TWI686988B - 與無重組器燃料電池相關之裝置的製造方法以及此裝置的操作方法 - Google Patents

與無重組器燃料電池相關之裝置的製造方法以及此裝置的操作方法 Download PDF

Info

Publication number
TWI686988B
TWI686988B TW104125474A TW104125474A TWI686988B TW I686988 B TWI686988 B TW I686988B TW 104125474 A TW104125474 A TW 104125474A TW 104125474 A TW104125474 A TW 104125474A TW I686988 B TWI686988 B TW I686988B
Authority
TW
Taiwan
Prior art keywords
fuel
electrolyte membrane
fuel cell
manifold
air
Prior art date
Application number
TW104125474A
Other languages
English (en)
Other versions
TW201608755A (zh
Inventor
薩洛 沙休
Original Assignee
美商帕洛阿爾托研究中心公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商帕洛阿爾托研究中心公司 filed Critical 美商帕洛阿爾托研究中心公司
Publication of TW201608755A publication Critical patent/TW201608755A/zh
Application granted granted Critical
Publication of TWI686988B publication Critical patent/TWI686988B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • H01M4/8871Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9058Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1233Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Composite Materials (AREA)

Abstract

本文所提供為用於一無重組器之燃料電池的一電解質膜。該電解質膜與燃料歧管和空氣歧管一起組裝成該燃料電池。該燃料歧管從燃料供應接收氣態、液態或漿狀形式之可氧化燃料。該空氣歧管從空氣供應接收空氣。當該燃料電池暴露在高於水沸點之操作溫度時,該電解質膜以超氧離子形式傳導氧,以便氧與燃料電化學結合而產生電流。該電解質膜包括一多孔性非導電性基板、沈積於該基板之燃料歧管側的一陽極觸媒層、沈積於該基板之空氣歧管側的一陰極觸媒層以及充填於陽極與陰極觸媒層間之該基板的一離子液體。本文亦提供製造與操作該電解質膜之方法。

