TWI680191B - 軟磁性合金及磁性部件 - Google Patents

軟磁性合金及磁性部件 Download PDF

Info

Publication number
TWI680191B
TWI680191B TW107141200A TW107141200A TWI680191B TW I680191 B TWI680191 B TW I680191B TW 107141200 A TW107141200 A TW 107141200A TW 107141200 A TW107141200 A TW 107141200A TW I680191 B TWI680191 B TW I680191B
Authority
TW
Taiwan
Prior art keywords
soft magnetic
magnetic alloy
alloy
amorphous phase
scope
Prior art date
Application number
TW107141200A
Other languages
English (en)
Other versions
TW201925493A (zh
Inventor
原田明洋
Akihiro Harada
長谷川暁斗
Akito HASEGAWA
吉留和宏
Kazuhiro YOSHIDOME
堀野賢治
Kenji Horino
松元裕之
Hiroyuki Matsumoto
Original Assignee
日商Tdk股份有限公司
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Tdk股份有限公司, Tdk Corporation filed Critical 日商Tdk股份有限公司
Publication of TW201925493A publication Critical patent/TW201925493A/zh
Application granted granted Critical
Publication of TWI680191B publication Critical patent/TWI680191B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本發明之課題係提供一種同時具有高飽和磁通密度、低保磁力及高磁導率μ’之軟磁性合金等。本發明之解決手段係提供一種由組成式(Fe (1-(α+β))X1 αX2 β) (1-(a+b+c+d+e))B aSi bC cCu dM e而成之軟磁性合金。X1係選自由Co及Ni而成之群組的一種以上,X2係選自由Al、Mn、Ag、Zn、Sn、As、Sb、Bi、N、O及稀土元素而成之群組的一種以上,M係選自由Nb、Hf、Zr、Ta、Ti、Mo、W及V而成之群組的一種以上。0.090≦a≦0.240,0.030<b<0.080,0<c<0.040,0<d≦0.020,0≦e≦0.030,α≧0,β≧0,0≦α+β≦0.50。

