 一种全封闭电机的冷却系统
US20160026075A1 (en) * 2011-01-14 2016-01-28 Delta Electronics, Inc. Heat dissipation assembly and projection apparatus with the same
CN109952002A (zh) * 2019-04-03 2019-06-28 中车青岛四方车辆研究所有限公司 一种冷却散热箱体及散热控制方法
CN210088795U (zh) * 2019-04-25 2020-02-18 华电电力科学研究院有限公司 一种led照明散热装置
CN211670089U (zh) * 2020-05-05 2020-10-13 深圳市朗鹿电子科技有限公司 一种绕组结构绝缘的低频变压器
CN114607989A (zh) * 2021-02-05 2022-06-10 睿励科学仪器(上海)有限公司 一种用于对光源进行散热的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101487586A (zh) * 2008-01-17 2009-07-22 富士迈半导体精密工业(上海)有限公司 发光二极管照明装置及其散热方法
CN102438371A (zh) * 2011-12-13 2012-05-02 山大鲁能信息科技有限公司 主动散热式led灯
CN203787762U (zh) * 2014-04-12 2014-08-20 中山新诺科技股份有限公司 一种激光光源散热装置
CN206669674U (zh) * 2017-04-19 2017-11-24 贵州微源科技有限公司 一种用于大功率led灯具的散热装置
CN207880592U (zh) * 2018-02-12 2018-09-18 江苏福瑞德光电有限公司 一种顶部密封防尘散热led隧道灯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053868A1 (en) * 2008-08-28 2010-03-04 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
US20160026075A1 (en) * 2011-01-14 2016-01-28 Delta Electronics, Inc. Heat dissipation assembly and projection apparatus with the same
CN202285078U (zh) * 2011-10-31 2012-06-27 深圳雅图数字视频技术有限公司 防烟尘投影机
CN104143882A (zh) * 2014-06-12 2014-11-12 无锡商业职业技术学院 一种全封闭电机的冷却系统
CN109952002A (zh) * 2019-04-03 2019-06-28 中车青岛四方车辆研究所有限公司 一种冷却散热箱体及散热控制方法
CN210088795U (zh) * 2019-04-25 2020-02-18 华电电力科学研究院有限公司 一种led照明散热装置
CN211670089U (zh) * 2020-05-05 2020-10-13 深圳市朗鹿电子科技有限公司 一种绕组结构绝缘的低频变压器
CN114607989A (zh) * 2021-02-05 2022-06-10 睿励科学仪器(上海)有限公司 一种用于对光源进行散热的装置

Also Published As

Publication number Publication date
CN114607989A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
US8453467B2 (en) Hybrid heat exchanger
US10671132B2 (en) IHS component cooling system
GB2541997B (en) Thermoelectric-enhanced, inlet air-cooled thermal conductors
US20060227504A1 (en) Heat-dissipating module of electronic device
US9317078B2 (en) Storage device backplane with penetrating convection and computer framework
US20170242463A1 (en) Hybrid passive and active cooling assembly
TW201346501A (zh) 電子裝置及其散熱結構
US20070227699A1 (en) Method, apparatus and system for flow distribution through a heat exchanger
JP5797758B2 (ja) コンピュータ・デバイスのための煙突ベースの冷却機構
US20170199554A1 (en) Heat dissipation system
US20230337406A1 (en) Cooling systems, cooling structures and electronic devices and methods for manufacturing or operating cooling sys-tems, cooling structures and electronic devices
US20160044824A1 (en) Liquid-vapor phase change thermal interface material
WO2023138022A1 (zh) 一种用于对光源进行散热的装置
WO2020134871A1 (zh) 一种外壳结构及终端设备
US20120097366A1 (en) Heating exchange chamber for liquid state cooling fluid
US11222830B2 (en) Heat dissipation structure and electronic device
US10613598B2 (en) Externally mounted component cooling system
TWM522390U (zh) 散熱組件
WO2017067220A1 (zh) 一种移动终端的中框和移动终端
US20230413474A1 (en) Information handling system liquid cooling leak detection enclosure
TWM565471U (zh) Liquid cooled heat dissipation structure
US11259442B2 (en) Adjustment structure for computer water cooling
TW201511660A (zh) 伺服器
TWM471126U (zh) 電熱片傳導於晶片加熱堆疊結構
TW201522894A (zh) 散熱裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921451

Country of ref document: EP

Kind code of ref document: A1