TWI688196B - 多相轉換器 - Google Patents

多相轉換器 Download PDF

Info

Publication number
TWI688196B
TWI688196B TW107128190A TW107128190A TWI688196B TW I688196 B TWI688196 B TW I688196B TW 107128190 A TW107128190 A TW 107128190A TW 107128190 A TW107128190 A TW 107128190A TW I688196 B TWI688196 B TW I688196B
Authority
TW
Taiwan
Prior art keywords
terminal
stage
switch
input
voltage
Prior art date
Application number
TW107128190A
Other languages
English (en)
Other versions
TW201911724A (zh
Inventor
蔣帥
子誼 鍾
李昕
Original Assignee
美商谷歌有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商谷歌有限責任公司 filed Critical 美商谷歌有限責任公司
Publication of TW201911724A publication Critical patent/TW201911724A/zh
Application granted granted Critical
Publication of TWI688196B publication Critical patent/TWI688196B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/072Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate an output voltage whose value is lower than the input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種裝置,其包含第一及第二並聯轉換器分支,每一並聯轉換器分支包含一輸入節點、N個輸出節點、複數個開關、一轉換器輸出節點及控制邏輯。該控制邏輯產生一第一組開關信號以控制該第一並聯轉換器分支之該等開關及產生一第二組開關信號以控制該第二並聯轉換器分支,該第一組開關信號及該第二組開關信號具有各別作用時間循環以致使該等第一及第二並聯轉換器分支中之各者在該N個輸出節點中之各者上輸出DC輸出電壓。