Description

軟磁性合金及磁性部件
本發明係有關於一種軟磁性合金及磁性部件。
近年來,在電子、資訊、通訊裝置等係要求低消耗電力化及高效率化。再者,針對低碳化社會,上述要求係進一步增強。因此,對於電子、資訊、通訊裝置等的電源電路,亦要求減低能量損失及提升電源效率。而且,對於使用在電源電路之磁性元件的磁芯,則要求提升飽和磁通密度、減低磁芯損失(core loss)及提升磁導率。若減低磁芯損失,則電能損失變小,若提升飽和磁通密度與磁導率,則因可使磁性元件小型化,故能謀求高效率化及省能源化。作為上述減低磁芯的磁芯損失之方法,係考慮減低構成磁芯之磁性體的保磁力。
又,能使用Fe基軟磁性合金作為磁性元件的磁芯所包含之軟磁性合金。Fe基軟磁性合金被期望具有良好的軟磁特性(高飽和磁通密度、低保磁力及高磁導率)。
專利文獻1中記載有一種發明,其關於具有非晶質組織且含有Fe、B、Si、P、C及Cu之Fe基軟磁性合金組成物。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2012-12699號公報
[發明欲解決之課題]
本發明之目的在於提供一種同時具有高飽和磁通密度、低保磁力及高磁導率μ’之軟磁性合金等。 [用以解決課題之手段]
為了達成上述目的,本發明之軟磁性合金係由組成式(Fe (1-(α+β))X1 αX2 β) (1-(a+b+c+d+e))B aSi bC cCu dM e而成之軟磁性合金,其特徵在於: X1係選自由Co及Ni而成之群組的一種以上, X2係選自由Al、Mn、Ag、Zn、Sn、As、Sb、Bi、N、O及稀土元素而成之群組的一種以上, M係選自由Nb、Hf、Zr、Ta、Ti、Mo、W及V而成之群組的一種以上, 0.090≦a≦0.240 0.030<b<0.080 0<c<0.040 0<d≦0.020 0≦e≦0.030 α≧0 β≧0 0≦α+β≦0.50。
本發明之軟磁性合金因具有上述特徵,藉由施行熱處理而容易具有容易成為Fe基奈米結晶合金之結構。再者,具有上述特徵之Fe基奈米結晶合金成為同時具有高飽和磁通密度、低保磁力及高磁導率μ’之軟磁性合金。
本發明之軟磁性合金亦可為0≦α{1-(a+b+c+d+e)}≦0.40。
本發明之軟磁性合金亦可為α=0。
本發明之軟磁性合金亦可為0≦β{1-(a+b+c+d+e)}≦0.030。
本發明之軟磁性合金亦可為β=0。
本發明之軟磁性合金亦可為α=β=0。
本發明之軟磁性合金係由非晶質及初期微晶而成,且可具有前述初期微晶存在於前述非晶質中之奈米異質結構(nano-hetero structure)。
本發明之軟磁性合金亦可為前述初期微晶的平均粒徑為0.3~10nm。
本發明之軟磁性合金亦可具有由Fe基奈米結晶而成之結構。
本發明之軟磁性合金亦可為前述Fe基奈米結晶的平均粒徑為5~30nm。
本發明之軟磁性合金亦可為薄帶形狀。
本發明之軟磁性合金亦可為粉末形狀。
本發明之磁性部件係由上述軟磁性合金而成。
[用以實施發明之形態]
以下,針對本發明的實施形態進行說明。
本實施形態之軟磁性合金係由組成式(Fe (1-(α+β))X1 αX2 β) (1-(a+b+c+d+e))B aSi bC cCu dM e而成之軟磁性合金,並具有以下組成: X1係選自由Co及Ni而成之群組的一種以上, X2係選自由Al、Mn、Ag、Zn、Sn、As、Sb、Bi、N、O及稀土元素而成之群組的一種以上, M係選自由Nb、Hf、Zr、Ta、Ti、Mo、W及V而成之群組的一種以上, 0.090≦a≦0.240 0.030<b<0.080 0<c<0.040 0<d≦0.020 0≦e≦0.030 α≧0 β≧0 0≦α+β≦0.50。
具有上述組成之軟磁性合金係由非晶質而成,容易成為不包含由粒徑大於30nm的結晶而成之結晶相的軟磁性合金。而且,在將該軟磁性合金進行熱處理之情形中,容易析出Fe基奈米結晶。而且,包含Fe基奈米結晶之軟磁性合金容易具有良好的磁特性。
換言之,具有上述組成之軟磁性合金,容易成為使Fe基奈米結晶析出之軟磁性合金的起始原料。
所謂Fe基奈米結晶,係指粒徑為奈米等級且Fe的晶體結構為bcc(體心立方晶格結構)之結晶。在本實施形態中,以使平均粒徑為5~30nm之Fe基奈米結晶析出為佳。使此種Fe基奈米結晶析出後之軟磁性合金,其飽和磁通密度容易變高、保磁力容易變低、且磁導率μ’容易變高。此外,所謂磁導率μ’,係指複磁導率(complex magnetic permeability)的實部。
此外,熱處理前的軟磁性合金亦可完全僅由非晶質而成,但較佳為由非晶質及粒徑為15nm以下之初期微晶而成,且具有前述初期微晶存在於前述非晶質中的奈米異質結構。藉由具有初期微晶存在於前述非晶質中的奈米異質結構,而在熱處理時變得容易使Fe基奈米結晶析出。此外,在本實施形態,前述初期微晶以平均粒徑為0.3~10nm為佳。
以下,針對本實施形態之軟磁性合金的各成分進行詳細說明。
B的含量(a)為0.090≦a≦0.240。以0.120≦a≦0.220為佳。藉由設定為0.120≦a≦0.220,特別容易使保磁力降低且變得容易使磁導率μ’增加。在a太大之情形及太小之情形,皆容易在熱處理前的軟磁性合金中產生由粒徑大於30nm的結晶而成之結晶相,在產生結晶相之情形中,無法藉由熱處理而使Fe基奈米結晶析出,保磁力變得容易變高,磁導率μ’變得容易變低。再者,在a太大之情形中,飽和磁通密度亦變得容易降低。
Si的含量(b)為0.030<b<0.080。以0.032≦b≦0.078為佳,以0.040≦b≦0.070為更佳。藉由設定為0.040≦b≦0.070,特別變得容易使保磁力降低且變得容易使磁導率μ’上升。在b太大之情形中,飽和磁通密度變得容易降低。在b太小之情形中,保磁力變得容易變高,磁導率μ’變得容易變低。
