TWI689096B - Metal oxide crystalline structure, and display panel circuit structure and thin film transistor having the same - Google Patents

Metal oxide crystalline structure, and display panel circuit structure and thin film transistor having the same Download PDF

Info

Publication number
TWI689096B
TWI689096B TW107129688A TW107129688A TWI689096B TW I689096 B TWI689096 B TW I689096B TW 107129688 A TW107129688 A TW 107129688A TW 107129688 A TW107129688 A TW 107129688A TW I689096 B TWI689096 B TW I689096B
Authority
TW
Taiwan
Prior art keywords
layer
metal oxide
oxide semiconductor
semiconductor layer
gallium
Prior art date
Application number
TW107129688A
Other languages
Chinese (zh)
Other versions
TW202010123A (en
Inventor
黃景亮
葉家宏
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW107129688A priority Critical patent/TWI689096B/en
Priority to CN201910778192.1A priority patent/CN110459587A/en
Publication of TW202010123A publication Critical patent/TW202010123A/en
Application granted granted Critical
Publication of TWI689096B publication Critical patent/TWI689096B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Abstract

A metal oxide crystalline structure, a display panel circuit structure and a thin film transistor having the metal oxide crystalline structure are provided. The metal oxide crystalline structure includes indium (In), tin (Sn), gallium (Ga), and oxygen (O); wherein an atomic ratio of In: Sn: Ga: O is 2: 1: 1: 6, and the metal oxide crystalline structure has a crystalline unit cell of parallelepiped.

Description

金屬氧化物結晶結構及具有此金屬氧化物結晶結構之顯示面板的電路結構 及薄膜電晶體 Metal oxide crystal structure and circuit structure of display panel having the metal oxide crystal structure Thin film transistor

本發明一般係關於金屬氧化物結晶結構及具有此金屬氧化物結晶結構之顯示面板的電路結構及薄膜電晶體,具體而言,本發明係關於具有四元化合物晶體單元且可作為金屬氧化物半導體層之金屬氧化物結晶結構及具有此金屬氧化物結晶結構之顯示面板的電路結構及薄膜電晶體。 The invention generally relates to a metal oxide crystal structure and a circuit structure and a thin film transistor of a display panel having the metal oxide crystal structure. Specifically, the invention relates to a quaternary compound crystal unit and can be used as a metal oxide semiconductor The metal oxide crystal structure of the layer and the circuit structure and thin film transistor of the display panel having the metal oxide crystal structure.

顯示面板一般使用薄膜電晶體作為畫素開關元件或電流驅動元件,使得畫素可獨立控制以達到顯示作用。顯示面板的薄膜電晶體通常使用低載子移動率的矽基主動層,使得操作速度較低又較不穩定。再者,具有矽基主動層的薄膜電晶體不適合應用於大尺寸面板的製造。 Display panels generally use thin film transistors as pixel switching elements or current driving elements, so that pixels can be independently controlled to achieve the display effect. Thin-film transistors for display panels usually use a silicon-based active layer with low carrier mobility, which makes the operation speed lower and unstable. Furthermore, thin film transistors with silicon-based active layers are not suitable for the manufacture of large-size panels.

再者,顯示面板一般使用玻璃或塑膠材料作為基板,因此受限於所用基板的熔點,顯示面板的製造無法使用高溫製程,進而使得薄膜電晶體的主動層材料選用及製造受到極大的限制。 Furthermore, display panels generally use glass or plastic materials as substrates. Therefore, due to the melting point of the substrates used, high-temperature processes cannot be used in the manufacture of display panels, which greatly limits the selection and manufacture of active layer materials for thin-film transistors.

因此,開發適合作為顯示面板薄膜電晶體的主動層材料為重要的議題之一。 Therefore, it is one of the important issues to develop materials suitable for active layers of thin film transistors of display panels.

本發明之一目的在於提供一種金屬氧化物結構,其具有原子結構幾何優化的結晶單元,可作為適用於薄膜電晶體之金屬氧化物半導體層。 One object of the present invention is to provide a metal oxide structure having crystal units with optimized atomic structure geometry, which can be used as a metal oxide semiconductor layer suitable for thin film transistors.

於一實施例,本發明提供一種金屬氧化物結晶結構,其包含銦、錫、鎵及氧原子,其中銦:錫:鎵:氧的原子比例為2:1:1:6,且金屬氧化物結晶結構具有結晶單元為菱形六面體。 In one embodiment, the present invention provides a metal oxide crystal structure, which includes indium, tin, gallium and oxygen atoms, wherein the atomic ratio of indium: tin: gallium: oxygen is 2:1:1:6, and the metal oxide The crystal structure has a crystal unit that is a diamond-shaped hexahedron.

本發明之另一目的在於提供一種薄膜電晶體,其藉由金屬氧化物結晶結構形成的金屬氧化物半導體層作為薄膜電晶體的主動層,可提供高載子移動率,適合窄邊框的顯示面板及感應器的應用。 Another object of the present invention is to provide a thin film transistor. The metal oxide semiconductor layer formed by a metal oxide crystal structure is used as an active layer of the thin film transistor, which can provide a high carrier mobility and is suitable for a display panel with a narrow frame. And sensor applications.

於另一實施例,本發明提供一種薄膜電晶體,其包含閘極層、閘極絕緣層、金屬氧化物半導體層及源極/汲極層,其中閘極絕緣層位於閘極層上;金屬氧化物半導體層位於閘極絕緣層上,金屬氧化物半導體層具有金屬氧化物結晶結構,金屬氧化物結晶結構包含銦、錫、鎵及氧原子,且銦:錫:鎵:氧的原子比例為2:1:1:6,金屬氧化物結晶結構具有結晶單元為菱形六面體;源極/汲極層位於金屬氧化物半導體層上。 In another embodiment, the present invention provides a thin film transistor including a gate layer, a gate insulating layer, a metal oxide semiconductor layer and a source/drain layer, wherein the gate insulating layer is located on the gate layer; metal The oxide semiconductor layer is located on the gate insulating layer. The metal oxide semiconductor layer has a metal oxide crystal structure. The metal oxide crystal structure includes indium, tin, gallium, and oxygen atoms, and the atomic ratio of indium: tin: gallium: oxygen is 2:1:1:6, the metal oxide crystal structure has a crystalline unit of rhombic hexahedron; the source/drain layer is located on the metal oxide semiconductor layer.

於又一實施例,本發明提供一種薄膜電晶體,其包含金屬氧化物半導體層、源極/汲極摻雜層、閘極絕緣層、閘極層、源極/汲極層,其中金屬氧化物半導體層具有金屬氧化物結晶結構,金屬氧化物結晶結構包含銦、錫、鎵及氧原子,且銦:錫:鎵:氧的原子比例為2:1:1:6,金屬氧化物結晶結構具有結晶單元為菱形六面體;源極/汲極摻雜層位於金屬氧化物半導體層上;閘極絕緣層位於源極/汲極摻雜層上並部分連接金屬氧化物半導體層;源極/汲極層位於閘極絕緣層並電連接源極/汲極摻雜層。 In yet another embodiment, the present invention provides a thin film transistor including a metal oxide semiconductor layer, a source/drain doped layer, a gate insulating layer, a gate layer, and a source/drain layer, wherein the metal is oxidized The semiconductor layer has a metal oxide crystal structure, the metal oxide crystal structure includes indium, tin, gallium and oxygen atoms, and the atomic ratio of indium: tin: gallium: oxygen is 2:1:1:6, the metal oxide crystal structure The crystal unit is a diamond-shaped hexahedron; the source/drain doped layer is located on the metal oxide semiconductor layer; the gate insulating layer is located on the source/drain doped layer and is partially connected to the metal oxide semiconductor layer; the source The /drain layer is located on the gate insulating layer and is electrically connected to the source/drain doped layer.

於另一實施例,本發明提供一種薄膜電晶體,其包含第一閘極層、第一閘極絕緣層、金屬氧化物半導體層、源極/汲極摻雜層、第二閘極絕緣層、第二閘極層及源極/汲極層,其中第一閘極絕緣層位於第一閘極層上;金屬氧化物半導體層位於第一閘極絕緣層上,金屬氧化物半導體層具有金屬氧化物結晶結構,金屬氧化物結晶結構包含銦、錫、鎵及氧原子,且銦:錫:鎵:氧的原子比例為2:1:1:6,金屬氧化物結晶結構具有結晶單元為菱形六面體;源極/汲極摻雜層位於金屬氧化物半導體層上;第二閘極絕緣層位於源極/汲極摻雜層上並對應第一閘極層部分連接金屬氧化物半導體層;第二閘極層位於第二閘極絕緣層上並對應第一閘極層;源極/汲極層通過第二閘極絕緣層並電連接源極/汲極摻雜層。 In another embodiment, the present invention provides a thin film transistor including a first gate layer, a first gate insulating layer, a metal oxide semiconductor layer, a source/drain doped layer, and a second gate insulating layer , A second gate layer and a source/drain layer, wherein the first gate insulating layer is located on the first gate layer; the metal oxide semiconductor layer is located on the first gate insulating layer, and the metal oxide semiconductor layer has metal An oxide crystal structure. The metal oxide crystal structure includes indium, tin, gallium, and oxygen atoms, and the atomic ratio of indium: tin: gallium: oxygen is 2:1:1:6. The metal oxide crystal structure has a crystal unit of diamond Hexahedron; the source/drain doped layer is located on the metal oxide semiconductor layer; the second gate insulating layer is located on the source/drain doped layer and is partially connected to the metal oxide semiconductor layer corresponding to the first gate layer The second gate layer is located on the second gate insulating layer and corresponds to the first gate layer; the source/drain layer passes through the second gate insulating layer and is electrically connected to the source/drain doped layer.

於又一實施例,本發明提供一種顯示面板的電路結構,其包含基板及複數個薄膜電晶體,基板具有複數個區域;複數個薄膜電晶體分別設置於複數個區域,且複數個薄膜電晶體各具有金屬氧化物半導體層,且金屬氧化物半導體層係選自結晶銦鎵鋅氧化物半導體層、結晶銦錫鎵氧化物半導體層及其組合,其中結晶銦錫鎵氧化物半導體層中銦:錫:鎵:氧的原子比例為2:1:1:6,且結晶銦錫鎵氧化物半導體層具有結晶單元為菱形六面體。 In yet another embodiment, the present invention provides a circuit structure of a display panel, which includes a substrate and a plurality of thin film transistors, the substrate has a plurality of regions; the plurality of thin film transistors are respectively disposed in the plurality of regions, and the plurality of thin film transistors Each has a metal oxide semiconductor layer, and the metal oxide semiconductor layer is selected from a crystalline indium gallium zinc oxide semiconductor layer, a crystalline indium tin gallium oxide semiconductor layer, and a combination thereof, wherein indium in the crystalline indium tin gallium oxide semiconductor layer: The atomic ratio of tin:gallium:oxygen is 2:1:1:6, and the crystalline indium tin gallium oxide semiconductor layer has a crystal unit of rhombic hexahedron.