Description

多相轉換器
用於將一第一DC電壓轉換為一第二DC電壓之多相電壓轉換器將用於一寬範圍之應用。多相降壓轉換器係一個實例。一多相降壓轉換器輸出較所接收輸入電壓低之一電壓。一習用降壓轉換器包含一開關以及一電容器、電感器或兩者。在某些例項中,一大減壓電壓比使得降壓調節器效率低下。此外,相對高輸入電壓限制開關之切換頻率且因此犧牲功率密度以及動態回應。
一般而言,本說明書中所闡述標的物之一個創新態樣可體現在第一及第二並聯轉換器分支中,每一並聯轉換器分支包含:一輸入節點,其接收一直流(DC)輸入電壓;N個輸出節點,各輸出節點分別輸出一DC輸出電壓,其中該DC輸出電壓小於該DC輸入電壓,且其中N係兩個或更多個;複數個開關,各開關以實質上該DC輸入電壓除以N之一量值限制操作,其中每一開關包含一第一端子、一第二端子及一第三端子,且第一開關之第三端子接收一控制信號,該控制信號將該第一開關置於一閉合狀態或一斷開狀態中,在該閉合狀態中,在該第一端子與該第二端子之間確立一傳導路徑且在該斷開狀態中,消除該第一端子與該第二端子之間的該傳導路徑;一轉換器輸出節點,其連接至該等第一及第二並聯轉換器分支之該N個輸出節點中之各者,且提供該DC輸出電壓;及控制邏輯,其產生一第一組開關信號以控制該第一並聯轉換器分支之開關及產生一第二組開關信號以控制該第二並聯轉換器分支,該第一組開關信號及該第二組開關信號具有各別作用時間循環以致使該等第一及第二並聯轉換器分支中之各者在該N個輸出節點中之各者上輸出該DC輸出電壓。
本說明書中所闡述之標的物之特定實施例可經實施以便達成以下優點中之一或多者。藉由在多相轉換器中使用多個堆疊電容器,用於電路中之MOSFETS(或可使用之其他電晶體類型)之切換電壓減小至較未使用該等堆疊電容器情形下原本將需要的低的一電壓(例如,< 5 V)。相對於一傳統多相降壓轉換器,降低MOSFET切換電壓使得電容器堆疊多相電壓轉換器能夠具有一較高之密度及效率。電容器堆疊多相電壓轉換器能夠進行動態快速回應及就負載應用之角度達成使用便易性,且允許將低電壓MOSFETS用於增加之切換頻率。
附圖及下文說明中陳述本說明書中所闡述標的物之一或多個實施例的細節。根據說明、圖式及申請專利範圍將明瞭標的物之其它特徵、態樣及優點。
本書面說明之標的物係關於一電容器堆疊多相電壓轉換器,其利用電容器來堆疊電壓使得MOSFETS以一較小切換電壓操作。該電容器堆疊多相電壓轉換器併入有來自一切換式電容器轉換器及一降壓轉換器二者之益處。由於電容器減小MOSFETS之切換電壓,因此當與具有一較高切換電壓之轉換器相比時,該轉換器具有一相對較高效率及密度。
下文更詳細地闡述此些特徵及額外特徵。
圖1係一實例電容器堆疊多相電壓轉換器(CSMPVC)之一方塊圖。該電壓CSMPVC包含一控制單元102,至少2個N階電容器堆疊轉換器並聯分支104a、104b。每一並聯轉換器分支具有接收一直流(DC)輸入電壓之一輸入節點且具有各自分別輸出一DC輸出電壓之N個輸出節點。在某些實施方案中,DC輸出電壓小於DC輸入電壓。電感器106a及電感器106b可分別連接至N個輸出節點中之各者。或者,一個電感器106a可連接至分支104a之輸出節點中之各者,且一個電感器106b可連接至分支104b之每一輸出節點。
如將結合圖2、圖3及圖4更詳細論述,每一轉換器並聯分支包含N個階或級。通常,N等於兩個或更多個。
每一並聯轉換器分支106a及106b亦包含複數個開關,諸如MOSFETS。每一開關包含一第一端子,一第二端子及一第三端子,且第一開關之第三端子接收一控制信號,該控制信號將第一開關置於一閉合狀態或一斷開狀態中,在閉合狀態中,在第一端子與該第二端子之間確立一傳導路徑且在斷開狀態中,消除第一端子與第二端子之間的該傳導路徑。每一開關以實質上DC輸入電壓除以N之切換電壓之一量值限制操作。舉例而言,對於具有2個並聯轉換器分支及具有12 V之一輸入電壓之一CSMPVC,每一開關以不超過6 V之一切換電壓量值限制操作。
