TWI683902B - 使用自裝配核酸形成奈米結構之方法及其奈米結構 - Google Patents

使用自裝配核酸形成奈米結構之方法及其奈米結構 Download PDF

Info

Publication number
TWI683902B
TWI683902B TW105110115A TW105110115A TWI683902B TW I683902 B TWI683902 B TW I683902B TW 105110115 A TW105110115 A TW 105110115A TW 105110115 A TW105110115 A TW 105110115A TW I683902 B TWI683902 B TW I683902B
Authority
TW
Taiwan
Prior art keywords
nucleic acid
patterned substrate
dna
structures
acid structures
Prior art date
Application number
TW105110115A
Other languages
English (en)
Other versions
TW201643247A (zh
Inventor
史考特E 西利士
高提傑S 珊得胡
Original Assignee
美商美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商美光科技公司 filed Critical 美商美光科技公司
Publication of TW201643247A publication Critical patent/TW201643247A/zh
Application granted granted Critical
Publication of TWI683902B publication Critical patent/TWI683902B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00206Processes for functionalising a surface, e.g. provide the surface with specific mechanical, chemical or biological properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本發明揭示一種形成一奈米結構之方法,其包括在一圖案化基板上形成核酸結構之一定向自裝配。該圖案化基板包括多個區域。該圖案化基板上之該等區域之各者經具體調適用於該定向自裝配中之特定核酸結構之吸附。