於一實施例,金屬氧化物結晶結構包含複數個結晶單元斜方形往上堆疊。 In one embodiment, the metal oxide crystal structure includes a plurality of crystalline units with a rhombic shape stacked up.

於一實施例,金屬氧化物結晶結構包含複數個結晶單元斜方形排列。 In one embodiment, the metal oxide crystal structure includes a plurality of crystalline units arranged in a rhombic shape.

於一實施例,菱形六面體的三稜邊的長度a、b、c分別為6.00 ±10% Å、6.71±10% Å、3.48±10% Å,且三稜邊的三個夾角α、β、γ分別為89.9964±10%度、89.9986±10%度、72.6328±10%度。 In one embodiment, the lengths a, b, and c of the three sides of the rhombic hexahedron are 6.00 ±10% Å, 6.71±10% Å, 3.48±10% Å, and the three included angles α, β, γ of the three edges are 89.9964±10% degrees, 89.9986±10% degrees, 72.6328±10% degrees, respectively.

於一實施例,複數個薄膜電晶體包含底閘極電晶體、頂閘極電晶體及雙閘極電晶體至少其中之一。 In one embodiment, the plurality of thin film transistors include at least one of bottom gate transistors, top gate transistors, and double gate transistors.

於一實施例,本發明的薄膜電晶體更包含結晶銦鎵鋅氧化物半導體層,其中結晶銦鎵鋅氧化物半導體層位於閘極絕緣層及源極/汲極層之間。 In one embodiment, the thin film transistor of the present invention further includes a crystalline indium gallium zinc oxide semiconductor layer, wherein the crystalline indium gallium zinc oxide semiconductor layer is located between the gate insulating layer and the source/drain layer.

於一實施例,結晶銦鎵鋅氧化物半導體層位於金屬氧化物半導體層及閘極絕緣層之間。 In one embodiment, the crystalline indium gallium zinc oxide semiconductor layer is located between the metal oxide semiconductor layer and the gate insulating layer.

相較於習知技術,本發明之金屬氧化物結晶結構具有原子結構幾何優化觀點的結晶單元,具有高穩定性及高載子移動率適用於顯示面板的薄膜電晶體,適合窄邊框的顯示面板,並可與其他金屬氧化物層相互搭配,應於顯示面板不同區域的電路,以利用不同金屬氧化物的特性達成優化各元件功能所需,例如降低功率消耗、增加對水氣阻擋的能力等。 Compared with the conventional technology, the metal oxide crystal structure of the present invention has a crystalline unit with an atomic structure geometry optimization viewpoint, has high stability and high carrier mobility, is suitable for thin-film transistors of display panels, and is suitable for narrow-frame display panels And can be matched with other metal oxide layers. It should be used in circuits in different areas of the display panel to use the characteristics of different metal oxides to optimize the function of each device, such as reducing power consumption and increasing the ability to block moisture. .

1‧‧‧金屬氧化物結晶結構 1‧‧‧Metal oxide crystal structure

10、10’、10”‧‧‧薄膜電晶體 10, 10’, 10” ‧‧‧ thin film transistor

12‧‧‧基板 12‧‧‧ substrate

14‧‧‧非結晶金屬氧化物層 14‧‧‧Amorphous metal oxide layer

16、16’‧‧‧熱傳遞層 16, 16’‧‧‧ heat transfer layer

20‧‧‧雙閘極電晶體 20‧‧‧Double gate transistor

30‧‧‧顯示面板的電路結構 30‧‧‧Display circuit structure

31‧‧‧閘極驅動陣列區 31‧‧‧ Gate drive array area

32‧‧‧周邊電路區 32‧‧‧ Peripheral circuit area

33‧‧‧畫素區 33‧‧‧Pixel area

100‧‧‧基板 100‧‧‧ substrate

110‧‧‧閘極層 110‧‧‧Gate layer

115‧‧‧結晶銦鎵鋅氧化物半導體層 115‧‧‧crystalline indium gallium zinc oxide semiconductor layer

120‧‧‧閘極絕緣層 120‧‧‧Gate insulation

130‧‧‧金屬氧化物半導體層 130‧‧‧Metal oxide semiconductor layer

140‧‧‧源極/汲極層 140‧‧‧ source/drain layer

142‧‧‧源極 142‧‧‧Source

144‧‧‧汲極 144‧‧‧ Jiji

150‧‧‧非晶矽層 150‧‧‧Amorphous silicon layer

152‧‧‧源極摻雜區 152‧‧‧Doped source region

154‧‧‧汲極摻雜區 154‧‧‧ Drain doped region

162‧‧‧氧化矽層 162‧‧‧Silicon oxide layer

164‧‧‧非晶矽層 164‧‧‧Amorphous silicon layer

170‧‧‧絕緣層 170‧‧‧Insulation

210‧‧‧第一閘極層 210‧‧‧First gate layer

220‧‧‧第二閘極層 220‧‧‧Second gate layer

230‧‧‧第一閘極絕緣層 230‧‧‧ First gate insulating layer

232‧‧‧下閘極絕緣層 232‧‧‧Lower gate insulating layer

234‧‧‧上閘極絕緣層 234‧‧‧Upper gate insulating layer

240‧‧‧第二閘極絕緣層 240‧‧‧Second gate insulating layer

300a~300c‧‧‧薄膜電晶體 300a~300c‧‧‧thin film transistor

310‧‧‧閘極層 310‧‧‧Gate

320‧‧‧閘極絕緣層 320‧‧‧Gate insulation

332‧‧‧結晶銦錫鎵氧化物半導體層 332‧‧‧crystalline indium tin gallium oxide semiconductor layer

334‧‧‧結晶銦鎵鋅氧化物半導體層 334‧‧‧crystalline indium gallium zinc oxide semiconductor layer

350‧‧‧源極/汲極摻雜層 350‧‧‧ source/drain doped layer

360‧‧‧惰性層 360‧‧‧Inert layer

圖1A為本發明一實施例之金屬氧化物結晶結構的示意圖。 FIG. 1A is a schematic diagram of a metal oxide crystal structure according to an embodiment of the invention.

圖1B為圖1A之金屬氧化物結晶結構之菱形六面體示意圖。 FIG. 1B is a schematic diagram of a diamond hexahedron of the metal oxide crystal structure of FIG. 1A.

圖2A及圖2B顯示形成本發明之金屬氧化物結晶結構之不同實施例之示意圖。 2A and 2B are schematic diagrams showing different embodiments of forming the metal oxide crystal structure of the present invention.

圖3A至圖3C分別顯示在不同能量的熱處理後結晶金屬氧化物層的化學成分示意圖,其中圖3A至圖3C的熱處理能量分別為160mJ/cm2、200mJ/cm2 及240mJ/cm23A to 3C respectively show crystalline metal oxide layer after the heat treatment of different chemical composition schematic energy, wherein the heat treatment energy 3A to 3C were 160mJ / cm 2, 200mJ / cm 2 and 240mJ / cm 2.

圖4A及圖4B分別顯示非結晶銦錫鎵氧化物半導體層的XRD及SAED圖。 4A and 4B show XRD and SAED diagrams of the amorphous indium tin gallium oxide semiconductor layer, respectively.

圖5A及圖5B分別顯示本發明之結晶銦錫鎵氧化物半導體層的XRD及SAED圖。 5A and 5B respectively show XRD and SAED diagrams of the crystalline indium tin gallium oxide semiconductor layer of the present invention.

圖6為本發明之結晶銦錫鎵氧化物半導體層的EDX圖。 6 is an EDX diagram of the crystalline indium tin gallium oxide semiconductor layer of the present invention.

圖7顯示本發明之結晶銦錫鎵氧化物半導體層的截面HRTEM圖。 7 shows a cross-sectional HRTEM image of the crystalline indium tin gallium oxide semiconductor layer of the present invention.

圖8顯示本發明之結晶銦錫鎵氧化物半導體層的上視HRTEM圖。 FIG. 8 shows a top-view HRTEM image of the crystalline indium tin gallium oxide semiconductor layer of the present invention.

圖9A及圖9B顯示本發明之結晶銦錫鎵氧化物結構的側視示意圖及上視示意圖。 9A and 9B show a schematic side view and a schematic top view of the crystalline indium tin gallium oxide structure of the present invention.

圖10A及圖10B為本發明各種實施例之薄膜電晶體之示意圖。 10A and 10B are schematic diagrams of thin film transistors of various embodiments of the present invention.

圖11為本發明另一實施例之薄膜電晶體之示意圖。 11 is a schematic diagram of a thin film transistor according to another embodiment of the invention.

圖12為本發明另一實施例之薄膜電晶體之示意圖。 12 is a schematic diagram of a thin film transistor according to another embodiment of the invention.

圖13為本發明一實施例之顯示面板的電路結構之示意圖。 13 is a schematic diagram of a circuit structure of a display panel according to an embodiment of the invention.

本發明提供一種金屬氧化物結晶結構及具有此金屬氧化物結晶結構之顯示面板的電路結構及薄膜電晶體,其藉由金屬氧化物結晶結構形成的金屬氧化物半導體層作為薄膜電晶體的主動層,可提供高移動率,適合窄邊框的顯示面板及感應器的應用。於後,參考圖式詳細說明本發明實施例之金屬氧化物結晶結構及具有此金屬氧化物結晶結構之顯示面板的電路結構及薄膜電晶體之細節。 The invention provides a metal oxide crystal structure and a circuit structure and a thin film transistor of a display panel having the metal oxide crystal structure. The metal oxide semiconductor layer formed by the metal oxide crystal structure serves as an active layer of the thin film transistor , Can provide high mobility, suitable for narrow border display panel and sensor applications. Hereinafter, the details of the metal oxide crystal structure, the circuit structure of the display panel having the metal oxide crystal structure and the thin film transistor according to the embodiment of the present invention will be described in detail with reference to the drawings.