在某些實施方案中,每一轉換器分支104包含N-1個串接級及一最終級。N-1個串接級相對於DC輸入電壓各自處於一次序位置,且以一第一串接級開始,該第一串接級連接至作為一各別輸入電壓之DC輸入電壓。每一後續串接級連接至一先前串接級以接收一各別輸入電壓。最終級連接至一最後串接級以接收一各別輸入電壓。而且,N-1個串接級中之各者包含一堆疊電容器,其被充電至DC輸入電壓之大約(N-Ord)/N,其中Ord之值係相對於DC輸入電壓之串接級之次序位置。因此,該轉換器可稱為係「電容器堆疊的」。以下參考圖2至圖4更詳細闡述堆疊電容器。
CSMPVC包含一轉換器輸出節點108,其連接至第一及第二並聯轉換器分支之N個輸出節點110a、110b中之各者,且提供DC輸出電壓(Vout)至一負載點。
此外,CSMPVC包含具有控制邏輯之一控制器102,該控制邏輯產生一第一組開關信號以控制第一並聯轉換器分支之開關及產生一第二組開關信號以控制第二並聯轉換器分支。第一組開關信號及第二組開關信號具有各別作用時間循環以致使第一及第二並聯轉換器分支中之各者在該N個輸出節點中之各者上輸出DC輸出電壓。控制邏輯可藉由給開關提供相驅動信號之任何合適之控制電路來實施。
CSMPVC亦可包含N-1個電流平衡分支。如將結合圖2更詳細闡述,N-1個電流平衡分支可視情況包含接地耦合電容器以減少可能產生之小電流不平衡之有害影響。
圖2係實例並聯轉換器分支104a及104b之一方塊圖,其中每一轉換器分支具有串接級202、204及一最終級206。每一並聯轉換器分支104包含N-1個串接級,在每一分支104中展示其中的2個(202及204)。每一串接級相對於輸入節點處之DC輸入電壓Vin係處於一次序位置。處於次序位置1之第一串接級202連接至DC輸入電壓。每一後續串接級連接至先前串接級以接收一各別輸入電壓。舉例而言,處於次序位置2之第二串接級204藉由連接203連接至串接級202以接收一各別輸入電壓。此外,每一並聯轉換器分支包含一最終級,其藉由一各別連接205連接至一最後串接級以接收一各別輸入電壓。
N-1個串接級中之各者包含一堆疊電容器C,例如用於級202a之C1a,用於級204a之C2a等,該堆疊電容C被充電至DC輸入電壓之大約(N-Ord)/N,亦即,
Vc_ord = Vin * (N-Ord)/N (1)
其中:
Vc_ord係在一既定串接級中跨越堆疊電容器之DC電壓;
Vin係輸入電壓;
Ord係相對於Vin之串接級之次序位置;且
N係在分支104中之級之數目,亦即,串接級及最終級之數目。
堆疊電容器之實際電壓將圍繞Vc_ord之值而變化,此歸因於切換狀態期間之充電及放電,但大約DC值將係Vc_ord。
參考圖3闡述每一串接級中堆疊電容之利用,此係三階六相電容式堆疊電壓轉換器300之一實例實施方案。在此實例中,每一轉換器分支104具有用於三相輸出之两個串接級202及204,及一最終級206。由於存在两個分支,因此電路300稱為一個三階六相電容式堆疊電壓轉換器。
N-1個串接級中之各者具有一相似拓撲。在實例電路300中,每一串接級202及204包含一輸入開關(Q1a用於202a且Q4a用於202b ),其具有連接至串接級之各別輸入電壓之一第一端子。每一級亦包含一串接耦合開關(Q3a用於202a且Q6a用於202b)。在每一級中,耦合開關之第一端子連接至輸入開關之一第二端子,且耦合開關之第二端子連接至一後續串接級或最終級之一輸入開關之一第一端子。舉例而言,如圖3中所示,在串接級202a中,串接耦合開關Q3a連接串接級201a之輸入開關Q1a之第二端子至串接級204a之輸入開關Q4a之第一端子。因此,串接級202a之串接耦合開關Q3a之第二端子提供串接級204a之各別輸入電壓。在串接級202b及204b中實施一類似配置。若存在額外串接級,其亦將以一類似方式連接。
