TWI690610B - 結構體及其製造方法 - Google Patents

結構體及其製造方法 Download PDF

Info

Publication number
TWI690610B
TWI690610B TW107138751A TW107138751A TWI690610B TW I690610 B TWI690610 B TW I690610B TW 107138751 A TW107138751 A TW 107138751A TW 107138751 A TW107138751 A TW 107138751A TW I690610 B TWI690610 B TW I690610B
Authority
TW
Taiwan
Prior art keywords
particles
film
fixing member
structure according
substrate
Prior art date
Application number
TW107138751A
Other languages
English (en)
Other versions
TW201923118A (zh
Inventor
池本学
徳永博之
Original Assignee
日商佳能安內華股份有限公司
日商佳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65718274&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI690610(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日商佳能安內華股份有限公司, 日商佳能股份有限公司 filed Critical 日商佳能安內華股份有限公司
Publication of TW201923118A publication Critical patent/TW201923118A/zh
Application granted granted Critical
Publication of TWI690610B publication Critical patent/TWI690610B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/04Hydrogen absorbing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

結構體具有以包含儲氫金屬元素之複數的粒子被相互隔離之方式將粒子各自配置於固定構件之中的結構。前述複數的粒子各自係表面之全體被前述固定構件所包圍。

Description

結構體及其製造方法
本發明關於具有吸藏氫的能力之結構體及其製造方法。
作為儲存氫之手段,使用儲氫金屬或儲氫合金。專利文獻1中記載儲氫合金之製造方法。於此製造方法中,在經減壓的真空容器內中形成rf電弧電漿,於該電漿中使Ti及Cu、或Ti、Cu及Si的蒸氣反應,形成Ti-Cu合金或Ti-Cu-Si合金的微粉末及回收。依照專利文獻1,由該製造方法所製造的微粉末係表面積大,因此實現以往的約10~50倍之儲氫量。 先前技術文獻 專利文獻
專利文獻1:日本特開昭61-270301號公報
[發明所欲解決的課題]
如儲氫金屬及儲氫合金,包含儲氫金屬元素之粒子係在吸藏氫時會發熱。特別地,為了增大每單位體積的粒子之表面積,若減小該粒子的尺寸,則氫的吸藏效率升高,同時吸藏氫時的發熱量亦會增加。若發熱量變大,則粒子會凝聚。或者,對於粒子從外部加熱時,粒子亦會凝聚。若粒子凝聚,則儲氫能力會降低。
本發明之目的在於抑制包含儲氫金屬元素之複數的粒子之凝聚。 [解決課題的手段]
本發明之第1局面係關於一種結構體,於前述結構體中,以包含儲氫金屬元素之複數的粒子被相互隔離之方式將粒子各自配置於固定構件之中,前述複數的粒子各自的表面之全體係被前述固定構件所包圍。
本發明之第2局面係關於一種結構體之製造方法,前述製造方法包含:以互相隔離包含儲氫金屬元素之複數的粒子之方式各自形成之第1步驟,與以覆蓋前述複數的粒子之方式形成膜之第2步驟。 [發明的效果]
依照本發明,可抑制包含儲氫金屬元素之複數的粒子之凝聚。
實施發明的形態
以下,一邊參照附圖,一邊透過例示的實施形態來說明本發明。