圖1A為本發明一實施例之金屬氧化物結晶結構的示意圖。 如圖1A所示,金屬氧化物結晶結構1包含銦(In)、錫(Sn)、鎵(Ga)及氧(O)原子,其中銦:錫:鎵:氧的原子比例為2:1:1:6。金屬氧化物結晶結構1具有結晶單元(unit cell)為菱形六面體。亦即,金屬氧化物結晶結構1的結晶單元為包含兩個銦原子、一個錫原子、一個鎵原子及六個氧原子的銦錫鎵氧化物(In2SnGaO6,ITGO)四元化合物,且其呈菱形六面體結構。圖1B為圖1A之金屬氧化物結晶結構之菱形六面體示意圖。如圖1B所示,菱形六面體的三稜邊a、b、c的長度較佳分別約為6.00±10% Å、6.71±10% Å、3.48±10% Å,且三稜邊的三個夾角α、β、γ較佳分別約為89.9964±10%度、89.9986±10%度、72.6328±10%度,其中γ為稜邊a及b的夾角;β為稜邊a及c的夾角;α為稜邊b及c的夾角。 FIG. 1A is a schematic diagram of a metal oxide crystal structure according to an embodiment of the invention. As shown in FIG. 1A, the metal oxide crystal structure 1 includes indium (In), tin (Sn), gallium (Ga), and oxygen (O) atoms, where the atomic ratio of indium: tin: gallium: oxygen is 2: 1: 1:6. The metal oxide crystal structure 1 has a crystal unit cell (rhombic hexahedron). That is, the crystal unit of the metal oxide crystal structure 1 is an indium tin gallium oxide (In 2 SnGaO 6 , ITGO) quaternary compound containing two indium atoms, one tin atom, one gallium atom, and six oxygen atoms, and It has a rhombic hexahedral structure. FIG. 1B is a schematic diagram of a diamond hexahedron of the metal oxide crystal structure of FIG. 1A. As shown in FIG. 1B, the lengths of the triangular edges a, b, and c of the rhombic hexahedron are preferably about 6.00±10% Å, 6.71±10% Å, and 3.48±10% Å, respectively. The angles α, β, and γ are preferably about 89.9964±10% degrees, 89.9986±10% degrees, 72.6328±10% degrees, where γ is the angle between edges a and b; β is the angle between edges a and c ; Α is the angle between edges b and c.

圖2A及圖2B顯示形成本發明之金屬氧化物結晶結構之不同實施例之示意圖。如圖2A所示,於一實施例,首先形成非結晶金屬氧化物層14於基板12上。非結晶金屬氧化物層14可藉由例如物理氣相沉積(PVD)、化學氣相沉積(CVD)、原子層沉積(ALD)、濺鍍等方法形成於基板12上。基板12可為例如玻璃基板、塑膠基板、石英基板等,但不限於此。接著,形成熱傳遞層16於非結晶金屬氧化物層14上,然後進行熱處理,使得非結晶金屬氧化物層14轉化為結晶金屬氧化物層。於此實施例,金屬氧化物層14較佳為銦錫鎵氧化物半導體層。舉例而言,選用銦錫鎵氧化物的靶材,藉由物理氣相沉積方式,形成非結晶的銦錫鎵氧化物半導體層(即非結晶金屬氧化物層14)於基板12上。接著,依序形成例如氧化矽層162及非晶矽層164於非結晶的銦錫鎵氧化物半導體層,以作為熱傳遞層16。然後,藉由準分子雷射退火(excimer laser annealing,ELA)熱處理具有非晶矽層164、氧化矽 層162及非結晶的銦錫鎵氧化物半導體層(即非結晶金屬氧化物層14)堆疊的基板,使得非結晶的銦錫鎵氧化物半導體層具有足夠的熱而轉化為結晶的銦錫鎵氧化物半導體層(即結晶金屬氧化物層)。 2A and 2B are schematic diagrams showing different embodiments of forming the metal oxide crystal structure of the present invention. As shown in FIG. 2A, in one embodiment, an amorphous metal oxide layer 14 is first formed on the substrate 12. The amorphous metal oxide layer 14 can be formed on the substrate 12 by methods such as physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), sputtering, and the like. The substrate 12 may be, for example, a glass substrate, a plastic substrate, a quartz substrate, etc., but it is not limited thereto. Next, a heat transfer layer 16 is formed on the amorphous metal oxide layer 14, and then heat treatment is performed so that the amorphous metal oxide layer 14 is converted into a crystalline metal oxide layer. In this embodiment, the metal oxide layer 14 is preferably an indium tin gallium oxide semiconductor layer. For example, a target material of indium tin gallium oxide is selected, and an amorphous indium tin gallium oxide semiconductor layer (ie, an amorphous metal oxide layer 14) is formed on the substrate 12 by physical vapor deposition. Next, for example, a silicon oxide layer 162 and an amorphous silicon layer 164 are formed on the amorphous indium tin gallium oxide semiconductor layer as the heat transfer layer 16. Then, the amorphous silicon layer 164 and silicon oxide are heat-treated by excimer laser annealing (ELA) A substrate in which the layer 162 and the amorphous indium tin gallium oxide semiconductor layer (ie, the amorphous metal oxide layer 14) are stacked so that the amorphous indium tin gallium oxide semiconductor layer has sufficient heat to be converted into crystalline indium tin gallium An oxide semiconductor layer (ie, a crystalline metal oxide layer).

如圖2B所示,於另一實施例,可形成另一熱傳遞層16’於非結晶金屬氧化物層14及基板12之間,以使得非結晶金屬氧化物層14的上方及下方皆具有熱傳遞層16、16’,可提升熱處理時的熱傳遞。舉例而言,在形成圖2A的非結晶銦錫鎵氧化物半導體層之前,可先形成氧化矽層於基板12上,以作為非結晶銦錫鎵氧化物半導體層下方的熱傳遞層16’。接著,類似圖2A的實施例,依序形成非結晶銦錫鎵氧化物半導體層、氧化矽層162及非晶矽層164於基板12上的熱傳遞層16’(即氧化矽層)上。然後,藉由準分子雷射退火(ELA)熱處理具有非晶矽層164、氧化矽層162、非結晶銦錫鎵氧化物半導體層(即非結晶金屬氧化物層14)及氧化矽層(即熱傳遞層16’)堆疊的基板12,使得非結晶的銦錫鎵氧化物半導體層具有足夠的熱而轉化為結晶的銦錫鎵氧化物半導體層。 As shown in FIG. 2B, in another embodiment, another heat transfer layer 16' may be formed between the amorphous metal oxide layer 14 and the substrate 12, so that the amorphous metal oxide layer 14 has both above and below The heat transfer layers 16, 16' can enhance the heat transfer during heat treatment. For example, before forming the amorphous indium tin gallium oxide semiconductor layer of FIG. 2A, a silicon oxide layer may be formed on the substrate 12 as a heat transfer layer 16' under the amorphous indium tin gallium oxide semiconductor layer. Next, similar to the embodiment of FIG. 2A, an amorphous indium tin gallium oxide semiconductor layer, a silicon oxide layer 162, and an amorphous silicon layer 164 are sequentially formed on the heat transfer layer 16' (i.e., the silicon oxide layer) on the substrate 12. Then, the amorphous silicon layer 164, the silicon oxide layer 162, the amorphous indium tin gallium oxide semiconductor layer (ie, the amorphous metal oxide layer 14) and the silicon oxide layer (ie The heat transfer layer 16') is stacked on the substrate 12 so that the amorphous indium tin gallium oxide semiconductor layer has sufficient heat to be converted into a crystalline indium tin gallium oxide semiconductor layer.

在此需注意,藉由圖2A或圖2B所述的方式將非結晶金屬氧化物層14經過熱處理而形成結晶的金屬氧化物層,製程溫度可控制在較低溫度(較佳為基板12的熔點以下,例如數百℃以下),使得非結晶金屬氧化物層14具有足夠的熱轉化為結晶的金屬氧化物層且不會因為過熱而自基板12剝離,又能同時確保例如玻璃基板或塑膠基板等具有較低熔點的基板12不會因為過熱而受損。 It should be noted here that the amorphous metal oxide layer 14 is heat-treated to form a crystalline metal oxide layer in the manner described in FIG. 2A or FIG. 2B. The process temperature can be controlled at a lower temperature (preferably the substrate 12 (Below the melting point, for example, below several hundred degrees Celsius), so that the amorphous metal oxide layer 14 has sufficient heat to be converted into a crystalline metal oxide layer and will not peel off from the substrate 12 due to overheating, while also ensuring that, for example, a glass substrate or plastic The substrate 12 having a lower melting point, such as a substrate, is not damaged due to overheating.

圖3A至圖3C分別顯示在不同能量的熱處理後結晶金屬氧化物層的化學成分示意圖,其中圖3A至圖3C的熱處理能量分別為160mJ/cm2、 200mJ/cm2及240mJ/cm2。如圖3A至圖3C所示,使用圖2B的方式將非結晶金屬氧化物層14轉化為結晶金屬氧化物層後,即使在不同熱處理條件下,金屬氧化物層結晶後化學成分實質無明顯的改變。 3A to 3C respectively show crystalline metal oxide layer after the heat treatment of different chemical composition schematic energy, wherein the heat treatment energy 3A to 3C were 160mJ / cm 2, 200mJ / cm 2 and 240mJ / cm 2. As shown in FIGS. 3A to 3C, after the amorphous metal oxide layer 14 is converted into a crystalline metal oxide layer using the method of FIG. 2B, even under different heat treatment conditions, the chemical composition of the metal oxide layer after crystallization is substantially insignificant change.

圖4A及圖4B分別顯示非結晶銦錫鎵氧化物半導體層的X射線繞射分析(X-ray diffraction,XRD)及選區電子繞射分析(selected area electron diffraction,SAED)圖。圖5A及圖5B分別顯示本發明之結晶銦錫鎵氧化物半導體層的XRD及SAED圖。由圖4A及圖4B與圖5A及圖5B的比較可知,結晶銦錫鎵氧化物半導體層比非結晶銦錫鎵氧化物半導體層具有更明顯的特徵分布。 4A and 4B respectively show X-ray diffraction analysis (X-ray diffraction (XRD) and selected area electron diffraction analysis (SAED) diagrams of the amorphous indium tin gallium oxide semiconductor layer. 5A and 5B respectively show XRD and SAED diagrams of the crystalline indium tin gallium oxide semiconductor layer of the present invention. It can be seen from the comparison between FIGS. 4A and 4B and FIGS. 5A and 5B that the crystalline indium tin gallium oxide semiconductor layer has a more obvious characteristic distribution than the amorphous indium tin gallium oxide semiconductor layer.

