CN110915118A - 多相转换器 - Google Patents

多相转换器 Download PDF

Info

Publication number
CN110915118A
CN110915118A CN201880028553.4A CN201880028553A CN110915118A CN 110915118 A CN110915118 A CN 110915118A CN 201880028553 A CN201880028553 A CN 201880028553A CN 110915118 A CN110915118 A CN 110915118A
Authority
CN
China
Prior art keywords
terminal
stage
switch
parallel converter
input voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880028553.4A
Other languages
English (en)
Other versions
CN110915118B (zh
Inventor
江帅
钟车易
李新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Priority to CN202211509513.6A priority Critical patent/CN115765457A/zh
Publication of CN110915118A publication Critical patent/CN110915118A/zh
Application granted granted Critical
Publication of CN110915118B publication Critical patent/CN110915118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/072Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate an output voltage whose value is lower than the input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Abstract

一种设备,包括第一并联转换器分支和第二并联转换器分支、转换器输出节点和控制逻辑,每个并联转换器分支包括输入节点,N个输出节点,多个开关。控制逻辑产生控制第一并联转换器分支的开关的第一组开关信号以和控制第二并联转换器分支的第二组开关信号,第一组开关信号和第二组开关信号具有各自的占空比,以使第一并联转换器分支和第二并联转换器分支中的每个并联转换器分支在N个输出节点中的每个输出节点上输出直流输出电压。

