TWI677387B - Methods and apparatuses for producing metallic powder material - Google Patents

Methods and apparatuses for producing metallic powder material Download PDF

Info

Publication number
TWI677387B
TWI677387B TW105108866A TW105108866A TWI677387B TW I677387 B TWI677387 B TW I677387B TW 105108866 A TW105108866 A TW 105108866A TW 105108866 A TW105108866 A TW 105108866A TW I677387 B TWI677387 B TW I677387B
Authority
TW
Taiwan
Prior art keywords
hearth
atomizing
metal powder
melting
molten material
Prior art date
Application number
TW105108866A
Other languages
Chinese (zh)
Other versions
TW201703902A (en
Inventor
瓊斯 羅賓M 佛畢斯
Robin M. Forbes Jones
馬修J 阿諾德
Matthew J. Arnold
雷米許S 密尼莎德朗
Ramesh S. Minisandram
亞瑟A 卡克
Arthur A. Kracke
Original Assignee
美商冶聯科技地產有限責任公司
Ati Properties Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商冶聯科技地產有限責任公司, Ati Properties Llc filed Critical 美商冶聯科技地產有限責任公司
Publication of TW201703902A publication Critical patent/TW201703902A/en
Application granted granted Critical
Publication of TWI677387B publication Critical patent/TWI677387B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • B22F2009/0852Electroslag melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • B22F2009/0856Skull melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0888Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Furnace Details (AREA)
  • Powder Metallurgy (AREA)

Abstract

一種製造金屬粉末材料之方法包括:將進給材料供應至熔化爐床;及利用第一熱源熔化該熔化爐床上之該等進給材料以提供具有所要化學組合物之熔化材料。將該熔化材料之至少一部分自該熔化爐床直接或間接地傳遞至霧化爐床,在該霧化爐床中使用第二熱源加熱該熔化材料。將該熔化材料之至少一部分以熔化狀態自該霧化爐床傳遞至霧化裝置,該霧化裝置由該熔化材料形成小滴噴霧。將該小滴噴霧之至少一部分凝固以提供金屬粉末材料。 A method of manufacturing a metal powder material includes: supplying a feed material to a melting hearth; and melting the feed material on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is transferred directly or indirectly from the melting hearth to the atomizing hearth in which the second heat source is used to heat the melting material. At least a portion of the molten material is transferred from the atomizing hearth to the atomizing device in a molten state, and the atomizing device forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metal powder material.

Description

製造金屬粉末材料之方法及裝置 Method and device for manufacturing metal powder material

本發明係關於製造金屬粉末材料之方法及裝置。特定而言,本發明之某些非限制性態樣係關於使用包含以下各項之裝置來製造金屬粉末材料之方法:熔化爐床,其經調適以接納進給材料;及霧化爐床,其經安置以自該熔化爐床接納熔化材料之至少一部分。在本發明之方法之某些非限制性實施例中,該方法包含:將熔化材料之至少一部分以熔化狀態自該霧化爐床傳遞至霧化裝置,該霧化裝置可包含霧化噴嘴。本發明亦針對於一種藉由本發明之方法及裝置製造之金屬粉末材料及物件。 The invention relates to a method and an apparatus for manufacturing a metal powder material. In particular, certain non-limiting aspects of the present invention relate to a method for making a metal powder material using a device comprising: a melting hearth adapted to receive a feed material; and an atomizing hearth, It is positioned to receive at least a portion of the molten material from the melting hearth. In certain non-limiting embodiments of the method of the present invention, the method includes: passing at least a portion of the molten material in a molten state from the atomizing hearth to an atomizing device, which atomizing device may include an atomizing nozzle. The present invention is also directed to a metal powder material and article manufactured by the method and apparatus of the present invention.

習用地,氣體霧化及熱均壓(亦稱為「HIP」)用於由金屬粉末材料形成金屬物件。在此等製程中,製備具有所要化學組合物之熔體,且使熔化組合物傳遞穿過霧化裝置,在該霧化裝置中氣體噴流將該熔化組合物分散成經淬火之小滴。該等經淬火小滴形成鬆散粉末。可對金屬粉末材料進行熱均壓以形成金屬物件。 Conventionally, gas atomization and hot equalization (also called "HIP") are used to form metal objects from metal powder materials. In these processes, a melt having the desired chemical composition is prepared and the molten composition is passed through an atomizing device in which a gas jet disperses the molten composition into quenched droplets. These quenched droplets form a loose powder. Metal powder materials can be hot-pressed to form metal objects.