每一串接級亦具有一堆疊電容器,其具有連接至輸入開關之第二端子之一第一端子及連接至一節點之一第二端子,該節點包含一接地開關之一第一端子及一輸出電感器之一第一端子。舉例而言,串接級202a包含堆疊電容器C1a,其連接至輸入開關Q1a之第二端子及一節點,該節點連接至一接地開關Q2a之一第一端子及一輸出電感器L1a之一第一端子。串接級204a、202b及206b以一相同方式構造。
最後,每一分支104具有一最終級206。該最終級包含一輸入開關及一輸出電感器。該輸入開關具有連接至一串接耦合開關之一第二端子之一第一端子,該輸出電感器具有連接至輸入開關之一第二端子之一第一端子及耦合至一輸出節點之一第二端子。此外,一接地開關具有連接至輸入開關之第二端子之一第一端子及連接至接地之一第二端子。舉例而言,如圖3中所示,輸入開關係Q7a,接地開關係Q8a且輸出電感器係L3a。每一電感器L之第二端子連接至一共同節點以提供一輸出電壓Vout。
在某些實施方案中,對於一第一轉換器分支,每一後續串接級及最終級之輸入開關之每一第一端子分別連接至第二轉換器分支之每一後續串接級及最終級之每一輸入開關之每一第一端子。此促進切換期間之電流平衡。舉例而言,Q4a之第一端子連接至Q4b之第一端子,且Q7a之第一端子連接至Q7b之第一端子。以假想圖形式展示之耦合電容器C3及C4係選用的,且可在分支中電壓之間相移使得電流不平衡之情形下使用。
堆疊電容器C1a及C2a允許將每一級之每一輸入開關Q1a及Q4a之一切換電壓減小至DC輸入電壓之一1/N位準。同樣,堆疊電容器C1B及C2b允許將每一輸入開關Q1b及Q6b之切換電壓減小至DC輸入電壓之1/N位準。而且,由於輸入開關僅切換至輸入電壓Vin之1/N,因此在一後續級中每一堆疊電容器使得其各別輸入電壓負載減小1/N。此單調地降低電容器上之負載,因此導致最終級僅需要切換輸入電壓Vin之1/N,且因此最終級不需要一堆疊電容器。每一級中開關之切換電壓之此減小使得開關能夠以較高切換頻率且以較開關必須切換輸入電壓之一較大部分之情形高的一密度來實施。
轉換器並聯分支104中之各者之最終級206包含一輸入開關,其具有連接至一串接耦合開關之一第二端子之一第一端子。最終級亦包含輸出電感器及一接地開關。輸出電感器具有連接至輸入開關之一第二端子之一第一端子及耦合至輸出節點之一第二端子。接地開關具有連接至輸入開關之第二端子之一第一端子及連接至接地之一第二端子。然而,由於最終級不耦合至另一後續級,且不需要一堆疊電容器,因此最終級206不具有一堆疊電容器或一串接耦合開關。
舉例而言,如圖3中所示,最終級206a具有輸入開關Q7a,電感器L3a及接地開關Q8a。同樣,最終級206b具有輸入開關Q7b,電感器L3b及接地開關Q8b。
參考圖4、圖5及圖6闡述一實例多相轉換器之操作。除圖4係一兩階四相電容式堆疊電壓轉換器400(亦即,N=2)之外,圖4之元件組件之操作及功能類似於以上參考圖3所闡述之元件組件之操作及功能。此處,在每一分支404僅存在一單個串接級402及一最終級404。對於每一串接分支104,輸入開關係Q1,接地開關係Q2,串接耦合開關係Q3,輸出電感器係L1,且堆疊電容器係C1。對於每一最終級404,輸入開關係Q4,接地開關係Q5,且輸出電感器係L2。根據以上等式(1),每一堆疊電容器C1將充電至大約Vin * (2-1)/2或Vin/2之一電壓。因此,每一電晶體Q將以不超過Vin/2進行切換。
圖5係兩階四相電容式堆疊電壓轉換器之脈寬調變控制波形之一圖式500。在此實例中,Vin=8 V,Vout=1 V,切換頻率係1 MHz,I out=100 A,且作用時間循環係0.25。在此實施方案中,CSMPVC不使用任何耦合電容器。此外,控制信號S1P及S2P係180度相移,且控制信號1N及S2N係180度相移。
圖6係兩階四相電容式堆疊電壓轉換器之開關節點波形之一圖式600。僅圖解說明用於Q1a至Q5a之切換電壓。由於Vin=8 V,因此所有開關係以大約不超過4 V進行切換。此使得CSMPVC能夠影響MOSFET技術之使用,從而達成高密度及高效率。