[第1實施形態] 圖1、圖2中顯示本發明之第1實施形態的結構體1之示意剖面圖。此處,圖2係相當於沿著圖1之A-A’線的剖面之一部分的放大圖。結構體1係具有以複數的粒子3被相互隔離之方式,將該粒子配置於固定構件10之中的結構。
固定構件10係具有即使在高溫環境下,也將複數的粒子3保持在相互隔離之狀態的功能,例如,具有固定複數的粒子3之位置的功能。複數的粒子3各自包含儲氫金屬元素。固定構件10例如可包含基底2與配置在基底2之上的膜4。複數的粒子3各自係其表面之全體被固定構件10所包圍。
粒子3為以包含儲氫金屬元素的材料所構成之粒子,例如可包含儲氫金屬的粒子及儲氫合金的粒子之至少1者。儲氫金屬元素例如可為選自由Pd、Ni、Cu、Ti、Nb、Zr、Mg、Mn、V、Fe、稀土類元素所成之群組的至少1者。儲氫合金例如可為選自由Pd/Ni合金、Pd/Cu合金、Mg/Zn合金、Zr/Ni合金、Zr/Ni/Mn合金、Ti/Fe合金、Ti/Co合金、La/Ni合金、Re/Ni合金、Mm/Ni合金、Ca/Ni合金、Ti/V合金、Ti/Cr合金、Ti/Cr/V合金、Mg/Ni合金、Mg/Cu合金所成之群組的至少1者。複數的粒子3各自的尺寸例如可為2nm以上且1000nm以下。於使複數的粒子3之總表面積增加的觀點中,複數的粒子3各自之尺寸較佳為2nm以上且100nm以下,更佳為2nm以上且10nm以下。粒子3較佳為結晶,可為單結晶,也可為多結晶。
膜4可以高熔點材料,例如以熔點為1400℃以上的材料所構成。膜4可包含複數的微結晶,也可為非晶質。膜4例如可包含氧化物(例如,MgO、ZrO2 、ZrO2 ・Y2 O3 、CaO、SiO2 及Al2 O3 的至少1者)及氮化物(例如,Si3 N4 及AlN的至少1者)的至少1者。
基底2例如可為Si基板或在Si基板之上形成有SiO2 膜的基底,但亦可以其他材料(例如,金屬或絕緣體)構成。基底2例如可以具有1400℃以上的熔點之材料構成。基底2亦可為以與膜4相同的材料所構成的膜等構件,也可為以與膜4不同的材料所構成的膜等構件。基底2可為獨立的構件,也可為經其他構件所支持的構件。
使複數的粒子3相互隔離之高熔點材料的膜4不存在時,當粒子3吸藏氫而發熱時,因該熱而位於附近的2個以上之粒子3會凝聚。因此,各個粒子的尺寸變大,會使儲氫能力降低。使複數的粒子3相互隔離之高熔點材料的膜4之存在,係抑制因粒子3吸藏氫時所產生的熱造成位於附近的2個以上之粒子3凝聚者。又,高熔點材料的膜4之存在,亦抑制因粒子3吸藏氫時所產生的熱造成粒子3與膜4之構成物質的合金被形成者。膜4所需要的耐熱性係在結構體1的發熱時不熔融之程度的耐熱性。結構體1之發熱時的溫度,由於依賴於粒子3的材料或粒子3的結構體1之密度、氫同位素氣體壓力等,而無法一律地規定。因此,膜4之材料宜按照使用環境而適宜選擇,例如為具有1400℃以上的熔點之材料。被固定構件10所隔離之複數的粒子3之間的距離較佳為1nm以上且10nm以下。此係因為若所隔離之複數的粒子3之間的距離增大,則結構體1中的儲氫金屬或儲氫合金之含有率降低而不宜。
複數的粒子3可包含以接觸基底2的表面之方式沿著基底2的表面二維狀地配置的粒子3’。粒子3’係隔著膜4相互隔離地配置,且被膜4所覆蓋。
結構體1之製造方法係如圖3A所例示,可包含:以互相隔離包含儲氫金屬元素之複數的粒子3之方式各自形成,將各個粒子3配置成島狀之第1步驟,及如圖3B所例示,以覆蓋複數的粒子3各自之方式形成膜4之第2步驟。此處,藉由在複數次中實施包含第1步驟及第2步驟之處理,如圖3C、圖3D所例示地層合,結果可如圖1A所例示,得到具有與基底2的表面之距離互相不同之複數的粒子3之結構體1。於一例中,可在第1步驟中,藉由濺鍍法形成複數的粒子3,在第2步驟中,以直接覆蓋各個粒子3的表面之方式,藉由濺鍍法形成膜4。於其他例中,第1步驟及第2步驟的至少一個係可用濺鍍法以外的堆積方法(例如,CVD法、ALD法、真空蒸鍍法、電漿噴塗法)來實施。特別地,若使用物理的堆積法形成如上述的儲氫材料,則相較於在溶液中合成儲氫材料之情況或藉由熔融及其後的急速冷卻進行合成之情況(旋噴熔煉法),亦可能控制儲氫金屬或儲氫合金之粒子的尺寸,提高所欲尺寸的粒子之含有率,提高粒子的結晶性,抑制往相鄰的不同材料之擴散等。