Description

多相转换器
背景技术
用于将第一DC电压转换为第二DC电压的多相电压转换器可用于广泛的应用。多相降压转换器就是一个例子。多相降压转换器输出的电压低于接收的输入电压。传统的降压转换器包括开关和电容器、电感器或两者。在某些情况下,大的降压比会使降压稳压器效率低下。另外,相对较高的输入电压限制了开关的开关频率,因此牺牲了功率密度以及动态响应。
发明内容
通常,本说明书中描述的主题的一个创新方面可以体现在第一并联转换器分支和第二并联转换器分支中,每个并联转换器分支包括:接收直流(DC)输入电压的输入节点;N个输出节点,每个输出节点分别输出直流输出电压,其中,直流输出电压小于直流输入电压,其中,N为2以上;多个开关,每个开关基本上在直流输入电压除以N的幅度极限下进行操作,其中每个开关包括第一端子、第二端子和第三端子,并且第一开关的第三端子接收控制信号,所述控制信号使所述第一开关处于在所述第一端子和所述第二端子之间建立传导路径的闭合状态或在所述第一端子和所述第二端子之间消除了所述传导路径的断开状态;转换器输出节点,所述转换器输出节点连接到所述第一并联转换器分支和所述第二并联转换器分支的所述N个输出节点中的每个输出节点,并提供所述直流输出电压;和控制逻辑,所述控制逻辑产生控制所述第一并联转换器支路的所述开关的第一组开关信号、和控制所述第二并联转换器支路的第二组开关信号,所述第一组开关信号和所述第二组开关信号具有各自的占空比,以使所述第一并联转换器分支和所述第二并联转换器分支中的每个并联转换器分支在所述N个输出节点中的每个输出节点上输出所述直流输出电压。
可以实施本说明书中描述的主题的特定实施方式,以实现以下优点中的一个或多个。通过在多相转换器中使用多个堆叠电容器,电路中的MOSFET(或他可能使用的其他晶体管类型)的开关电压降低到比在没有堆叠电容器的情况下所需的更低的电压(例如,<5V)。降低MOSFET开关电压使电容器堆叠式多相电压转换器具有比传统的多相降压转换器更高的密度和效率。电容器堆叠式多相电压转换器可实现动态快速响应,并易于在负载点应用中使用,并允许使用低压MOSFET来提高开关频率。
本说明书中描述的主题的一个或多个实施例的细节在附图和以下描述中阐述。根据说明书,附图和权利要求书,本主题的其他特征,方面和优点将变得显而易见。
附图说明
图1是示例电容器堆叠式多相电压转换器的框图。
图2是每个转换器分支具有级联阶段和最终阶段的示例并联转换器分支的框图。
图3是三级-六相电容堆叠式电压转换器的示例实施方式。
图4是两级-四相电容堆叠式电压转换器的示例实施方式。
图5是两级-四相电容堆叠电压转换器的脉冲宽度调制控制波形图。
图6是两级-四相电容堆叠电压转换器的开关节点波形图。
图7是图4的电路的输出电压和堆叠式电容器电压的图。
在各个附图中的参考数字和标记指示相同的元件。
具体实施方式
本书面描述的主题涉及一种电容器堆叠式多相电压转换器,该电容器堆叠式多相电压转换器利用电容器来堆叠电压,使得MOSFET在较小的开关电压下工作。电容器堆叠式多相电压转换器结合了开关电容器转换器和降压转换器的优势。因为电容器降低了MOSFET的开关电压,所以与具有较高开关电压的转换器相比,该转换器具有相对较高的效率和密度。
这些特征和附加特征在下面更详细地描述。
图1是示例电容器堆叠式多相电压转换器(CSMPVC)的框图。电压CSMPVC包括控制单元102,至少两个N级电容器堆叠式转换器并联分支104a,104b。每个并联转换器分支具有输入节点,该输入节点接收直流(DC)输入电压,并具有N个输出节点,每个输出节点分别输出一个DC输出电压。在一些实施方式中,DC输出电压小于DC输入电压。电感器106a和电感器106b可以分别连接到N个输出节点中的每一个输出节点。可选地,一个电感器106a可以连接到分支104a的每个输出节点,并且一个电感器106b可以连接到分支104b的每个输出节点。
如将结合图2、3和4更详细地讨论的,每个转换器并联分支包括N级或阶段。通常,N等于两个或更多个。
每个并联转换器分支106a和106b还包括多个开关,例如MOSFET。每个开关包括第一端子,第二端子和第三端子,并且第一开关的第三端子接收控制信号,该控制信号第一开关置于闭合状态或断开状态,在闭合状态中,在第一端子和第二端子之间建立了传导路径,在断开状态中,在第一端子和第二端子之间消除了传导路径。每个开关在基本上DC输入电压除以N的开关电压的幅度极限下工作。例如,对于具有两个并联转换器分支且输入电压为12V的CSMPVC,每个开关在不超过6V的开关电压幅度极限下工作。