Description

使用自裝配核酸形成奈米結構之方法及其奈米結構 [優先技術方案]
本申請案主張名稱為「METHODS OF FORMING NANOSTRUCTURES USING SELF-ASSEMBLED NUCLEIC ACIDS,AND NANOSTRUCTURES THEREOF」之2015年4月2日申請之美國專利申請案序號第14/677,445號之申請日之權利。
在各種實施例中,本發明大體上係關於使用核酸之自裝配形成奈米結構之方法。
積體電路製造之一繼續目標為減少積體電路之尺寸。積體電路尺寸可藉由減少成分特徵或結構之尺寸及間隔而減少。例如,藉由減少一記憶體裝置之半導體特徵(例如儲存電容器、存取電晶體、存取線)之尺寸及間隔,可減少該記憶體裝置之總尺寸同時維持或增加該記憶體裝置之儲存容量。
當半導體裝置特徵之尺寸及間隔變得更小時,用於形成該等半導體裝置特徵的習知微影程序之進行變得日益困難及昂貴。因此,奈米結構(特定言之,具有小於習知光微影技術之一解析極限(當前大約40nm)之一特徵尺寸(例如臨界尺寸)的結構)之製造中遇到顯著的挑 戰。可使用一昂貴節距劃分或雙圖案化技術製造具有此等特徵尺寸的半導體結構。然而,此等程序之使用受到限制,此係因為曝光工具極昂貴或極緩慢且,此外,可不適合形成具有小於20nm之尺寸的結構。
新程序及在此等程序中有用的材料之發展對於使得製造小型裝置更容易、不太昂貴且更通用係越來越重要。解決習知微影技術之一些缺點的一種製造小型裝置之方法之一實例為分相區段共聚物之定向自裝配(DSA)。
儘管DSA區段共聚物對於製造具有小於40nm之尺寸的半導體結構係有用的,但自裝配區段共聚物材料大體上限於週期性圖案且可不產生顯示足夠低之缺陷位準的奈米結構。
已研究用於形成半導體裝置之自裝配核酸。核酸中的互補鹼基配對之特異性提供可用於自裝配核酸微影程序的自裝配核酸。
美國專利8,501,923揭示一種自裝配DNA摺紙結構。該DNA摺紙結構自結構單元形成,其中各結構單元包括一單股多核苷酸支架及複數個輔助性/短纖維股。該等輔助性/短纖維股設計為至少部分地與該單股多核苷酸支架互補使得該等輔助性/短纖維股與該單股多核苷酸支架自退火成一結構單元。DNA摺紙結構可具有100nm至200nm之尺寸及6nm之一解析度。
已在Wei等人之名稱為「Complex shapes self-assembled from single stranded DNA tiles」,Nature 485(2012)第623至627頁中報告自裝配核酸之任意二維(2D)圖案。使用自DNA子單元形成之自裝配DNA分子帆布產生該等任意2D圖案。DNA子單元具有小於10nm之尺寸。DNA子單元可為具有3nm之尺寸的一單股DNA。自裝配DNA分子帆布可具有200nm之尺寸。
Surwade等人揭示一種藉由使用自裝配DNA奈米結構模板形成定 制形無機氧化物奈米結構之方法。Surwade等人之名稱為「Nanoscale Growth and Patterning of Inorganic Oxides Using DNA Nanostructure Templates」,J.Am.Chem.Soc.135(2013)第6778至6781頁。自裝配DNA奈米結構在無需對齊之情況下沈積於一基板上,且接著用作為一種用於無機氧化物材料之一選擇性沈積的模板以提供一無機氧化物奈米結構。該無機氧化物奈米結構可用作為用於蝕刻該基板之一硬遮罩。
Kershner等人揭示一微影圖案化基板上之個別自裝配DNA結構之放置及定向。Kershner等人之名稱為「Placement and orientation of individual DNA shapes on lithographically patterned surfaces」,Nature Nanotechnology 4(2009)第557至561頁。DNA摺紙(其中DNA之一長單股使用更短「短纖維股」摺疊成一形狀)用作為自裝配DNA結構。電子束微影及乾式氧化蝕刻用以在材料(諸如二氧化矽(SiO2)及類鑽碳(DLC))上產生DNA摺紙形結合位置。
100‧‧‧DNA結構
120‧‧‧DNA結構
122‧‧‧開口
130‧‧‧DNA結構
140‧‧‧各向異性DNA結構
150‧‧‧官能化DNA結構
300‧‧‧圖案化基板
310‧‧‧區域
360‧‧‧基板
400‧‧‧定向自裝配(DSA)
420‧‧‧定向自裝配(DSA)
430A‧‧‧非所要定向自裝配(DSA)
430B‧‧‧所要定向自裝配(DSA)
440A‧‧‧非所要定向自裝配(DSA)
440B‧‧‧非所要定向自裝配(DSA)
440C‧‧‧所要定向自裝配(DSA)
600‧‧‧半導體結構
610‧‧‧犧牲圖案材料
620‧‧‧間隔物
670‧‧‧官能化間隔物
700‧‧‧圖案化基板
800‧‧‧半導體結構
1000‧‧‧DNA結構
A‧‧‧DNA結構/官能基
B‧‧‧DNA結構/官能基
C‧‧‧DNA結構
D‧‧‧DNA結構
E‧‧‧DNA結構
F‧‧‧DNA結構
G‧‧‧DNA結構