圖7係用於圖4之電路之一輸出電壓及堆疊電容器電壓之一圖式700。如以上所闡述,堆疊電容器之實際電壓將圍繞Vc_ord(此處為4 V)值而變化,此歸因於切換狀態期間之充電及放電,但大約DC值將大約係4 V。
本說明書中所闡述之標的物及操作之實施例可實施於包含本說明書中所揭示之結構及其結構等效物之數位電子電路中或電腦軟體、韌體或硬體中,或者實施於其中之一或多者之組合中。本說明書中所闡述之標的物之實施例可實施為編碼於電腦儲存媒體上用於由資料處理設備執行或控制資料處理設備之操作之一或多個電腦程式,亦即,一或多個電腦程式指令模組。
雖然本說明書含有諸多特定實施方案細節,但此等細節不應解釋為對可主張之內容或任何特徵之範疇之限制,而應解釋為特定實施例特有之特徵之說明。在單獨實施例之內容脈絡中於本說明書中闡述之特定特徵亦可以組合方式實施於一單個實施例中。相反地,在一單個實施例之內容脈絡中闡述之各種特徵亦可單獨或以任何適合子組合形式實施於多個實施例中。此外,儘管上文可將特徵闡述為以某些組合形式起作用且甚至最初係如此主張的,但在某些情形中,可自一所主張組合去除來自該組合之一或多個特徵,且所主張組合可針對一子組合或一子組合之變化形式。
因此,已闡述標的物之特定實施例。其它實施例在以下申請專利範圍之範疇內。在某些情形中,申請專利範圍中所陳述之動作可以一不同次序執行且仍達成合意結果。另外,附圖中所繪示之程序未必需要所展示之特定次序或順序次序來達成合意結果。在某些實施方案中,多任務及並行處理可係有利的。
102‧‧‧控制單元/控制器104a‧‧‧N階電容器堆疊轉換器並聯分支/分支/實例並聯轉換器分支104b‧‧‧N階電容器堆疊轉換器並聯分支/分支/實例並聯轉換器分支106a‧‧‧電感器/並聯轉換器分支106b‧‧‧電感器/並聯轉換器分支108‧‧‧轉換器輸出節點110a‧‧‧輸出節點202a‧‧‧級/串接級202b‧‧‧串接級204a‧‧‧級/串接級204b‧‧‧串接級206a‧‧‧最終級206b‧‧‧串接級/最終級300‧‧‧三階六相電容式堆疊電壓轉換器/電路/實例電路400‧‧‧兩階四相電容式堆疊電壓轉換器500‧‧‧圖式600‧‧‧圖式C1a‧‧‧堆疊電容器C1b‧‧‧堆疊電容器C2a‧‧‧堆疊電容器C2b‧‧‧堆疊電容器C3‧‧‧耦合電容器C4‧‧‧耦合電容器L1a‧‧‧輸出電感器L3a‧‧‧輸出電感器/電感器L3b‧‧‧電感器Q1a‧‧‧輸入開關Q1b‧‧‧輸入開關Q2a‧‧‧接地開關Q3a‧‧‧串接耦合開關Q4a‧‧‧輸入開關Q6a‧‧‧串接耦合開關Q6b‧‧‧輸入開關Q7a‧‧‧輸入開關Q7b‧‧‧輸入開關Q8a‧‧‧接地開關Q8b‧‧‧接地開關S2N‧‧‧控制信號S1P‧‧‧控制信號S2P‧‧‧控制信號Vin‧‧‧輸入電壓Vout‧‧‧DC輸出電壓/輸出電壓
圖1係一實例電容器堆疊多相電壓轉換器之一方塊圖。
圖2係實例並聯轉換器分支之一方塊圖,其中每一轉換器分支具有若干串接級及一最終級。
圖3係一個三階六相電容式堆疊電壓轉換器之一實例實施方案。
圖4係一兩階四相電容式堆疊電壓轉換器之一實例實施方案。
圖5係兩階四相電容式堆疊電壓轉換器之脈寬調變控制波形之一圖式。
圖6係兩階四相電容式堆疊電壓轉換器之開關節點波形之一圖式。
圖7係用於圖4之電路的一輸出電壓及若干堆疊電容器電壓之一圖式。
在各個圖式中,相同元件符號及名稱指示相同元件。
102‧‧‧控制單元/控制器
104a‧‧‧N階電容器堆疊轉換器並聯分支/分支/實例並聯轉換器分支
104b‧‧‧N階電容器堆疊轉換器並聯分支/分支/實例並聯轉換器分支
106a‧‧‧電感器/並聯轉換器分支
106b‧‧‧電感器/並聯轉換器分支
108‧‧‧轉換器輸出節點
110a‧‧‧輸出節點
Vin‧‧‧輸入電壓
Vout‧‧‧DC輸出電壓/輸出電壓