Description

與無重組器燃料電池相關之裝置的製造方法以及此裝置的操作方法
本發明提供了與一無重組器燃料電池相關的一種裝置、其製造與操作方法。
本發明係受美國能源部(DoE)獎助合約編號P017.2012.40 HSL-IPI-DCFuelCells之政府支持而產生。美國政府對本發明具有一定之權利。
本發明提出用於無重組器燃料電池之電解質膜的多樣實施例。燃料電池從位於燃料歧管之燃料供應接收可氧化燃料(例如氫或一碳質燃料如甲烷)以及從位於空氣歧管之空氣供應接收空氣。當燃料電池暴露在高於水沸點且低於500℃之操作溫度時,電解質膜以超氧離子形式傳導氧,以便氧與燃料電化學結合而產生電流。在多樣實施例中,電解質膜包含一多孔性基板與一離子液體。
燃料電池對於分散式發電有很大的潛力。因為燃料電池之操作比起簡單的循環渦輪機能有較高之熱力學效 率,所以對溫室氣體之減少有顯著的影響。使用燃料電池之區域性與分散式發電不會像集中式發電一樣遭受7-10%的傳輸損失。此外,分散式發電對可癱瘓中央發電廠並造成大量民眾無助之自然災害、網路攻擊和恐怖攻擊提供社會恢復力。
由於像風和太陽等可變化之能源來源(variable energy resources,VER)的不可預測性,對於VER是否可持續超過總負荷的一定比例而整合入主電網一直有重要爭論。許多能源經營者已經開始抱怨此不可預測性並質疑整合更多VER到他們電網的能耐。作為分散式發電者之燃料電池對此問題提供很好的替代案。作為分散式發電者時,燃料電池提供區域電力,需要時他們也把能源輸送給電網,因此成為負荷的平衡者,此外並可讓更多VER整合入該電網。
幾乎所有的燃料電池都用氫做為燃料,然而氫本身並非天然燃料。氫通常藉由碳氫化合物之蒸氣重組而得。重組消耗大量之能量,導致淨熱力學效率降低以及較高的系統成本。天然氣在美國已大量並成功地探索,並可能成為數十年來首選的商業燃料。因此相對於重組的氫,更希望燃料電池使用天然氣,即甲烷。
商業生產上之燃料電池有兩種主要的類別,質子交換膜燃料電池(proton-exchange membrane fuel cells,PEMFC)與固態氧化物燃料電池(solid-oxide fuel cells,SOFC)。他們都是相對成熟的技術但苦於那些妨害他們普及使用的缺點。他們的工作溫度分別為25-100℃與700-1000℃。
PEMFC為質子(氫離子)傳導的燃料電池,而 SOFC為氧傳導的燃料電池。因此,PEMFC必須使用重組器來使用天然氣,而氧傳導之燃料電池如SOFC則有潛力可氫和碳氫化合物即甲烷兩者都使用。參照圖1,其顯示氫傳導膜與氧傳導膜之離子傳輸。
因為需要重組器,PEMFC為經濟上與能量上效率不彰。因為PEM膜只在水合形式下作用,且反應結果製造大量的水,電池兩側水的控管為一難題。其他諸如觸媒淹沒與缺水造成碳支撐破壞的問題發生。此外,燃料或氣流中存在的COx、NOx與SOx造成觸媒之中毒效果。所以,為減少或消除此類雜質必須有額外的基礎架構,例如化學清洗,因此減少了經濟和能源效率的優勢。
SOFC有潛力直接使用天然氣,因為其在極高溫下操作且傳導氧。然而,大部分實用與商業化之SOFC必須使用蒸氣重組器作為操作所需。其通常使用摻雜的氧化釔穩定之氧化鋯(Yttria-stabilized-Zirconia,YSZ)作為氧傳導膜。高溫(平均800℃)時產生嚴重的問題,諸如(a)觸媒,如Ni和NiO,經過多次熱循環後因為熱膨脹係數(coefficient of thermal expansion,CTE)不相符而無法黏著在膜上;(b)無法使用商業塑膠及商業金屬如鋁和普通鋼,因此需要昂貴的金屬與陶瓷結構組件;(c)在高溫下操作氣體接頭與控制變成格外昂貴。在如此高溫下之操作包含材料可靠性與安全性問題。
許多燃料電池使用氫做為燃料,但氫之天然產量並不豐富。它通常經由碳氫化合物之蒸氣重組而獲得,此 為低效率且高成本。因此相對於重組的氫,希望該燃料電池直接使用天然氣(主要是甲烷)。新型式之鹼性、酸性與熔鹽電解質正在研究中。然而,使用這些技術,研究係在於氫離子(質子)傳導電解質並要求供應給中溫型燃料電池(Intermediate Temperature Fuel Cell,ITFC)的燃料必須是氫,而且需要重組器以便從甲烷或其他碳質燃料產生氫。
在一方面,本發明提供了與一無重組器燃料電池相關的一種裝置。在一實施例中,該裝置包含一電解質膜,其配置成與一燃料歧管和一空氣歧管組合成一無重組器燃料電池,其中該燃料歧管係配置成從燃料供應接收至少一氣態、一液態或一漿狀形式的一可氧化燃料,其中該空氣歧管係配置成從空氣供應接收空氣,該空氣至少包括氧;其中,該電解質膜係配置成當燃料電池暴露在高於水沸點且低於500℃之操作溫度時,該電解質膜以超氧離子形式傳導氧,氧與該可氧化燃料電化學結合而產生電流。在這個實施例中,該電解質膜包括:一多孔性非導電性基板,沿該基板之燃料歧管側沈積之一陽極觸媒層,沿該基板之空氣歧管側沈積之一陰極觸媒層,以及充填於該陽極與陰極觸媒層間之多孔性基板的一離子液體以形成電解質膜。
在另一方面,本發明提供了與一無重組器燃料電池相關之一種裝置的製造方法。在一實施例中,該方法包括:從非導電性顆粒生成一多孔性基板;沿該多孔性基板之一第 一面沈積一陽極觸媒層;沿該多孔性基板之一第二面沈積一陽極觸媒層;以及在該陽極與陰極觸媒層之間的該多孔性基板充填一離子液體以形成一電解質膜,該電解質膜配置成與相關聯於該電解質膜之第一面之一燃料歧管和相關聯於該電解質膜之一第二面之一空氣歧管組合成一無重組器燃料電池。在此實施例中,該燃料歧管係配置成從燃料供應接收至少一氣態、一液態或一漿狀其中之一形式的可氧化燃料。在此實施例中,該空氣歧管係配置成從空氣供應接收空氣,該空氣至少包括氧。在此實施例中,該電解質膜係配置成當該無重組器燃料電池暴露在高於水沸點之操作溫度時,該電解質膜以超氧離子形式傳導氧,氧與該可氧化燃料電化學結合而產生電流。
在又一方面,本發明提供了一種與一無重組器燃料電池相關之一裝置的操作方法。在一實施例中,該方法包括:使與一燃料歧管和一空氣歧管組合成一無重組器燃料電池之一電解質膜暴露於高於水沸點之操作溫度;從燃料供應提供至少氣態、液態或漿狀其中之一形式的一可氧化燃料至該燃料歧管;從空氣供應提供空氣至該空氣歧管,該空氣至少包括氧;以及以超氧離子形式傳導氧通過該電解質膜,使氧與可氧化燃料電化學結合而產生電流。在此實施例中,該電解質膜包括一從非導電性顆粒生成之多孔性基板、沿該多孔性基板之燃料歧管側沈積的一陽極觸媒層、沿該多孔性基板之空氣歧管側沈積的一陰極觸媒層以及充填於該陽極與陰極觸媒層間之該多孔性基板的一離子液體。
200‧‧‧燃料電池
202‧‧‧歧管
204‧‧‧膜系統
206‧‧‧方框
300‧‧‧基板
402‧‧‧濺鍍
404‧‧‧塗層
700‧‧‧燃料電池
702‧‧‧膜
704‧‧‧歧管
706‧‧‧氣體接頭
800‧‧‧多電池系統
802‧‧‧膜
804‧‧‧歧管
806‧‧‧雙極板
808‧‧‧串聯
810‧‧‧集電器
812‧‧‧壓板
814‧‧‧氣體密封襯墊
816‧‧‧氣體進出接頭