圖6為本發明之結晶銦錫鎵氧化物半導體層的能量色散X射線光譜分析(energy dispersive X-ray spectroscopy,EDX)圖。由EDX分析可得知,結晶銦錫鎵氧化物(ITGO)的原子比例約為In:Sn:Ga:O=2:1:1:6。 6 is a diagram of energy dispersive X-ray spectroscopy (EDX) of the crystalline indium tin gallium oxide semiconductor layer of the present invention. According to EDX analysis, the atomic ratio of crystalline indium tin gallium oxide (ITGO) is about In:Sn:Ga:O=2:1:1:6.

接著,使用第一原理計算來預測、建立、尋找銦錫鎵氧化物表面原子排列及斷面特徵,以確認銦錫鎵氧化物的結晶單元具有幾何優化的原子結構。舉例而言,使用Quantum Espresso軟體中的PWSCF組件進行尋找最優安定之In-Sn-Ga(銦錫鎵)氧化物半導體的晶體結構,其中In:Sn:Ga:O的原子比例為2:1:1:6。PWSCF是基於密度泛函理論(density functional theory,DFT)、平面波展開(plane wave basis sets)及贋勢(pseudopotentials)近似方法來描述電子及原子的位能勢的第一原理電子結構計算程式。PWSCF的計算參數設定選擇使用廣義梯度近似(general gradient approximation,GGA)的Perdew-Burke-Emzerhof(PBE)交換-相關能泛函。截止能量設定為680eV,並使用11x11x11的K點柵格,在分子結構弛豫優化的收斂條件要求每個原子 所受的力小於0.5meV/A。圖1A所示即為藉由計算弛豫優化獲得的銦錫鎵氧化物半導體的結晶單元。 Next, the first principle calculation is used to predict, establish, and find the atomic arrangement and cross-sectional characteristics of the surface of the indium tin gallium oxide to confirm that the crystal unit of the indium tin gallium oxide has a geometrically optimized atomic structure. For example, the PWSCF component in Quantum Espresso software is used to find the optimal stability of the crystal structure of In-Sn-Ga (indium tin gallium) oxide semiconductor, where the atomic ratio of In:Sn:Ga:O is 2:1 : 1:6. PWSCF is a first-principle electronic structure calculation program that describes the potential energy potential of electrons and atoms based on density functional theory (DFT), plane wave basis sets and pseudopotentials approximation methods. The calculation parameter setting of PWSCF chooses the Perdew-Burke-Emzerhof (PBE) exchange-dependent energy functional of general gradient approximation (GGA). The cut-off energy is set to 680eV, and an 11x11x11 K-point grid is used. The convergence conditions for relaxation of molecular structure optimization require each atom The force is less than 0.5meV/A. Fig. 1A shows a crystalline unit of an indium tin gallium oxide semiconductor obtained by computational relaxation optimization.

再者,利用包含80個原子(2x1x4)的放大單元晶格進行計算,且第一原理計算參數設定同樣跟單元晶格使用廣義梯度近似(GGA)的PBE交換-相關能泛函。截止能量設定為680eV並在分子結構弛豫優化的收斂條件要求每個原子所受的力小於0.5meV/A及使用1x3x1的K點柵格。 Furthermore, the calculation is performed using an enlarged cell lattice containing 80 atoms (2x1x4), and the first-principle calculation parameter setting also uses generalized gradient approximation (GGA) PBE exchange-related energy functionals with the cell lattice. The cut-off energy is set to 680 eV and the convergence conditions optimized for molecular structure relaxation require that the force per atom is less than 0.5 meV/A and use a 1x3x1 K-dot grid.

圖7顯示本發明之結晶銦錫鎵氧化物半導體層的截面高解析度穿透式電子顯微影像(HRTEM)圖。如圖7所示,晶格間隔(d-spacing)約為2.97nm/10層及2.74nm/10層(即2.97Å及2.74Å),其與計算的斷面結果相吻合。 7 shows a cross-sectional high-resolution transmission electron micrograph (HRTEM) image of the crystalline indium tin gallium oxide semiconductor layer of the present invention. As shown in FIG. 7, the lattice spacing (d-spacing) is about 2.97 nm/10 layers and 2.74 nm/10 layers (ie, 2.97 Å and 2.74 Å), which is consistent with the calculated cross-sectional results.

圖8顯示本發明之結晶銦錫鎵氧化物半導體層的上視HRTEM圖。如圖8所示,晶格間隔約為2.53nm/10層(即2.53Å),其與計算的斷面結果相吻合。 FIG. 8 shows a top-view HRTEM image of the crystalline indium tin gallium oxide semiconductor layer of the present invention. As shown in Figure 8, the lattice spacing is about 2.53nm/10 layers (ie 2.53Å), which is in agreement with the calculated cross-sectional results.

圖9A及圖9B顯示本發明之結晶銦錫鎵氧化物結構的側視示意圖及上視示意圖。如圖圖9A及圖9B所示,由第一原理計算及上述各種結晶銦錫鎵氧化物的材料結構分析,可確認本發明之銦錫鎵氧化物結晶結構之銦:錫:鎵:氧的原子比例為2:1:1:6,且銦錫鎵氧化物結晶結構具有菱形六面體的結晶單元,而菱形六面體的三稜邊a、b、c的長度分別約為6.00±10% Å、6.71±10% Å、3.48±10% Å,且三稜邊的三個夾角α、β、γ分別約為89.9964±10%度、89.9986±10%度、72.6328±10%度。再者,金屬氧化物(即銦錫鎵氧化物)結晶結構的結晶單元為菱形六面體,且複數個結晶單元斜方形往上堆疊並呈斜方形排列。 9A and 9B show a schematic side view and a schematic top view of the crystalline indium tin gallium oxide structure of the present invention. As shown in FIGS. 9A and 9B, the first principle calculation and the material structure analysis of the various crystalline indium tin gallium oxides above can confirm the indium: tin: gallium: oxygen of the indium tin gallium oxide crystal structure of the present invention The atomic ratio is 2:1:1:6, and the indium tin gallium oxide crystal structure has a rhombohedral crystalline unit, and the lengths of the three edges a, b, and c of the rhombic hexahedron are about 6.00±10, respectively. % Å, 6.71±10% Å, 3.48±10% Å, and the three included angles α, β, γ of the three edges are about 89.9964±10% degrees, 89.9986±10% degrees, 72.6328±10% degrees, respectively. Furthermore, the crystal unit of the metal oxide (ie, indium tin gallium oxide) crystal structure is a rhombic hexahedron, and a plurality of crystal units are stacked in a rhombic shape and arranged in a rhombic shape.

本發明之結晶金屬氧化物結構可應用於薄膜電晶體裝置。請參考圖10A,圖10A顯示本發明一實施例之薄膜電晶體之示意圖。如圖10A所示,薄膜電晶體10為底閘極電晶體結構,其包含閘極層110、閘極絕緣層120、金屬氧化物半導體層130及源極/汲極層140。閘極層110位於基板100上。閘極絕緣層120位於閘極層110上。金屬氧化物半導體層130位於閘極絕緣層120上。源極/汲極層140位於金屬氧化物半導體層130上。於此實施例,金屬氧化物半導體層130具有金屬氧化物結晶結構。類似於上述圖1A之實施例所示,於此實施例,金屬氧化物結晶結構包含銦、錫、鎵及氧原子,其中銦:錫:鎵:氧的原子比例為2:1:1:6,且金屬氧化物結晶結構具有結晶單元為菱形六面體。換言之,於本實施例中,金屬氧化物半導體層130較佳為具有圖1A實施例所示之銦錫鎵氧化物結晶結構的銦錫鎵氧化物半導體層。 The crystalline metal oxide structure of the present invention can be applied to thin film transistor devices. Please refer to FIG. 10A, which is a schematic diagram of a thin film transistor according to an embodiment of the present invention. As shown in FIG. 10A, the thin film transistor 10 has a bottom gate transistor structure, which includes a gate layer 110, a gate insulating layer 120, a metal oxide semiconductor layer 130, and a source/drain layer 140. The gate layer 110 is located on the substrate 100. The gate insulating layer 120 is located on the gate layer 110. The metal oxide semiconductor layer 130 is located on the gate insulating layer 120. The source/drain layer 140 is located on the metal oxide semiconductor layer 130. In this embodiment, the metal oxide semiconductor layer 130 has a metal oxide crystal structure. Similar to the embodiment shown in FIG. 1A above, in this embodiment, the metal oxide crystal structure includes indium, tin, gallium, and oxygen atoms, wherein the atomic ratio of indium: tin: gallium: oxygen is 2:1:1:6 , And the crystal structure of the metal oxide has a crystal unit of rhombic hexahedron. In other words, in this embodiment, the metal oxide semiconductor layer 130 is preferably an indium tin gallium oxide semiconductor layer having the indium tin gallium oxide crystal structure shown in the embodiment of FIG. 1A.