C的含量(c)為0<c<0.040。以0.001≦c≦0.038為佳,以0.010≦c≦0.030為更佳。藉由設定為0.010≦c≦0.030,特別變得容易使保磁力降低且變得容易使磁導率μ’上升。在c太大之情形及太小之情形,保磁力皆變得容易變高,磁導率μ’皆變得容易變低。
Cu的含量(d)為0<d≦0.020。以0.001≦d≦0.020為佳,以0.005≦d≦0.015為更佳。藉由設定為0.005≦d≦0.015,特別變得容易使保磁力降低且變得容易使磁導率μ’上升。在d太大之情形中,容易在熱處理前的軟磁性合金中產生由粒徑大於30nm的結晶而成之結晶相,在產生結晶相之情形中,無法藉由熱處理而使Fe基奈米結晶析出,保磁力變得容易變高,磁導率μ’變得容易變低。在d太小之情形中,保磁力變得容易變高,磁導率μ’變得容易變低。
又,本實施形態之軟磁性合金因藉由在上述範圍內同時含有C及Cu而Fe奈米結晶的狀態變得容易穩定,故變得容易使熱處理後的保磁力降低,且變得容易使磁導率μ’提升。
M係選自由Nb、Hf、Zr、Ta、Ti、Mo、W及V而成之群組的一種以上。
M的含量(e)為0≦e≦0.030。e=0,亦即,亦可不含有M。在e太大之情形中,飽和磁通密度變得容易變低。
針對Fe的含量(1-(a+b+c+d+e)),可設定為任意值。又,以0.680≦1-(a+b+c+d+e)≦0.860為佳,以0.700≦1-(a+b+c+d+e)≦0.800為更佳。
又,在本實施形態之軟磁性合金中,亦可以X1及/或X2取代Fe的一部分。
X1係選自由Co及Ni而成之群組的一種以上。關於X1的含量,亦可為α=0。亦即,X1亦可不含有。又,將組成整體的原子數設為100at%,X1的原子數係以40at%以下為佳。亦即,以滿足0≦α{1-(a+b+c+d+e)}≦0.40為佳。
X2係選自由Al、Mn、Ag、Zn、Sn、As、Sb、Bi、N、O及稀土元素而成之群組的一種以上。關於X2的含量,亦可為β=0。亦即,X2亦可不含有。又,將組成整體的原子數設為100at%,X2的原子數係以3.0at%以下為佳。亦即,以滿足0≦β{1-(a+b+c+d+e)}≦0.030為佳。
作為將Fe取代成X1及/或X2之取代量的範圍,以原子數基準計為Fe的一半以下。亦即,設定為0≦α+β≦0.50。在α+β>0.50之情形中,難以藉由熱處理而作成Fe基奈米結晶合金。
此外,本實施形態之軟磁性合金亦可含有作為不可避免的不純物之上述以外的元素。例如,相對於軟磁性合金100重量%,可含有1重量%以下。特別是在含有P之情形中,在原料金屬溶解時,源自P之殘留物變得容易附著在熔解爐壁,變得容易損傷熔解爐。再者,所得到之軟磁性合金的磁特性之經時變化變大。因而,P係以實質上不含有為佳。所謂實質上不含有,係指相對於軟磁性合金100重量%,P的含量為0.1重量%以下。
以下,針對本實施形態之軟磁性合金的製造方法進行說明。
本實施形態之軟磁性合金的製造方法係沒有特別限定。例如有藉由單輥法而製造本實施形態之軟磁性合金的薄帶之方法。又,薄帶亦可為連續薄帶。
於單輥法,首先準備最後所得到之軟磁性合金所含之各金屬元素的純金屬,以與最後所得到之軟磁性合金成為相同組成之方式進行秤量。然後,將各金屬元素的純金屬熔解並混合,而製造母合金。此外,前述純金屬的熔解方法係沒有特別限制,但例如有在處理室內抽真空之後,藉由高頻加熱使其熔解之方法。此外,母合金與最後所得到之由Fe基奈米結晶而成之軟磁性合金,通常成為相同組成。
其次,將所製造之母合金加熱並使其熔融,而得到熔融金屬(熔態金屬,molten metal)。熔融金屬的溫度係沒有特別限制,但例如可設定為1200~1500℃。
在單輥法中,主要可藉由調整輥的旋轉速度而調整所得到之薄帶的厚度,但例如亦可藉由調整噴嘴與輥的間隔、熔融金屬溫度等而調整所得到之薄帶的厚度。薄帶的厚度係沒有特別限制,但例如可設定為5~30μm。
在後述之熱處理前的時間點,薄帶係不含有粒徑大於30nm的結晶之非晶質。藉由對為非晶質之薄帶施行後述之熱處理,而可得到Fe基奈米結晶合金。
此外,確認在熱處理前之軟磁性合金的薄帶中是否包含粒徑大於30nm的結晶之方法係沒有特別限制。例如,針對有無粒徑大於30nm的結晶,可藉由通常的X射線繞射測定而確認。
而且,熱處理前的薄帶中,雖亦可完全不包含粒徑為15nm以下的初期微晶,但以包含初期微晶為佳。亦即,熱處理前的薄帶以由非晶質及存在於該非晶質中之該初期微晶而成之奈米異質結構為佳。此外,初期微晶的粒徑係沒有特別限制,以平均粒徑為0.3~10nm的範圍內為佳。
又,針對有無上述初期微晶及平均粒徑的觀察方法,係沒有特別限制,但例如可藉由對於經藉由離子蝕刻(ion milling)而薄片化的試料,使用透射電子顯微鏡,得到限制視野繞射影像、奈米射束繞射影像、明視野影像或高解像力影像而確認。使用限制視野繞射影像或奈米射束繞射影像之情形,在繞射圖案中,相對於在非晶質之情形中形成環狀的繞射,在不是非晶質之情形中形成源自晶體結構之繞射斑點。又,在使用明視野影像或高解像力影像之情形中,藉由以倍率1.00×10 5~3.00×10 5倍進行目視觀察,而可觀察有無初期微晶及平均粒徑。
輥的溫度、旋轉速度及處理室內部的氣體環境係沒有特別限制。為了非晶質化,輥的溫度係以設定為4~30℃為佳。輥的旋轉速度有速度越快則初期微晶的平均粒徑變得越小之傾向,為了得到平均粒徑0.3~10nm的初期微晶,以設定為30~40m/sec.為佳。若考慮成本面,則處理室內部的氣體環境以設定為大氣中為佳。
又,用於製造Fe基奈米結晶合金之熱處理條件係沒有特別限制。較佳的熱處理條件係依照軟磁性合金的組成而不同。通常,較佳的熱處理溫度為大約425~475℃,較佳的熱處理時間為大約5~120分鐘。但是,依照組成,亦有較佳的熱處理溫度及熱處理時間脫離上述範圍之情形。又,熱處理時的氣體環境係沒有特別限制。可在如大氣中般的活性氣體環境下進行,亦可在如Ar氣中般的惰性氣體環境下進行。