900‧‧‧活性歧管
902‧‧‧主要歧管
1200‧‧‧電解質膜
1202‧‧‧燃料歧管
1204‧‧‧空氣歧管
1206‧‧‧無重組器燃料電池
1208‧‧‧可氧化燃料
1210‧‧‧燃料供應
1212‧‧‧空氣
1214‧‧‧空氣供應
1216‧‧‧電流
1218‧‧‧多孔性基板
1220‧‧‧陽極觸媒層
1222‧‧‧陰極觸媒層
1224‧‧‧離子液體
1226‧‧‧陽極電極
1228‧‧‧陰極電極
1230‧‧‧二氧化碳與水
1300、1400‧‧‧方法
1302、1304、1306、1308、1402、1404、1406、1408‧‧‧步驟
圖1描述氫傳導膜與氧傳導膜之離子傳輸。
圖2為使用一複合離子液體/陶瓷膜系統而構成之一燃料電池。
圖3為一多孔性陶瓷基板的掃描式電子顯微鏡(SEM)顯微圖。
圖4描述觸媒材料被塗層至一基板上。
圖5為一離子液體的化學結構。
圖6為具有一陽離子與一陰離子的一氟化之離子液體。
圖7為一小規模之燃料電池。
圖8為一多電池系統之簡圖。
圖9描述一活性歧管與一主要歧管之間的關係。
圖10為使用不同燃料之燃料電池的電流密度對溫度作圖。
圖11為使用甲烷之燃料電池的極化圖。
圖12為與無重組器燃料電池相關之電解質膜之一示範性實施例的方塊圖。
圖13為與無重組器燃料電池相關之電解質膜的製造方法之一示範性實施例的流程圖。
圖14為與無重組器燃料電池相關之電解質膜的操作方法之一示範性實施例的流程圖。
本說明書提供一種以超氧離子形式傳導氧之電解質/膜系統,其使得氧直接傳輸並與多種燃料反應,而不限於氫。使用本技術之燃料電池不需要甲烷轉化成氫之重組器(methane-to-hydrogen reformer)且在中間溫度範圍操作。中溫型燃料電池能使用很多樣基於碳之輸入燃料。該電解質膜系統以一種幾乎可與每一種燃料直接反應的形式傳導氧。此膜無需單獨的燃料處理系統因而降低整體成本。該燃料電池在相對低溫下操作,在500℃下且最好是在100℃和300℃中間,以避免與現有高溫燃料電池相關聯之長期耐久性問題。
本說明書提出一無重組器燃料電池之多種實施例。可在PEMFC和SOFC之熱範圍間操作之一燃料電池通常稱之為一中溫型燃料電池(Intermediate Temperature Fuel Cell,ITFC)。ITFC在100-500℃之溫度範圍間操作。本發明係針對在該溫度範圍之較低端(100-300℃)操作的燃料電池,帶來額外之成本上與可靠性的益處。
因為操作溫度高於水的沸點,ITFC克服了PEMFC中與水相關的問題。ITFC亦克服與SOFC相關之大部分熱的問題,因為在此較低之溫度下,(a)熱膨脹係數(CTE)之不相符比較容易控制;(b)處理氣體之組件的成本比液體為低;以及(c)諸如鋁、鋼和塑膠之便宜的材料可用來作為結構組件。
新型式之鹼性、酸性與熔鹽電解質正在研究中。然而,使用這些技術,研究係在於氫離子(質子)傳導電解 質且要求供應給中溫型燃料電池(ITFC)的燃料必須是氫,並且需要重組器以便從甲烷產生氫。
本發明提供一種以超氧離子形式傳導氧之電解質/膜系統,其使得氧直接傳輸並與多種燃料反應,而不限於氫。使用本技術之燃料電池不需要將甲烷轉化成氫之重組器。
本發明係針對可電化學地消耗多種複合燃料如甲烷、丁烷、丙烷和煤炭之一無重組器氧傳導多燃料中溫型燃料電池(Reformer-less Oxygen-conducting Multi-fuel Intermediate-temperature fuel cell,RONIN)。本發明係屬於中溫型燃料電池(ITFC)之一般類別,但不需氫重組器。本技術之主要優點係針對較低之操作溫度(100-300℃),其允許聚合與金屬結構和密封組件的使用,因此降低成本並增加所組成之燃料電池系統的可靠性與壽命。
離子液體(Ionic liquids,IL)係為一新類型的材料,其可被調整成展現出多種的電化學與流體性質。離子液體對特定氣體顯示出離子性溶解度與傳導性。基於固定在一細密多孔性陶瓷中之特定離子液體的膜可在燃料電池中用來傳導氧。當此多孔性陶瓷被催化,該離子液體使氧與碳質氣體如天然氣甲烷電化學結合而產生電流。
參照圖2,一燃料電池200被描述為具有一歧管202,其容置一複合離子液體/陶瓷膜系統204。該歧管202包含塑膠結構與襯墊。
複合離子液體/陶瓷膜系統204被描述為在歧管202之內。膜系統204以超氧離子形式傳輸氧並使得燃料直接 與氧反應。該離子傳輸圖解於方框206中。膜系統204與燃料電池200並不包括將甲烷轉化成氫之重組器。
膜系統204包括一多孔性陶瓷基板與固定於該基板上之一離子液體。參照圖3,所示為一多孔性陶瓷基板300的一掃描式電子顯微鏡(SEM)顯微圖。基板300係藉由融合2-15微米(μm)大小之氧化鋁陶瓷顆粒而形成板狀。在一實施例中,該基板300上所生成之孔隙大小約為1-5μm且孔隙率(porosity)約為35%。在另一實施例中,該基板300為1毫米(mm)厚且尺寸可大到30公分x30公分。基板300容許有一觸媒與離子液體電解質。
在該多孔性陶瓷基板300之兩面都濺鍍或塗覆一薄層之觸媒材料。參照圖4,其描述了不同之觸媒材料層。在一實施例中,一觸媒層402係以0.1mg/cm2之鉑與最多到1mg/cm2之其他金屬如鎳、金、銀濺鍍至該基板之兩面。在另一實施例中,鉑黑粉末之一塗層404係在400-1350℃之溫度下燒結(sinter)以便將鉑永久附加至基板300之氧化鋁陶瓷顆粒上。如此將產生較低之淨鉑族金屬填充(PGM loading),但淨催化表面積超過20倍之投影表面積。
當該多孔性陶瓷基板300被催化後,以一傳導氧之離子液體充填並固定孔隙。此離子液體之類型係取決於該燃料電池200所用之燃料。在一實施例中,以天然氣形式之甲烷和以空氣形式之氧被饋入該膜204之兩側。該氧係在氧氣側被催化並作為一帶負電之超氧離子進入孔隙中之離子液體內。氧係從一氧氣側之電極收集電子而成為一超氧離子。 該氧氣側之反應描述為:氧氣側:2 O2(溶於離子液體)+2e-→2 O2*-(超氧離子)
該帶負電之超氧離子以離子液體方式穿越該膜204至該膜204的另一側。該超氧離子在燃料側催化表面上與該甲烷燃料直接反應以產生二氧化碳(CO2)與水(H2O)。該燃料側之反應描述為:燃料側:CH4+2 O2*- → CO2+2H2O+2e-
對於一小型測試燃料電池,該反應在200℃時之斷路電位約為0.8V。低於400℃之溫度下,該甲烷與氧之電化學反應產生可忽略之量的一氧化碳。幾乎所有甲烷的碳轉化成二氧化碳。因為燃料側反應之低溫,該燃料電池不需一CO-CO2之催化轉化。此相異於前述之SOFC,其在高於600℃溫度下操作需要催化轉化器並產生大量之一氧化碳,並因此必須配備催化轉化之子系統而產生額外之資金成本並降低效益。
在一實施例中,當使用天然氣做為燃料時,該天然氣與離子液體[Emim]+[OTf2]-電化學氧化反應。參照圖5,其描述該離子液體之化學結構。在一實施例中,該離子液體溶解一些量之CH4與O2,其使得該反應更有效率,因為氧化和還原反應可在單一相即液相裡發生。