具體而言,薄膜電晶體10係製作於基板100上,基板100可為例如玻璃、聚合物、石英等透明基板。閘極層110較佳為金屬層,例如鎢(W)、鋁(Al)、鉻(Cr)、銅(Cu)、鉬(Mo)或其合金。閘極絕緣層120可直接覆蓋於閘極層110上,且閘極絕緣層120可包含矽氧化物、矽氮化物或矽氮氧化物,但不以此為限。金屬氧化物半導體層130可藉由例如圖2A圖或圖2B所述的方式形成於閘極絕緣層120上。於此實施例,金屬氧化物半導體層130為包含銦、錫、鎵及氧原子的結晶銦錫鎵氧化物半導體層,以作為薄膜電晶體的主動層。如上述圖1A之實施例所示,結晶銦錫鎵氧化物半導體層之銦:錫:鎵:氧的原子比例為2:1:1:6,並為具有菱形六面體之結晶單元的銦錫鎵氧化物結晶結構。菱形六面體的三稜邊a、b、c的長度分別為6.00±10% Å、 6.71±10% Å、3.48±10% Å,且三稜邊的三個夾角α、β、γ分別為89.9964±10%度、89.9986±10%度、72.6328±10%度。金屬氧化物(例如銦錫鎵氧化物)結晶結構包含複數個結晶單元斜方形往上堆疊,且複數個結晶單元斜方形排列。源極與汲極層140包含源極142及汲極144,且可由金屬材料或非金屬導電材料構成。於一實施例,金屬材料包含例如鎢(W)、鋁(Al)、鉻(Cr)、銅(Cu)、鉬(Mo)或其合金,但不以此為限。於另一實施例,非金屬導電材料包含例如氧化銦錫,但不以此為限。於一實施例,本發明之薄膜電晶體10可更包含非晶矽層150,其中非晶矽層150位於金屬氧化物半導體層130上,以作為源極142與汲極144的摻雜區,例如n+或p+摻雜非晶矽之源極摻雜區152與汲極摻雜區154。 Specifically, the thin film transistor 10 is fabricated on the substrate 100, and the substrate 100 may be a transparent substrate such as glass, polymer, quartz, or the like. The gate layer 110 is preferably a metal layer, such as tungsten (W), aluminum (Al), chromium (Cr), copper (Cu), molybdenum (Mo), or alloys thereof. The gate insulating layer 120 may directly cover the gate layer 110, and the gate insulating layer 120 may include silicon oxide, silicon nitride, or silicon oxynitride, but not limited thereto. The metal oxide semiconductor layer 130 may be formed on the gate insulating layer 120 by, for example, the method described in FIG. 2A or FIG. 2B. In this embodiment, the metal oxide semiconductor layer 130 is a crystalline indium tin gallium oxide semiconductor layer containing indium, tin, gallium, and oxygen atoms as an active layer of the thin film transistor. As shown in the embodiment of FIG. 1A above, the atomic ratio of indium:tin:gallium:oxygen in the crystalline indium tin gallium oxide semiconductor layer is 2:1:1:6, and it is indium with a crystalline unit of rhombic hexahedron Tin gallium oxide crystal structure. The lengths of the three sides a, b, and c of the rhombohedron are 6.00±10% Å, 6.71±10% Å, 3.48±10% Å, and the three included angles α, β, γ of the three edges are 89.9964±10% degrees, 89.9986±10% degrees, 72.6328±10% degrees, respectively. The metal oxide (eg, indium tin gallium oxide) crystal structure includes a plurality of crystalline unit rhombic stacked upward, and the plurality of crystalline units are arranged in a rhomboid. The source and drain layers 140 include a source electrode 142 and a drain electrode 144, and may be composed of metallic materials or non-metallic conductive materials. In an embodiment, the metal material includes, for example, tungsten (W), aluminum (Al), chromium (Cr), copper (Cu), molybdenum (Mo), or alloys thereof, but not limited thereto. In another embodiment, the non-metallic conductive material includes, for example, indium tin oxide, but not limited thereto. In one embodiment, the thin film transistor 10 of the present invention may further include an amorphous silicon layer 150, wherein the amorphous silicon layer 150 is located on the metal oxide semiconductor layer 130 to serve as a doped region of the source electrode 142 and the drain electrode 144, For example, n+ or p+ doped amorphous silicon source doped region 152 and drain doped region 154.

請參考圖10B,圖10B為本發明另一實施例之薄膜電晶體之示意圖。如圖10B所示,本發明之薄膜電晶體10’與圖10A實施例之差異在於更包含結晶銦鎵鋅(IGZO)氧化物半導體層115,其中結晶銦鎵鋅氧化物半導體層115位於閘極絕緣層120及源極/汲極層140之間。具體而言,結晶銦鎵鋅氧化物半導體層115位於金屬氧化物半導體層130(例如結晶銦錫鎵氧化物半導體層)及閘極絕緣層120之間,使得薄膜電晶體10’具有結晶銦鎵鋅氧化物半導體層115及結晶銦錫鎵氧化物半導體層(例如130)之雙層結構的主動層,以利用不同金屬氧化物的特性達成優化各元件功能所需。舉例而言,結晶銦錫鎵氧化物半導體層具有高載子移動率(μ),而結晶銦鎵鋅氧化物半導體層115具有低關電流(Ioff)有利於降低功率消耗。再者,雙層結構的主動層設計,可增加薄膜電晶體10’對水氣的阻擋能力,有利於提升可靠度。 Please refer to FIG. 10B, which is a schematic diagram of a thin film transistor according to another embodiment of the present invention. As shown in FIG. 10B, the difference between the thin film transistor 10' of the present invention and the embodiment of FIG. 10A is that it further includes a crystalline indium gallium zinc oxide (IGZO) oxide semiconductor layer 115, wherein the crystalline indium gallium zinc oxide semiconductor layer 115 is located at the gate Between the insulating layer 120 and the source/drain layer 140. Specifically, the crystalline indium gallium zinc oxide semiconductor layer 115 is located between the metal oxide semiconductor layer 130 (for example, the crystalline indium tin gallium oxide semiconductor layer) and the gate insulating layer 120, so that the thin film transistor 10' has crystalline indium gallium The active layer of the double layer structure of the zinc oxide semiconductor layer 115 and the crystalline indium tin gallium oxide semiconductor layer (for example, 130) utilizes the characteristics of different metal oxides to achieve the optimization of the function of each device. For example, the crystalline indium tin gallium oxide semiconductor layer has a high carrier mobility (μ), and the crystalline indium gallium zinc oxide semiconductor layer 115 has a low off current (I off ) to help reduce power consumption. Furthermore, the active layer design of the double-layer structure can increase the barrier ability of the thin film transistor 10' against moisture, which is beneficial to improve reliability.

在此需注意,依據實際應用,銦鎵鋅氧化物半導體層及銦錫 鎵氧化物半導體層可藉由同一熱處理程序進行結晶,以簡化製造程序,降低製造成本。舉例而言,當沉積非結晶銦錫鎵氧化物半導體層後,在進行結晶的熱處理程序之前,可選擇先形成非結晶銦鎵鋅氧化物半導體層於非結晶銦錫鎵氧化物半導體層上。接著利用如圖2A或圖2B所示的方式同時熱處理非結晶銦鎵鋅氧化物半導體層及非結晶銦錫鎵氧化物半導體層,以分別形成結晶銦鎵鋅氧化物半導體層及結晶銦錫鎵氧化物半導體層,但不以此為限。 It should be noted here that depending on the actual application, the indium gallium zinc oxide semiconductor layer The gallium oxide semiconductor layer can be crystallized by the same heat treatment process to simplify the manufacturing process and reduce the manufacturing cost. For example, after depositing the amorphous indium tin gallium oxide semiconductor layer, before performing the heat treatment process of crystallization, an amorphous indium gallium zinc oxide semiconductor layer may be formed on the amorphous indium tin gallium oxide semiconductor layer. Next, the amorphous indium gallium zinc oxide semiconductor layer and the amorphous indium tin gallium oxide semiconductor layer are simultaneously heat-treated in the manner as shown in FIG. 2A or FIG. 2B to form a crystalline indium gallium zinc oxide semiconductor layer and a crystalline indium tin gallium semiconductor layer, respectively The oxide semiconductor layer, but not limited to this.

再者,請參考圖11,圖11顯示本發明另一實施例之薄膜電晶體之示意圖。如圖11所示,具有本發明之金屬氧化物結晶結構的結晶金屬氧化物半導體層也可應用於頂閘極電晶體。具體而言,於本實施例中,頂閘極電晶體10”包含基板100、絕緣層170、金屬氧化物半導體層130、非晶矽層150、閘極絕緣層120、閘極層110及源極/汲極層140。具體而言,本實施例中,絕緣層170位於基板100上。金屬氧化物半導體層130位於絕緣層170上,以作為主動層,且金屬氧化物半導體層130較佳為具有圖1A實施例所示之銦錫鎵氧化物結晶結構的銦錫鎵氧化物半導體層。非晶矽層150位於金屬氧化物半導體層130上以作為源極/汲極摻雜層,且非晶矽層150包含源極摻雜區152與汲極摻雜區154。閘極絕緣層120位於非晶矽層150並對應閘極層110部分連接金屬氧化物半導體層130。閘極層110位於閘極絕緣層120上並對應金屬氧化物半導體層130。源極/汲極層140包含源極142與汲極144,並通過閘極絕緣層120分別電連接源極摻雜區152與汲極摻雜區154。 Furthermore, please refer to FIG. 11, which is a schematic diagram of a thin film transistor according to another embodiment of the present invention. As shown in FIG. 11, the crystalline metal oxide semiconductor layer having the metal oxide crystal structure of the present invention can also be applied to top gate transistors. Specifically, in this embodiment, the top gate transistor 10" includes a substrate 100, an insulating layer 170, a metal oxide semiconductor layer 130, an amorphous silicon layer 150, a gate insulating layer 120, a gate layer 110 and a source Electrode/drain layer 140. Specifically, in this embodiment, the insulating layer 170 is located on the substrate 100. The metal oxide semiconductor layer 130 is located on the insulating layer 170 as an active layer, and the metal oxide semiconductor layer 130 is preferred It is an indium tin gallium oxide semiconductor layer with an indium tin gallium oxide crystal structure as shown in the embodiment of FIG. 1A. The amorphous silicon layer 150 is located on the metal oxide semiconductor layer 130 as a source/drain doped layer, and The amorphous silicon layer 150 includes a source doped region 152 and a drain doped region 154. The gate insulating layer 120 is located on the amorphous silicon layer 150 and is partially connected to the metal oxide semiconductor layer 130 corresponding to the gate layer 110. The gate layer 110 Located on the gate insulating layer 120 and corresponding to the metal oxide semiconductor layer 130. The source/drain layer 140 includes a source 142 and a drain 144, and is electrically connected to the source doped region 152 and the drain through the gate insulating layer 120, respectively极平面区154.

在此需注意,基板100、金屬氧化物半導體層130、非晶矽層150及源極/汲極層140的材料及結構細節可參考圖10A的相關說明,且閘極 層110可包含金屬或非金屬導電材料,例如鎢(W)、鋁(Al)、鉻(Cr)、銅(Cu)、鉬(Mo)或其合金、或氧化銦錫等。閘極絕緣層120可選自於具有合宜介電常數的介電層的一層或多層結構,例如但不限於:矽氧化物、矽氮化物或矽氮氧化物。再者,絕緣層170亦可選自於具有合宜介電常數的介電層的一層或多層結構,例如但不限於:矽氧化物、矽氮化物或矽氮氧化物。於本實施例中,頂閘極電晶體10”使用具有高載子移動率的銦錫鎵氧化物層作為主動層,適合應用於閘極驅動陣列(GOA)電路,以藉由銦錫鎵氧化物的高載子移動率提升電晶體性能,更適合應用於窄邊框設計。 It should be noted here that the material and structure details of the substrate 100, the metal oxide semiconductor layer 130, the amorphous silicon layer 150, and the source/drain layer 140 can refer to the relevant description of FIG. 10A, and the gate The layer 110 may include metallic or non-metallic conductive materials, such as tungsten (W), aluminum (Al), chromium (Cr), copper (Cu), molybdenum (Mo) or alloys thereof, indium tin oxide, or the like. The gate insulating layer 120 may be selected from one or more layers with a dielectric layer having a suitable dielectric constant, such as but not limited to: silicon oxide, silicon nitride, or silicon oxynitride. Furthermore, the insulating layer 170 can also be selected from one or more layers with a dielectric layer having a suitable dielectric constant, such as but not limited to: silicon oxide, silicon nitride, or silicon oxynitride. In this embodiment, the top gate transistor 10" uses an indium tin gallium oxide layer with a high carrier mobility as an active layer, which is suitable for a gate drive array (GOA) circuit to be oxidized by indium tin gallium The high carrier mobility of the object improves the performance of the transistor and is more suitable for narrow frame design.