而且,所得到之Fe基奈米結晶合金中之平均粒徑的算出方法係沒有特別限制。例如可使用透射電子顯微鏡進行觀察而算出。又,確認晶體結構為bcc(體心立方晶格結構)之方法亦沒有特別限制。例如可使用X射線繞射測定而確認。
又,作為得到本實施形態之軟磁性合金的方法,除了上述的單輥法以外,亦有例如藉由水霧化法或氣體霧化法而得到本實施形態之軟磁性合金的粉體之方法。以下,針對氣體霧化法進行說明。
於氣體霧化法,與上述單輥法同樣地進行而得到1200~1500℃的熔融合金。其後,使前述熔融合金在處理室內噴射而製作粉體。
此時,將氣體噴射溫度設定為4~30℃,藉由將處理室內的蒸氣壓設定為1hPa以下,而變得容易得到上述較佳的奈米異質結構。
在以氣體霧化法製作粉體後,藉由在400~600℃進行熱處理0.5~5分鐘,可防止各粉體彼此燒結而粉體粗大化,同時可促進元素的擴散,且可在短時間使其到達熱力學上的平衡狀態,而且可消除變形及應力,且變得容易得到平均粒徑為10~50nm的Fe基軟磁性合金。
以上,已針對本發明的一實施形態進行說明,但本發明不被限定於上述實施形態。
本實施形態之軟磁性合金的形狀係沒有特別限制。如上述,雖例示薄帶形狀及粉末形狀,但除此以外亦能考慮塊狀等。
本實施形態之軟磁性合金(Fe基奈米結晶合金)的用途係沒有特別限制。例如,可舉出磁性部件,其中特別可舉出磁芯。可適合地使用作為電感器用,特別是功率電感器(power inductor)用的磁芯。本實施形態之軟磁性合金,除了磁芯以外,亦可適合地使用在薄膜電感器、磁頭。
以下,針對從本實施形態之軟磁性合金得到磁性部件特別是磁芯及電感器之方法進行說明,但從本實施形態之軟磁性合金得到磁芯及電感器之方法係不被限定於下述的方法。又,作為磁芯的用途,除了電感器以外,亦可舉出變壓器及馬達等。
作為從薄帶形狀的軟磁性合金得到磁芯之方法,例如可舉出將薄帶形狀的軟磁性合金進行捲繞之方法或進行積層之方法。在將薄帶形狀的軟磁性合金進行積層之際經由絕緣體進行積層之情形中,可得到使特性進一步提升之磁芯。
作為從粉末形狀的軟磁性合金得到磁芯之方法,例如可舉出在與適當的黏結劑混合之後,使用模具而成形之方法。又,在與黏結劑混合之前,藉由對粉末表面施行氧化處理、絕緣被膜等,而比電阻提升,成為更適合於高頻帶域之磁芯。
成形方法係沒有特別限制,例示使用模具之成形、鑄模成形等。黏結劑的種類係沒有特別限制,例示聚矽氧樹脂。軟磁性合金粉末與黏結劑的混合比率亦沒有特別限制。例如相對於軟磁性合金粉末100質量%,使其混合1~10質量%的黏結劑。
例如,相對於軟磁性合金粉末100質量%,使其混合1~5質量%的黏結劑,並使用模具進行壓縮成形,藉此可得到體積佔有率(粉末填充率)為70%以上、在外加1.6×10 4A/m的磁場時之磁通密度為0.45T以上、且比電阻為1Ω‧cm以上的磁芯。上述特性係與一般的鐵氧體磁芯為同等以上之特性。
又,例如,相對於軟磁性合金粉末100質量%,使其混合1~3質量%的黏結劑,並以黏結劑的軟化點以上的溫度條件下的模具進行壓縮成形,藉此可得到體積佔有率為80%以上、在外加1.6×10 4A/m的磁場時之磁通密度為0.9T以上、且比電阻為0.1Ω‧cm以上之壓粉磁芯。上述特性係比一般的壓粉磁芯更優異之特性。
再者,對於構成上述磁芯之成形體,在成形後進行熱處理作為矯正熱處理,藉此磁芯損失係進一步降低且有用性提高。此外,磁芯的磁芯損失係藉由減低構成磁芯之磁性體的保磁力而降低。
又,藉由對上述磁芯施行繞線而能得到電感部件。繞線的施行方法及電感部件的製造方法係沒有特別限制。例如,可舉出將繞線對使用上述方法所製造的磁芯進行捲繞至少1圈以上之方法。
再者,在使用軟磁性合金粒子之情形中,有以在磁性體中內藏有繞線線圈之狀態進行加壓成形而一體化,藉此製造電感部件之方法。在此情形中,容易得到對應高頻且大電流之電感部件。
再者,在使用軟磁性合金粒子之情形中,可藉由將在軟磁性合金粒子中添加黏結劑及溶劑而膏化後的軟磁性合金膏、及在線圈用的導體金屬中添加黏結劑及溶劑而膏化後的導體膏交替地進行印刷積層後,進行加熱煅燒而得到電感部件。或者,可藉由使用軟磁性合金膏製作軟磁性合金片,且將導體膏印刷在軟磁性合金片表面,並將此等進行積層且煅燒,而得到在磁性體中內藏有線圈之電感部件。
於此,在使用軟磁性合金粒子製造電感部件之情形中,使用最大粒徑以篩徑計為45μm以下且中心粒徑(D50)為30μm以下的軟磁性合金粉末,因能得到優異的Q特性,故較佳。為了將最大粒徑設定為以篩徑計為45μm以下,可使用孔徑45μm篩子且僅使用通過篩子之軟磁性合金粉末。
有使用最大粒徑越大的軟磁性合金粉末,在高頻區域之Q值越降低之傾向,特別在使用最大粒徑以篩徑計為大於45μm之軟磁性合金粉末之情形中,有在高頻區域之Q值大幅降低之情形。但是,在不重視在高頻區域的Q值之情形中,能使用偏差大的軟磁性合金粉末。偏差大的軟磁性合金粉末因可較廉價地製造,故在使用偏差大的軟磁性合金粉末之情形中,能減低成本。 [實施例]
以下,基於實施例而具體地說明本發明。
以成為下表顯示之各實施例及比較例的合金組成之方式秤量原料金屬,藉由高頻加熱進行熔解,而製作母合金。
其後,將所製作之母合金進行加熱使其熔融,成為1300℃的熔融狀態之金屬後,在大氣中,藉由以旋轉速度40m/sec.使用20℃的輥之單輥法,使前述金屬噴射於輥,製成薄帶。薄帶的厚度設定為20~25μm,薄帶的寬度設定為約15mm,薄帶的長度設定為約10m。
對於所得到之各薄帶進行X射線繞射測定,確認有無粒徑大於30nm的結晶。而且,在不存在粒徑大於30nm的結晶之情形中,設定為由非晶質相而成,在存在粒徑大於30nm的結晶之情形中,設定為由結晶相而成。此外,非晶質相中亦可包含粒徑為15nm以下之初期微晶。