參照圖6,一氟化之離子液體包括一大的正離子與一大的負離子。該陰離子,即負離子,決定該離子液體之電化學與化學特性,且該陽離子,即正離子,決定物理特性如流變性(rheology)與氣體溶解度。在此實施例中,該離子 液體含有幫助溶解氧之陰離子[OTf2]-,此為一氟化之離子液體的特性,且當氧轉化成一超氧離子時,該陰離子有助於穩定他。C-F鍵之大偶極矩被認為是用以幫助維持超氧離子共軛並使其不反應,若反應將導致該離子液體之破壞。該陽離子[Emim]+協助溶解甲烷。該陽離子亦溶解二氧化碳,其為該反應之產物。對此化學而言,溶解於氟化之離子液體的二氧化碳增加了CH4與O2兩者的溶解度,強化該反應。
參照圖7,一小規模之燃料電池700係使用所述之膜702。該燃料電池包括一歧管704。在一實施例中,歧管704係使用石墨氈構成。石墨氈為一高導電性、可壓縮且高度多孔性石墨纖維材料。石墨氈係為95%多孔性、在此溫度下不氧化且可抗惡劣之化學環境。此類石墨氈已被用於燃料電池以及商業液流電池(flow battery)之液流電池外圍。
該燃料電池進一步包括結構性材料,例如用來安置該燃料電池零件之雙極板。在一實施例中,該雙極板係為一柔軟且用於商業燃料電池與液流電池的氟-碳/石墨複合板。被動結構材料係以最高可在400℃操作之商業製高溫塑膠製成。一家族之高溫塑膠係從杜邦(Dupont)所製造之聚四氟乙烯(PTFE,即鐵氟龍)衍生而得。PTFE之某些變化,使用適當之填充材料如玻璃纖維,可承受330℃之操作溫度。此一塑膠成功用在溫度高達270℃之燃料電池而無任何變質。另一家族之高溫塑膠係自酯或酮鏈之有機矽衍生物所衍生而得。一此類商業化材料,UHT,之結構可在高達400℃時使用。
燃料電池包括襯墊以便將燃料電池之組件裝配 在一起。該襯墊材料可為用被修飾之二氟乙烯-六氟丙烯(全氟化橡膠FFKM)製成之氟碳彈性體,例如杜邦製造之Kalrez全氟橡膠。其可在高達327℃之溫度下操作。可在感興趣之溫度下操作之襯墊材料的另一家族是負載有纖維之矽膠,其操作溫度高達450℃。
燃料電池亦包括其他組件以完成建構。螺栓、壓縮彈簧以及氣體接頭可用鋼製成。最後的集電器係為銅製。氣體接頭706可依據使用處之溫度以銅和一高品質之聚烯烴彈性體混合製成,例如動態硫化熱塑性橡膠聖拖普林(Santoprene)。壓力板為鋁製。
在另一實施例中,燃料電池堆疊在一起並串聯起來以產生一加總之電力。參照圖8,所述為一多電池系統800。可以理解,在此實例中多電池系統800係被描述為七個電池串聯在一起,但此實例中之電池數量並不限制本發明之應用。
具有一催化表面並被嵌入一離子液體的一陶瓷膜802被置於導電空氣歧管804的任一側之間。陶瓷膜802之催化表面係位於該膜802之陽極與陰極側。在一實施例中,該催化劑材料係一鉑族金屬,即釕、銠、鈀、鋨、銥或鉑。在另一實施例中,該催化劑材料為一非鉑族金屬,例如鎳、銀或金氧化鎳,或一載有鉑族金屬之鎳、銀或金氧化鎳。在一實施例中,該嵌入之離子液體為丁基甲基咪唑三氟甲磺酸(簡寫為[C4C1Im]+[Otf]-)。該陰離子負責超氧離子之活化與傳導。在一實施例中,離子液體中該陽離子的選擇增加氧的溶解度。在另一實施例中,該陽離子,例如鏻離子,係用以 增加可使用之溫度範圍。在一實施例中,多孔性陶瓷膜802係以氧化鋁燒結而成且厚度為1.0mm、顆粒與孔隙大小為1-5μm且孔隙率為35%。在另一實施例中,膜802為0.25mm厚且孔隙率超過於50%以降低該電池的電阻。
在一實施例中,導電之空氣歧管804係以可壓縮之石墨氈製成。雙極板806係置於歧管804/膜802之組合的任一側。在一實施例中,雙極板806以複合石墨製成。重複雙極板806/歧管804/膜802之組合以構成七個電池一起的串聯808。位於兩末端之電極均放置一集電器810。在一實施例中,該集電器係為銅板。壓板812之任一側有氣體密封襯墊814。在一實施例中,壓板812係為鋁製且厚度約為半英吋。壓板812包括給氧氣和燃料的氣體進/出接頭816。儘管所示為七個電池,電池數目並非實際應用的限制因素。
操作該多電池系統800時,當溫度介於150與220℃間時該反應速率快於線性增加。取決於膜802中所用之離子液體,溫度可升高至400℃。燃料與氧於通過檔板或通道之膜活性區域中的流量分佈是一致的。燃料與氧之適當分佈影響燃料電池的效能與壽命。石墨氈流路用於燃料電池800內,其中該石墨氈之壓縮厚度係為1毫米與5毫米間且該壓縮介於20%和80%間。
多電池堆疊結構以總壓力和流速將燃料與氧分散至該堆疊中之各個電池。這些電池為氣動平行地堆疊,所以每個電池中燃料和氧之流速必須平衡良好。規劃每一電池有一主要歧管以便提供一比活性歧管較低之阻力,使得氣體 分佈為一致的。參照圖9,所示為主要歧管與活性歧管間的關係。活性歧管900之寬度為主要歧管902之寬度的10-50倍。在一實施例中,取代一氈狀活性歧管,使用不同材料的一蛇形活性歧管與路徑,例如網狀氈及膨脹石墨、沖壓鍍鎳之鋼通道。
燃料電池可修改使用不同的燃料。參照圖10,其為燃料電池使用不同燃料時之電流密度對溫度做圖。有效電流密度之量測係將總電流(微安培)除以膜之投影面積(平方公分)。該多電池堆疊係置於溫度可達400℃之一溫控環境中。替代燃料可為氫、丁烷、丙烷或煤。對每一替代燃料,燃料電池中不同的離子液體操作至不同的活性等級。例如,離子液體乙基甲基咪唑二氰胺(Ethyl-Methyl-Imidazolium-Dicyanamide,簡寫為[Emim]+[Dicyanamide]-)對褐煤作用良好,而甲烷燃料與離子液體乙基甲基吡咯烷四氟硼酸(Ethyl-Methyl-Pyrrolinidinium-Boron-Tetrafluoride,簡寫為[EmPyr]+[BF4]-或[Emim]+[OTf2]-)作用良好。
參照圖11,所示為220℃時甲烷與[Emim]+[OTf2]-之燃料電池在2cm2截面積之一極化圖。y軸為一非線性之對數尺度,其顯示反應速率比線性更快速增加如同先前討論。在這些條件下,斷路電壓(Open Circuit Voltage,OCV)顯示為0.8V。短路電流為15mA,在70%OCV(=0.56V)時之電流約為9.5mA。當該電池面積為2cm2時,估算電流密度約為5mA/cm2
應可理解,本發明並不受限於所試驗之燃料電池的尺寸。為了更大之電流與電壓輸出,燃料電池及/或多電池堆疊可予以擴大。
參照圖12,一電解質膜1200之一示範性實施例係配置成與一燃料歧管1202及一空氣歧管1204組合而成一無重組器燃料電池1206。燃料歧管1202係配置成從一燃料供應1210接收至少一氣態、一液態、一漿狀或任何適當形式的一可氧化燃料1208(例如氫或一碳質燃料如甲烷)。空氣歧管1204係配置成從一空氣供應1214接收空氣1212。空氣1212至少包括氧。電解質膜1200係配置成當無重組器燃料電池1206暴露在高於水沸點之操作溫度時,電解質膜1200以一超氧離子形式傳導氧以與可氧化燃料1208電化學結合而產生電流1216。