在一些实施方式中,每个转换器分支104包括N-1个级联阶段和最终阶段。N-1个级联阶段各自相对于DC输入电压处于顺序位置,并且以连接到DC输入电压作为相应输入电压的第一级联阶段开始。每个后续级联阶段都连接到先前的级联阶段,以接收相应的输入电压。最终阶段连接到最后一个级联阶段,以接收相应的输入电压。此外,N-1个级联阶段中的每个级联阶段均包括一个堆叠电容器,该电容器被充电至大约DC输入电压的(N-Ord)/N,其中Ord的值是级联阶段相对于DC输入电压的顺序位置。因此,该转换器可以被称为“电容器堆叠”。参照图2-4更详细地描述堆叠的电容器。
CSMPVC包括转换器输出节点108,该转换器输出节点108连接到第一并联转换器分支和第二并联转换器分支的N个输出节点110a,110b中的每一个输出节点,并且将DC输出电压(Vout)提供给负载点。
另外,CSMPVC包括具有控制逻辑的控制器102,控制器102生成用于控制第一并联转换器分支的开关的第一组开关信号和用于控制第二并联转换器分支的第二组开关信号。具有相应占空比的第一组开关信号和第二组开关信号使第一并联转换器分支和第二并联转换器分支中的每一个并联转换器分支在N个输出节点中的每一个输出节点上输出DC输出电压。该控制逻辑可以由任何适当的为开关提供相控的驱动信号的控制电路来实现。
CSMPVC还可以包括N-1个电流平衡分支。如将结合图2更详细地描述的,N-1个电流平衡支路可以可选地包括接地耦合电容器,以减少可能发生的小电流不平衡的有害影响。
图2是示例并联转换器分支104a和104b的框图,每个转换器分支b具有级联阶段202、204和最终阶段206。每个并联转换器分支104包括N-1个级联阶段,其中每个分支104中显示了两个级联阶段(202和204)。每个级联阶段在相对于输入节点Vin的DC输入电压的顺序位置处。在顺序位置1的第一级联阶段202连接到DC输入电压。每个后续级联阶段都连接到先前的级联阶段,以接收相应的输入电压。例如,在顺序位置2的第二级联阶段204通过连接203被连接到级联阶段202,以接收相应的输入电压。另外,每个并联转换器分支包括最终阶段,最终阶段通过相应的连接205被连接到最后的级联阶段,以接收相应的输入电压。
N-1个级联阶段中的每个级联阶段包括堆叠电容器C,例如,被充电到近似DC输入电压的(N-Ord)/N的阶段202a的C1a、阶段204a的C2a等,即,
Vc_ord=Vin*(N-Ord)/N (1)
其中:
Vc_ord是在给定的级联阶段中堆叠电容器两端的直流电压;
Vin是输入电压;
Ord是级联阶段相对于Vin的顺序位置;和
N是分支104中的阶段数,即,级联阶段和最终阶段的数量。
由于在开关状态期间的充电和放电,堆叠电容器的实际电压将在值Vc_ord附近变化,但是近似的直流(DC)值将是Vc_ord。
参照图3描述每个级联阶段中的堆叠电容器的效用,图3是三级-六相电容堆叠式电压转换器300的示例实施方式。在该示例中,每个转换器分支104具有两个级联阶段202和204、以及最终阶段206,用于三相输出。因为存在两个分支,所以电路300被称为三级六相电容堆叠式电压转换器。
N-1个级联阶段中的每个级联阶段具有类似的拓扑结构。在该示例电路300中,每个级联阶段202和204包括输入开关(202a的Q1a和202b的Q4a),其具有连接到级联阶段的相应输入电压的第一端。每个阶段还包括级联耦合开关(202a的Q3a和202b的Q6a)。在每个阶段中,耦合开关的第一端子连接至输入开关的第二端子,并且耦合开关的第二端子连接至后续级联阶段或最终阶段的输入开关的第一端子。例如,如图3所示,在级联阶段202a中,级联耦合开关Q3a将级联阶段201a的输入开关Q1a的第二端子连接到级联阶段204a的输入开关Q4a的第一端子。因此,级联阶段202a的级联耦合开关Q3a的第二端子为级联阶段204a提供相应的输入电压。在级联阶段202b和204b中实现了类似的布置。如果有附加的级联阶段,它们也将以类似的方式连接。
每个级联阶段还具有堆叠电容器,该堆叠电容器具有连接到输入开关的第二端子的第一端子以及连接到包括接地开关的第一端子和输出电感器的第一端子的节点的第二端子。例如,级联阶段202a包括堆叠电容器C1a,堆叠电容器C1a被连接到输入开关Q1a的第二端子并连接到一节点,该节点连接到接地开关Q2a的第一端子和输出电感器L1a的第一端子。级联阶段204a,202b和206b以类似的方式构造。
最终,每个分支104具有最终阶段206。最终阶段包括输入开关和输出电感器,输入开关的第一端子连接到级联耦合开关的第二端子,输出电感器的第一端子连接到输入开关的第二端子,输出电感器的第二端子耦合到输出节点。另外,接地开关具有连接到输入开关的第二端子的第一端子、以及接地的第二端子。例如,如图3所示,输入开关为Q7a,接地开关为Q8a,并且输出电感器为L3a。每个电感器L的第二端子连接到公共节点以提供输出电压Vout。