此外,請參考圖12,圖12顯示本發明另一實施例之薄膜電晶體之示意圖。如圖12所示,具有本發明之金屬氧化物結晶結構的結晶金屬氧化物半導體層也可應用於雙閘極電晶體。具體而言,於本實施例中,雙閘極電晶體20包含基板100、第一閘極層210、第二閘極層220、第一閘極絕緣層230、第二閘極絕緣層240、金屬氧化物半導體層130、非晶矽層150及源極/汲極層140。具體而言,本實施例中,第一閘極層210位於基板100上。第一閘極絕緣層230位於第一閘極層210上,且第一閘極絕緣層230可為包含下閘極絕緣層232及上閘極絕緣層234的雙層閘極絕緣層結構。金屬氧化物半導體層130位於第一閘極絕緣層230上以作為主動層,且金屬氧化物半導體層130較佳為具有圖1A實施例所示之銦錫鎵氧化物結晶結構的銦錫鎵氧化物半導體層。非晶矽層150位於金屬氧化物半導體層130上以作為源極/汲極摻雜層,且非晶矽層150包含源極摻雜區152與汲極摻雜區154。第二閘極絕緣層240位於非晶矽層150並對應第一閘極層210部分連接金屬氧化物半導體層130。第二閘極層220位於第二閘極絕緣層240並對應第一閘極層 210。源極/汲極層140包含源極142與汲極144,並通過第二閘極絕緣層240分別電連接源極摻雜區152與汲極摻雜區154。 In addition, please refer to FIG. 12, which is a schematic diagram of a thin film transistor according to another embodiment of the present invention. As shown in FIG. 12, the crystalline metal oxide semiconductor layer having the metal oxide crystal structure of the present invention can also be applied to a double gate transistor. Specifically, in this embodiment, the dual gate transistor 20 includes a substrate 100, a first gate layer 210, a second gate layer 220, a first gate insulating layer 230, a second gate insulating layer 240, The metal oxide semiconductor layer 130, the amorphous silicon layer 150, and the source/drain layer 140. Specifically, in this embodiment, the first gate layer 210 is located on the substrate 100. The first gate insulating layer 230 is located on the first gate layer 210, and the first gate insulating layer 230 may be a double-layer gate insulating layer structure including a lower gate insulating layer 232 and an upper gate insulating layer 234. The metal oxide semiconductor layer 130 is located on the first gate insulating layer 230 as an active layer, and the metal oxide semiconductor layer 130 is preferably indium tin gallium oxide having the indium tin gallium oxide crystal structure shown in the embodiment of FIG. 1A物电子层。 Material semiconductor layer. The amorphous silicon layer 150 is located on the metal oxide semiconductor layer 130 as a source/drain doped layer, and the amorphous silicon layer 150 includes a source doped region 152 and a drain doped region 154. The second gate insulating layer 240 is located on the amorphous silicon layer 150 and is partially connected to the metal oxide semiconductor layer 130 corresponding to the first gate layer 210. The second gate layer 220 is located on the second gate insulating layer 240 and corresponds to the first gate layer 210. The source/drain layer 140 includes a source 142 and a drain 144, and is electrically connected to the source doped region 152 and the drain doped region 154 through the second gate insulating layer 240, respectively.

在此需注意,基板100、金屬氧化物半導體層130、非晶矽層150及源極/汲極層140的材料及結構細節可參考圖10A的相關說明,且第一閘極層210及第二閘極層220可包含金屬或非金屬導電材料,例如鎢(W)、鋁(Al)、鉻(Cr)、銅(Cu)、鉬(Mo)或其合金、或氧化銦錫等。第一閘極絕緣層230之下閘極絕緣層232及上閘極絕緣層234與第二閘極絕緣層240可選自於具有合宜介電常數的介電層,例如但不限於:矽氧化物、矽氮化物或矽氮氧化物。再者,第二閘極絕緣層240亦可作為惰性層,以保護其下各層(例如第一閘極層210、第一閘極絕緣層230、金屬氧化物半導體層130、非晶矽層150等)。於本實施例中,雙閘極電晶體20使用具有高載子移動率的銦錫鎵氧化物層作為主動層,適合應用於閘極驅動陣列(GOA)電路,以強化顯示裝置(例如有機發光二極體顯示裝置(OLED))的臨界電壓及開電流的控制。 It should be noted here that the material and structure details of the substrate 100, the metal oxide semiconductor layer 130, the amorphous silicon layer 150, and the source/drain layer 140 can refer to the relevant description of FIG. 10A, and the first gate layer 210 and the first The second gate layer 220 may include metallic or non-metallic conductive materials, such as tungsten (W), aluminum (Al), chromium (Cr), copper (Cu), molybdenum (Mo) or alloys thereof, or indium tin oxide. The lower gate insulating layer 232, the upper gate insulating layer 234, and the second gate insulating layer 240 under the first gate insulating layer 230 may be selected from dielectric layers with suitable dielectric constants, such as but not limited to: silicon oxide , Silicon nitride or silicon oxynitride. Furthermore, the second gate insulating layer 240 can also serve as an inert layer to protect the underlying layers (eg, the first gate layer 210, the first gate insulating layer 230, the metal oxide semiconductor layer 130, and the amorphous silicon layer 150 Wait). In this embodiment, the dual gate transistor 20 uses an indium tin gallium oxide layer with a high carrier mobility as an active layer, which is suitable for a gate drive array (GOA) circuit to enhance a display device (such as organic light emission) The control of the threshold voltage and on current of the diode display (OLED).

再者,本發明之金屬氧化物結晶結構可搭配使用合宜的其他金屬氧化物半導體層,以利用不同金屬氧化物的特性達成優化各元件功能所需,例如降低功率消耗、增加對水氣阻擋的能力等。請參考圖13,圖13為本發明一實施例之顯示面板的電路結構之示意圖。如圖13所示,顯示面板的電路結構30包含基板100及複數個薄膜電晶體300a、300b、300c。基板100具有複數個區域(例如31、32、33),而複數個薄膜電晶體300a、300b、300c分別設置於複數個區域。具體而言,基板100的複數個區域可包含例如閘極驅動陣列區31、周邊電路區32、畫素區33等。薄膜電晶體300a、300b、300c分別設置於閘極驅動陣列區31、周邊電路區32及畫素區33。各薄膜電 晶體300a、300b、300c包含閘極層310、閘極絕緣層320、至少一金屬氧化物半導體層(例如332、334)、源極/汲極摻雜層350及惰性層360。 Furthermore, the metal oxide crystal structure of the present invention can be used in conjunction with other suitable metal oxide semiconductor layers to take advantage of the characteristics of different metal oxides to optimize the function of each device, such as reducing power consumption and increasing the barrier to moisture Ability etc. Please refer to FIG. 13, which is a schematic diagram of a circuit structure of a display panel according to an embodiment of the invention. As shown in FIG. 13, the circuit structure 30 of the display panel includes a substrate 100 and a plurality of thin film transistors 300a, 300b, and 300c. The substrate 100 has a plurality of regions (for example, 31, 32, and 33), and the plurality of thin film transistors 300a, 300b, and 300c are respectively disposed in the plurality of regions. Specifically, the plurality of regions of the substrate 100 may include, for example, the gate driving array region 31, the peripheral circuit region 32, the pixel region 33, and the like. The thin film transistors 300a, 300b, and 300c are respectively disposed in the gate driving array area 31, the peripheral circuit area 32, and the pixel area 33. Thin film The crystals 300a, 300b, and 300c include a gate layer 310, a gate insulating layer 320, at least one metal oxide semiconductor layer (eg, 332, 334), a source/drain doped layer 350, and an inert layer 360.

在此需注意,閘極層310、閘極絕緣層320、源極/汲極摻雜層350具有與前述實施例之閘極層110、閘極絕緣層120或230、源極/汲極摻雜層(例如非晶矽層150)類似的結構及作用,於此不再贅述。惰性層360覆蓋於源極/汲極摻雜層350上,且較佳包含絕緣材料,用以保護電晶體。此外,於此實施例雖未繪示源極/汲極層,但類似於圖12之實施例,源極/汲極層可通過惰性層360電連接源極/汲極摻雜層350。 It should be noted here that the gate layer 310, the gate insulating layer 320, and the source/drain doped layer 350 are doped with the gate layer 110, the gate insulating layer 120 or 230, and the source/drain doped in the previous embodiment. The similar structure and function of the impurity layer (such as the amorphous silicon layer 150) will not be repeated here. The inert layer 360 covers the source/drain doped layer 350, and preferably includes an insulating material to protect the transistor. In addition, although the source/drain layer is not shown in this embodiment, similar to the embodiment of FIG. 12, the source/drain layer can be electrically connected to the source/drain doped layer 350 through the inert layer 360.