電解質膜1200包括一多孔性基板1218、一陽極觸媒層1220、一陰極觸媒層1222以及一離子液體1224。多孔性基板1218係以非導電性顆粒生成,如氧化鋁(Al2O3)。陽極觸媒層1220係沿多孔性基板1218之燃料歧管側沈積。陰極觸媒層1222係沿該多孔性基板1218之空氣歧管側沈積。該離子液體1224係充填於該陽極觸媒層1220與該陰極觸媒層1222間之多孔性基板1218,以便形成電解質膜1200。在電解質膜1200之另一實施例中,多孔性基板1218係藉由融合非導電性顆粒而形成。在電解質膜1200之又另一實施例中,於一預定厚度之多孔板上形成多孔性基板1218。該多孔板限定了多孔性基板1218之燃料歧管側與空氣歧管側,該預 定之厚度限定了陽極觸媒層1220與陰極觸媒層1222之間的空間。在電解質膜1200之又另一實施例中,非導電性顆粒包括陶瓷顆粒、玻璃顆粒、氧化鋁陶瓷顆粒或任何適當之顆粒類型。在電解質膜1200之另一實施例中,非導電性顆粒之大小範圍為2-15μm。
在電解質膜1200之又另一實施例中,離子液體1224在操作溫度範圍40℃至200℃內維持一液態形式、小於1000Ohm/cm之一阻抗以及小於0.1psi(磅每平方吋)之蒸氣壓。在電解質膜1200之另一實施例中,離子液體1224包括至少含一碳原子之分子。在電解質膜1200之又另一實施例中,離子液體1224包括一氟化之離子液體。在電解質膜1200之又另一實施例中,離子液體1224包括[Emim]+[OTf2]-、[C4C1Im]+[Otf]-、[鏻]+[Otf]-、[Emim]+[Dicyanamide]-、[EmPyr]+[BF4]-或任何適當之離子液體。在電解質膜1200之又另一實施例中,離子液體1224包括一陽離子與一陰離子。在此實施例中,該陽離子包括[Emim]+、[C4C1Im]+、[鏻]+、[EmPyr]+或任何適當之陽離子。在此所述之實施例中,該陰離子包括[OTf2]-、[Otf]-、[Dicyanamide]-、[BF4]-或任何適當之陰離子。
在電解質膜1200之另一實施例中,陽極觸媒層1220包括一鉑族金屬、一釕元素、一銠元素、一鈀元素、一鋨元素、一銥元素、一鉑元素、一鎳元素、一鎳氧化合物、一金元素、一銀元素或任何適當之觸媒元素或化合物。
在電解質膜1200之又另一實施例中,陰極觸媒 層1222包括一鉑族金屬、一釕元素、一銠元素、一鈀元素、一鋨元素、一銥元素、一鉑元素、一鎳元素、一鎳氧化合物、一金元素、一銀元素或任何適當之觸媒元素或化合物。
在又另一實施例中,電解質膜1200係配置成在無重組器燃料電池1206中與關聯於陽極觸媒層1220設置之一陽極電極1226和關聯於陰極觸媒層1222設置之一陰極電極1228組合,以使在陽極電極1226和陰極電極1228間產生一電化學電位1216,而且在無重組器燃料電池1206暴露在高於水沸點之操作溫度之後以及在可氧化燃料1208供應給燃料歧管1202與空氣1212供應給空氣歧管1204之後,一相對應之電流通過該陽極與陰極電極。在一進一步之實施例中,與傳導氧結合,電解質膜1200係配置成在陰極觸媒層1222催化超氧化物,使得藉由從陰極電極1228得到電子之帶負電形式的超氧離子進入離子液體1224。在一更進一步之實施例中,與傳導氧結合,電解質膜1200係配置成將該帶負電形式之超氧離子通過離子液體1224到陽極觸媒層1220,並在此與可氧化燃料1208作用而生成二氧化碳與水1230。
再又另一實施例中,電解質膜1200係配置成當無重組器燃料電池1206暴露在低於500℃之操作溫度時,電解質膜1200以超氧離子形式傳導氧。
在另一實施例中,電解質膜1200係配置成當該無重組器燃料電池1206暴露在低於300℃之操作溫度時,電解質膜1200以超氧離子形式傳導氧。在又另一實施例中,電解質膜1200係配置成當無重組器燃料電池1206暴露在200℃ 至300℃之操作溫度範圍時,電解質膜1200以超氧離子形式傳導氧。
在電解質膜1200之又另一實施例中,氣體形式之該可氧化燃料1208包括氫氣、甲烷氣、丁烷氣、丙烷氣、天然氣、氣態碳氫化合物或任何其他適當之可氧化的氣體。在電解質膜1200之又另一實施例中,液體形式之可氧化燃料1208包括烯烴、醇、有機酸、酯、醛、石油、液態碳氫化合物或任何其他適當之可氧化的液體。在電解質膜1200之另一實施例中,漿狀形式之該可氧化燃料1208包括煤粉、固態碳氫化合物磨成之粉末或任何其他適當之可氧化的粉末。在電解質膜1200之又另一實施例中,漿狀形式之該可氧化燃料1208包括固態碳氫化合物磨成之粉末與離子液體1224混合。
參照圖13,與無重組器燃料電池相關之電解質膜的一製造方法1300之一示範性實施例係起始於步驟1302,從非導電性顆粒形成一多孔性基板。在步驟1304,一陽極觸媒層沿該多孔性基板之一第一面沈積。接著,一陰極觸媒層沿該多孔性基板之一第二面沈積(步驟1306)。在步驟1308,以離子液體充填該陽極與陰極觸媒層間之該多孔性基板以形成電解質膜。該電解質膜係配置成與相關聯於該電解質膜之第一面之一燃料歧管和相關聯於該電解質膜之一第二面之一空氣歧管組合以成為一無重組器燃料電池。該燃料歧管係配置成從一燃料供應接收至少一氣態、一液態、一漿狀或任何適當形式的可氧化燃料(諸如氫或一碳質燃料如甲烷)。該空氣歧管係配置成從一空氣供應接收空氣,該空氣至少包括 氧。該電解質膜係配置成當該無重組器燃料電池暴露在高於水沸點之操作溫度時,該電解質膜以一超氧離子形式傳導氧,使氧與該可氧化燃料電化學結合而產生電流。
在另一實施例中,方法1300亦包括融合非導電性顆粒以形成該多孔性基板。在方法1300之又另一實施例中,該形成之多孔性基板上的孔隙大小範圍係自1奈米(nm)至10μm。在方法1300之又另一實施例中,該形成之多孔性基板上的孔隙大小範圍係自1至5μm。在方法1300之又另一實施例中,該形成之多孔性基板的孔隙率約為35%。在方法1300之另一實施例中,該形成之多孔性基板的孔隙率範圍約從35%至超過50%。
在又一實施例中,方法1300亦包括於具一預定厚度之多孔板上形成多孔性基板。該多孔板限定了該多孔性基板之第一與第二面,且該預定之厚度限定了該陽極與陰極觸媒層之間的空間。在方法1300之另一實施例中,非導電性顆粒包括陶瓷顆粒、玻璃顆粒、氧化鋁陶瓷顆粒或任何適當型態之顆粒。
在方法1300之另一實施例中,非導電性顆粒之大小範圍為從2至15μm。在方法1300之另一實施例中,離子液體包括至少含一碳原子之分子。在方法1300之又另一實施例中,離子液體包括一氟化的離子液體。在方法1300之又另一實施例中,離子液體包括[Emim]+[OTf2]-、[C4C1Im]+[Otf]-、[鏻]+[Otf]-、[Emim]+[Dicyanamide]-、[EmPyr]+[BF4]-或任何適當之離子液體。在方法1300之又另一 實施例中,離子液體包括一陽離子與一陰離子。在此實施例中,陽離子包括[Emim]+、[C4C1Im]+、[鏻]+、[EmPyr]+或任何適當之陽離子。在此所述之實施例中,陰離子包括[OTf2]-、[Otf]-、[Dicyanamide]-、[BF4]-或任何適當之陰離子中之一者。