在一些实施方式中,对于第一转换器分支,每个后续级联阶段和最终阶段的输入开关的每个第一端子分别连接到第二转换器分支的每个后续级联阶段和最终阶段的每个输入开关的每个第一端子。这是为了促进开关期间的电流平衡。例如,Q4a的第一端子连接到Q4b的第一端子,并且Q7a的第一端子连接到Q7b的第一端子。以虚线示出的耦合电容器C3和C4是可选的,并且如果分支中的电压之间的相移使得电流不平衡,则可以使用耦合电容器C3和C4。
堆叠电容器C1a和C2a允许将每一阶段的每个输入开关Q1a和Q4a的开关电压减小到DC输入电压的1/N的水平。同样,堆叠电容器C1B和C2b允许每个输入开关Q1b和Q6b的开关电压减小到DC输入电压的1/N的水平。此外,由于输入开关仅切换至输入电压Vin的1/N,因此后续阶段中的每个堆叠电容器的各自的输入电压负载将减小1/N。因此电容器上这种单调减小的负载导致最终极仅需切换输入电压Vin的1/N,因此最终极不需要堆叠电容器。与开关必须切换输入电压的较大部分的情况相比,这种在每一阶段中的开关的开关电压的降低使得能够以更高的开关频率和更高的密度来实现开关。
每个转换器并联支路104的最终阶段206包括输入开关,该输入开关的第一端子连接到级联耦合开关的第二端子。最终阶段还包括输出电感器和接地开关。输出电感器具有连接到输入开关的第二端子的第一端子、以及耦合到输出节点的第二端子。接地开关的第一端子连接到输入开关的第二端子,并且接地开关的第二端子接地。但是,由于最终阶段不耦合至另一后续阶段,并且不需要堆叠电容器,因此最终阶段206不具有堆叠电容器或级联耦合开关。
例如,如图3所示,最终阶段206a具有输入开关Q7a,电感器L3a和接地开关Q8a。同样,最后一阶段206b具有输入开关Q7b,电感器L3b和接地开关Q8b。
参考图4,图5和图6描述示例多相转换器的操作。图4的元件部件的操作和功能类似于以上参考图3描述的元件部件的操作和功能,除了图4是二级-四相电容堆叠式电压转换器400(即,N=2)。这里,在每个分支404中仅存在单个级联阶段402和最终阶段404。对于每个级联分支104,输入开关是Q1,接地开关是Q2,级联耦合开关是Q3,输出电感器是L1,以及堆叠电容器为C1。对于每个最终阶段404,输入开关为Q4,接地开关为Q5,并且输出电感器为L2。根据上面的等式(1),每个堆叠电容器C1将充电到大约Vin*(2-1)/2或Vin/2的电压。因此,每个晶体管Q将以不大于Vin/2的电压进行开关。
图5是两级四相电容性堆叠式电压转换器的脉冲宽度调制控制波形的示图500。在此示例中,Vin=8V,Vout=1V,开关频率为1MHz,Iout=100A,占空比为0.25。在此实施方式中,CSMPVC不使用任何耦合电容器。另外,控制信号S1P和S2P相移180度,并且控制信号1N和S2N相移180度。
图6是两级四相电容堆叠式电压转换器的开关节点波形的图600。仅示出了Q1a-Q5a的开关电压。由于Vin=8V,因此所有开关的开关电压均不超过4V。这使CSMPVC能够利用MOSFET技术的使用,从而实现高密度和高效率。
图7是图4的电路的输出电压和堆叠电容器电压的示图700。如上所述,由于在开关状态下进行充电和放电,堆叠电容器的实际电压将在值Vc_ord(这里为4V)附近变化,但大概的DC值将近似为4V
本说明书中所描述的主题和操作的实施例可以在数字电子电路中、或在计算机软件、固件或硬件中实施,包括本说明书中所公开的结构及其等同结构,或者以一种或多种的组合来实施。本说明书中描述的主题的实施例可以被实现为一个或多个计算机程序,即,计算机程序指令的一个或多个模块,其可以被编码在计算机存储介质上,用于由数据处理设备执行或控制数据处理设备的操作。
尽管本说明书包含许多特定的实施细节,但是这些不应被解释为对任何特征或所要求保护的范围的限制,而应解释为对特定实施例特定的特征的描述。在单独的实施例的上下文中在本说明书中描述的某些特征也可以在单个实施例中组合实现。相反,在单个实施例的上下文中描述的各种特征也可以分别在多个实施例中或以任何合适的子组合来实现。而且,虽然特征可以如上描述为以某些组合起作用并且甚至最初主张来自要求保护的组合的例如一个或多个特征在某些情况下可以从该组合中去除,并且所主张的组合可涉及子组合或子组合的变形。
因此,已经描述了本主题的特定实施例。其他实施例在所附权利要求的范围内。在某些情况下,可以以不同的顺序进行权利要求中记载的动作,并且仍然实现期望的结果。另外,附图中描绘的过程不一定需要所示的特定顺序或连续顺序来实现期望的结果。在某些实施方式中,多任务和并行处理可能是有利的。