其後,對於各實施例及比較例的薄帶,以下表顯示的條件進行熱處理。此外,針對下表無記載熱處理溫度之試料,設定為熱處理溫度450℃。對於熱處理後的各薄帶,測定保磁力、飽和磁通密度及磁導率μ’。保磁力(Hc)係使用直流BH tracer且以磁場5kA/m進行測定。飽和磁通密度(Bs)係使用振動試料型磁力計(VSM)且以磁場1000kA/m進行測定。磁導率(μ’)係使用阻抗分析儀且以頻率1kHz進行測定。於本實施例,保磁力係將5.0A/m以下設定為良好,將3.0A/m以下設定為更良好。飽和磁通密度係將1.50T以上設定為良好。磁導率μ’係將30000以上設定為良好,將40000以上設定為更良好。
此外,於以下顯示之實施例,只要未特別記載,皆係藉由X射線繞射測定及使用透射電子顯微鏡的觀察而確認到具有平均粒徑為5~30nm且晶體結構為bcc之Fe基奈米結晶。
[表1]
試料號碼 Fe(1-(a+b+c+d))BaSibCcCud
Fe B Si C Cu XRD Bs Hc μ'(1kHz)
a b c d (T) (A/m)
比較例1 0.670 0.250 0.050 0.020 0.010 結晶相 1.44 317 517
實施例2 0.680 0.240 0.050 0.020 0.010 非晶質相 1.50 4.8 32400
實施例3 0.700 0.220 0.050 0.020 0.010 非晶質相 1.51 3.0 44000
實施例4 0.740 0.180 0.050 0.020 0.010 非晶質相 1.55 2.7 47700
實施例1 0.770 0.150 0.050 0.020 0.010 非晶質相 1.61 2.4 49100
實施例5 0.800 0.120 0.050 0.020 0.010 非晶質相 1.69 2.6 48200
實施例6 0.830 0.090 0.050 0.020 0.010 非晶質相 1.71 3.3 38700
實施例7 0.860 0.090 0.040 0.005 0.005 非晶質相 1.77 4.3 31500
比較例2 0.840 0.080 0.050 0.020 0.010 結晶相 1.76 214 688
[表2]
試料號碼 Fe(1-(a+b+c+d))BaSibCcCud
Fe B Si C Cu XRD Bs Hc μ'(1kHz)
a b c d (T) (A/m)
比較例3 0.740 0.150 0.080 0.020 0.010 非晶質相 1.48 5.0 30300
實施例11 0.742 0.150 0.078 0.020 0.010 非晶質相 1.54 3.2 36700
實施例12 0.750 0.150 0.070 0.020 0.010 非晶質相 1.62 2.2 48800
實施例1 0.770 0.150 0.050 0.020 0.010 非晶質相 1.61 2.4 49100
實施例13 0.780 0.150 0.040 0.020 0.010 非晶質相 1.64 2.9 42900
實施例14 0.788 0.150 0.032 0.020 0.010 非晶質相 1.68 4.1 35500
比較例4 0.790 0.150 0.030 0.020 0.010 非晶質相 1.65 5.8 22700
[表3]
試料號碼 Fe(1-(a+b+c+d))BaSibCcCud
Fe B Si C Cu XRD Bs Hc μ'(1kHz)
a b c d (T) (A/m)
比較例5 0.750 0.150 0.050 0.040 0.010 非晶質相 1.52 6.2 19700
實施例21 0.752 0.150 0.050 0.038 0.010 非晶質相 1.61 3.6 31800
實施例22 0.760 0.150 0.050 0.030 0.010 非晶質相 1.64 2.6 45900
實施例1 0.770 0.150 0.050 0.020 0.010 非晶質相 1.61 2.4 49100
實施例23 0.780 0.150 0.050 0.010 0.010 非晶質相 1.67 2.5 47000
實施例7 0.860 0.090 0.040 0.005 0.005 非晶質相 1.77 4.3 31500
實施例24 0.789 0.150 0.050 0.001 0.010 非晶質相 1.63 4.2 33500
比較例6 0.790 0.150 0.050 0.000 0.010 非晶質相 1.55 5.2 26700
比較例7 0.800 0.150 0.050 0.000 0.000 非晶質相 1.60 5.6 24100
[表4]
試料號碼 Fe(1-(a+b+c+d))BaSibCcCud
Fe B Si C Cu XRD Bs Hc μ'(1kHz)
a b c d (T) (A/m)
比較例8 0.758 0.150 0.050 0.020 0.022 結晶相 1.57 283 552
實施例31 0.760 0.150 0.050 0.020 0.020 非晶質相 1.58 3.9 31200
實施例32 0.765 0.150 0.050 0.020 0.015 非晶質相 1.56 2.8 46900
實施例1 0.770 0.150 0.050 0.020 0.010 非晶質相 1.61 2.4 49100
實施例33 0.775 0.150 0.050 0.020 0.005 非晶質相 1.60 2.5 48500
實施例34 0.779 0.150 0.050 0.020 0.001 非晶質相 1.61 4.1 30600
比較例9 0.780 0.150 0.050 0.020 0.000 非晶質相 1.53 5.3 25200
比較例7 0.800 0.150 0.050 0.000 0.000 非晶質相 1.60 5.6 24100
[表5]
試料號碼 Fe(1-(a+b+c+d+e))BaSibCcCudMe(a~d係與實施例1相同)
M XRD Bs Hc μ'(1kHz)