H‧‧‧DNA結構
I‧‧‧DNA結構
L‧‧‧DNA結構
M‧‧‧DNA結構
N‧‧‧DNA結構
A'‧‧‧圖案化區域
B'‧‧‧圖案化區域
C'‧‧‧圖案化區域
D'‧‧‧圖案化區域
E'‧‧‧圖案化區域
F'‧‧‧圖案化區域
G'‧‧‧圖案化區域
H'‧‧‧圖案化區域
I'‧‧‧圖案化區域
L'‧‧‧圖案化區域
M'‧‧‧圖案化區域
N'‧‧‧圖案化區域
圖1展示根據本發明之一實施例之在一圖案化基板上形成多個DNA結構的一定向自裝配之階段之俯視圖;圖2展示根據本發明之一實施例之多個各向同性DNA結構之一定向自裝配;圖3展示根據本發明之一實施例之多個各向異性DNA結構之一定向自裝配;圖4展示根據本發明之另一實施例之多個各向異性DNA結構之一定向自裝配;圖5a係官能化DNA結構之一俯視圖;圖5b係官能化DNA結構之一橫截面圖;圖6展示一半導體結構,其包括一基板、一犧牲圖案材料及間隔 物;圖7展示一圖案化基板,其包括一基板及官能化間隔物;及圖8展示一半導體結構,其包括一基板、官能化間隔物及一官能化DNA結構。
以下描述提供特定細節(諸如材料類型、材料厚度及處理條件)以提供本發明之實施例之一全面描述。然而,熟習一般技術者應瞭解可在不採用此等特定細節之情況下實踐本發明之實施例。實際上,可結合該行業中所採用的習知製造技術實踐本發明之實施例。
此外,本文中所提供之描述不形成用於形成奈米結構的一完整程序流程。下文僅詳細描述理解本發明之實施例所必需之該等程序動作及結構。形成完整奈米結構的額外動作可藉由習知製造技術執行。另外,申請案所附之圖式係僅為繪示性目的,且因此非必要按比例繪製。圖之間共有之元件可保持相同數值編號。此外,儘管本文所描述及繪示之材料可形成為層,但該等材料不限於此且可在其他三維組態中形成。
如本文所使用,除非內文另有明確指示,否則單數形式「一」及「該」意欲亦包含複數形式。
如本文所使用,術語「基板」意謂且包含一基底材料或構造,額外材料形成於該基底材料或構造上。該基板可為(例如)一半導體基板、一支撐結構上的一基底半導體材料、一金屬電極或具有形成於其上之一或多個材料、結構或區域的一半導體基板。該基板可為一習知矽基板或包括一層半導體材料的其他塊狀基板。如本文所使用,術語「塊狀基板」不僅意謂且包含矽晶圓,亦意謂且包含矽絕緣體(SOI)基板(諸如矽藍寶石(SOS)基板及矽玻璃(SOG)基板)、一基底半導體基座上的矽之外延層或其他半導體或光電子材料(尤其諸如矽鍺 (Si1-xGex,其中x為(例如)0.2與0.8之間的一莫耳分數)、鍺(Ge)、砷化鎵(GaAs)、氮化鎵(GaN)或磷化銦(InP))。此外,當在以下描述中參考一「基板」時,可進行先前程序動作以在該基底半導體結構或基座中形成材料、區域或接面。在一實施例中,該基板為含有矽之材料(諸如矽基板)。可摻雜或不摻雜該基板。
如本文所使用,術語「核酸」意謂且包含任何長度之一聚合形式之核苷酸(例如多核苷酸及寡核苷酸),其包括嘌呤鹼及嘧啶鹼,或化學修改或生物化學修改之嘌呤鹼及嘧啶鹼。核酸可包括單股順序、雙股順序或雙股順序或單股順序兩者之部分。作為非限制性實例,核酸可包含核糖核酸(RNA)、去氧核糖核酸(DNA)、肽核酸(PNA)或其組合。多核苷酸之主鏈可包括如通常可在RNA或DNA中發現之糖及磷酸鹽基或經修改之糖及/或磷酸鹽基。此外,多核苷酸可包括經修改之核苷酸(諸如甲基化核苷酸及核苷酸類似物)。
所揭示之實施例大體上係關於奈米結構,其包括一圖案化基板上的核酸結構之定向自裝配,且所揭示之實施例大體上係關於形成該等奈米結構之方法。在一些實施例中,核酸結構可為DNA結構。此DNA結構之非限制性實例可包含如前述之Wei等人中所描述之該等實例或美國專利8,501,923中所揭示之DNA摺紙結構。圖案化基板包括多個區域。在使得核酸結構與圖案化基板接觸之後,核酸結構在藉由核酸結構與圖案化基板之間的相互作用引導時吸附至圖案化基板之特定區域上以提供圖案化基板上的核酸結構之定向自裝配。
相應地,一奈米結構包括一圖案化基板上的核酸結構之定向自裝配。該圖案化基板包括區域,其中該等區域之各者經組態以選擇性地吸附該定向自裝配中的該等核酸結構之一者。
如本文所使用,術語「多個DNA結構之定向自裝配」或「多個DNA結構之DSA」指稱圖案化基板上的多個DNA結構之一自裝配,其 藉由DNA結構與圖案化基板之間的相互作用引導以致能特定DNA結構選擇性吸附至圖案化基板之特定區域。
如圖1中所展示,DNA結構100可具有不同組態(例如DNA結構A、B、C、D、E、F、G、H、I、L、M及N)。在一些實施例中,DNA結構100可為前述之Wei等人中所描述之該等DNA結構,其等由具有小於10nm之尺寸的DNA子單元構成。在一些實施例中,DNA結構100可包括美國專利8,501,923中所揭示之具有100nm至200nm之尺寸的DNA摺紙。
如圖1中所展示,一圖案化基板300包括不同組態之圖案化區域310(例如圖案化區域A'、B'、C'、D'、E'、F'、G'、H'、I'、L'、M'及N')。圖案化基板300藉由選擇性圖案化一基板以產生多個區域310來製備,其中區域310之各者係針對一特定DNA結構。在一些實施例中且如下文所更詳細描述,該基板經圖案化以產生顯示有關DNA結構之化學特異性的區域。例如,圖案化基板之區域包含用於吸附DNA結構之化學特異性(諸如經由凡得瓦(Van der Waals)、離子相互作用及/或靜電相互作用)。在一些實施例中,該基板經圖案化以產生具有有關DNA結構之拓撲特異性的區域。例如,圖案化基板之區域具有對應於DNA結構之大小及/或形態的大小及/或形態。在一些實施例中,該基板經圖案化以產生顯示有關DNA結構之化學特異性與拓撲特異性兩者的區域。如圖1中所展示,圖案化基板300之區域A'在大小及/或形態上對應於DNA結構A之大小及/或形態,及區域B'在大小及/或形態上對應於DNA結構B之大小及/或形態。任何習知技術可用以圖案化該基板。
相應地,一種形成一奈米結構之方法包括在一圖案化基板上形成核酸結構之一定向自裝配。該圖案化基板包括多個區域。該圖案化基板上的該等區域之各者經具體調適用於核酸結構之該定向自裝配中 之特定核酸結構之吸附。
在圖2中,一定向自裝配420自九個DNA結構120形成於一圖案化基板(未展示)上。如圖2中所展示,DNA結構120之各者具有相同組態(諸如相同長度及寬度),其中一開口122位於DNA結構120之中間。開口122之尺寸依一次微影比例。如同針對圖1所描述之實施例,該圖案化基板可包含在大小及/或形態上對應於DNA結構120之大小及/或形態的區域。DNA結構120係各向同性(即,該DNA結構具有相同的物理性質,無論量測之方向如何)。由於DNA結構120係各向同性,因此DNA結構之DSA 420不易受定向或順序放置錯誤影響。因此,九個DNA結構120之各者可吸附至該圖案化基板之任何區域且DSA 420之形成既不需要定向控制亦不需要順序控制。此外,該圖案化基板可包含在DNA結構120之陣列之大小及/或形狀上對應的區域。
以非限制性實例的方式,在一些實施例中,九個各向同性DNA結構120可在該圖案化基板上形成一3x3陣列DSA。由於DNA結構120之各者包含開口122,因此DNA結構120之DSA 420可用以在一半導體裝置中產生一接觸孔圖案,其中該等孔具有次微影尺寸。在一些其他實施例中,DNA結構120之各者包含依一次微影節距的複數個開口。DNA結構120之DSA 420使較大陣列之次微影特徵或支柱能夠依一次微影節距。
在圖3中,一定向自裝配自裝配成一3x3陣列的九個各向異性DNA結構130形成於一圖案化基板(未展示)上。DNA結構130上的箭頭符號指示含有次微影圖案的結構之所需定向。如同針對圖1所描述之實施例,該圖案化基板可包含在大小及/或形態上對應於DNA結構130之大小及/或形態的的區域。DNA結構130係各向異性(即,該DNA結構具有基於量測之方向而不同的物理性質)。由於DNA結構130係各向異性,因此除非在各向異性DNA結構130吸附至該圖案化基板期間提 供定向控制,否則DNA結構130之DSA不總是提供一所要DSA。不提供定向控制,各向異性DNA結構130可裝配成非所要DSA 430A,其中指向不同方向之箭頭指示定向錯誤。使用定向控制,各向異性DNA結構130可裝配成所要DSA 430B,其中指向相同方向之箭頭指示不存在定向錯誤。以非限制性實例的方式,九個各向異性DNA結構130可在圖案化基板上形成一3x3陣列DSA。DSA 430B可用以在半導體裝置中產生一次微影邏輯閘或互連圖案(其中順序不重要)。
在圖4中,一定向自裝配自裝配成一3x3陣列的九個各向異性DNA結構140形成於一圖案化基板(未展示)上。DNA結構140上的字母符號指示待轉移至該基板的次微影特徵需要特定定向及順序控制。該等次微影特徵可包含規則、週期性圖案或不規則(即,稀疏)圖案,其等對應於密集陣列特徵或周邊路由、邏輯、互連件或接觸件。如同針對圖1所描述之實施例,該圖案化基板可包含在大小及/或形態上對應於DNA結構140之大小及/或形態的的區域。由於DNA結構140係各向異性,因此除非提供定向控制及順序控制,否則DNA結構140之DSA不總是提供一所要DSA。若提供定向控制但不提供順序控制,則各向異性DNA結構140可裝配成非所要DSA 440A。如所展示,儘管DSA 440A中的所有字母位於所要直立定向中,但DSA 440A不提供任何可辨識訊息。若提供順序控制但不提供定向控制,則各向異性DNA結構140可裝配成非所要DSA 440B。如所展示,DSA 440B中的所有字母位於所要順序中。然而,DSA 440B不提供任何可辨識訊息,此係因為一些字母不位於所要直立定向中。當提供定向控制與順序控制兩者時,各向異性DNA結構140可裝配成所要DSA 440C使得可讀取訊息(例如「DNA DSA WIN」)。因此,在如圖4中所展示之實施例中,在DNA結構140之裝配期間提供定向控制與順序控制兩者以提供具有最小定向及順序錯誤的多個DNA結構之定向自裝配440C。
相應地,一奈米結構包括一圖案化基板上的DNA結構之定向自裝配。該圖案化基板包括區域,其中該等區域之各者經組態以選擇性吸附DNA結構之該定向自裝配中的一特定DNA結構。
在一些實施例中,DNA結構之該定向自裝配使用一定向控制形成於該圖案化基板上。在一些實施例中,DNA結構之該定向自裝配使用一順序控制形成於該圖案化基板上。在一些實施例中,DNA結構之該定向自裝配使用定向控制與順序控制兩者形成於該圖案化基板上。
該圖案化基板上的該等區域之各者對應於多個DNA結構之DSA中的一DNA結構。藉由該等多個DNA結構之所得DSA之一能量最小化熱力驅動使該特定DNA結構選擇性吸附至該圖案化基板上的該特定區域。如下文中所更詳細描述,一特定DNA結構可藉由達成其最低能量組態而吸附至該圖案化基板上的其對應區域。一特定DNA結構與該圖案化基板之其對應區域之間的吸附可係能量上有利的,而一特定DNA結構與該圖案化基板之其他區域之間的吸附可係能量上不利的。
在一些實施例中且如下文所更詳細描述,該圖案化基板之該等區域包含用於吸附至該等DNA結構的化學特異性(諸如經由凡得瓦(Van der Waals)、離子相互作用及/或靜電相互作用)。在一些實施例中,該圖案化基板之該等區域包含對DNA結構之拓撲特異性。在一些實施例中,該圖案化基板之該等區域包含對DNA結構之拓撲特異性與化學特異性兩者。
圖5a、圖5b及圖6至圖8展示根據本發明之一些實施例之奈米結構之製備中的各種階段。
圖5a及圖5b分別展示一官能化DNA結構150之一俯視圖及一橫截面圖。如所展示,官能化DNA結構150包括一DNA結構1000及DNA結構1000上的多個官能基「A」。官能基「A」可包含但不限於一磷酸鹽鍵聯、一互補RNA股、一短DNA股或其他反應基。DNA結構1000可 包含如上文所描述之DNA結構100、DNA結構120、DNA結構130或DNA結構140之任一者。
圖6展示一半導體結構600,其包括一基板360、基板360上的一犧牲圖案材料610及間隔物620。犧牲圖案材料610及間隔物620可藉由任何習知方法形成於基板360上。
在自半導體結構600移除犧牲圖案材料610之後,基板360上的間隔物620可衍生以包含官能基「B」。官能基「B」具有對圖5a或圖5b中的官能化DNA結構150之官能基「A」之化學特異性。
如圖7中所展示,圖案化基板700包括基板360及自基板360突出之官能化間隔物670。官能化間隔物670之各者包括一間隔物620及間隔物620上的多個官能基「B」。
在使官能化DNA結構150與圖案化基板700接觸之後,官能化DNA結構150之官能基「A」與圖案化基板700之官能化間隔物670上的官能基「B」之間的化學特異性引導使官能化DNA結構150選擇性吸附至圖案化基板700上的特定區域上以提供一半導體結構800,如圖8中所展示。A官能基與B官能基之間的有利相互作用可使官能化DNA結構150能夠選擇性吸附至圖案化基板700上的特定區域上。
相應地,一種形成一奈米結構之方法包括圖案化一基板以產生一圖案化基板且使該圖案化基板與DNA結構接觸。該圖案化基板包括區域。該方法進一步包括使DNA結構選擇性地吸附至該圖案化基板上的一特定區域以在該圖案化基板上形成DNA結構之一自裝配。
本發明之奈米結構可用於各種半導體結構及裝置之製造。以非限制性實例的方式,奈米結構(諸如圖1至圖4中所描述之DSA 400、DSA 420、DSA 430B或DSA 440C)可用以將DNA結構100、DNA結構120、DNA結構130或DNA結構140之次微影特徵轉移至基板(諸如用於製造次微影特徵裝置、接觸件、接觸孔、互連件等等)。在一些實施 例中,在半導體結構及裝置之製造的進一步處理動作期間,可移除DNA結構之DSA。在一些實施例中,在該製造的進一步處理動作期間,可保持DNA結構之DSA。
所揭示之形成奈米結構的方法使用多個DNA結構之定向自裝配,且可提供具有小於40nm之尺寸及減少缺陷位準的奈米結構。此外,取決於DNA結構之設計,該等奈米結構可具有任何任意結構。
亦應瞭解DNA結構之定向自裝配在本文中使用以例示本發明。其他核酸結構之定向自裝配(例如RNA結構之定向自裝配、PNA結構之定向自裝配等等)可在本發明中使用。
儘管本發明易受各種修改及替代形式影響,但已以實例的方式在圖式中展示且已在本文中詳細描述特定實施例。然而,本發明不意欲限於所揭示之特定形式。相反,本發明涵蓋落入如藉由以下隨附申請專利範圍及其法律等效物所界定之本發明之範疇內的所有修改、等效物及替代方案。
100‧‧‧DNA結構
300‧‧‧圖案化基板
310‧‧‧區域
400‧‧‧DSA
A‧‧‧DNA結構
B‧‧‧DNA結構
C‧‧‧DNA結構
D‧‧‧DNA結構
E‧‧‧DNA結構
F‧‧‧DNA結構
G‧‧‧DNA結構
H‧‧‧DNA結構
I‧‧‧DNA結構
L‧‧‧DNA結構
M‧‧‧DNA結構
N‧‧‧DNA結構
A'‧‧‧圖案化區域
B'‧‧‧圖案化區域
C'‧‧‧圖案化區域
D'‧‧‧圖案化區域
E'‧‧‧圖案化區域
F'‧‧‧圖案化區域
G'‧‧‧圖案化區域
H'‧‧‧圖案化區域
I'‧‧‧圖案化區域
L'‧‧‧圖案化區域
M'‧‧‧圖案化區域
N'‧‧‧圖案化區域

Claims (17)

  1. 一種形成一奈米結構之方法,該方法包括:形成包括多個區域之一圖案化基板,該圖案化基板之該等區域之每一者經調適(tailored)以吸附一特定核酸(nucleic acid)結構;在形成該圖案化基板之後,使該圖案化基板與包括該等特定核酸結構之核酸結構接觸;及在使該圖案化基板與該等核酸結構接觸之後,將該等核酸結構之一特定核酸結構吸附至該圖案化基板之每一區域以在該圖案化基板上形成該等核酸結構之一定向自裝配(directed self-assembly)。
  2. 如請求項1之方法,其中使該圖案化基板與包括該等特定核酸結構之核酸結構接觸包括:使該圖案化基板與特定DNA結構接觸。
  3. 如請求項2之方法,其中使該圖案化基板與特定DNA結構接觸包括:使該圖案化基板與包括具有小於10nm之尺寸之DNA子單元(subunits)之特定DNA結構接觸。
  4. 如請求項1之方法,其中形成包括多個區域之一圖案化基板包括:形成該等區域,各區域顯示對該等核酸結構之該特定核酸結構之拓撲特異性(topological specificity)。
  5. 如請求項1之方法,其中形成包括多個區域之一圖案化基板包括:形成該等區域,各區域顯示對該等核酸結構之該特定核酸結構之化學特異性。
  6. 如請求項1之方法,其中形成包括多個區域之一圖案化基板包括:在該圖案化基板上形成官能化間隔物(functionalized spacers),其中該等官能化間隔物包括官能基(functional groups),其等經組態以與該等核酸結構之官能基化學地相互作用。
  7. 如請求項6之方法,其進一步包括:在該圖案化基板上形成該等核酸結構之一定向自裝配之前,官能化該等核酸結構以在該等核酸結構上提供該等官能基。
  8. 如請求項6之方法,其中在該圖案化基板上形成官能化間隔物包括:在該圖案化基板上形成一犧牲圖案(sacrificial pattern)材料及間隔物;自該圖案化基板移除該犧牲圖案材料;及官能化自該圖案化基板突出的該等間隔物。
  9. 如請求項1之方法,其中將該等核酸結構之一特定核酸結構吸附至該圖案化基板之每一區域包括:使用定向(orientational)控制及順序(sequential)控制之至少一者以將該特定核酸結構吸附至每一區域。
  10. 如請求項1之方法,其進一步包括:使用該等核酸結構之該定向自裝配在該圖案化基板上形成次微影特徵。
  11. 一種奈米結構,其包括在包括區域之一圖案化基板上的核酸結構之一定向自裝配,核酸結構之該定向自裝配中之該等核酸結構之每一者經選擇性地吸附至該圖案化基板之該等區域之一者且該等區域之一者在大小或形態(morphology)之至少一者上對應於該等核酸結構之每一者之大小或形態的之至少一者。
  12. 如請求項11之奈米結構,其中該等核酸結構包括DNA結構,其 等包括具有小於10nm之尺寸的多個DNA子單元。
  13. 如請求項12之奈米結構,其中該等DNA結構包括DNA摺紙(origami)結構,其等具有自100nm至200nm之尺寸。
  14. 如請求項11之奈米結構,其中該等核酸結構包括在該等核酸結構內之各向同性(isotropic)圖案或子結構。
  15. 如請求項11之奈米結構,其中該等核酸結構包括在該等核酸結構內之各向異性(anisotropic)圖案或子結構。
  16. 如請求項11之奈米結構,其中該圖案化基板包括在一基板上之多個間隔物,該等間隔物之各者包括官能基,其等經組態以與該定向自裝配中的該等核酸結構之一者化學地相互作用。
  17. 如請求項16之奈米結構,其中該等核酸結構包括官能基,其等經組態以與該圖案化基板之該等間隔物上的該等官能基化學地相互作用。
TW105110115A 2015-04-02 2016-03-30 使用自裝配核酸形成奈米結構之方法及其奈米結構 TWI683902B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/677,445 US9881786B2 (en) 2015-04-02 2015-04-02 Methods of forming nanostructures using self-assembled nucleic acids, and nanostructures thereof
US14/677,445 2015-04-02

Publications (2)

Publication Number Publication Date
TW201643247A TW201643247A (zh) 2016-12-16
TWI683902B true TWI683902B (zh) 2020-02-01

Family

ID=57006247

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107106636A TWI683784B (zh) 2015-04-02 2016-03-30 使用自裝配核酸形成奈米結構之方法及其奈米結構
TW105110115A TWI683902B (zh) 2015-04-02 2016-03-30 使用自裝配核酸形成奈米結構之方法及其奈米結構

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW107106636A TWI683784B (zh) 2015-04-02 2016-03-30 使用自裝配核酸形成奈米結構之方法及其奈米結構

Country Status (7)

Country Link
US (3) US9881786B2 (zh)
EP (1) EP3277806A4 (zh)
JP (1) JP2018510635A (zh)
KR (2) KR102108697B1 (zh)
CN (2) CN107430984B (zh)
TW (2) TWI683784B (zh)
WO (1) WO2016160311A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9881786B2 (en) * 2015-04-02 2018-01-30 Micron Technology, Inc. Methods of forming nanostructures using self-assembled nucleic acids, and nanostructures thereof
WO2018102759A1 (en) 2016-12-01 2018-06-07 Ignite Biosciences, Inc. Methods of assaying proteins
EP3669018A4 (en) 2017-08-18 2021-05-26 Nautilus Biotechnology, Inc. Binding reagent selection methods
CN112236528A (zh) 2018-04-04 2021-01-15 诺迪勒思生物科技公司 产生纳米阵列和微阵列的方法
EP3884048A4 (en) 2018-11-20 2022-08-17 Nautilus Biotechnology, Inc. DESIGN AND SELECTION OF AFFINITY REAGENTS
US20220168429A1 (en) * 2019-04-11 2022-06-02 The University Of Hong Kong Nucleic acid mazzocchio and methods of making and use thereof
KR20230118570A (ko) 2020-11-11 2023-08-11 노틸러스 서브시디어리, 인크. 강화된 결합 및 검출 특성을 갖는 친화성 시약
WO2022192591A1 (en) 2021-03-11 2022-09-15 Nautilus Biotechnology, Inc. Systems and methods for biomolecule retention

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050201149A1 (en) * 2004-03-10 2005-09-15 Nanosys, Inc. Nano-enabled memory devices and anisotropic charge carrying arrays
US20070117109A1 (en) * 2005-06-14 2007-05-24 California Institute Of Technology Nanostructures, methods of making and using the same
US20090065764A1 (en) * 2004-06-08 2009-03-12 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652808B1 (en) 1991-11-07 2003-11-25 Nanotronics, Inc. Methods for the electronic assembly and fabrication of devices
IL121312A (en) 1997-07-14 2001-09-13 Technion Res & Dev Foundation Microelectronic components, their manufacture and electronic networks containing them
CN1175114C (zh) * 2002-03-04 2004-11-10 中国科学院长春应用化学研究所 可控脱氧核糖核酸网络的制作方法
US7223544B2 (en) * 2003-06-27 2007-05-29 Cornell Research Foundation, Inc. Nucleic acid-engineered materials
US7163794B2 (en) * 2003-10-15 2007-01-16 New York University Nucleic acid based nano-robotic system
US7598363B2 (en) * 2004-06-10 2009-10-06 New York University Polygonal nanostructures of polynucleic acid multi-crossover molecules and assembly of lattices based on double crossover cohesion
US20080050659A1 (en) * 2004-09-30 2008-02-28 Japan Science And Technology Agency Method of Patterning Self-Organizing Material, Patterned Substrate of Self-Organizing Material and Method of Producing the Same, and Photomask Using Patterned Substrate of Self-Organizing Material
US20090018028A1 (en) * 2005-05-12 2009-01-15 Stuart Lindsay Self-Assembled Nucleic Acid Nanoarrays and Uses Therefor
US8361297B2 (en) * 2008-01-11 2013-01-29 The Penn State Research Foundation Bottom-up assembly of structures on a substrate
US20090264317A1 (en) * 2008-04-18 2009-10-22 University Of Massachusetts Functionalized nanostructure, methods of manufacture thereof and articles comprising the same
KR101062416B1 (ko) 2008-10-09 2011-09-06 성균관대학교산학협력단 나노 소자의 형성방법
WO2013148186A1 (en) * 2012-03-26 2013-10-03 President And Fellows Of Harvard College Lipid-coated nucleic acid nanostructures of defined shape
EP3009520B1 (en) * 2014-10-14 2018-12-12 Karlsruher Institut für Technologie Site-specific immobilization of DNA origami structures on solid substrates
CN104391119B (zh) * 2014-11-19 2016-08-17 上海纳米技术及应用国家工程研究中心有限公司 基于DNA分子构型变化的pH敏感元件的制备方法
US9330932B1 (en) * 2015-03-31 2016-05-03 Micron Technology, Inc. Methods of fabricating features associated with semiconductor substrates
US9881786B2 (en) * 2015-04-02 2018-01-30 Micron Technology, Inc. Methods of forming nanostructures using self-assembled nucleic acids, and nanostructures thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050201149A1 (en) * 2004-03-10 2005-09-15 Nanosys, Inc. Nano-enabled memory devices and anisotropic charge carrying arrays
US20090065764A1 (en) * 2004-06-08 2009-03-12 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers
US20070117109A1 (en) * 2005-06-14 2007-05-24 California Institute Of Technology Nanostructures, methods of making and using the same

Also Published As

Publication number Publication date
CN112967926A (zh) 2021-06-15
KR102108697B1 (ko) 2020-05-08
KR101993546B1 (ko) 2019-06-26
WO2016160311A1 (en) 2016-10-06
CN107430984B (zh) 2021-04-16
US10741382B2 (en) 2020-08-11
USRE50029E1 (en) 2024-07-02
US20180061635A1 (en) 2018-03-01
CN107430984A (zh) 2017-12-01
US9881786B2 (en) 2018-01-30
JP2018510635A (ja) 2018-04-19
TW201817672A (zh) 2018-05-16
US20160293406A1 (en) 2016-10-06
KR20170125402A (ko) 2017-11-14
EP3277806A4 (en) 2018-12-05
TWI683784B (zh) 2020-02-01
EP3277806A1 (en) 2018-02-07
TW201643247A (zh) 2016-12-16
KR20190073608A (ko) 2019-06-26

Similar Documents

Publication Publication Date Title
TWI683902B (zh) 使用自裝配核酸形成奈米結構之方法及其奈米結構
TWI621584B (zh) 可縮放核酸奈米製造技術
US8747682B2 (en) Pattern formation method and method for manufacturing semiconductor device
EP1630127B1 (en) Method for realising a hosting structure of nanometric elements
WO2003069019A1 (en) Directed assembly of highly-organized carbon nanotube architectures
US11923197B2 (en) Methods of forming nanostructures utilizing self-assembled nucleic acids
US9330932B1 (en) Methods of fabricating features associated with semiconductor substrates
US20140008604A1 (en) Super-Long Semiconductor Nano-Wire Structure and Method of Making
CN109727858A (zh) 定向自组装模板转移方法
KR101355930B1 (ko) 측벽 스페이서 기술과 촉매 금속 식각 방법을 이용한 수직 나노튜브 구조 제조 방법 및 이에 의하여 제조된 수직 나노튜브 구조
CN105719961A (zh) 堆叠纳米线制造方法
KR100948595B1 (ko) 표면 개질형 나노선 센서 및 그 제작 방법
CN109698125A (zh) 定向自组装模板转移方法
US20140001149A1 (en) Crossed slit structure for nanopores
Shin et al. Nanomanufacturing strategy for aligned assembly of nanowire arrays