Claims (11)

1.一种设备,其特征在于,所述设备包括:
第一并联转换器分支和第二并联转换器分支,每个并联转换器分支包括:
输入节点,所述输入节点接收直流(DC)输入电压;
N个输出节点,每个输出节点分别输出直流输出电压,其中,所述直流输出电压小于所述直流输入电压,其中,N为2以上;和
多个开关,每个开关基本上在所述直流输入电压除以N的幅度极限下进行操作,其中每个开关包括第一端子、第二端子和第三端子,并且所述第一开关的所述第三端子接收控制信号,所述控制信号使所述第一开关处于在所述第一端子和所述第二端子之间建立传导路径的闭合状态或在所述第一端子和所述第二端子之间消除了所述传导路径的断开状态;
转换器输出节点,所述转换器输出节点连接到所述第一并联转换器分支和所述第二并联转换器分支的所述N个输出节点中的每个输出节点,并提供所述直流输出电压;和
控制逻辑,所述控制逻辑产生控制所述第一并联转换器支路的所述开关的第一组开关信号、和控制所述第二并联转换器支路的第二组开关信号,所述第一组开关信号和所述第二组开关信号具有各自的占空比,以使所述第一并联转换器分支和所述第二并联转换器分支中的每个并联转换器分支在所述N个输出节点中的每个输出节点上输出所述直流输出电压。
2.根据权利要求1所述的设备,其特征在于,每个并联转换器分支包括:
N-1个级联阶段,每个级联阶段具有相对于所述直流输入电压的顺序位置,并从第一级联阶段开始,所述第一级联阶段连接到作为相应输入电压的所述直流输入电压,并且每个后续级联阶段都连接到先前的级联阶段,以接收相应输入电压;和
最终阶段,所述最终阶段被连接到最后的级联阶段,以接收相应输入电压。
3.根据权利要求2所述的设备,其特征在于,所述N-1个级联阶段中的每个级联阶段包括堆叠电容器,所述堆叠电容器被充电至大约所述直流输入电压的(N-Ord)/N,其中,Ord的值是所述级联阶段相对于所述直流输入电压的顺序位置。
4.根据权利要求3所述的设备,其特征在于,所述N-1个级联阶段中的每个级联阶段包括:
输入开关,所述输入开关具有连接到所述级联阶段的所述相应输入电压的第一端子:
级联耦合开关,所述级联耦合开关具有连接到所述输入开关的第二端子的第一端子、和连接到相应后续级联阶段或最终阶段的第二端子;
堆叠电容器,所述堆叠电容器具有连接到所述输入开关的所述第二端子的第一端子、以及连接到接地开关的第一端子和输出电感器的第一端子的第二端子;
其中,所述接地开关具有接地的第二端子,并且所述输出电感器具有连接到所述输出节点的第二端子。
5.根据权利要求4所述的设备,其特征在于,所述最终阶段包括:
输入开关,所述输入开关具有连接到级联耦合开关的第二端子的第一端子;
输出电感器,所述输出电感器具有连接到所述输入开关的第二端子的第一端子、以及耦合到所述输出节点的第二端子;和
接地开关,所述接地开关具有连接到所述输入开关的所述第二端子的第一端子、以及接地的第二端子。
6.根据权利要求5所述的设备,其特征在于,所述第一并联转换器分支的每个后续级联阶段和所述最终阶段的所述输入开关的每个第一端子分别连接至所述第二并联转换器分支的每个后续级联阶段和最终阶段的每个输入开关的每个第一端子。
7.根据权利要求6所述的设备,其特征在于,所述第一组开关信号和所述第二组开关信号相对于彼此异相180度。
8.根据权利要求6所述的设备,其特征在于,
所述第一并联转换器分支的每个后续级联阶段和最终阶段的所述输入开关的每个第一端子以及分别连接的所述第二并联转换器分支的每个后续级联阶段和最终阶段的每个输入开关的所述第一端子通过相应耦合电容器接地:以及
所述第一组开关信号和所述第二组开关信号相对于彼此异相小于180度。
9.根据权利要求3所述的设备,其特征在于,所述第一并联转换器分支的每个后续级联阶段和最终阶段的每个相应输入电压分别连接至所述第二并联转换器分支的每个后续级联阶段和最终阶段的每个相应输入电压。
10.根据权利要求9所述的设备,其特征在于,所述第一组开关信号和所述第二组开关信号相对于彼此异相180度。
11.根据权利要求9所述的设备,其特征在于,
所述第一并联转换器分支的每个后续级联阶段和最终阶段的每个相应输入电压以及分别连接的所述第二并联转换器分支的每个后续级联阶段和最终阶段的输入电压通过相应耦合电容器接地;以及
所述第一组开关信号和所述第二组开关信号相对于彼此异相小于180度。
CN201880028553.4A 2017-08-11 2018-06-14 多相转换器 Active CN110915118B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211509513.6A CN115765457A (zh) 2017-08-11 2018-06-14 多相转换器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/675,285 US10141849B1 (en) 2017-08-11 2017-08-11 Multi-phase converter
US15/675,285 2017-08-11
PCT/US2018/037447 WO2019032183A1 (en) 2017-08-11 2018-06-14 MULTI-PHASE CONVERTER