種類 e (T) (A/m)
實施例1 - 0.000 非晶質相 1.61 2.4 49100
實施例41 Nb 0.010 非晶質相 1.57 2.1 50300
實施例42 Nb 0.030 非晶質相 1.50 1.7 52100
比較例10 Nb 0.050 非晶質相 1.44 1.5 53000
實施例43 Hf 0.010 非晶質相 1.58 2.1 50500
實施例44 Zr 0.010 非晶質相 1.57 2.0 51000
實施例45 Ta 0.010 非晶質相 1.58 2.0 50800
實施例46 Ti 0.010 非晶質相 1.56 2.2 49800
實施例47 Mo 0.010 非晶質相 1.57 2.1 50200
實施例48 W 0.010 非晶質相 1.55 2.2 49900
實施例49 V 0.010 非晶質相 1.56 2.2 50100
[表6]
試料號碼 Fe(1-(α+β))X1αX2β(a~e係與實施例1相同)
X1 X2 XRD Bs Hc μ'(1kHz)
種類 α{1-(a+b+c+d+e)} 種類 β{1-(a+b+c+d+e)} (T) (A/m)
實施例1 - 0.000 - 0.000 非晶質相 1.61 2.4 49100
實施例51 Co 0.010 - 0.000 非晶質相 1.63 2.5 48800
實施例52 Co 0.100 - 0.000 非晶質相 1.66 2.7 48000
實施例53 Co 0.400 - 0.000 非晶質相 1.70 2.9 47600
實施例54 Ni 0.010 - 0.000 非晶質相 1.60 2.2 49300
實施例55 Ni 0.100 - 0.000 非晶質相 1.58 2.0 49900
實施例56 Ni 0.400 - 0.000 非晶質相 1.51 1.6 50200
實施例57 - 0.000 Al 0.030 非晶質相 1.60 2.4 48900
實施例58 - 0.000 Mn 0.030 非晶質相 1.59 2.5 48700
實施例59 - 0.000 Zn 0.030 非晶質相 1.61 2.3 49100
實施例60 - 0.000 Sn 0.030 非晶質相 1.60 2.2 49000
實施例61 - 0.000 Bi 0.030 非晶質相 1.58 2.6 48300
實施例62 - 0.000 Y 0.030 非晶質相 1.59 2.5 48600
實施例63 Co 0.100 Al 0.030 非晶質相 1.62 2.5 48200
[表7]
試料號碼 a~e、α、β係與實施例1相同
輥的旋轉速度 (m/sec) 熱處理溫度 (℃) 初期微晶的平均粒徑 (nm) Fe基奈米結晶 合金的平均粒徑 (nm) XRD Bs Hc μ'(1kHz)
(T) (A/m)
實施例71 55 400 無初期微晶 3 非晶質相 1.55 2.9 45200
實施例72 50 380 0.1 3 非晶質相 1.55 2.9 45900
實施例73 40 400 0.3 5 非晶質相 1.56 2.7 47300
實施例74 40 425 0.3 10 非晶質相 1.59 2.4 49300
實施例1 40 450 0.3 15 非晶質相 1.61 2.4 49100
實施例75 30 450 10.0 20 非晶質相 1.61 2.5 48800
實施例76 30 475 10.0 30 非晶質相 1.62 2.8 46100
實施例77 20 500 15.0 50 非晶質相 1.64 3.0 44600
表1主要記載使B的含量(a)變化之實施例及比較例。
B的含量(a)為0.090≦a≦0.240的範圍內之實施例1~7,飽和磁通密度、保磁力及磁導率μ’為良好。相對於此,a=0.250之比較例1,熱處理前的薄帶係由結晶相而成,熱處理後的飽和磁通密度變小,保磁力顯著地變大,磁導率μ’顯著地變小。a=0.080之比較例2,熱處理前的薄帶係由結晶相而成,熱處理後的保磁力顯著地變大,磁導率μ’顯著地變小。
表2主要記載使Si的含量(b)變化之實施例及比較例。
Si的含量(b)為0.030<b<0.080的範圍內之實施例11~14,飽和磁通密度、保磁力及磁導率μ’為良好。相對於此,b=0.080之比較例3,飽和磁通密度變小。b=0.030之比較例4,保磁力變大,磁導率μ’變小。
表3主要記載使C的含量(c)變化之實施例及比較例。又,亦一併記載同時不含有C及Cu之比較例(比較例7)。
滿足0<c<0.040之實施例21~24,飽和磁通密度、保磁力及磁導率μ’為良好。相對於此,c=0.040之比較例5,保磁力變大,磁導率μ’變小。c=0之比較例6及7,保磁力變大且磁導率μ’變小。
表4主要記載使Cu的含量(d)變化之實施例及比較例。又,亦一併記載同時不含有C及Cu之比較例(比較例7)。
滿足0<d≦0.020之實施例31~34,飽和磁通密度、保磁力及磁導率μ’為良好。相對於此,d=0.022之比較例8,熱處理前的薄帶係由結晶相而成,熱處理後的保磁力顯著地變大且磁導率μ’顯著地變小。d=0之比較例7及比較例9,保磁力變大且磁導率μ’變小。
表5記載使M的種類及含量變化之實施例及比較例。
滿足0≦e≦0.030之實施例41~49,飽和磁通密度、保磁力及磁導率μ’為良好。相對於此,e=0.050之比較例10,飽和磁通密度降低。
表6係針對實施例1以X1及/或X2取代Fe的一部分之實施例。
由表6可知,即使以X1及/或X2取代Fe的一部分,亦顯示良好的特性。
表7係針對實施例1藉由使輥的旋轉速度及/或熱處理溫度變化而使初期微晶的平均粒徑及Fe基奈米結晶合金的平均粒徑變化之實施例。
由表7可知,即使藉由使輥的旋轉速度及/或熱處理溫度變化而使初期微晶的平均粒徑及Fe基奈米結晶合金的平均粒徑變化,亦顯示良好的特性。
無。
無。