在本實施例中,複數個薄膜電晶體300a、300b、300c各具有至少一金屬氧化物半導體層(例如332、334),且金屬氧化物半導體層較佳選自結晶銦鎵鋅氧化物半導體層、結晶銦錫鎵氧化物半導體層及其組合,其中結晶銦錫鎵氧化物半導體層中銦:錫:鎵:氧的原子比例為2:1:1:6,且結晶銦錫鎵氧化物半導體層具有結晶單元為菱形六面體。菱形六面體的三稜邊a、b、c的長度分別為6.00±10% Å、6.71±10% Å、3.48±10% Å,且三稜邊的三個夾角α、β、γ分別為89.9964±10%度、89.9986±10%度、72.6328±10%度。換言之,複數個薄膜電晶體300a、300b、300c之至少一薄膜電晶體(例如300a、300c)較佳包含具有如圖1A所示之銦錫鎵氧化物結晶結構的結晶銦鎵鋅氧化物半導體層。 In this embodiment, the plurality of thin film transistors 300a, 300b, and 300c each have at least one metal oxide semiconductor layer (for example, 332, 334), and the metal oxide semiconductor layer is preferably selected from a crystalline indium gallium zinc oxide semiconductor layer , A crystalline indium tin gallium oxide semiconductor layer and a combination thereof, in which the atomic ratio of indium: tin: gallium: oxygen in the crystalline indium tin gallium oxide semiconductor layer is 2:1:1:6, and the crystalline indium tin gallium oxide semiconductor The layer has crystalline units that are rhombohedral. The lengths of the three edges a, b, and c of the rhombic hexahedron are 6.00±10% Å, 6.71±10% Å, and 3.48±10% Å, and the three included angles α, β, and γ of the three edges are respectively 89.9964±10% degree, 89.9986±10% degree, 72.6328±10% degree. In other words, at least one thin film transistor (eg, 300a, 300c) of the plurality of thin film transistors 300a, 300b, 300c preferably includes a crystalline indium gallium zinc oxide semiconductor layer having an indium tin gallium oxide crystal structure as shown in FIG. 1A .

舉例而言,位於閘極驅動陣列區31的薄膜電晶體300a較佳具有結晶銦錫鎵氧化物半導體層332作為主動層,以藉由銦錫鎵氧化物的高載子移動率提升電晶體性能,更適合應用於窄邊框設計。位於周邊電路區32的薄膜電晶體300b較佳具有結晶銦鎵鋅氧化物半導體層334作為主動層,以 藉由銦鎵鋅氧化物的低關電流特性,有效降低功率消耗。再者,位於畫素區33的薄膜電晶體300c較佳類似於圖10B之實施例,係具有結晶銦錫鎵氧化物半導體層332及結晶銦鎵鋅氧化物半導體層334之雙層結構的主動層,以達到高載子移動率(μ)及低關電流(Ioff),有利於提升電晶體性能、降低功率消耗及增加對水氣的阻擋能力以提升可靠度。 For example, the thin film transistor 300a located in the gate driving array region 31 preferably has a crystalline indium tin gallium oxide semiconductor layer 332 as an active layer to improve the transistor performance by the high carrier mobility of indium tin gallium oxide , More suitable for narrow border design. The thin film transistor 300b located in the peripheral circuit area 32 preferably has a crystalline indium gallium zinc oxide semiconductor layer 334 as an active layer, so as to effectively reduce power consumption by the low off current characteristic of indium gallium zinc oxide. Furthermore, the thin film transistor 300c located in the pixel region 33 is preferably similar to the embodiment of FIG. 10B and is an active two-layer structure having a crystalline indium tin gallium oxide semiconductor layer 332 and a crystalline indium gallium zinc oxide semiconductor layer 334 In order to achieve high carrier mobility (μ) and low off current (I off ), it is beneficial to improve the performance of transistors, reduce power consumption and increase the ability to block moisture to improve reliability.

在此需注意,複數個薄膜電晶體300a、300b、300c中的至少一金屬氧化物半導體層(例如單層銦鎵鋅氧化物或銦錫鎵氧化物、或者雙層銦鎵鋅氧化物及銦錫鎵氧化物),可利用一道或兩道光罩的微影製程形成所需圖案的非結晶銦鎵鋅氧化物半導體層、非結晶銦錫鎵氧化物半導體層,之後可利用同一熱處理程序(如圖2A或圖2B之實施例所述),以形成結晶銦鎵鋅氧化物半導體層及結晶銦錫鎵氧化物半導體層的單層或雙層結構。 It should be noted here that at least one metal oxide semiconductor layer (such as single-layer indium-gallium-zinc oxide or indium-tin-gallium oxide, or double-layer indium-gallium-zinc oxide and indium in the plurality of thin film transistors 300a, 300b, 300c Tin gallium oxide), one or two mask photolithography processes can be used to form the desired pattern of amorphous indium gallium zinc oxide semiconductor layer and amorphous indium tin gallium oxide semiconductor layer, and then the same heat treatment process (such as 2A or 2B) to form a single-layer or double-layer structure of a crystalline indium gallium zinc oxide semiconductor layer and a crystalline indium tin gallium oxide semiconductor layer.

此外,圖13之實施例中,複數個薄膜電晶體300a、300b、300c雖以底閘極電晶體結構為例說明,但不限於此。於其他實施例,複數個薄膜電晶體300a、300b、300c可具有類似圖11的頂閘極電晶體結構或圖12的雙閘極電晶體結構。換言之,顯示面板的電路結構30可包含由底閘極電晶體、頂閘極電晶體及雙閘極電晶體至少其中之一構成的複數個薄膜電晶體300a、300b、300c。 In addition, in the embodiment of FIG. 13, the plurality of thin film transistors 300a, 300b, and 300c are described by taking the structure of the bottom gate transistor as an example, but it is not limited to this. In other embodiments, the plurality of thin film transistors 300a, 300b, and 300c may have a structure similar to the top gate transistor of FIG. 11 or the double gate transistor of FIG. In other words, the circuit structure 30 of the display panel may include a plurality of thin film transistors 300a, 300b, and 300c composed of at least one of a bottom gate transistor, a top gate transistor, and a double gate transistor.

本發明已由上述實施例加以描述,然而上述實施例僅為例示目的而非用於限制。熟此技藝者當知在不悖離本發明精神下,於此特別說明的實施例可有例示實施例的其他修改。因此,本發明範疇亦涵蓋此類修改且僅由所附申請專利範圍限制。 The present invention has been described by the above-mentioned embodiments, however, the above-mentioned embodiments are for illustrative purposes only and not for limitation. Those skilled in the art should know that the embodiments specifically described herein may have other modifications of the illustrated embodiments without departing from the spirit of the present invention. Therefore, the scope of the present invention also covers such modifications and is only limited by the scope of the attached patent application.

1‧‧‧金屬氧化物結晶結構 1‧‧‧Metal oxide crystal structure

Claims (17)