在方法1300之另一實施例中,陽極觸媒層包括一鉑族金屬、一釕元素、一銠元素、一鈀元素、一鋨元素、一銥元素、一鉑元素、一鎳元素、一鎳氧化合物、一金元素、一銀元素或任何適當之觸媒元素或化合物。
在另一實施例中,方法1300亦包括燒結、濺鍍或薄層金屬濺鍍陽極觸媒層至該多孔性基板之該第一面上。接著,電化學電鍍該陽極觸媒層。
在另一實施例中,方法1300亦包括在多孔性基板之第一面上濺鍍0.1mg/cm2之一鉑族金屬以及1.0mg/cm2之鎳元素、氧化鎳化合物、金元素、銀元素或任何適當之觸媒元素或化合物,以形成該陽極觸媒層。
在又另一實施例中,方法1300亦包括濺鍍一黏著層至該多孔性基板之該第一面上。接著,將鉑黑粉末之一塗層燒結至該黏著層以形成該陽極觸媒層。在方法1300之另一實施例中,該陰極觸媒層包括一鉑族金屬、一釕元素、一銠元素、一鈀元素、一鋨元素、一銥元素、一鉑元素、一鎳元素、一鎳氧化合物、一金元素、一銀元素或任何適當之觸媒元素或化合物中之一者。
在另一實施例中,方法1300亦包括燒結、濺鍍或薄層金屬濺鍍該陰極觸媒層至該多孔性基板之該第二面 上。接著,電化學電鍍該陰極觸媒層。
在另一實施例中,方法1300亦包括在該多孔性基板之第二面上濺鍍0.1mg/cm2之一鉑族金屬以及1.0mg/cm2之鎳元素、氧化鎳化合物、金元素、銀元素或任何適當之觸媒元素或化合物,以形成該陰極觸媒層。
在又另一實施例中,方法1300亦包括濺鍍一黏著層至該多孔性基板之該第二面上。接著,將鉑黑粉末之一塗層燒結至該黏著層以形成該陰極觸媒層。
在方法1300之另一實施例中,該電解質膜係配置成當該無重組器燃料電池暴露在低於500℃之操作溫度時,該電解質膜以超氧離子形式傳導氧。在方法1300之又另一實施例中,該電解質膜係配置成當該無重組器燃料電池暴露在低於300℃之操作溫度時,該電解質膜以超氧離子形式傳導氧。在方法1300之又另一實施例中,該電解質膜係配置成當該無重組器燃料電池暴露在200℃至300℃之操作溫度範圍時,該電解質膜以超氧離子形式傳導氧。
在方法1300之又另一實施例中,氣體形式之該可氧化燃料包括氫氣、甲烷氣、丁烷氣、丙烷氣、天然氣、氣態碳氫化合物或任何其他適當之可氧化的氣體中之至少一者。在方法1300之又一實施例中,液體形式之該可氧化燃料包括烯烴、醇、有機酸、酯、醛、石油和液態碳氫化合物中之至少一者。在方法1300之又另一實施例中,漿狀形式之該可氧化燃料包括煤粉和固態碳氫化合物磨成之粉末中之至少一者。在該方法1300之又另一實施例中,漿狀形式之該可氧 化燃料包括固態碳氫化合物磨成之粉末且與離子液體混合。
參照圖14,與無重組器燃料電池相關之電解質膜的一操作方法1400之一示範性實施例係起始於步驟1402,與一燃料歧管和一空氣歧管組合成一無重組器電池的一電解質膜暴露在高於水沸點之操作溫度下。在步驟1404中,從一燃料供應提供一氣態、一液態、一漿狀或任何適當形式之可氧化燃料(諸如氫或一碳質燃料如甲烷)至燃料歧管。接著,從一空氣供應提供空氣至一空氣歧管(步驟1406)。該空氣至少包括氧。在步驟1408中,氧以超氧離子形式傳導通過電解質膜,使氧與可氧化燃料電化學結合以產生電流。該電解質膜包括一從非導電性顆粒生成之多孔性基板、沿著該多孔性基板之燃料歧管側沈積的一陽極觸媒層、沿著該多孔性基板之空氣歧管側沈積的一陰極觸媒層以及充填於該陽極與該陰極觸媒層間之該多孔性基板的一離子液體。
在方法1400之另一實施例中,該多孔性基板係由融合非導電性顆粒而形成。在方法1400之又另一實施例中,於具一預定厚度之多孔板上形成該多孔性基板。該多孔板限定了該多孔性基板之燃料歧管面與空氣歧管面,且該預定之厚度限定了該陽極與陰極觸媒層間的空間。在方法1400之另一實施例中,該非導電性顆粒包括陶瓷顆粒、玻璃顆粒、氧化鋁陶瓷顆粒或任何適當型態之顆粒。
在方法1400之又另一實施例中,離子液體在操作溫度範圍40℃至200℃內維持一液態形式、小於1000Ohm/cm之一阻抗以及小於0.1psi之蒸氣壓。在方法1400之 另一實施例中,離子液體包括至少含一碳原子之分子。在方法1400之又另一實施例中,離子液體包括一氟化的離子液體。在方法1400之又另一實施例中,離子液體包括[Emim]+[OTf2]-、[C4C1Im]+[Otf]-、[鏻]+[Otf]-、[Emim]+[Dicyanamide]-、[EmPyr]+[BF4]-或任何適當之離子液體。在方法1400之又另一實施例中,離子液體包括一陽離子與一陰離子。在此實施例中,陽離子包括[Emim]+、[C4C1Im]+、[鏻]+、[EmPyr]+或任何適當之陽離子。在此所述之實施例中,該陰離子包括[OTf2]-、[Otf]-、[Dicyanamide]-、[BF4]-或任何適當之陰離子。
在方法1400之又另一實施例中,陽極觸媒層包括一鉑族金屬、一釕元素、一銠元素、一鈀元素、一鋨元素、一銥元素、一鉑元素、一鎳元素、一鎳氧化合物、一金元素、一銀元素或任何適當之觸媒元素或化合物。
在方法1400之另一實施例中,陰極觸媒層包括一鉑族金屬、一釕元素、一銠元素、一鈀元素、一鋨元素、一銥元素、一鉑元素、一鎳元素、一鎳氧化合物、一金元素、一銀元素或任何適當之觸媒元素或化合物。
在方法1400之又另一實施例中,電解質膜係配置成在該無重組器燃料電池中與關聯於該陽極觸媒層設置之一陽極電極和關聯於該陰極觸媒層設置之一陰極電極組合。在此實施例中,方法1400亦包括產生在陽極和陰極電極間的電化學電位以及通過陽極和陰極電極間的一相對應電流。在一進一步實施例中,方法1400亦包括在陰極觸媒層催化一超 氧化物使得從陰極獲得電子之負離子形式的超氧進入離子液體。在一更進一步之實施例中,方法1400亦包括傳導該負離子形式的超氧通過離子液體到陽極觸媒層,在此處與可氧化燃料反應而產生二氧化碳和水。
在又另一實施例中,方法1400亦包括當該無重組器燃料電池暴露在低於500℃之操作溫度時以超氧離子形式傳導氧。在又另一實施例中,方法1400亦包括當該無重組器燃料電池暴露在低於300℃之操作溫度時以超氧離子形式傳導氧。在另一實施例中,方法1400亦包括當該無重組器燃料電池暴露在介於200℃至300℃之操作溫度範圍內以超氧離子形式傳導氧。
在方法1400之又另一實施例中,氣體形式之該可氧化燃料包括氫氣、甲烷氣、丁烷氣、丙烷氣、天然氣、氣態碳氫化合物或任何適當之可氧化的氣體。在方法1400之又一實施例中,液體形式之該可氧化燃料包括烯烴、醇、有機酸、酯、醛、石油和液態碳氫化合物或任何適當之可氧化的液體。在方法1400之又另一實施例中,漿狀形式之該可氧化燃料包括煤粉、固態碳氫化合物磨成之粉末或任何適當之可氧化的粉末。在方法1400之又另一實施例中,漿狀形式之該可氧化燃料包括固態碳氫化合物磨成之粉末且與離子液體混合。
應可理解,上述說明書之變化與其他特徵和功能或其替代品可被組合成許多其他不同的電腦平台、電腦應用或其組合。本領域之技術人員可施行各種目前未預見或未預 期之替換、修改、變化或改進,這些也涵蓋在下述本發明專利範圍之內。
200‧‧‧燃料電池
202‧‧‧歧管
204‧‧‧膜系統
206‧‧‧方框