Claims (9)

  1. 一種電子設備,其包括:第一及第二並聯轉換器,每一並聯轉換器分支包括:一輸入節點,其接收一直流(DC)輸入電壓;N個輸出節點,各輸出節點分別輸出一DC輸出電壓,其中該DC輸出電壓小於該DC輸入電壓,其中N係二或更大之一值之整數;及複數個開關,各開關以實質上該DC輸入電壓除以N之一量值限制(magnitude limit)操作,其中每一開關包括一第一端子、一第二端子及一第三端子,且第一開關之該第三端子接收一控制信號,該控制信號將該第一開關置於一閉合(closed)狀態或一斷開(open)狀態中,在該閉合狀態中一傳導路徑建立於該第一端子與該第二端子之間,且在該斷開狀態中該第一端子與該第二端子之間的該傳導路徑被消除(eliminated);N-1個串接級(cascade stages),各串接級具有相對於該DC輸入電壓之一次序位置(ordinal position)且以一第一串接級開始,該第一串接級連接至作為一各別輸入電壓之該DC輸入電壓,且每一後續串接級連接至一先前串接級以接收一各別輸入電壓,其中該N-1個串接級中之各者包含一堆疊電容器,該堆疊電容器被充電至該DC輸入電壓之大約(N-Ord)/N,其中Ord之值係該串接級相對於該DC輸入電壓之該次序位置;及一最終級,其連接至一最後串接級以接收一各別輸入電壓; 一轉換器(converter)輸出節點,其連接至該等第一及第二並聯轉換器分支之該N個輸出節點中之各者,且提供該DC輸出電壓;及控制邏輯,其產生一第一組開關信號以控制該第一並聯轉換器分支之該等開關,及產生一第二組開關信號以控制該第二並聯轉換器分支,該第一組開關信號及該第二組開關信號具有各別作用時間循環(duty cycles),以致使該等第一及第二並聯轉換器分支中之各者在該N個輸出節點中之各者上輸出該DC輸出電壓。
  2. 如請求項1之電子設備,其中該N-1個串接級中之各者包含:一輸入開關,其具有連接至該串接級之該各別輸入電壓之一第一端子;一串接耦合開關,其具有連接至該輸入開關之一第二端子之一第一端子及連接至一各別後續串接級或該最終級之一第二端子;及一堆疊電容器,其具有連接至該輸入開關之該第二端子之一第一端子及連接至一接地開關之一第一端子及一輸出電感器之一第一端子之一第二端子;其中該接地開關具有連接至一接地之一第二端子,且該輸出電感器具有連接至該輸出節點之一第二端子。
  3. 如請求項2之電子設備,其中該最終級包括:一輸入開關,其具有連接至一串接耦合開關之一第二端子之一第一端子; 一輸出電感器,其具有連接至該輸入開關之一第二端子之一第一端子及耦合至該輸出節點之一第二端子;及一接地開關,其具有連接至該輸入開關之該第二端子之一第一端子及連接至該接地之一第二端子。
  4. 如請求項3之電子設備,其中該第一並聯轉換器分支之每一後續串接級及最終級之該輸入開關之每一第一端子分別連接至該第二並聯轉換器分支之每一後續串接級及最終級之每一輸入開關之每一第一端子。
  5. 如請求項4之電子設備,其中該第一組開關信號及該第二組開關信號相對於彼此係180度異相。
  6. 如請求項4之電子設備,其中:該第一並聯轉換器分支之每一後續串接級及最終級之該輸入開關之每一第一端子分別連接至藉由一各別耦合電容器耦合至接地之該第二並聯轉換器分支之每一後續串接級及最終級之每一輸入開關之該第一端子;且該第一組開關信號及該第二組開關信號相對於彼此小於180度異相。
  7. 如請求項1之電子設備,其中該第一並聯轉換器分支之每一後續串接級及最終級之每一各別輸入電壓分別連接至該第二並聯轉換器分支之每一後續串接級及最終級之每一各別輸入電壓。
  8. 如請求項7之電子設備,其中該第一組開關信號及該第二組開關信號相對於彼此係180度異相。
  9. 如請求項7之設備,其中:該第一並聯轉換器分支之每一後續串接級及最終級之每一各別輸入電壓及該第二並聯轉換器分支之每一後續串接級及最終級之分別連接之輸入電壓藉由一各別耦合電容器耦合至接地;且該第一組開關信號及該第二組開關信號相對於彼此小於180度異相。
TW107128190A 2017-08-11 2018-08-13 多相轉換器 TWI688196B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15/675,285 2017-08-11
US15/675,285 US10141849B1 (en) 2017-08-11 2017-08-11 Multi-phase converter
WOPCT/US2018/037447 2018-06-14
??PCT/US2018/037447 2018-06-14
PCT/US2018/037447 WO2019032183A1 (en) 2017-08-11 2018-06-14 MULTI-PHASE CONVERTER