製造金屬物件之另一習用方法係成核鑄造。成核鑄造利用氣體霧化來製造沈積至模具中之半液態小滴之噴霧。常見的係,小滴噴霧之某一部分(亦即,過量噴霧)可累積於模具之頂部表面上。在若干方面類似於成核鑄造,噴霧成型係其中由半液態小滴噴霧形成金屬物 件、但不使用模具之習用技術。 Another conventional method for making metal objects is nucleation casting. Nucleation casting uses gas atomization to make a spray of semi-liquid droplets deposited into a mold. A common line is that some part of the droplet spray ( ie , excessive spray) can accumulate on the top surface of the mold. Similar to nucleation casting in several respects, spray forming is a customary technique in which metal objects are formed by spraying semi-liquid droplets without using a mold.

在習用成核鑄造、噴霧成型及氣體霧化/HIP序列中,重新熔化先前已熔化成所要化學組合物之經凝固材料以將熔化材料提供至霧化裝置。在一項實例中,具有所要化學組合物之經凝固材料以熱機械方式加工成線且隨後重新熔化以用於霧化。在另一實例中,冷壁感應爐用於在霧化製程之前熔化且均質化先前經凝固之材料。當材料在重新熔化及霧化之前凝固時,材料可(諸如)在熱機械加工及處理期間被污染。固體材料中之污染物可變得挾帶於提供至霧化裝置之熔化金屬流中。重新熔化經凝固材料以用於霧化亦可限制控制製程參數(諸如熔化金屬過熱及流率)之能力,可需要控制該等製程參數以確保一致霧化。另外,使用經凝固材料以進行重新熔化及霧化可增加與經霧化金屬粉末之製造相關聯之成本。 In conventional nucleation casting, spray forming, and gas atomization / HIP sequences, the solidified material that has been previously melted into the desired chemical composition is re-melted to provide the molten material to the atomization device. In one example, the solidified material with the desired chemical composition is thermomechanically processed into a wire and then remelted for atomization. In another example, a cold wall induction furnace is used to melt and homogenize previously solidified material before the atomization process. When the material solidifies before remelting and atomizing, the material may be contaminated, such as during thermomechanical processing and processing. Contaminants in the solid material can become entrained in the molten metal stream provided to the atomizing device. Remelting the solidified material for atomization can also limit the ability to control process parameters, such as molten metal superheat and flow rate, which may need to be controlled to ensure consistent atomization. In addition, the use of solidified materials for remelting and atomization can increase the costs associated with the manufacture of atomized metal powder.

本發明部分地針對於解決製造金屬粉末材料之習用方法之某些限制之方法及裝置。本發明之一項非限制性態樣針對於一種製造金屬粉末材料之方法,該方法包括:將進給材料供應至熔化爐床;利用第一熱源熔化該熔化爐床中之該等進給材料,藉此製造具有所要組合物之熔化材料;將該熔化材料之至少一部分傳遞至霧化爐床;利用第二熱源加熱該霧化爐床中之該熔化材料;將該熔化材料之至少一部分以熔化狀態自該霧化爐床直接或間接地傳遞至霧化裝置;及利用該霧化裝置形成該熔化材料之小滴噴霧。將該小滴噴霧之至少一部分凝固以提供金屬粉末材料。在該方法之某些非限制性實施例中,該熔化材料之至少一部分連續地傳遞至該霧化裝置。在該方法之某些非限制性實施例中,該熔化材料透過至少一個額外爐床自該熔化爐床傳遞至該霧化爐床。 The present invention is directed, in part, to methods and devices that address certain limitations of conventional methods of making metal powder materials. A non-limiting aspect of the present invention is directed to a method for manufacturing a metal powder material, the method comprising: supplying a feed material to a melting hearth; and melting the feed material in the melting hearth with a first heat source Thus, a molten material having a desired composition is manufactured; at least a portion of the molten material is transferred to an atomizing hearth; a second heat source is used to heat the molten material in the atomizing hearth; at least a portion of the molten material is The molten state is transferred directly or indirectly from the atomizing hearth to the atomizing device; and the atomizing device is used to form a droplet spray of the molten material. At least a portion of the droplet spray is solidified to provide a metal powder material. In certain non-limiting embodiments of the method, at least a portion of the molten material is continuously transferred to the atomizing device. In certain non-limiting embodiments of the method, the molten material is transferred from the melting hearth to the atomizing hearth through at least one additional hearth.