於一例中,可在複數次中重複處理,該處理包含:藉由濺鍍法形成複數的粒子3之第1步驟,及藉由濺鍍法形成膜4之第2步驟。又,將基底2搬入濺鍍裝置後,不從濺鍍裝置搬出基底2,在該濺鍍裝置中,可實行重複的包含第1步驟及第2步驟之處理。例如,將基底2配置於濺鍍裝置的1個處理腔室(chamber)之中後,不從該處理腔室取出基底2,可實行重複的包含第1步驟及第2步驟之處理。或者,當濺鍍裝置具有包含複數的處理腔室之真空系時,將基底2搬入濺鍍裝置的該真空系後,不從該真空系取出基底2,可實行重複的包含第1步驟及第2步驟之處理。
於上述之例中,第1步驟係可將腔室內的壓力維持在0.02Pa~5Pa之範圍內的壓力,對於由包含儲氫金屬元素的粒子3之構成材料所成的靶,施加0.05kW~5kW之範圍內的直流電力,將作為濺鍍氣體的惰性氣體供給至腔室。靶包含儲氫金屬及儲氫合金的至少1者。靶係可為純金屬,也可為合金。靶例如包含於第1實施形態之開頭中作為構成粒子3的材料所列舉的儲氫金屬及儲氫合金之至少1者。藉此,可形成相互隔離位置之複數的粒子3。又,於第2步驟中,可將腔室內的壓力維持在0.02Pa~5Pa之範圍內的壓力,對於由膜4的構成材料所成之靶,施加0.1kW~2kW之範圍內的電力,將惰性氣體供給至腔室。
[實施例] 說明形成Cu粒子作為粒子3,且形成MgO膜作為膜4之實施例。於本實施例中,驗證凝聚抑制效果時,選擇能比較容易凝聚的金屬且成為儲氫合金的構成要素之Cu作為粒子3的構成元素。
準備藉由熱氧化而在表面上形成有SiO2 膜的Si基板(基底),在交替地各自10次中重複以下的第1步驟及第2步驟,然後於以下之第3步驟中,藉由形成Cu膜而完成結構體1。於濺鍍裝置中,安裝Cu靶及MgO靶,不從腔室取出基底,對於基底,在10次中,重複包含第1步驟及第2步驟之處理。 (第1步驟) 於第1步驟中,將腔室內之壓力維持在0.02Pa,將0.1kW的直流電力供給至Cu靶,使用氬氣作為濺鍍氣體。 (第2步驟) 於第2步驟中,將腔室內之壓力維持在0.05Pa,將1.1kW的高頻電力供給至MgO靶,使用氬氣作為濺鍍氣體。 (第3步驟) 於第3步驟中,將腔室內之壓力維持在0.02Pa,將0.1kW的直流電力供給至Cu靶,使用氬氣作為濺鍍氣體。
圖4A係由上述的實施例所形成的結構體1之剖面的TEM影像,圖4B係圖4A之一部分的放大圖。圖5A係對於由上述的實施例所形成的結構體1,進行400℃、10小時的熱處理後之結構體1’的剖面之TEM影像,圖5B係圖5A之一部分的放大圖。圖6A係圖4A之結構體1的EDX分析結果,圖6B係圖5A之結構體1’的EDX分析結果。圖6A、6B中,橫軸表示從結構體1、1’的表面起之距離,縱軸表示X射線之檢測強度。再者,結構體1’係推測吸藏氫而發熱後的結構體1之狀態用的樣品。
於與結構體1有關的圖6A中,在表示Cu元素的波峰與波峰之間,有表示Mg元素及O元素的波峰,表示Mg元素的波峰之位置與表示O元素的波峰之位置係一致。因此,可知Cu粒子與MgO膜係交替地存在。又,從與結構體1有關的圖4B可知,尺寸經控制在約5nm的Cu粒子係被MgO膜所包圍。
於與將結構體1加熱後的結構體1’有關的圖6B中,與圖6A同樣地,在表示Cu元素的波峰與波峰之間,有表示Mg元素及O元素的波峰,表示Mg元素的波峰之位置表示O元素的波峰之位置係一致。因此,可知即使於加熱後,Cu粒子與MgO膜也會交替地存在,Cu粒子係維持原本的配置。又,從與結構體1’有關的圖5B可知,即使加熱後,Cu粒子也會被MgO膜所包圍,Cu粒子的尺寸為約5nm,維持加熱前的尺寸。又,由圖5A及圖5B可理解,未被MgO所包圍的最表面之Cu係因加熱而凝聚。
[第2實施形態] 以下,一邊參照圖7,一邊說明本發明之第2實施形態。再者,第2實施形態中未言及的事項係可依照第1實施形態。於第2實施形態之結構體1中,惰性氣體7存在於膜4(固定構件10)。例如,膜4中的惰性氣體7之含有率例如為0.5原子%以上。膜4可包含複數的微結晶。惰性氣體7例如存在於該複數的微結晶之晶界。藉由在膜4之晶界中積極地收進惰性氣體,可抑制:空氣中的水分通過晶界而侵入結構體1之內部,將粒子3氧化,使儲氫能力降低者。
又,若去除在晶界所收進的惰性氣體7,則能產生通路(空間)。此通路係可在使結構體1吸藏氫時,具有作為氫的通道之功能。因此,愈在膜4中積極地收進惰性氣體7,使膜4中的晶界之數增加,氫愈容易到達結構體1之內部,可提高儲氫能力。
基於此等之理由,結構體1所收進的惰性氣體7較佳為在使結構體1(粒子3)即將吸藏氫之前被去除。惰性氣體7之去除例如可藉由加熱結構體1而進行。