Publications (2)

Publication Number Publication Date
TW201911724A TW201911724A (zh) 2019-03-16
TWI688196B true TWI688196B (zh) 2020-03-11

Family

ID=62815186

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109103602A TWI731571B (zh) 2017-08-11 2018-08-13 多相轉換器
TW107128190A TWI688196B (zh) 2017-08-11 2018-08-13 多相轉換器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109103602A TWI731571B (zh) 2017-08-11 2018-08-13 多相轉換器

Country Status (6)

Country Link
US (2) US10141849B1 (zh)
EP (1) EP3602764B1 (zh)
CN (2) CN110915118B (zh)
DK (1) DK3602764T3 (zh)
TW (2) TWI731571B (zh)
WO (1) WO2019032183A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10903739B2 (en) * 2018-09-14 2021-01-26 Chaoyang Semiconductor Jiangyin Technology Co., Ltd. Capacitor cross coupled 2-phase buck converter
US11201544B2 (en) * 2018-12-04 2021-12-14 Stmicroelectronics S.R.L. Stacked buck converters and associated method of operation
US10924006B1 (en) * 2019-09-30 2021-02-16 Psemi Corporation Suppression of rebalancing currents in a switched-capacitor network
CN112769332B (zh) * 2020-12-25 2022-05-24 南京矽力微电子技术有限公司 功率变换器
CN115765437A (zh) * 2021-12-06 2023-03-07 台达电子工业股份有限公司 功率变换电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140706A1 (en) * 2007-12-03 2009-06-04 System method and apparatus for a multi-phase dc-to-dc converter
TW201427253A (zh) * 2012-12-24 2014-07-01 Upi Semiconductor Corp 多相直流對直流電源轉換器
US20160261190A1 (en) * 2015-03-06 2016-09-08 Texas Instruments Incorporated Current Sensing Using Capacitor Voltage Ripple In Hybrid Capacitor/Inductor Power Converters
CN106130338A (zh) * 2015-03-13 2016-11-16 英飞凌科技奥地利有限公司 用于操作功率变换器电路的方法和功率变换器电路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069068A1 (en) * 2001-02-22 2002-09-06 Virginia Tech Intellectual Properties, Inc. Multiphase clamp coupled-buck converter and magnetic integration
CN100480940C (zh) 2002-04-03 2009-04-22 国际整流器公司 同步降压转换器改进
US7107468B2 (en) 2003-07-08 2006-09-12 California Micro Devices Peak current sharing in a multi-phase buck converter power system
US7230405B2 (en) 2004-10-26 2007-06-12 Delta Electronics, Inc. Non-isolated power conversion system having multiple switching power converters
US20090017426A1 (en) 2007-07-13 2009-01-15 Mindware Inc. Systems and methods for playing educational games and using educational tools
EP2136459A1 (en) * 2008-06-18 2009-12-23 Intégration Dolphin Inc. Charge pump circuit
JP5433880B2 (ja) * 2008-12-19 2014-03-05 国立大学法人 大分大学 Dc−dcコンバータ
US8330439B2 (en) * 2009-06-23 2012-12-11 Intersil Americas Inc. System and method for PFM/PWM mode transition within a multi-phase buck converter
US20150002115A1 (en) * 2013-07-01 2015-01-01 Texas Instruments Incorporated Series-capacitor buck converter multiphase controller
US9548648B2 (en) * 2014-04-25 2017-01-17 Texas Instruments Incorporated Switched reference MOSFET drive assist circuit
US10615692B2 (en) * 2014-04-25 2020-04-07 Texas Instruments Incorporated Series capacitor buck converter having circuitry for precharging the series capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140706A1 (en) * 2007-12-03 2009-06-04 System method and apparatus for a multi-phase dc-to-dc converter
TW201427253A (zh) * 2012-12-24 2014-07-01 Upi Semiconductor Corp 多相直流對直流電源轉換器
US20160261190A1 (en) * 2015-03-06 2016-09-08 Texas Instruments Incorporated Current Sensing Using Capacitor Voltage Ripple In Hybrid Capacitor/Inductor Power Converters
CN106130338A (zh) * 2015-03-13 2016-11-16 英飞凌科技奥地利有限公司 用于操作功率变换器电路的方法和功率变换器电路