Claims (2)

  1. 一種與一無重組器燃料電池相關之裝置的製造方法,其包括:從非導電性顆粒生成一多孔性基板;沿著該多孔性基板之一第一面沈積一陽極觸媒層;沿著該多孔性基板之一第二面沈積一陽極觸媒層;以及在該陽極與該陰極觸媒層之間的該多孔性基板充填一離子液體以形成一電解質膜,該電解質膜系配置成與相關聯於該電解質膜之第一面之一燃料歧管和相關聯於該電解質膜之第二面之一空氣歧管組合以形成一無重組器燃料電池,其中該燃料歧管係配置成從一燃料供應接收至少一氣態、一液態或一漿狀其中之一形式的可氧化燃料,其中該空氣歧管係配置成從一空氣供應接收空氣,該空氣至少包括氧,其中,該電解質膜係配置成當該無重組器燃料電池暴露在高於水沸點之操作溫度時,該電解質膜以一超氧離子形式傳導氧以與該可氧化燃料電化學結合而產生電流。
  2. 一種與一無重組器燃料電池相關之裝置的操作方法,其包括:使與一燃料歧管和一空氣歧管組合成一無重組器燃料電池之一電解質膜暴露於高於水沸點之操作溫度;從一燃料供應提供至少氣態、液態或漿狀其中之一形式的一可氧化燃料至該燃料歧管; 從一空氣供應提供空氣至該空氣歧管,該空氣至少包括氧;以及以一超氧離子形式傳導氧通過該電解質膜,使氧與該可氧化燃料電化學結合而產生電流;其中該電解質膜包含一從非導電性顆粒生成之多孔性基板、沿著該多孔性基板之燃料歧管側沈積的一陽極觸媒層、沿著該多孔性基板之空氣歧管側沈積的一陰極觸媒層以及充填於該陽極與該陰極觸媒層間之該多孔性基板的一離子液體。
TW104125474A 2014-08-28 2015-08-05 與無重組器燃料電池相關之裝置的製造方法以及此裝置的操作方法 TWI686988B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/472,195 2014-08-28
US14/472,195 US10516181B2 (en) 2014-08-28 2014-08-28 Apparatus and method associated with reformer-less fuel cell