一種金屬氧化物結晶結構,包含銦、錫、鎵及氧原子,其中:銦:錫:鎵:氧的原子比例為2:1:1:6,且該金屬氧化物結晶結構具有一結晶單元為菱形六面體。 A metal oxide crystal structure includes indium, tin, gallium and oxygen atoms, wherein: the atomic ratio of indium:tin:gallium:oxygen is 2:1:1:6, and the metal oxide crystal structure has a crystal unit as Rhombus hexahedron. 如請求項1所述的金屬氧化物結晶結構,其中該金屬氧化物結晶結構包含複數個該結晶單元斜方形往上堆疊。 The metal oxide crystal structure according to claim 1, wherein the metal oxide crystal structure includes a plurality of the crystal units with a rhombic shape stacked upward. 如請求項1所述的金屬氧化物結晶結構,其中該金屬氧化物結晶結構包含複數個該結晶單元斜方形排列。 The metal oxide crystal structure according to claim 1, wherein the metal oxide crystal structure comprises a plurality of rhombic arrangements of the crystal units. 如請求項1至3任一項所述的金屬氧化物結晶結構,其中該菱形六面體的三稜邊a、b、c的長度分別為6.00±10% Å、6.71±10% Å、3.48±10% Å,且該三稜邊的三個夾角α、β、γ分別為89.9964±10%度、89.9986±10%度、72.6328±10%度。 The metal oxide crystal structure according to any one of claims 1 to 3, wherein the lengths of the triangular edges a, b, and c of the rhombic hexahedron are 6.00±10% Å, 6.71±10% Å, 3.48 ±10% Å, and the three angles α, β, and γ of the three edges are 89.9964±10% degrees, 89.9986±10% degrees, and 72.6328±10% degrees, respectively. 一種薄膜電晶體,包含:一閘極層;一閘極絕緣層,位於該閘極層上;一金屬氧化物半導體層,位於該閘極絕緣層上,該金屬氧化物半導體層具有一金屬氧化物結晶結構,其中該金屬氧化物結晶結構包含銦、錫、鎵及氧原子,且銦:錫:鎵:氧的原子比例為2:1:1:6,該金屬氧化物結晶結構具有一結晶單元為菱形六面體;以及一源極/汲極層,位於該金屬氧化物半導體層上。 A thin film transistor, including: a gate layer; a gate insulating layer on the gate layer; a metal oxide semiconductor layer on the gate insulating layer, the metal oxide semiconductor layer has a metal oxide Crystal structure, wherein the metal oxide crystal structure includes indium, tin, gallium and oxygen atoms, and the atomic ratio of indium: tin: gallium: oxygen is 2:1:1:6, the metal oxide crystal structure has a crystal The unit is a diamond-shaped hexahedron; and a source/drain layer is located on the metal oxide semiconductor layer. 一種薄膜電晶體,包含:一金屬氧化物半導體層,該金屬氧化物半導體層具有一金屬氧化物結晶 結構,其中該金屬氧化物結晶結構包含銦、錫、鎵及氧原子,且銦:錫:鎵:氧的原子比例為2:1:1:6,該金屬氧化物結晶結構具有一結晶單元為菱形六面體;一源極/汲極摻雜層,位於該金屬氧化物半導體層上;一閘極絕緣層,位於該源極/汲極摻雜層上並部分連接該金屬氧化物半導體層;一閘極層,位於該閘極絕緣層上並對應該金屬氧化物半導體層;以及一源極/汲極層,位於該閘極絕緣層並電連接該源極/汲極摻雜層。 A thin film transistor, including: a metal oxide semiconductor layer, the metal oxide semiconductor layer has a metal oxide crystal Structure, wherein the metal oxide crystal structure includes indium, tin, gallium and oxygen atoms, and the atomic ratio of indium:tin:gallium:oxygen is 2:1:1:6, the metal oxide crystal structure has a crystal unit as Diamond hexahedron; a source/drain doped layer on the metal oxide semiconductor layer; a gate insulating layer on the source/drain doped layer and partially connected to the metal oxide semiconductor layer A gate layer on the gate insulating layer corresponding to the metal oxide semiconductor layer; and a source/drain layer on the gate insulating layer and electrically connected to the source/drain doped layer. 一種薄膜電晶體,包含:一第一閘極層;一第一閘極絕緣層,位於該第一閘極層上;一金屬氧化物半導體層,位於該第一閘極絕緣層上,該金屬氧化物半導體層具有一金屬氧化物結晶結構,其中該金屬氧化物結晶結構包含銦、錫、鎵及氧原子,且銦:錫:鎵:氧的原子比例為2:1:1:6,該金屬氧化物結晶結構具有一結晶單元為菱形六面體;一源極/汲極摻雜層,位於該金屬氧化物半導體層上;一第二閘極絕緣層,位於該源極/汲極摻雜層上並對應該第一閘極層部分連接該金屬氧化物半導體層;一第二閘極層,位於該第二閘極絕緣層上並對應第一閘極層;以及一源極/汲極層,通過該第二閘極絕緣層並電連接該源極/汲極摻雜層。 A thin film transistor includes: a first gate layer; a first gate insulating layer on the first gate layer; a metal oxide semiconductor layer on the first gate insulating layer, the metal The oxide semiconductor layer has a metal oxide crystal structure, wherein the metal oxide crystal structure includes indium, tin, gallium, and oxygen atoms, and the atomic ratio of indium: tin: gallium: oxygen is 2:1:1:6. The metal oxide crystal structure has a crystal unit as a diamond-shaped hexahedron; a source/drain doped layer on the metal oxide semiconductor layer; and a second gate insulating layer on the source/drain doped The metal oxide semiconductor layer is partially connected to the impurity layer and corresponds to the first gate layer; a second gate layer is located on the second gate insulating layer and corresponds to the first gate layer; and a source/drain The electrode layer is electrically connected to the source/drain doped layer through the second gate insulating layer. 如請求項5至7任一項所述的薄膜電晶體,其中該金屬氧化物結晶結構包含複數個該結晶單元斜方形往上堆疊。 The thin film transistor according to any one of claims 5 to 7, wherein the metal oxide crystal structure includes a plurality of the crystalline unit rhombic stacked upward. 如請求項5至7任一項所述的薄膜電晶體,其中該金屬氧化物結晶結構包含複數個該結晶單元斜方形排列。 The thin film transistor according to any one of claims 5 to 7, wherein the metal oxide crystal structure includes a plurality of rhombic arrangements of the crystal units. 如請求項5至7任一項所述的薄膜電晶體,其中該菱形六面體的三稜邊a、b、c的長度分別為6.00±10% Å、6.71±10% Å、3.48±10% Å,且該三稜邊的三個夾角α、β、γ分別為89.9964±10%度、89.9986±10%度、72.6328±10%度。 The thin film transistor according to any one of claims 5 to 7, wherein the lengths of the triangular edges a, b, and c of the rhombohedral hexahedron are 6.00±10% Å, 6.71±10% Å, and 3.48±10, respectively. % Å, and the three included angles α, β, and γ of the three edges are 89.9964±10% degrees, 89.9986±10% degrees, and 72.6328±10% degrees, respectively. 如請求項5至7任一項所述的薄膜電晶體,更包含一結晶銦鎵鋅氧化物半導體層,其中該結晶銦鎵鋅氧化物半導體層位於該閘極絕緣層及該源極/汲極層之間。 The thin film transistor according to any one of claims 5 to 7, further comprising a crystalline indium gallium zinc oxide semiconductor layer, wherein the crystalline indium gallium zinc oxide semiconductor layer is located on the gate insulating layer and the source/drain Between polar layers. 如請求項10所述的薄膜電晶體,其中該結晶銦鎵鋅氧化物半導體層位於該金屬氧化物半導體層及該閘極絕緣層之間。 The thin film transistor according to claim 10, wherein the crystalline indium gallium zinc oxide semiconductor layer is located between the metal oxide semiconductor layer and the gate insulating layer. 一種顯示面板的電路結構,包含:一基板,具有複數個區域;以及複數個薄膜電晶體,分別設置於該複數個區域,且該複數個薄膜電晶體各具有一金屬氧化物半導體層,且該金屬氧化物半導體層係選自一結晶銦鎵鋅氧化物半導體層、一結晶銦錫鎵氧化物半導體層及其組合,其中該結晶銦錫鎵氧化物半導體層中銦:錫:鎵:氧的原子比例為2:1:1:6,且該結晶銦錫鎵氧化物半導體層具有一結晶單元為菱形六面體。 A circuit structure of a display panel includes: a substrate having a plurality of regions; and a plurality of thin-film transistors respectively disposed in the plurality of regions, and each of the plurality of thin-film transistors has a metal oxide semiconductor layer, and the The metal oxide semiconductor layer is selected from a crystalline indium gallium zinc oxide semiconductor layer, a crystalline indium tin gallium oxide semiconductor layer and combinations thereof, wherein the crystalline indium tin gallium oxide semiconductor layer indium: tin: gallium: oxygen The atomic ratio is 2:1:1:6, and the crystalline indium tin gallium oxide semiconductor layer has a crystal unit which is a rhombic hexahedron. 如請求項13所述的顯示面板的電路結構,其中該結晶銦錫鎵氧化物半導體層包含複數個該結晶單元斜方形往上堆疊。 The circuit structure of the display panel according to claim 13, wherein the crystalline indium tin gallium oxide semiconductor layer includes a plurality of crystalline unit rhombic stacked up. 如請求項13所述的顯示面板的電路結構,其中該結晶銦錫鎵氧化物半導 體層包含複數個該結晶單元斜方形排列。 The circuit structure of the display panel according to claim 13, wherein the crystalline indium tin gallium oxide semiconductor The bulk layer includes a plurality of crystalline units arranged in a rhombic shape. 如請求項13至15任一項所述的顯示面板的電路結構,其中該菱形六面體的三稜邊a、b、c的長度分別為6.00±10% Å、6.71±10% Å、3.48±10% Å,且該三稜邊的三個夾角α、β、γ分別為89.9964±10%度、89.9986±10%度、72.6328±10%度。 The circuit structure of the display panel according to any one of claims 13 to 15, wherein the lengths of the triangular edges a, b, and c of the rhombic hexahedron are 6.00±10% Å, 6.71±10% Å, 3.48 ±10% Å, and the three angles α, β, and γ of the three edges are 89.9964±10% degrees, 89.9986±10% degrees, and 72.6328±10% degrees, respectively. 如請求項13所述的顯示面板的電路結構,其中該複數個薄膜電晶體包含底閘極電晶體、頂閘極電晶體及雙閘極電晶體至少其中之一。 The circuit structure of the display panel according to claim 13, wherein the plurality of thin film transistors include at least one of a bottom gate transistor, a top gate transistor, and a double gate transistor.
TW107129688A 2018-08-24 2018-08-24 Metal oxide crystalline structure, and display panel circuit structure and thin film transistor having the same TWI689096B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107129688A TWI689096B (en) 2018-08-24 2018-08-24 Metal oxide crystalline structure, and display panel circuit structure and thin film transistor having the same
CN201910778192.1A CN110459587A (en) 2018-08-24 2019-08-22 The circuit structure and thin film transistor (TFT) of metal oxide crystalline texture and the display panel with this metal oxide crystalline texture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107129688A TWI689096B (en) 2018-08-24 2018-08-24 Metal oxide crystalline structure, and display panel circuit structure and thin film transistor having the same

Publications (2)

Publication Number Publication Date
TW202010123A TW202010123A (en) 2020-03-01
TWI689096B true TWI689096B (en) 2020-03-21

Family

ID=68488434

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107129688A TWI689096B (en) 2018-08-24 2018-08-24 Metal oxide crystalline structure, and display panel circuit structure and thin film transistor having the same

Country Status (2)

Country Link
CN (1) CN110459587A (en)
TW (1) TWI689096B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258511B2 (en) * 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
KR20110093113A (en) * 2010-02-11 2011-08-18 삼성전자주식회사 Thin film transistor array substrate and method of fabricating the same
JP5946624B2 (en) * 2011-10-07 2016-07-06 株式会社半導体エネルギー研究所 Oxide semiconductor film and semiconductor device
KR101405257B1 (en) * 2012-05-31 2014-06-10 삼성코닝어드밴스드글라스 유한회사 Oxide semiconductor target, and method of manufacturing thin-film transistor using the same
EP3056471A1 (en) * 2015-02-13 2016-08-17 Basf Se Process for producing indium-, gallium-, metal- and oxygen-containing particles
TWI651848B (en) * 2016-12-13 2019-02-21 友達光電股份有限公司 Crystallization method of metal oxide semiconductor layer, semiconductor structure, active array substrate, and indium gallium zinc oxide crystal

Also Published As

Publication number Publication date
TW202010123A (en) 2020-03-01
CN110459587A (en) 2019-11-15

Similar Documents

Publication Publication Date Title
KR102611561B1 (en) Semiconductor device
CN103872138B (en) Transistor, the method for manufacturing transistor and the electronic device including the transistor
US9768310B2 (en) Thin film transistor, organic light-emitting diode display including the same, and manufacturing method thereof
JP5546733B2 (en) Thin film transistor and manufacturing method thereof
TW201714008A (en) TFT array substrate, display panel, display device and method for making the TFT array substrate
TW201513369A (en) Thin film transistor and method of manufacturing the same
KR102049081B1 (en) Thin film transistor and manufacturing method thereof
US10411134B2 (en) Crystallization method for oxide semiconductor layer, semiconductor device manufactured using the same, and method for manufacturing the semiconductor device
JP2012238763A (en) Semiconductor device and method of manufacturing semiconductor device
WO2013179837A1 (en) Semiconductor device and method for manufacturing same
EP4086936A1 (en) Tellurium oxide, and thin film transistor comprising same as channel layer
TWI689096B (en) Metal oxide crystalline structure, and display panel circuit structure and thin film transistor having the same
WO2020228180A1 (en) Array substrate and preparation method for array substrate
KR102524882B1 (en) Thin film transistor including crystalline izto oxide semiconductor and fabrication method for the same
KR102436433B1 (en) Thin film transistor and vertical non-volatile memory device including metal oxide channel layer having bixbyite crystal
US20150108468A1 (en) Thin film transistor and method of manufacturing the same
KR20160106278A (en) Array Substrate For Display Device Including Oxide Thin Film Transistor And Method Of Fabricating The Same
KR102389220B1 (en) Thin film transistor including crystalline izto oxide semiconductor and fabrication method for the same
US20230108600A1 (en) Thin film transistor comprising crystalline izto oxide semiconductor, and method for producing same
KR102034767B1 (en) Method for manufacturing oxide thin film transistor and oxide thin film transistor
KR20230085291A (en) Thin film transistor including spinel single-phase crystalline izto oxide semiconductor
KR20150018917A (en) Thin film transistor having metal oxynitride channel layer and method of manufacturing the same and display including the same
KR20150011596A (en) Oxide semiconductor thin film transistor and method of fabricating the same