Also Published As

Publication number Publication date
WO2019032183A1 (en) 2019-02-14
CN115765457A (zh) 2023-03-07
EP3602764A1 (en) 2020-02-05
DK3602764T3 (da) 2022-03-07
TW202030965A (zh) 2020-08-16
CN110915118B (zh) 2022-12-23
TW201911724A (zh) 2019-03-16
EP3602764B1 (en) 2021-12-15
US10141849B1 (en) 2018-11-27
US20190068061A1 (en) 2019-02-28
US10312813B2 (en) 2019-06-04
CN110915118A (zh) 2020-03-24
TWI731571B (zh) 2021-06-21

Similar Documents

Publication Publication Date Title
TWI688196B (zh) 多相轉換器
US11316425B2 (en) Pump capacitor configuration for switched capacitor circuits
US20200099302A1 (en) Zero Inductor Voltage Converter Topology with Improved Switch Utilization
CN103380565B (zh) 充电泵电路
US9806620B2 (en) Multi-phase hysteretic buck switching regulator
US9871436B1 (en) Three-phase three-level inverter with reduced common mode leakage current
JP2004064937A (ja) チャージポンプ型昇圧回路
JP5450786B2 (ja) 受動差動電圧ダブラ
US10439414B2 (en) Auto adjusting balancer apparatus
US20220255429A1 (en) Voltage converter
US20240146194A1 (en) Dc voltage converters
Narendrababu et al. Virtual vector modulated hybrid 2/3-Level Z-source VSI for PV Applications
US9906127B2 (en) Fractional output voltage multiplier
US10958165B1 (en) High-conversion-efficiency reconfigurable series-parallel switched-capacitor voltage converter
US11381239B1 (en) Driver circuitry
US20090015305A1 (en) Digitized method for generating pulse width modulation signals
TW202121821A (zh) 應用於三階層逆變器之環流抑制方法
US20240348162A1 (en) Voltage converter
TWI843139B (zh) 功率轉換模組及功率轉換器
TWI728503B (zh) 電力系統
Zhang et al. P‐58: Efficiency Enhancement by Non‐Overlapping Time Design and Adaptive Ratio Control for Charge Pump of Display Drivers
Bhalekar et al. Simulated Evaluation of Modern Multilevel Inverter Topologies
JP2024068647A (ja) フライングキャパシタマルチレベル整流器およびその制御方法
JP2003319662A (ja) マルチレベルインバータの制御方法
Johnny et al. Cascaded Circuit Multilevel Inverter Topology Used for Reducing Number of On State Switches