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202211509513.6A Division CN115765457A (zh) 2017-08-11 2018-06-14 多相转换器

Publications (2)

Publication Number Publication Date
CN110915118A true CN110915118A (zh) 2020-03-24
CN110915118B CN110915118B (zh) 2022-12-23

Family

ID=62815186

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211509513.6A Pending CN115765457A (zh) 2017-08-11 2018-06-14 多相转换器
CN201880028553.4A Active CN110915118B (zh) 2017-08-11 2018-06-14 多相转换器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202211509513.6A Pending CN115765457A (zh) 2017-08-11 2018-06-14 多相转换器

Country Status (6)

Country Link
US (2) US10141849B1 (zh)
EP (1) EP3602764B1 (zh)
CN (2) CN115765457A (zh)
DK (1) DK3602764T3 (zh)
TW (2) TWI688196B (zh)
WO (1) WO2019032183A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769332A (zh) * 2020-12-25 2021-05-07 南京矽力微电子技术有限公司 功率变换器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10903739B2 (en) * 2018-09-14 2021-01-26 Chaoyang Semiconductor Jiangyin Technology Co., Ltd. Capacitor cross coupled 2-phase buck converter
US11201544B2 (en) * 2018-12-04 2021-12-14 Stmicroelectronics S.R.L. Stacked buck converters and associated method of operation
US10924006B1 (en) * 2019-09-30 2021-02-16 Psemi Corporation Suppression of rebalancing currents in a switched-capacitor network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060087295A1 (en) * 2004-10-26 2006-04-27 Delta Electronics, Inc. Non-isolated power conversion system having multiple switching power converters
US20090140706A1 (en) * 2007-12-03 2009-06-04 System method and apparatus for a multi-phase dc-to-dc converter
EP2136459A1 (en) * 2008-06-18 2009-12-23 Intégration Dolphin Inc. Charge pump circuit
CN101931327A (zh) * 2009-06-23 2010-12-29 英特赛尔美国股份有限公司 用于多相降压转换器内pfm/pwm模式转变的系统和方法
US20160261190A1 (en) * 2015-03-06 2016-09-08 Texas Instruments Incorporated Current Sensing Using Capacitor Voltage Ripple In Hybrid Capacitor/Inductor Power Converters