Claims (13)

  1. 一種軟磁性合金,其係由組成式(Fe(1-(α+β))X1αX2β)(1-(a+b+c+d+e))BaSibCcCudMe(原子數比)而成之軟磁性合金,其特徵在於:X1係選自由Co及Ni而成之群組的一種以上,X2係選自由Al、Mn、Ag、Zn、Sn、As、Sb、Bi、N、O及稀土元素而成之群組的一種以上,M係選自由Nb、Hf、Zr、Ta、Ti、Mo、W及V而成之群組的一種以上,0.090≦a≦0.240 0.032≦b≦0.078 0.001≦c≦0.038 0.001≦d≦0.020 0≦e≦0.030 α≧0 β≧0 0≦α+β≦0.50。
  2. 如申請專利範圍第1項所述之軟磁性合金,其中0≦α{1-(a+b+c+d+e)}≦0.40。
  3. 如申請專利範圍第1或2項所述之軟磁性合金,其中α=0。
  4. 如申請專利範圍第1或2項所述之軟磁性合金,其中0≦β{1-(a+b+c+d+e)}≦0.030。
  5. 如申請專利範圍第1或2項所述之軟磁性合金,其中β=0。
  6. 如申請專利範圍第1或2項所述之軟磁性合金,其中α=β=0。
  7. 如申請專利範圍第1或2項所述之軟磁性合金,其係由非晶質及初期微晶而成,且具有該初期微晶存在於該非晶質中的奈米異質結構(nano-hetero structure)。
  8. 如申請專利範圍第7項所述之軟磁性合金,其中該初期微晶的平均粒徑為0.3~10nm。
  9. 如申請專利範圍第1或2項所述之軟磁性合金,其具有由Fe基奈米結晶而成之結構。
  10. 如申請專利範圍第9項所述之軟磁性合金,其中該Fe基奈米結晶的平均粒徑為5~30nm。
  11. 如申請專利範圍第1或2項所述之軟磁性合金,其為薄帶形狀。
  12. 如申請專利範圍第1或2項所述之軟磁性合金,其為粉末形狀。
  13. 一種磁性部件,其係由如申請專利範圍第1至12項中任一項所述之軟磁性合金而成。
TW107141200A 2017-11-21 2018-11-20 軟磁性合金及磁性部件 TWI680191B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017223780A JP6981199B2 (ja) 2017-11-21 2017-11-21 軟磁性合金および磁性部品
JP2017-223780 2017-11-21