本發明之另一非限制性態樣針對於製造金屬粉末材料之裝置。 該裝置包括:熔化爐床,其經調適以接納進給材料;第一熱源,其經調適以熔化該熔化爐床中之該等進給材料且製造具有所要組合物之熔化材料;霧化爐床,其經安置以自該熔化爐床直接或間接地接納該熔化材料之至少一部分;第二熱源,其經調適以加熱該霧化爐床中之熔化材料;霧化裝置,其經調適以形成該熔化材料之小滴噴霧;傳送單元,其耦合至該霧化爐床及該霧化裝置;及收集器,其經調適以自該霧化裝置接納該小滴噴霧。該傳送單元經調適以將熔化材料以熔化狀態自該霧化爐床傳遞至該霧化裝置。 Another non-limiting aspect of the present invention is directed to an apparatus for manufacturing a metal powder material. The device includes: a melting hearth adapted to receive a feed material; a first heat source adapted to melt the feed materials in the melting hearth and produce a molten material having a desired composition; an atomizing furnace A bed arranged to receive at least a portion of the molten material directly or indirectly from the melting hearth; a second heat source adapted to heat the molten material in the atomizing hearth; an atomizing device adapted to Forming a droplet spray of the molten material; a transfer unit coupled to the atomizing hearth and the atomizing device; and a collector adapted to receive the droplet spray from the atomizing device. The transfer unit is adapted to transfer molten material from the atomizing hearth to the atomizing device in a molten state.

200‧‧‧裝置 200‧‧‧ device

200’‧‧‧裝置 200’‧‧‧ device

210‧‧‧熔體室 210‧‧‧melt chamber

220‧‧‧熔化爐床 220‧‧‧ Melting hearth

230‧‧‧第一熱源 230‧‧‧The first heat source

240‧‧‧進給材料 240‧‧‧Feed material

250‧‧‧進給滑槽 250‧‧‧Feed chute

260‧‧‧熔化材料 260‧‧‧ molten material

270‧‧‧霧化爐床 270‧‧‧Atomizing hearth

280‧‧‧第一凝殼 280‧‧‧The first condensation shell

290‧‧‧第二凝殼 290‧‧‧Second Condensate

292‧‧‧額外爐床 292‧‧‧ Extra hearth

300‧‧‧第二熱源 300‧‧‧Second heat source

310‧‧‧霧化裝置 310‧‧‧Atomization device

320‧‧‧傳送單元 320‧‧‧Transfer Unit

330‧‧‧入口 330‧‧‧ Entrance

340‧‧‧出口 340‧‧‧Export

350‧‧‧導電線圈 350‧‧‧Conductive coil

360‧‧‧熔體容器 360‧‧‧melt container

370‧‧‧通路 370‧‧‧Access

380‧‧‧導電線圈/線圈 380‧‧‧Conductive coil / coil

382‧‧‧感應導引件 382‧‧‧Induction Guide

384‧‧‧傾注凹槽 384‧‧‧ pouring groove

386‧‧‧分段感應模具 386‧‧‧Segmented induction mould

388‧‧‧冷感應導引件 388‧‧‧Cold induction guide

390‧‧‧額外熱源 390‧‧‧ additional heat source

400‧‧‧收集器 400‧‧‧ Collector

可藉由參考附圖來較佳地理解本文中所闡述之方法及合金物件之特徵及優勢,在該等附圖中:圖1係根據本發明之製造金屬粉末材料之方法之非限制性實施例之流程圖;圖2係根據本發明之圖解說明製造金屬粉末材料之裝置之非限制性實施例之示意性剖面側視圖;圖3係圖1之裝置之示意性平面圖;圖4係根據本發明之製造金屬粉末材料之裝置之另一非限制性實施例之示意性平面圖;圖5係圖1之裝置之經放大部分剖面側視圖;及圖6係根據本發明之圖解說明製造金屬粉末材料之裝置之另一非限制性實施例之示意性剖面側視圖。 The features and advantages of the methods and alloy objects described herein can be better understood by referring to the drawings, in which: Figure 1 is a non-limiting implementation of a method for manufacturing a metal powder material according to the present invention Figure 2 is a schematic cross-sectional side view illustrating a non-limiting embodiment of a device for manufacturing a metal powder material according to the present invention; Figure 3 is a schematic plan view of the device of Figure 1; Figure 5 is a schematic plan view of another non-limiting embodiment of the inventive device for manufacturing a metal powder material; Figure 5 is an enlarged partial cross-sectional side view of the device of Figure 1; and Figure 6 is a diagrammatic illustration of manufacturing a metal powder material according to the invention A schematic cross-sectional side view of another non-limiting embodiment of the device.