Publications (2)

Publication Number Publication Date
TW201608755A TW201608755A (zh) 2016-03-01
TWI686988B true TWI686988B (zh) 2020-03-01

Family

ID=53900747

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104125474A TWI686988B (zh) 2014-08-28 2015-08-05 與無重組器燃料電池相關之裝置的製造方法以及此裝置的操作方法

Country Status (5)

Country Link
US (1) US10516181B2 (zh)
EP (1) EP2991147B1 (zh)
JP (1) JP6799368B2 (zh)
KR (1) KR102258242B1 (zh)
TW (1) TWI686988B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446861B2 (en) 2015-12-28 2019-10-15 Palo Alto Research Center Incorporated Flowing electrolyte fuel cell with improved performance and stability
US11207640B2 (en) 2017-03-07 2021-12-28 Palo Alto Research Center Incorporated System and method for adjusting carbon dioxide concentration in indoor atmospheres
US20230021737A1 (en) * 2017-12-22 2023-01-26 Lyten, Inc. Carbon-enhanced fuel cells
US11078578B2 (en) * 2018-01-25 2021-08-03 Palo Alto Research Center Incorporated System and method for electrochemical separation of oxygen
US20190267636A1 (en) * 2018-02-27 2019-08-29 GM Global Technology Operations LLC Enhancing catalyst activity of a pem fuel cell electrode with an ionic liquid additive
USD965637S1 (en) * 2020-04-10 2022-10-04 Dallas Fabian Air manifold for a truck

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070160889A1 (en) * 2006-01-02 2007-07-12 Eli Korin Fuel cells membrane
US20100221633A1 (en) * 2007-08-02 2010-09-02 Toshiyuki Fujita Fuel cell stack and fuel cell system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1114431A (en) 1964-06-22 1968-05-22 Prototech Inc Fuel cell apparatus and method of operation thereof
GB1143659A (zh) 1966-04-04
US7459225B2 (en) 2003-11-24 2008-12-02 Palo Alto Research Center Incorporated Micro-machined fuel cells
JP5145602B2 (ja) * 2005-08-10 2013-02-20 日産自動車株式会社 導電体、及びこれを用いたエネルギーデバイス、燃料電池セル
JP2007066764A (ja) * 2005-08-31 2007-03-15 Nissan Motor Co Ltd 膜電極接合体、および、これを用いた燃料電池
JP5002928B2 (ja) * 2005-09-05 2012-08-15 日産自動車株式会社 燃料電池システム
US7799371B2 (en) 2005-11-17 2010-09-21 Palo Alto Research Center Incorporated Extruding/dispensing multiple materials to form high-aspect ratio extruded structures
US7765949B2 (en) 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US7938891B2 (en) 2008-03-17 2011-05-10 Palo Alto Research Center Incorporated Using ionic liquids
US7938892B2 (en) 2008-06-10 2011-05-10 Palo Alto Research Center Incorporated Producing articles that include ionic liquids
US7938890B2 (en) 2008-07-08 2011-05-10 Palo Alto Research Center Incorporated Separating gas using immobilized buffers
US8389165B2 (en) 2008-11-29 2013-03-05 Palo Alto Research Center Incorporated Printed fuel cell with integrated gas channels
JP2010251219A (ja) * 2009-04-20 2010-11-04 Toyota Motor Corp 燃料電池システム、燃料電池システムの運転方法
US8481207B2 (en) 2010-04-29 2013-07-09 Arizona Board Of Regents Metal-air room-temperature ionic liquid electrochemical cell with liquid fuel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070160889A1 (en) * 2006-01-02 2007-07-12 Eli Korin Fuel cells membrane
US20100221633A1 (en) * 2007-08-02 2010-09-02 Toshiyuki Fujita Fuel cell stack and fuel cell system

Also Published As

Publication number Publication date
TW201608755A (zh) 2016-03-01
EP2991147A1 (en) 2016-03-02
JP2016051694A (ja) 2016-04-11
KR20160026694A (ko) 2016-03-09
EP2991147B1 (en) 2017-10-18
JP6799368B2 (ja) 2020-12-16
US20160064763A1 (en) 2016-03-03
KR102258242B1 (ko) 2021-06-01
US10516181B2 (en) 2019-12-24

Similar Documents

Publication Publication Date Title
Wang et al. A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell
Paul et al. PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges
TWI686988B (zh) 與無重組器燃料電池相關之裝置的製造方法以及此裝置的操作方法
Bhosale et al. Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review
Zhang et al. PEM fuel cell testing and diagnosis
Sundmacher Fuel cell engineering: toward the design of efficient electrochemical power plants
Ito et al. Investigations on electrode configurations for anion exchange membrane electrolysis
US20220081780A1 (en) Compression apparatus
KR20090063213A (ko) 연료 전지 어셈블리
US7745036B2 (en) Direct oxidation fuel cell system and membrane electrode assembly thereof
Pasupathi et al. Recent advances in high-temperature PEM fuel cells
JP2012119316A (ja) 燃料電池用電極材料、これを含む燃料電池及びその製造方法
Shi et al. High temperature electrolysis for hydrogen or syngas production from nuclear or renewable energy
US20130157167A1 (en) Alternate material for electrode topcoat
Petreanu et al. Fuel Cells: Alternative Energy Sources for Stationary, Mobile and Automotive Applications
Marimuthu et al. Ceramics for solid oxide fuel cells
US20230178781A1 (en) Alkaline membrane fuel cell assembly comprising a thin membrane and method of making same
Jafari et al. Low temperature electrochemical production of hydrogen using membranes
KR100705553B1 (ko) 연료전지용 막전극접합체의 수소이온교환막 상에 촉매층을형성시키는 방법
KR20080044495A (ko) 연료 전지용 막-전극 어셈블리의 제조방법 및 이로부터제조된 연료 전지용 막-전극 어셈블리
Zhang et al. Current Development of Key Materials for Low Temperature Fuel Cells
Groos et al. Fuel cell technologies
Hassan Durability Enhancement of Anion Exchange Membrane Based Fuel Cells (AEMFCs) and Water Electrolyzers (AEMELs) by Understanding Degradation Mechanisms
US20130266885A1 (en) Fuel cell stack and fuel cell comprising the same
Reyes-Rodríguez et al. Recent contributions in the development of fuel cell technologies