Publications (2)

Publication Number Publication Date
TW201925493A TW201925493A (zh) 2019-07-01
TWI680191B true TWI680191B (zh) 2019-12-21

Family

ID=66631473

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141200A TWI680191B (zh) 2017-11-21 2018-11-20 軟磁性合金及磁性部件

Country Status (4)

Country Link
US (1) US20200357546A1 (zh)
JP (1) JP6981199B2 (zh)
TW (1) TWI680191B (zh)
WO (1) WO2019102666A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981200B2 (ja) * 2017-11-21 2021-12-15 Tdk株式会社 軟磁性合金および磁性部品
JP7318218B2 (ja) * 2019-01-30 2023-08-01 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心、磁性素子および電子機器
JP7318217B2 (ja) * 2019-01-30 2023-08-01 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心、磁性素子および電子機器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263240A (zh) * 2005-09-16 2008-09-10 日立金属株式会社 纳米结晶磁性合金及其制造方法、合金薄带及磁性部件
CN100590757C (zh) * 2004-12-16 2010-02-17 日立金属株式会社 铁基稀土类系纳米复合磁体及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182601B2 (ja) * 2006-01-04 2013-04-17 日立金属株式会社 非晶質合金薄帯、ナノ結晶軟磁性合金ならびにナノ結晶軟磁性合金からなる磁心
JP5455040B2 (ja) * 2007-04-25 2014-03-26 日立金属株式会社 軟磁性合金、その製造方法、および磁性部品
JP5327075B2 (ja) * 2010-01-20 2013-10-30 日立金属株式会社 軟磁性合金薄帯及びその製造方法、並びに軟磁性合金薄帯を有する磁性部品
US20120318412A1 (en) * 2010-03-29 2012-12-20 Hitachi Metals, Ltd. Primary ultrafine-crystalline alloy, nano-crystalline, soft magnetic alloy and its production method, and magnetic device formed by nano-crystalline, soft magnetic alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590757C (zh) * 2004-12-16 2010-02-17 日立金属株式会社 铁基稀土类系纳米复合磁体及其制造方法
CN101263240A (zh) * 2005-09-16 2008-09-10 日立金属株式会社 纳米结晶磁性合金及其制造方法、合金薄带及磁性部件

Also Published As

Publication number Publication date
WO2019102666A1 (ja) 2019-05-31
TW201925493A (zh) 2019-07-01
US20200357546A1 (en) 2020-11-12
JP2019094531A (ja) 2019-06-20
JP6981199B2 (ja) 2021-12-15

Similar Documents

Publication Publication Date Title
JP6160760B1 (ja) 軟磁性合金および磁性部品
JP6160759B1 (ja) 軟磁性合金および磁性部品
JP6245391B1 (ja) 軟磁性合金および磁性部品
CN108376598B (zh) 软磁性合金及磁性部件
TWI707050B (zh) 軟磁性合金及磁性部件
TWI685004B (zh) 軟磁性合金及磁性部件
JP2019148004A (ja) 軟磁性合金および磁性部品
CN108461245B (zh) 软磁性合金及磁性部件
JP6256647B1 (ja) 軟磁性合金および磁性部品
TWI685576B (zh) 軟磁性合金及磁性部件
JP6245390B1 (ja) 軟磁性合金および磁性部品
TW202000945A (zh) 軟磁性合金和磁性部件
JP2019123894A (ja) 軟磁性合金および磁性部品
TWI680191B (zh) 軟磁性合金及磁性部件
TWI689599B (zh) 軟磁性合金和磁性部件
TWI683011B (zh) 軟磁性合金及磁性零件
JP6436206B1 (ja) 軟磁性合金および磁性部品
TWI694158B (zh) 軟磁性合金及磁性零件
JP2019052367A (ja) 軟磁性合金および磁性部品
JP2019123929A (ja) 軟磁性合金および磁性部品