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784644B2 (en) * 2001-02-22 2004-08-31 Virginia Tech Intellectual Properties, Inc. Multiphase clamp coupled-buck converter and magnetic integration
DE10392501T5 (de) 2002-04-03 2006-04-20 International Rectifier Corp., El Segundo Verbesserungen eines synchronen Buck Converters
US7107468B2 (en) 2003-07-08 2006-09-12 California Micro Devices Peak current sharing in a multi-phase buck converter power system
US20090017426A1 (en) 2007-07-13 2009-01-15 Mindware Inc. Systems and methods for playing educational games and using educational tools
JP5433880B2 (ja) * 2008-12-19 2014-03-05 国立大学法人 大分大学 Dc−dcコンバータ
TWI483529B (zh) * 2012-12-24 2015-05-01 Upi Semiconductor Corp 多相直流對直流電源轉換器
US20150002115A1 (en) * 2013-07-01 2015-01-01 Texas Instruments Incorporated Series-capacitor buck converter multiphase controller
US10615692B2 (en) * 2014-04-25 2020-04-07 Texas Instruments Incorporated Series capacitor buck converter having circuitry for precharging the series capacitor
US9548648B2 (en) * 2014-04-25 2017-01-17 Texas Instruments Incorporated Switched reference MOSFET drive assist circuit
US9647548B2 (en) * 2015-03-13 2017-05-09 Infineon Technologies Austria Ag Method for operating a power converter circuit and power converter circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060087295A1 (en) * 2004-10-26 2006-04-27 Delta Electronics, Inc. Non-isolated power conversion system having multiple switching power converters
US20090140706A1 (en) * 2007-12-03 2009-06-04 System method and apparatus for a multi-phase dc-to-dc converter
EP2136459A1 (en) * 2008-06-18 2009-12-23 Intégration Dolphin Inc. Charge pump circuit
CN101931327A (zh) * 2009-06-23 2010-12-29 英特赛尔美国股份有限公司 用于多相降压转换器内pfm/pwm模式转变的系统和方法
US20160261190A1 (en) * 2015-03-06 2016-09-08 Texas Instruments Incorporated Current Sensing Using Capacitor Voltage Ripple In Hybrid Capacitor/Inductor Power Converters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769332A (zh) * 2020-12-25 2021-05-07 南京矽力微电子技术有限公司 功率变换器

Also Published As

Publication number Publication date
CN110915118B (zh) 2022-12-23
TW201911724A (zh) 2019-03-16
WO2019032183A1 (en) 2019-02-14
TW202030965A (zh) 2020-08-16
EP3602764A1 (en) 2020-02-05
US10141849B1 (en) 2018-11-27
US20190068061A1 (en) 2019-02-28
TWI688196B (zh) 2020-03-11
CN115765457A (zh) 2023-03-07
EP3602764B1 (en) 2021-12-15
DK3602764T3 (da) 2022-03-07
US10312813B2 (en) 2019-06-04
TWI731571B (zh) 2021-06-21

Similar Documents

Publication Publication Date Title
US10468965B2 (en) Multi-stage multilevel DC-DC step-down converter
US10680513B2 (en) Pump capacitor configuration for voltage multiplier
CN110915118B (zh) 多相转换器
US11043899B2 (en) Zero inductor voltage converter topology with improved switch utilization
US7696735B2 (en) Switched capacitor converters
US11228243B2 (en) Power converter with reduced RMS input current
He et al. Switched tank converter based partial power architecture for voltage regulation applications
US20220255429A1 (en) Voltage converter
US7518432B2 (en) Low noise multiphase charge pump and control method thereof
CN111030446B (zh) 直流转直流dc/dc变换拓扑电路和装置
Chen et al. A 92.7%-efficiency 30A 48V-to-1V dual-path hybrid Dickson converter for PoL applications
US9906127B2 (en) Fractional output voltage multiplier
US11456663B2 (en) Power converter with reduced root mean square input current
Roy et al. Duty phase shift technique for extended-duty-ratio boost converter for reducing device voltage stress over wider operating range
WO2023161600A1 (en) Power converters
Zhao et al. A three-level buck converter and digital controller for improving load transient response
CN115425847B (zh) 功率转换电路与电子设备
US11949332B2 (en) Hybrid power converter with two-phase control of flying capacitor balancing
US20230308014A1 (en) Dc-dc converters
CN117013832A (zh) 一种降压转换器、系统及设备
TW202130103A (zh) 切換式電源轉換電路與切換電路
TW202245393A (zh) 諧振切換式電源轉換電路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant