TWI683524B - 用於功率轉換之方法及使用其之電源供應器 - Google Patents

用於功率轉換之方法及使用其之電源供應器 Download PDF

Info

Publication number
TWI683524B
TWI683524B TW104132515A TW104132515A TWI683524B TW I683524 B TWI683524 B TW I683524B TW 104132515 A TW104132515 A TW 104132515A TW 104132515 A TW104132515 A TW 104132515A TW I683524 B TWI683524 B TW I683524B
Authority
TW
Taiwan
Prior art keywords
current generator
transistor
transformer
circuit
power supply
Prior art date
Application number
TW104132515A
Other languages
English (en)
Other versions
TW201626709A (zh
Inventor
歐文 瓊斯
安卓 麥森
勞倫斯R 法契
Original Assignee
美商Thx有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Thx有限公司 filed Critical 美商Thx有限公司
Publication of TW201626709A publication Critical patent/TW201626709A/zh
Application granted granted Critical
Publication of TWI683524B publication Critical patent/TWI683524B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種電源供應器,其包括:第一電流產生器電路,其被耦合到第一變壓器且產生第一波形;及,第二電流產生器電路,其被耦合到第二變壓器且產生第二波形,該第二波形是與該第一波形為異相。該第一與第二波形被整流且組合成為一個DC輸出信號。該種電源供應器包括:第一耦合電路,其將該第一電流產生器電路耦合到該第一變壓器;及,第二耦合電路,其將該第二電流產生器電路耦合到該第二變壓器。

Description

用於功率轉換之方法及使用其之電源供應器 【相關申請案之交互參照】
此申請案主張在西元2014年10月2日提出的美國臨時申請案序號62/059,067號之裨益。
本揭示標的是概括關於電源供應器。
美國專利第8,576,592號揭示種種的電源供應器電路,其產生具有極小的漣波之DC功率。圖1顯示在該件’592專利所揭示之低漣波的電源供應器之一個實施例,其亦稱作為一種尤拉(Euler)功率轉換器。該電源供應器包括一對變壓器10與12,其被連接到橋式整流器14與16。變壓器10與12各自包括一個中心分接頭Vs。橋式整流器14與16的輸出被組合在一個負載18(C1與RL1)。變壓器10被耦合到一對FET電晶體20與22,其為由寬頻的運算放大器24與26所驅動。同理,變壓器12被耦合到一對FET電晶體28與30,其為由寬頻的運算放大器32與34所驅動。對於該等運算放大器的輸入波形以及在變壓器10與12之二次繞組的合成波形被顯示在圖1之中。該等輸入波形的形式是俾使:由變壓器10與12所提供的二次電流波形為異相90度。該等二次波形被組合在負載18,俾使合成波形提供具有極小的漣波之DC功率供應。低漣波免除對於任何儲存電容器之需求, 因而考量到較少的零件以及較小的電源供應器。
該等輸入波形致使其用於各個變壓器10與12的電晶體依序導通(ON)及截止(OFF)。舉例來說,當電晶體20為ON,電晶體22為OFF。同理,當電晶體22為ON,電晶體20為OFF。當該等電晶體的一者為初始截止,跨於該變壓器之一次繞組的電壓將和幹線電壓Vs為組合,俾使在該電晶體之汲極端子的電壓為加倍。此高電壓需要高電壓的電晶體之使用。將為合意的是,降低該等電晶體的電壓需求。
一種電源供應器包括:第一電流產生器電路,其被耦合到第一變壓器且產生第一波形;及,第二電流產生器電路,其被耦合到第二變壓器且產生第二波形,該第二波形是與該第一波形為異相。該第一與第二波形被整流且組合成為一個DC輸出信號。該種電源供應器包括:第一耦合電路,其將該第一電流產生器電路耦合到該第一變壓器;及,第二耦合電路,其將該第二電流產生器電路耦合到該第二變壓器。
10、12‧‧‧變壓器
14、16‧‧‧橋式整流器
18‧‧‧負載
20、22、28、30‧‧‧FET電晶體
24、26‧‧‧寬頻運算放大器
32、34‧‧‧寬頻運算放大器
100、100'、100"、100'''、100""‧‧‧電源供應器
102、104、102'、104'‧‧‧變壓器
106、108、106'、108'、106"、108"‧‧‧整流器
110‧‧‧負載
112、114、112"、114"‧‧‧電流產生器電路
116、118、116'、118'‧‧‧耦合電路
120、122、124、126‧‧‧FET電晶體
128、130、132、134‧‧‧運算放大器
136、138、140、142‧‧‧FET電晶體/開關
144、146、148、150‧‧‧運算放大器
160‧‧‧開關
170、172、174、176‧‧‧FET電晶體
178、180、182、184‧‧‧運算放大器
200‧‧‧電源供應器
202、204、206、208‧‧‧放大器級
210、212、214、216‧‧‧FET電晶體
218、220、222、224‧‧‧運算放大器
226、228、230、232‧‧‧波形產生器
234、236、238、240‧‧‧FET電晶體
242、244、246、248‧‧‧運算放大器
250、252、254、256‧‧‧波形產生器
258、260、266、268‧‧‧電容器
262、264;270、272‧‧‧二極體對
274‧‧‧負載
302‧‧‧電源供應器
304、306、308、310‧‧‧FET電晶體
312、314‧‧‧運算放大器
316、318‧‧‧波形產生器
320、322、324、326‧‧‧電容器
328、330;332、334‧‧‧二極體對
336、338、340、342、344、346、348、350‧‧‧開關
圖1是先前技藝之一種電源供應器的示意圖;圖2是本發明之一種電源供應器的一個實施例的示意圖;圖3是該種電源供應器的一個替代實施例的示意圖;圖4A-4G是顯示在該種電源供應器的種種點的波形的曲線圖;圖5是該種電源供應器的另一個替代實施例的示意圖;圖6是該種電源供應器的另一個替代實施例的示意圖; 圖7是該種電源供應器的另一個替代實施例的示意圖;圖8是一種具有電壓升高能力之電源供應器的示意圖;圖9是在圖8所示之電源供應器的一個替代實施例;圖10是顯示一種具有耦合到變壓器的調諧電容器之電源供應器的種種波形的曲線圖;且圖11是顯示一種具有耦合到變壓器的阻抗網路之電源供應器的種種波形的曲線圖。
本文所揭示者是一種電源供應器,其包括:第一電流產生器電路,其被耦合到第一變壓器且產生第一波形;及,第二電流產生器電路,其被耦合到第二變壓器且產生第二波形,該第二波形是與該第一波形為異相。該第一與第二波形被整流且組合成為一個DC輸出信號。該種電源供應器包括:第一耦合電路,其將該第一電流產生器電路耦合到該第一變壓器;及,第二耦合電路,其將該第二電流產生器電路耦合到該第二變壓器。切換電路可降低在該等電流產生器電路之內的電晶體之操作電壓。具有單獨的切換及電流產生電路考慮到二種不同操作之最佳化,且還允許調節控制電路與電流控制電路為相關聯而無須跨越變壓器隔離邊界。
參考圖式且更特別為藉由參考標號,圖2顯示本發明之一種電源供應器100的一個實施例。電源供應器100包括變壓器102與104,其分別為耦合到整流器106與108。整流器106與108的輸出被組合在一個負載110(C2與RL2)。各個變壓器102與104被分別耦合到電流產生器電路112與114,且分別耦合到耦合電路116與118。電流產生器電路112與114包 括FET電晶體120、122、124、與126以及運算放大器128、130、132、與134。耦合電路116與118包括FET電晶體136、138、140、與142以及運算放大器144、146、148、與150。電晶體136、138、140、與142被連接到一個幹線電壓VS
圖2顯示用於電流產生器電路112與114以及耦合電路116與118的輸入波形。該等輸入波形是由波形產生器(未顯示)所產生。該等輸入波形具有相對的相位,俾使在一個狀態中,電晶體122與136為導通(ON)且電晶體120與138為截止(OFF)。在此狀態中,電流為流通過ON的電晶體122與136以及變壓器102的一次繞組。該等輸入波形接著使電晶體120與138為ON且電晶體122與136為OFF。在變壓器之波形的形狀是由線性電流控制電晶體120與122所定義。因為電晶體136與138被連接到幹線電壓VS,當切換時,跨於OFF電晶體的電壓為VS,其為在圖1所顯示之先前技藝的電源供應器中之電晶體所看到的電壓之一半。此電路因此降低該等電晶體之電壓需求。
電流產生器電路114與耦合電路118是以類似方式來操作,其中,電晶體126與140為ON而電晶體124與142為OFF且接著被切換,俾使電晶體124與142為ON而電晶體126與140為OFF。該等輸入波形具有相對的相位,俾使整流器106與108的輸出波形為異相180度。該等輸出被組合在負載110,使得結果為具有小漣波的DC輸出。
此配置具有擴大其應用之一個其他觀點,變壓器之電壓控制與電流控制的功能已經被分開,至少為部分。此種實施導致的是,在DC-DC轉換器中的電流之概念並非為藉由一種電流輸出放大器所定義,而是藉由 在轉換器內的控制阻抗,且因此為一種控制尤拉或ContrEuler之概念。
實際上,裝配為線性放大器的一種半導體裝置是實際為一種控制阻抗,由於其決定來自DC供電的電流,但是放大與控制之此二個層面通常被混淆。藉由將其分開,用來實施DC-DC轉換器的其他方式成為可能。
圖3顯示該種電源供應器的一個替代實施例100'。在此實施例中,電流產生器電路112與114被耦合到變壓器102'與104'的二次繞組。變壓器102'與104'包括在一次繞組上的中心分接頭。整流器106'與108'各自包括一對二極體。輸入波形被顯示且具有相對的相位,俾使電晶體120、122、124、126、136、138、140、與142是以如同關於圖2所述的相同方式而切換。該二次電路可具有較低的電壓,故電流產生器電路112與114在該電源供應器的二次側之置放可造成較低的電壓需求。
雖然輸入與輸出接地是在此實例中被顯示為共同,非必要為此種情形。開關136、138、140、與142控制該變壓器一次側的連接。在此實例中,為了簡化,具有中心分接頭的一次側被顯示為具有推挽式切換,但是一種半橋或全橋可被替代使用以免除對於中心分接頭的需要且降低在該等開關的電壓需求。
系統電流控制因此被達成在該變壓器的二次側,在其,電壓可為較低。此外,對於該電流控制電路而言可為更有利的是如同輸出電壓調節電路而在該變壓器的同一側。
圖4A-4G顯示電源供應器100'的種種波形。在一次側的FET電晶體136與138的汲極之電壓是連同通過二次側的控制電晶體120與122之電流而被描繪。此外,在變壓器102之中的總一次側電流被顯示。亦為 描繪者是控制電晶體120與122之汲極電壓以及輸出電壓漣波。電晶體120與122之電流控制FET汲極電壓為所關注者。跨於120、122、124、與126的電壓是在整個操作週期而維持為低。此意指的是,極低電壓的FET可被使用,針對於線性控制特性而非為高電壓切換特性所最佳化。然而,該等FET的電壓額定值將必須使得其可處理在經遞送到負載的實際輸出電壓和由輸入電壓與變壓器匝數比所確定的最佳電壓之間的不匹配。跨於控制電晶體的低電壓亦導致對於DC-DC轉換過程的高效率。
在此特定實例中,輸出是一個負DC電壓,使得N通道FET可經使用。輸出電壓是藉著理想的變壓器與整流器而實質為無漣波,甚至無需任何的輸出平滑電容器或濾波器。藉著實際的構件,漣波仍為極低,在此實例中為總計<0.1%,針對於其使用總有效電容僅為1.1μF之一個38V/110W輸出。
每個電壓器的二個電流控制FET(例如:120與122)之汲極電流由於並聯而被相加一起以產生總控制電流波形。然而,此僅為一個特定實施,用以說明自圖2之基本電路的二次側控制元件之發展。替代而言,可使用僅為一個FET,其被適當驅動以定義一個上升餘弦控制電流。
系統電流可經看出為具有期望的特性,升高的餘弦二次電流被轉換為在一次側的一個尤拉電流。一次電壓亦被看出為方形,且因此該一次側電路為有效率。
電流控制FET的汲極電壓亦為所關注者。跨於電晶體120/122與124/126的電壓是在整個操作週期而維持為低。此意指的是,極低電壓的FET可經使用,其針對於線性控制特性而非為高電壓切換特性所 最佳化。然而,其電壓額定值將必須使得其可處理在經遞送到負載的實際輸出電壓和由輸入電壓與變壓器匝數比所確定的最佳電壓之間的任何不匹配。跨於控制電晶體的低電壓亦導致對於DC-DC轉換過程的高效率。
圖5是該種電源供應器的另一個替代實施例100",其中,電流產生器電路112"與114"被耦合到二次繞組且各者僅具有一個電晶體120與124以及運算放大器128與132。電晶體120與124將整流器106與108的接地連接到系統接地。輸入波形是俾使該電源供應器為以類似於在圖3所示的電源供應器之一種方式而操作。輸出相位被改變以提供一個正輸出電壓。不同於在圖3所示的電源供應器,在圖5所示的電源供應器不需要二次繞組的中心分接頭。
在此等示意圖中所示的ContrEuler配置已經針對於信號產生與控制之基本配置。如此,來自該DC-DC轉換器之二次側的輸出是經施加到負載之電流的形式。通常,一個輸出電壓為所需要,其主要為無關於所應用的負載阻抗。為了達成此無關負載的輸出,可應用一個電壓反饋控制迴路,其感測輸出電壓且產生一個誤差電壓以控制該電流控制波形(例如:經施加到放大器128與132的輸入之電壓)的振幅。此誤差偵測及控制迴路僅僅實施在該變壓器的二次側。對於一個誤差信號而言,無須被傳送跨過由變壓器所形成的隔離障壁,故控制迴路可具有相較於習用DC-DC轉換器者而言為提高的頻寬與線性度。
圖6是該種電源供應器的另一個替代實施例100''',其中,整流器106"與108"包括開關160。負載110亦為位在於該電路的一次側。若一個能量源被連接到該電路的二次側,則藉著對於一次側的開關136、138、 140、與142之控制電壓的時序之適合的調整,一個無漣波的DC輸出可在變壓器102'與104'的中心分接頭之處而得到。
因此,尤拉實施之此有源整流器形式可被使用在順向模式中,將在一次側上的DC電源轉換為其在二次側上的不同電壓的電源以對一個二次側的負載供電,或反之亦然,若電源是在二次側上。此特徵是用於例如在再生制動應用中,其中電力被正常施加到在二次側上的馬達,但在斷路情況下,該馬達有效變成一個發電機且將電力送回到在一次側上的電池是所欲。在二個方向的轉換將在DC-DC轉換的輸入與輸出側上均無漣波。
圖7顯示該種電源供應器的另一個替代實施例100"",其中,耦合電路116'與118'具有另外的FET電晶體170、172、174、與176以及運算放大器178、180、182、與184。操作是類似於在圖2所示的電源供應器。電晶體136與172為ON而電晶體138與170為OFF,且接著被切換以使得電晶體138與170為ON而電晶體136與172為OFF。耦合電路118'是以相同方式而操作。在此實施例中,變壓器切換與電流控制均為實行在一次側。雖然在一種DC-DC轉換器之一次側上的電壓經常為較高,此種拓撲之操作模式的作用是俾使出現在跨於電流控制電晶體120與124的電壓仍比一次側供應電壓為較低非常多,使得電晶體120與124仍可針對於線性電流控制而最佳化。此種組態可在當最大效率為所期望或在所控制者為電晶體120與124的汲極電壓而為有用。
變壓器切換與電流控制均為實行在一次側。雖然在一種DC-DC轉換器之一次側上的電壓經常為較高,此種拓撲之操作模式的作用是俾使出現在跨於電流控制電晶體120與122的電壓仍比一次側供應電壓為 較低非常多,使得電晶體120與124仍可針對於線性電流控制而最佳化。
此種組態可在當最大效率為所期望或在所控制者為電晶體120與124的汲極電壓而為有用,驅動與控制電路均為在變壓器的一次側上。
圖8顯示一種電源供應器200的一個實施例,其提供電壓升高。電源供應器200包括四個放大器級202、204、206、與208。各個放大器級包括充電用的FET電晶體210、212、214、與216,其被連接到運算放大器218、220、222、與224以及波形產生器226、228、230、與232。各個放大器級還包括放電用的FET電晶體234、236、238、與240,其被連接到運算放大器242、244、246、與248以及波形產生器250、252、254、與256。放大器級202與204被連接到電容器258與260以及二極體對262與264。同理,放大器級206與208被連接到電容器266與268以及二極體對270與272。電源供應器200被連接到一個負載274,其亦被連接到接地。由該等波形產生器所產生的波形被顯示在圖8之中。該等波形為異相。
在操作時,電晶體210為導通(ON),俾使電容器258被充電到某電壓。接著,電晶體210為截止(OFF)而電晶體234為導通,使得電容器258被放電到負載274。電容器258的輸出被添加到幹線電壓V1,俾使一個附加電壓被施加到負載274,因而使輸出電壓升高。其他的放大器級204、206、與208是用類似方式而操作以將電容器260、266、與268充電及放電。放大器級202與204的時序是俾使電容器258或260的一者正在充電時而另一個電容器260或258正在放電。同理,放大器級206與208是以一種交替方式而將電容器266與268充電及放電。級202、204、206、與208的波形為偏移,使得一個無漣波的DC輸出被提供到負載274。
圖9是一種電源供應器300的一個實施例,其將一個升高電壓提供到一個負載302。電源供應器300包括控制器電路,其包括FET電晶體304、306、308、與310、運算放大器312與314、以及波形產生器316與318。該等控制器電路被耦合到電容器320、322、324、與326以及二極體對328、330、332、與334。該種電源供應器還包括複數個開關336、338、340、342、344、346、348、與350。
在操作時,開關338與340為ON而開關336與342為OFF。電晶體304與306亦為ON且定義進入到電容器320之電流的波形。在此狀態中,電容器320被充電且電容器322被放電。開關336與342接著成為ON而開關338與340成為OFF。電晶體304與306亦為ON且再次定義進入到電容器322之電流的波形。在此狀態中,電容器320放電到負載302。該電容器的電壓被添加到幹線電壓以將一個提高的電壓提供到負載302。在此狀態期間,電容器322被充電。此順序繼續,其中,電容器320與322被交替充電及放電。在該電路之右手側的電晶體與電路是以相同方式而操作,其中,電容器324與326是以一種交替方式而充電及放電。由該電路之右手側所提供的波形是與由左手側的電路所提供的波形為偏移¼週期,使得具有一個無漣波的DC輸出。
此實施例免除對於在圖8所示之電源供應器所需要的一些FFT電晶體。圖9之實施例亦僅需要2個運算放大器,相對於在圖8之實施例所需要的8個運算放大器。藉由利用開關,該等電容器之充電及放電可由一個單極的電流控制器所控制。甚者,對於控制充電及放電週期之裝置各者的定義電流為相同,因此簡化該種控制電路。電流波形亦為較簡單, 實際為一個偏移的正弦波。