第2實施形態的結構體1之製造方法可包含:以互相隔離包含儲氫金屬元素之複數的粒子3之方式各自形成之第1步驟,與以覆蓋前述複數的粒子3之方式形成膜4之第2步驟。特別地,藉由調節第2步驟中的壓力、放電電壓等之成膜條件,可在膜4之晶界中積極地收進惰性氣體原子。此處,藉由在複數次中實施包含第1步驟及第2步驟之處理,如圖7所例示,可得到具有與基底2的表面之距離互相不同之複數的粒子3的結構體1。於一例中,在第1步驟中,可藉由濺鍍法形成複數的粒子3,在第2步驟中,可藉由濺鍍法形成膜4。於其他例中,第1步驟及第2步驟的至少一者係可以濺鍍法以外的堆積方法(例如,CVD法、ALD法、真空蒸鍍法、電漿噴塗法)實施。
於一例中,在複數次中重複處理,該處理包含:藉由濺鍍法形成複數的粒子3之第1步驟,及藉由濺鍍法形成膜4之第2步驟。又,將基底2搬入濺鍍裝置後,不從濺鍍裝置搬出基底2,在該濺鍍裝置中,可實行重複的包含第1步驟及第2步驟之處理。例如,將基底2配置於濺鍍裝置的1個處理腔室之中後,不從該處理腔室取出基底2,可實行重複的包含第1步驟及第2步驟之處理。或者,當濺鍍裝置具有包含複數的處理腔室之真空系時,將基底2搬入濺鍍裝置的該真空系後,不從該真空系取出基底2,可實行重複的包含第1步驟及第2步驟之處理。
於上述之例中,第1步驟係可將腔室內的壓力維持在0.02Pa~5Pa之範圍內的壓力,對於由包含儲氫金屬元素的粒子3之構成材料所成的靶,施加0.05kW~5kW之範圍內的直流電力,將作為濺鍍氣體的惰性氣體供給至腔室。藉此,可形成經相互隔離隔之複數的粒子3。又,於第2步驟中,腔室內之壓力由於取決於膜4的材料等而不同,無法一律地規定,但在電漿發生的壓力範圍內愈低愈佳,例如維持在0.02Pa~5Pa之範圍內的壓力。此係因為衝撞靶而反射的濺鍍氣體原子(惰性氣體原子)係在到達膜形成對象(基底2)之前不衝撞原子或離子,即盡可能地不損失所保有的能量,到達膜形成對象者係容易從膜4(固定構件10)的表面打入內部,可提高膜4(固定構件10)中的濺鍍氣體(惰性氣體7)之含量。
又,在由膜4的構成材料所成之靶產生的電壓(例如高頻放電時為自偏壓(self bias)),係在濺鍍條件與濺鍍空間結構相同時,為在所使用的靶材料固有的電壓,可為相當於濺鍍所需要的能量以上之能量的電壓。相對於濺鍍所需要的能量,過剩的能量愈大,則被靶所反射的濺鍍氣體原子(惰性氣體原子)往膜形成對象之入射能量愈大,愈容易將濺鍍氣體原子(惰性氣體原子)打入膜4。例如,可調整供給電力,使得-100V~-500V之範圍內之自偏壓在由膜4的構成材料所成的靶上產生。
[第3實施形態] 以下,一邊參照圖8,一邊說明本發明之第3實施形態。再者,第3實施形態中未言及的事項係可依照第1或第2實施形態。第3實施形態之結構體1係以覆蓋膜4(固定構件10)之方式具有被覆膜8,被覆膜8含有惰性氣體7。被覆膜8中的惰性氣體7之含有率例如為0.5原子%以上。於此例中,被覆膜8中的惰性氣體7之含有率係比膜4(固定構件10)中的惰性氣體7之含有率更大。
被覆膜8係以積極地收進惰性氣體7為目的而設置之膜。因此,構成被覆膜8的元素及被覆膜8之成膜條件係可最優先地考慮在膜中收進惰性氣體7者而設定。藉由在被覆膜8之晶界積極地收進惰性氣體,可抑制:空氣中的水分通過晶界而侵入結構體1之內部,將粒子3氧化,使儲氫能力降低者。
又,若去除在晶界所收進的惰性氣體7,則能產生通路(空間)。此通路係可在使結構體1吸藏氫時,具有作為氫的通道之功能。因此,愈在被覆膜8中積極地收進惰性氣體7,使被覆膜8中的晶界之數增加,氫愈容易到達結構體1之內部,可提高儲氫能力。基於此等之理由,與第2實施形態同樣地,惰性氣體7較佳為在使結構體1(粒子3)即將吸藏氫之前被去除。惰性氣體7之去除例如可藉由加熱結構體1而進行。
被覆膜8較佳為包含原子量大的元素之材料。換言之,用於將被覆膜8成膜的靶,較佳為包含原子量大的元素之材料。此係因為以下之理由。一般而言,濺鍍氣體(即,惰性氣體7)之離子係被靶表面所加速,衝撞靶而將構成靶的原子予以彈出,同時一部分的離子變成原子,還保持著某程度的能量而反射。因此,藉由使用含有原子量大的元素之靶,增大所反射的濺鍍氣體原子所保有的能量,可容易打入被覆膜8。換言之,藉由設置具有比膜4(固定構件10)的原子量或分子量更大的原子量或分子量之被覆膜8的結構體1,可使在結構體1所收進的濺鍍氣體(惰性氣體)之量成為更多。結構體1中的惰性氣體之含有率增加係如先前記載,可增加用於粒子3的氧化抑制及使氫通過的空間,結果造成儲氫能力之升高。