在圖8所示的基本Eulcap組態包含四相的充電與放電以便得到無漣波的輸入以及無漣波的輸出。在此種操作條件下,輸出儲存電容可被省略(在理想情況下)(實際上將需要某個電容以便使得由缺陷所引起的漣波為平滑處理)。然而,可能存在其輸出儲存電容是針對於其他理由而為必要之應用,且在此情形,可能可接受為於是在該轉換器之固有輸出漣波電流消去性質妥協且免除在該四相中的二者。此將需要排除放大器242與244以及其關聯的電容器與二極體。藉著此縮減的組態,遞送到負載的輸出電流將為一個連續上升餘弦波且將因此仰賴於輸出儲存以供平滑化為一個低漣波的DC輸出。然而,輸入電流將仍保有標準EulCap轉換器之固有的無漣波性質。
此降低可更進一步進行。若僅有放大器218以及關聯的二極體與電容器被使用,則輸入與輸出電流均為上升餘弦的形式且將因此需要電容式的濾波。然而,該等波形的諧波含量是相較於在標準切換式電容器設計中所本身存在的電流尖波而將為低,故對於此種操作模式而言為仍有相當大的裨益。
尤拉原理有關於效率之限制是在一次側方波電壓所引起的漣波電壓,歸因於在該變壓器中的洩漏電感。關於在圖4A-4G所示之尤拉波形的形狀,此顯現為在該方波頂部的方波頻率之二倍的一個反向正弦分量。此漣波電流限制該放大器輸出可在沒有截波情況下而如何接近擺動到接地或幹線電壓且如此引入線性損失。為了使此等損失為最小化,洩漏電感必須保持為低,典型為一次側的磁化電感之1/2,000到1/10,000。
此漣波電壓可藉由包括其和變壓器一次側或二次側為串聯之一種調諧網路而降低。此調諧網路可包含單一個電容器或一種較複雜的網路之阻抗元件。該種網路之目的是要降低在電流控制驅動電晶體的汲極所看出的寄生阻抗,藉以降低由變壓器寄生阻抗(諸如:洩漏電感)所引起的電壓降與尤拉電流。
若單一個電容器被使用,該電容器被調諧以和該洩漏電感為部分共振而部分消除漣波電壓。藉著單一個電容器是不可能為完全的漣波消除,由於尤拉波形並非一個正弦波,但可得到充分的漣波消除,俾使在驅動電晶體中的損耗被顯著降低。
藉著一種較複雜的調諧網路,其可例如包含跨於一個並聯的電阻器/電容器之一個串聯的調諧LC網路,其和變壓器一次側或二次側為串聯置放,漣波可進而被降低。
該種調諧網路可被用以使得在對於既定變壓器之系統中的損失及其洩漏電感為最小,或用以降低對於在驅動電晶體中的既定可接受損失之洩漏電感需求。
圖10說明取樣波形。V(P1)代表尤拉之第一相的一次電壓,V(P2)代表第二相的一次電壓。I(P1)與I(P2)是個別的一次電流波形。在相1電路中,漣波的部分消除已經藉著適合選取的電容器所達成,而在相2電路中,並未使用任何此類的電容。在整體電壓漣波之降低為明顯。
在相1電路中,漣波的部分消除已經藉著適合選取的電容器所達成,而在相2電路中,並未使用任何此類的電容。可看出的是,具有在整體電壓漣波之降低。
圖11顯示藉著其和變壓器一次側為串聯置放之一種較複雜的阻抗網路而為可能的進一步的漣波降低。此網路包括一個串聯電容器與一個電感器,其和再一個電阻器與再一個電容器為並聯置放。如同關於圖10,V(P1)代表具有漣波降低網路之第一相的一次電壓而V(P2)代表具有漣波降低網路之第二相。更大的漣波降低效應被觀察到。
雖然調諧電容已經被描述為串聯於變壓器的一次繞組,適合大小的電容可被使用在二次側而作為替代。
藉由寄生元件的部分切斷之此漣波降低原理可同樣被運用在圖8所示的實施例。在此情形,一個小電感器可被置放為串聯於電容器258、260、266與268之各者以降低在控制電晶體輸出的漣波電壓。藉著電容器的適合選取,此電感器可能被實施如同該電容器其本身的內在寄生電感。不然,該等電感可能被構成PCB線圈。正如基於尤拉(Euler)變壓器的方式,進一步的漣波降低可用EulCap來達成,藉由使用更複雜的阻抗網路。
儘管某些示範實施例已經描述且顯示在伴隨圖式中,要瞭解的是,此類的實施例僅為說明而非限制於廣義的本發明,且本發明不受限於已經顯示及描述的特定架構與配置,由於種種其他修改可為熟習此技藝的一般人士所思及。
100‧‧‧電源供應器
102、104‧‧‧變壓器
106、108‧‧‧整流器
110‧‧‧負載
112、114‧‧‧電流產生器電路
116、118‧‧‧耦合電路
120、122、124、126‧‧‧FET電晶體
128、130、132、134‧‧‧運算放大器
136、138、140、142‧‧‧FET電晶體
144、146、148、150‧‧‧運算放大器

Claims (11)

  1. 一種電源供應器,其包含:第一變壓器,其具有第一一次繞組與第一二次繞組;第二變壓器,其具有第二一次繞組與第二二次繞組;第一電流產生器電路,其接收第一類比輸入信號且被耦合到該第一變壓器且產生第一波形;第一整流器電路,其整流該第一波形;第二電流產生器電路,其接收第二類比輸入信號且被耦合到該第二變壓器且產生第二波形,該第二波形是與該第一波形為異相;第二整流器電路,其整流該第二波形;一個組合器,其將該第一波形與該第二波形組合成為一個DC輸出信號;第一耦合電路,其將該第一電流產生器電路耦合到該第一變壓器;及第二耦合電路,其將該第二電流產生器電路耦合到該第二變壓器。
  2. 如申請專利範圍第1項之電源供應器,其中該第一電流產生器電路包括第一電流產生器電晶體與第二電流產生器電晶體,該第一耦合電路包括經連接到該第一電流產生器電晶體的第一切換電晶體、與經連接到該第二電流產生器電晶體的第二切換電晶體,該電源供應器操作上俾使:在第一狀態,該第一切換電晶體與該第二電流產生器電晶體為導通(ON)且該第二切換電晶體與該第一電流產生器電晶體為截止(OFF);及,在第二狀態,該第一切換電晶體與該第二電流產生器電晶體為截止(OFF)且該第二切換電晶體與該第一電流產生器電晶體為導通(ON)。
  3. 如申請專利範圍第2項之電源供應器,其中該第一切換電晶體與該第二切換電晶體被連接到該第一變壓器的該一次繞組及一個幹線電壓。
  4. 如申請專利範圍第1項之電源供應器,其中該第一電流產生器電路與該第一耦合電路被耦合到該第一變壓器的該一次繞組,且該第二電流產生器電路與該第二耦合電路被耦合到該第二變壓器的該一次繞組。
  5. 如申請專利範圍第1項之電源供應器,其中該第一電流產生器電路被耦合到該第一變壓器的該二次繞組且該第一耦合電路被耦合到該第一變壓器的該一次繞組,而該第二電流產生器電路被耦合到該第二變壓器的該二次繞組且該第二耦合電路被耦合到該第二變壓器的該一次繞組。
  6. 如申請專利範圍第1項之電源供應器,其中該第一電流產生器電路包括第一電流產生器電晶體,該第一耦合電路包括經耦合到該第一電流產生器電晶體的第一切換電晶體、第二切換電晶體、第三切換電晶體與第四切換電晶體,該電源供應器操作上俾使:在第一狀態,該第一切換電晶體與該第三切換電晶體為導通(ON)且該第二切換電晶體與該第四切換電晶體為截止(OFF);及,在第二狀態,該第一切換電晶體與該第三切換電晶體為截止(OFF)且該第二切換電晶體與該第四切換電晶體為導通(ON)。
  7. 如申請專利範圍第5項之電源供應器,其中該第一整流器電路與該第二整流器電路各自包括一對二極體。
  8. 如申請專利範圍第5項之電源供應器,其中該第一整流器電路與該第二整流器電路包括開關,且該電源供應器的輸出被耦合到該第一一次 繞組個與該第二一次繞組。
  9. 如申請專利範圍第1項之電源供應器,其更包含:至少一個第一調諧元件,其被連接到該第一一次繞組;及,至少一個第二調諧元件,其被連接到該第二一次繞組。
  10. 一種用於功率轉換之方法,其包含:用接收第一類比輸入信號的第一電流產生器電路產生第一波形,其流過第一變壓器,該第一變壓器具有第一一次繞組與第一二次繞組;整流該第一波形;用接收第二類比輸入信號的第二電流產生器電路產生第二波形,其流過第二變壓器,該第二變壓器具有第二一次繞組與第二二次繞組,該第二波形是與該第一波形為異相;整流該第二波形;將該第一波形與該第二波形組合成為一個DC輸出信號;用第一耦合電路控制該第一電流產生器電路到該第一變壓器之耦合;及用第二耦合電路控制該第二電流產生器電路到該第二變壓器之耦合。
  11. 如申請專利範圍第10項之方法,其中該第一電流產生器電路包括第一電流產生器電晶體與第二電流產生器電晶體,該第一耦合電路包括經連接到該第一電流產生器電晶體的第一切換電晶體、與經連接到該第二電流產生器電晶體的第二切換電晶體,該電源供應器實行以下步驟:操作在第一狀態,俾使該第一切換電晶體與該第二電流產生器電晶體為導通(ON)且該第二切換電晶體與該第一電流產生器電晶體為截止(OFF);及,操作在第二狀態,俾使該第一切換電晶體與該第二電流 產生器電晶體為截止(OFF)且該第二切換電晶體與該第一電流產生器電晶體為導通(ON)。
TW104132515A 2014-10-02 2015-10-02 用於功率轉換之方法及使用其之電源供應器 TWI683524B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462059067P 2014-10-02 2014-10-02
US62/059,067 2014-10-02
US14/873,043 US10298142B2 (en) 2014-10-02 2015-10-01 Power conversion techniques
US14/873,043 2015-10-01