再者,基於與膜4(固定構件10)同樣之理由,被覆膜8係以高熔點材料所構成。若被覆膜8熔融而與粒子3或膜4形成合金,則粒子3的儲氫能力會降低,故在被覆膜8需要耐熱性,其為不因粒子3吸藏氫而產生的熱進行熔融之程度。此耐熱性由於依賴於粒子3的材料或粒子3的結構體1之密度、氫同位素氣氣壓力等,故被覆膜8之材料宜按照所使用的環境來適宜選擇。被覆膜8例如可以熔點為1400℃以上的材料所構成。被覆膜8亦可以與構成膜4的材料相同的材料所構成,也可以其他的材料所構成。被覆膜8包含複數的微結晶,但亦可為非晶質。被覆膜8例如可包含氧化物(例如,MgO、ZrO2 、ZrO2 ・Y2 O3 、CaO、SiO2 及Al2 O3 的至少1者)及氮化物(例如,Si3 N4 及AlN的至少1者)中的至少1者。
第3實施形態的結構體1之製造方法可包含:以互相隔離包含儲氫金屬元素之複數的粒子3之方式各自形成之第1步驟,與以覆蓋複數的粒子3之方式形成膜4之第2步驟。此處,藉由在複數次中實施包含第1步驟及第2步驟之處理,然後藉由實施第3步驟,可如圖8所例示,得到具有與基底2的表面之距離互相不同之複數的粒子3之結構體1。於一例中,可在第1步驟中,藉由濺鍍法形成複數的粒子3,在第2步驟中,藉由濺鍍法形成膜4,在第3步驟中,藉由濺鍍法形成被覆膜8。於其他例中,第1步驟、第2步驟及第3步驟的至少一者係可以濺鍍法以外的堆積方法(例如,CVD法、ALD法、真空蒸鍍法、電漿噴塗法)實施。
於一例中,將第1步驟、其後的第2步驟、其後的第3步驟當作1個循環,可在複數次中重複此循環。於另一例中,將第1步驟、其後的第2步驟、其後的第3步驟、其後的第2步驟當作1個循環,可在複數次中重複此循環。又,將基底2搬入濺鍍裝置後,不從濺鍍裝置搬出基底2,在該濺鍍裝置中,可實行重複的包含第1步驟、第2步驟及第3步驟之處理。或者,當濺鍍裝置具有包含複數的處理腔室之真空系時,將基底2搬入濺鍍裝置的該真空系後,不從該真空系取出基底2,可實行重複的包含第1步驟、第2步驟及第3步驟之處理。
於上述之例中,第1步驟係可將腔室內的壓力維持在0.02Pa~5Pa之範圍內的壓力,對於由包含儲氫金屬元素的粒子3之構成材料所成的靶,施加0.05kW~5kW之範圍內的直流電力,將作為濺鍍氣體的惰性氣體供給至腔室。藉此,可形成經相互隔離之複數的粒子3。又,於第2步驟中,可將腔室內的壓力維持在0.02Pa~5Pa之範圍內的壓力,對於由膜4的構成材料所成之靶,施加0.1kW~2kW之範圍內的電力,將惰性氣體供給至腔室。另外,第3步驟中的腔室內之壓力係在電漿發生的壓力範圍內愈低愈佳。此係因為衝撞靶而反射的濺鍍氣體原子(惰性氣體原子)係在到達膜形成對象之前不衝撞原子或離子,即盡可能地不損失所保有的能量,到達膜形成對象者係容易從被覆膜8的表面打入內部,可提高被覆膜8中的濺鍍氣體原子(惰性氣體原子)之濃度。第3步驟中的腔室內之壓力例如係供給惰性氣體而維持在0.02Pa~5Pa之範圍內的壓力。
又,在由被覆膜8的構成材料所成之靶產生的電壓,係在所使用的靶材料固有的電壓,可為相當於濺鍍所需要的能量以上之能量的電壓。此係因為相對於濺鍍所需要的能量,過剩的能量愈大,則被靶所反射的濺鍍氣體原子(惰性氣體原子)往膜形成對象之入射能量愈大,愈容易在被覆膜8中收進濺鍍氣體原子(惰性氣體原子)。例如,可調整供給電力,使得-100V~-500V之範圍內之自偏壓在由被覆膜8的構成材料所成的靶上產生。
1‧‧‧結構體 2‧‧‧基底 3‧‧‧粒子 4‧‧‧膜 7‧‧‧惰性氣體 8‧‧‧被覆膜 10‧‧‧固定構件
圖1係本發明之第1實施形態的結構體之示意剖面圖。 圖2係本發明之第1實施形態的結構體之示意剖面圖。 圖3A係說明本發明之第1實施形態的結構體之製造方法之圖。 圖3B係說明本發明之第1實施形態的結構體之製造方法之圖。 圖3C係說明本發明之第1實施形態的結構體之製造方法之圖。 圖3D係說明本發明之第1實施形態的結構體之製造方法之圖。 圖4A係實施例之結構體的剖面之TEM影像。 圖4B係實施例之結構體的剖面之TEM影像(圖4A之放大圖)。 圖5A係進行熱處理後之結構體的剖面之TEM影像。 圖5B係進行熱處理後之結構體的剖面之TEM影像(圖5A之放大圖)。 圖6A係顯示圖4A之結構體的EDX分析之結果之圖。 圖6B係顯示圖5A之結構體的EDX分析之結果之圖。 圖7係本發明之第2實施形態的結構體之示意剖面圖。 圖8係本發明之第3實施形態的結構體之示意剖面圖。
1‧‧‧結構體
2‧‧‧基底
3‧‧‧粒子
4‧‧‧膜
10‧‧‧固定構件

Claims (18)

  1. 一種結構體,其係以包含儲氫金屬元素之複數的粒子被相互隔離之方式將粒子各自配置於固定構件之中的結構體,其特徵為:前述複數的粒子各自的表面之全體係被前述固定構件所包圍,且前述固定構件包含氧化物及氮化物之至少1者。
  2. 一種結構體,其係以包含儲氫金屬元素之複數的粒子被相互隔離之方式將粒子各自配置於固定構件之中的結構體,其特徵為:前述複數的粒子各自的表面之全體係被前述固定構件所包圍,且前述固定構件包含複數的微結晶,於前述複數的微結晶之晶界存在惰性氣體。
  3. 如請求項2之結構體,其中前述固定構件中的前述惰性氣體之含有率為0.5原子%以上。
  4. 一種結構體,其係以包含儲氫金屬元素之複數的粒子被相互隔離之方式將粒子各自配置於固定構件之中的結構體,其特徵為:前述複數的粒子各自的表面之全體係被前述固定構件所包圍,且於前述複數的粒子中,相鄰的粒子之間的距離為1nm以上且10nm以下。
  5. 一種結構體,其係以包含儲氫金屬元素之複數的粒子 被相互隔離之方式將粒子各自配置於固定構件之中的結構體,其特徵為:前述複數的粒子各自的表面之全體係被前述固定構件所包圍,且前述固定構件包含基底與配置於前述基底之上的膜,前述複數的粒子包含以接觸前述基底的表面之方式沿著前述表面二維狀地配置的粒子,前述二維狀地配置的粒子係隔著前述膜相互隔離配置,且被前述膜所覆蓋。
  6. 如請求項5之結構體,其中前述膜包含複數的微結晶,前述複數的粒子各自係相接於前述膜之前述複數的微結晶的至少1個。
  7. 一種結構體,其係以包含儲氫金屬元素之複數的粒子被相互隔離之方式將粒子各自配置於固定構件之中的結構體,其特徵為:其具有以覆蓋前述固定構件之方式而配置的被覆膜,且前述複數的粒子各自的表面之全體係被前述固定構件所包圍。
  8. 如請求項7之結構體,其中前述被覆膜的惰性氣體之含有率係比前述固定構件中的惰性氣體之含有率更高。
  9. 如請求項7之結構體,其中前述被覆膜的原子量或分子量係比前述固定構件的原子量或分子量更大。
  10. 如請求項7之結構體,其中前述被覆膜包含複數的微結晶,於前述被覆膜之前述複數的微結晶之晶界存在惰性氣體。
  11. 如請求項10之結構體,其中前述被覆膜中的前述惰性氣體之含有率為0.5原子%以上。
  12. 如請求項1~11中任一項之結構體,其中前述複數的粒子各自具有1000nm以下的尺寸。
  13. 如請求項12之結構體,其中前述複數的粒子各自具有100nm以下的尺寸。
  14. 如請求項1~11中任一項之結構體,其中前述固定構件係以熔點為1400℃以上的材料所構成。
  15. 一種結構體之製造方法,其特徵為包含:以互相隔離包含儲氫金屬元素之複數的粒子之方式各自形成之第1步驟,與以覆蓋前述複數的粒子之方式形成膜之第2步驟。
  16. 如請求項15之結構體之製造方法,其中於前述第1步驟中,藉由濺鍍法形成前述複數的粒子,於前述第2步驟中,藉由濺鍍法形成前述膜。
  17. 如請求項16之結構體之製造方法,其中重複包含前述第1步驟及前述第2步驟之處理。
  18. 如請求項17之結構體之製造方法,其中於前述第1步驟中,藉由濺鍍法形成前述複數的粒子,於前述第2步驟中,藉由濺鍍法形成前述膜,將基底搬入濺鍍裝置後,不從前述濺鍍裝置搬出前述基底,對於前述基底重複前述處理。
TW107138751A 2017-11-06 2018-11-01 結構體及其製造方法 TWI690610B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/JP2017/039921 2017-11-06
??PCT/JP2017/039921 2017-11-06
PCT/JP2017/039921 WO2019087390A1 (ja) 2017-11-06 2017-11-06 構造体およびその製造方法

Publications (2)

Publication Number Publication Date
TW201923118A TW201923118A (zh) 2019-06-16
TWI690610B true TWI690610B (zh) 2020-04-11

Family

ID=65718274

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138751A TWI690610B (zh) 2017-11-06 2018-11-01 結構體及其製造方法

Country Status (5)

Country Link
US (2) US11103852B2 (zh)
JP (1) JP6482013B1 (zh)
CN (1) CN111295256B (zh)
TW (1) TWI690610B (zh)
WO (1) WO2019087390A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583238A (zh) * 2010-12-30 2012-07-18 福特全球技术公司 储氢材料
TWI400195B (zh) * 2010-01-08 2013-07-01 Iner Aec Executive Yuan 儲氫結構形成方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH634015A5 (fr) * 1978-11-14 1983-01-14 Battelle Memorial Institute Composition a base de magnesium pour le stockage de l'hydrogene et procede de preparation de cette composition.
JPS61270301A (ja) * 1985-05-23 1986-11-29 Tdk Corp 水素吸蔵合金とその製造方法
JPS63162884A (ja) * 1986-12-25 1988-07-06 Hitachi Metals Ltd 水素吸蔵合金構造体及びその製造方法
JPH01119501A (ja) * 1987-11-02 1989-05-11 Daido Steel Co Ltd 水素吸蔵体
JPH0266640U (zh) * 1988-11-05 1990-05-21
US5536591A (en) * 1990-04-26 1996-07-16 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys for nickel metal hydride batteries
JPH05117844A (ja) * 1991-09-11 1993-05-14 Mitsubishi Heavy Ind Ltd 超微粒子分散膜の製法
US5472777A (en) 1992-05-19 1995-12-05 Tdk Corporation Nonlinear optical thin film
US5401569A (en) 1992-05-19 1995-03-28 Tdk Corporation Nonlinear optical thin film
JP3372077B2 (ja) 1993-01-21 2003-01-27 ティーディーケイ株式会社 非線形光学薄膜
US5411928A (en) * 1993-05-24 1995-05-02 The United States Of America As Represented By The United States Department Of Energy Composition for absorbing hydrogen
JP3585519B2 (ja) 1994-03-25 2004-11-04 株式会社アルバック スパッタ装置及びスパッタ方法
JPH08109402A (ja) * 1994-10-07 1996-04-30 Sanyo Electric Co Ltd 水素吸蔵体及びその製造方法
US5662729A (en) 1994-10-04 1997-09-02 Sanyo Electric Co., Ltd. Shaped body of hydrogen absorbing alloy and container packed with hydrogen absorbing alloy
CN1093691C (zh) * 1996-01-15 2002-10-30 中国科学院金属研究所 一种电极用吸氢合金粉
JPH11133229A (ja) 1997-10-30 1999-05-21 Kyocera Corp 偏光子
JPH11242250A (ja) 1998-02-25 1999-09-07 Hoya Corp 非線形光学材料の作製方法
US6210498B1 (en) * 1998-04-22 2001-04-03 Energy Conversion Devices, Inc. Hydrogen storage alloys and methods and improved nickel metal hydride electrodes and batteries using same
JP3472489B2 (ja) * 1998-08-27 2003-12-02 清川メッキ工業株式会社 水素吸蔵電極およびその製造方法
US6824571B2 (en) * 2000-08-18 2004-11-30 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
JP2004275951A (ja) * 2003-03-18 2004-10-07 Honda Motor Co Ltd 水素貯蔵材料
JP2004305848A (ja) * 2003-04-03 2004-11-04 Honda Motor Co Ltd 水素貯蔵材粉末
JP4056987B2 (ja) * 2004-04-28 2008-03-05 アルプス電気株式会社 水素センサ及び水素の検知方法
JP4355300B2 (ja) 2005-04-15 2009-10-28 アルプス電気株式会社 水素透過膜、水素センサおよび水素の検知方法
JP2008261031A (ja) 2007-04-13 2008-10-30 Toppan Printing Co Ltd マグネトロンスパッタリング装置、成膜方法及び有機電界発光素子の製造方法
CN101570314B (zh) * 2008-05-04 2011-07-13 比亚迪股份有限公司 一种储氢材料的制备方法
JP4505032B2 (ja) 2008-09-30 2010-07-14 キヤノンアネルバ株式会社 スパッタリング装置
US9045335B2 (en) * 2010-08-18 2015-06-02 The Governors Of The University Of Alberta Kinetic stabilization of magnesium hydride
US20140194282A1 (en) * 2013-01-07 2014-07-10 Ovonic Battery Company, Inc. Metal hydride alloy with catalytic particles
JP6152952B2 (ja) * 2013-11-08 2017-06-28 パナソニックIpマネジメント株式会社 電極用合金粉末、それを用いたニッケル水素蓄電池用負極およびニッケル水素蓄電池
CN105161555B (zh) * 2015-08-19 2017-01-18 岭南师范学院 一种单晶颗粒薄膜及其无衬底柔性太阳能电池的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400195B (zh) * 2010-01-08 2013-07-01 Iner Aec Executive Yuan 儲氫結構形成方法
CN102583238A (zh) * 2010-12-30 2012-07-18 福特全球技术公司 储氢材料