Publications (2)

Publication Number Publication Date
TW201626709A TW201626709A (zh) 2016-07-16
TWI683524B true TWI683524B (zh) 2020-01-21

Family

ID=54330065

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104132515A TWI683524B (zh) 2014-10-02 2015-10-02 用於功率轉換之方法及使用其之電源供應器

Country Status (8)

Country Link
US (1) US10298142B2 (zh)
EP (1) EP3202024A1 (zh)
CN (1) CN107112888B (zh)
AU (1) AU2015327921A1 (zh)
HK (1) HK1243241A1 (zh)
SG (1) SG11201702746XA (zh)
TW (1) TWI683524B (zh)
WO (1) WO2016054515A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200913449A (en) * 2007-03-20 2009-03-16 Access Business Group Int Llc Power supply
CN101496267A (zh) * 2005-10-14 2009-07-29 雅达电子国际有限公司 多相dc到dc变换器
WO2010009760A1 (en) * 2008-07-22 2010-01-28 Aps Electronic Ag Multiphase soft-switched dc-dc converter
CN201830144U (zh) * 2010-03-10 2011-05-11 杭州中恒电气股份有限公司 适合于高压输入大功率输出的dc/dc变换器
TW201117544A (en) * 2009-07-28 2011-05-16 Thx Ltd Power supply
US20120026754A1 (en) * 2010-07-31 2012-02-02 Texas Instruments Incorporated Double phase-shifting full-bridge dc-to-dc converter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614616A (en) * 1969-11-10 1971-10-19 Fincor Inc Bidirectional ac tachometer
EP2019481A1 (en) * 2007-07-25 2009-01-28 Danmarks Tekniske Universitet Switch-mode DC-DC converter with multiple power transformers
EP2460262A1 (en) 2009-07-28 2012-06-06 THX Ltd Power supply
KR20140004968A (ko) 2012-07-03 2014-01-14 엘에스산전 주식회사 병렬 운전형 풀 브리지 컨버터 구동 장치
KR101457887B1 (ko) 2012-12-28 2014-11-20 서울과학기술대학교 산학협력단 공진형 dc-dc 컨버터 및 이를 이용한 인터리빙 공진형 dc-dc 컨버터
JP6368111B2 (ja) * 2013-06-07 2018-08-01 ローム株式会社 信号伝達装置
US9490704B2 (en) * 2014-02-12 2016-11-08 Delta Electronics, Inc. System and methods for controlling secondary side switches in resonant power converters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101496267A (zh) * 2005-10-14 2009-07-29 雅达电子国际有限公司 多相dc到dc变换器
TW200913449A (en) * 2007-03-20 2009-03-16 Access Business Group Int Llc Power supply
WO2010009760A1 (en) * 2008-07-22 2010-01-28 Aps Electronic Ag Multiphase soft-switched dc-dc converter
TW201117544A (en) * 2009-07-28 2011-05-16 Thx Ltd Power supply
CN201830144U (zh) * 2010-03-10 2011-05-11 杭州中恒电气股份有限公司 适合于高压输入大功率输出的dc/dc变换器
US20120026754A1 (en) * 2010-07-31 2012-02-02 Texas Instruments Incorporated Double phase-shifting full-bridge dc-to-dc converter

Also Published As

Publication number Publication date
AU2015327921A1 (en) 2017-04-20
CN107112888B (zh) 2020-06-05
TW201626709A (zh) 2016-07-16
US10298142B2 (en) 2019-05-21
WO2016054515A1 (en) 2016-04-07
EP3202024A1 (en) 2017-08-09
SG11201702746XA (en) 2017-04-27
US20160099657A1 (en) 2016-04-07
HK1243241A1 (zh) 2018-07-06
CN107112888A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP6942852B2 (ja) 広出力電圧範囲用の絶縁型dc/dcコンバータ及びその制御方法
US10340807B2 (en) Gate drive apparatus for resonant converters
US9998018B2 (en) Resonant converters and methods
US10284099B2 (en) Hybrid power converters combining switched-capacitor and transformer-based stages
US7626834B2 (en) Double ended converter with output synchronous rectifier and auxiliary input regulator
US8780585B2 (en) Double phase-shifting full-bridge DC-to-DC converter
US20070211507A1 (en) Interleaved soft switching bridge power converter
US20140268891A1 (en) Multiphase dc/dc converters
JP6263202B2 (ja) Ac−acコンバータ装置
US10381938B2 (en) Resonant DC-DC converter
JP6241334B2 (ja) 電流共振型dcdcコンバータ
Coccia et al. Wide input voltage range compensation in DC/DC resonant architectures for on-board traction power supplies
KR20190115364A (ko) 단상 및 3상 겸용 충전기
TWI580166B (zh) 交錯式升壓轉換器
CN110537320B (zh) 一个相断开或短路时操作基于矩阵转换器的整流器的装置和方法
TWI683524B (zh) 用於功率轉換之方法及使用其之電源供應器
KR101548528B1 (ko) Dc/dc 컨버터
JP2006158137A (ja) スイッチング電源装置