Also Published As

Publication number Publication date
US20200001271A1 (en) 2020-01-02
WO2019087390A1 (ja) 2019-05-09
US20210362127A1 (en) 2021-11-25
US11103852B2 (en) 2021-08-31
CN111295256A (zh) 2020-06-16
JP6482013B1 (ja) 2019-03-13
CN114799164A (zh) 2022-07-29
TW201923118A (zh) 2019-06-16
CN111295256B (zh) 2022-05-10
JPWO2019087390A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
US10704139B2 (en) Plasma chamber target for reducing defects in workpiece during dielectric sputtering
TWI390061B (zh) A method of preparing a metal oxide layer of a predetermined structure by arc evaporation
US10557195B2 (en) Sputtering target and/or coil, and process for producing same
TWI252259B (en) Sputtering source for ionized physical vapor deposition of metals
US9761424B1 (en) Filtered cathodic arc method, apparatus and applications thereof
KR20150053959A (ko) 기판 상에 금속-보로카바이드 층을 제조하는 방법
US20090255802A1 (en) Cluster generator
Olejníček et al. Co3O4 thin films prepared by hollow cathode discharge
US11299801B2 (en) Structure and method to fabricate highly reactive physical vapor deposition target
Souček et al. Microstructure of titanium coatings controlled by pulse sequence in multipulse HiPIMS
TWI690610B (zh) 結構體及其製造方法
JPH09295894A (ja) 酸化マグネシウム膜の製造方法
JP2022160428A (ja) 構造体および水素吸蔵構造体
CN114799164B (zh) 结构体及其制造方法
JP2016196678A (ja) Rfマグネトロンスパッタリング装置
TWI435386B (zh) 被膜表面處理方法
US20150004432A1 (en) Titanium-nickel alloy thin film, and preparation method of titanium-nickel alloy thin film using multiple sputtering method
Valderrama et al. High-RRR thin-films of NB produced using energetic condensation from a coaxial, rotating vacuum ARC plasma (CEDTM)
US20230100972A1 (en) Method for producing a coating of a base body and functional element having a base body with a coating
Beilis et al. Vacuum Arc Plasma Sources. Thin Film Deposition
Szyszka Magnetron sputtering of ZnO films
JP6082165B2 (ja) 金属膜および金属膜の成膜方法
Musil et al. Flexible hard nanocoatings with high thermal stability
TW202229591A (zh) 用於在介電體濺射期間減少工件中的缺陷的電漿腔室靶
JPH0718439A (ja) 膜の内部応力制御方法