應理解,本發明在其應用上並不限於上文所闡述之圖式中所圖解說明之實施例。讀者將在考量根據本發明之方法及裝置之某些非限制性實施例之以下詳細說明之後旋即瞭解前述細節以及其他細節。讀者亦可在使用本文中所闡述之方法及裝置之後旋即理解此等額外細節中之某些細節。 It should be understood that the invention is not limited in its application to the embodiments illustrated in the drawings set forth above. The reader will immediately understand the foregoing and other details after considering the following detailed description of certain non-limiting embodiments of methods and devices according to the present invention. The reader may also immediately understand some of these additional details after using the methods and devices described herein.

除了在操作實例中或在另有指示之情況下,亦在非限制性實施例之本說明中且在申請專利範圍中,所有表達成分及產品之數量或特性、處理條件及諸如此類之數字皆應被理解為在所有例項中皆由術語「約」修飾。因此,除非指示相反情況,否則以下說明及隨附申請專利範圍中所陳述之任何數字參數皆係可取決於在根據本發明之方法及裝置中力圖獲得之所要特性而變化之近似值。最低限度地,且並非試圖將等效原則之應用限制於申請專利範圍之範疇,每一數字參數皆應依據所報告之有效數位之數目且藉由應用普通舍入技術來解釋。 Except in the operating examples or where otherwise indicated, and also in the description of the non-limiting examples and within the scope of patent applications, the quantity or characteristics of all expressed ingredients and products, processing conditions, and the like should be all numbers It is understood to be modified in all instances by the term "about". Therefore, unless the contrary is indicated, any numerical parameter set forth in the following description and the scope of the accompanying patent application is an approximation that can vary depending on the desired characteristics sought to be obtained in the method and apparatus according to the present invention. At a minimum, and not an attempt to limit the application of the principle of equivalence to the scope of patent applications, each numerical parameter should be interpreted based on the number of valid digits reported and by applying ordinary rounding techniques.

本發明部分地針對於解決製造金屬粉末材料之習用方法之限制中之某些限制之方法及裝置。參考圖1,圖解說明製造金屬粉末材料之方法之非限制性實施例。該方法包含:將進給材料供應至熔化爐床(方塊100);利用第一熱源熔化熔化爐床中之進給材料,藉此製造具有所要化學組合物之熔化材料(方塊110);將熔化材料之至少一部分直接或間接地傳遞至霧化爐床(方塊120);利用第二熱源加熱霧化爐床中之熔化材料(方塊130);將熔化材料之至少一部分以熔化狀態自霧化爐床傳遞至霧化裝置(方塊140);及利用霧化裝置形成熔化材料之小滴噴霧(方塊150)。將小滴噴霧之至少一部分凝固以提供具有所要組合物之金屬粉末材料。 The present invention is directed, in part, to methods and devices that address some of the limitations of conventional methods of making metal powder materials. Referring to FIG. 1, a non-limiting embodiment of a method of manufacturing a metal powder material is illustrated. The method includes: supplying a feed material to a melting hearth (block 100); melting a feed material in the melting hearth with a first heat source, thereby manufacturing a molten material having a desired chemical composition (block 110); and melting the At least a portion of the material is transferred directly or indirectly to the atomizing hearth (block 120); the second heat source is used to heat the molten material in the atomizing hearth (block 130); at least a portion of the molten material is melted from the atomizing furnace in a molten state The bed is passed to an atomizing device (block 140); and a droplet spray of molten material is formed using the atomizing device (block 150). At least a portion of the droplet spray is solidified to provide a metal powder material having the desired composition.

參考圖2至圖3,製造金屬粉末材料之裝置200之所圖解說明非限制性實施例包括熔體室210及熔化爐床220及定位於熔體室210中之第一熱源230。熔體室210經組態以維持其中之氛圍。該氛圍可具有低於大氣壓力、超過大氣壓力或處於大氣壓力之壓力。根據某些非限制性實施例,熔體室210中之氣體氛圍可相對於在熔體室210中加熱之材料而係化學惰性的。根據某些非限制性實施例,熔體室210內之氣體氛圍可係氦氣、氬氣、氦氣與氬氣之摻合物或者另一惰性氣體或氣體混 合物。根據其他非限制性實施例,其他氣體或氣體摻合物在熔體室210中之氛圍內,倘若氣體或氣體摻合物並未不可接受地污染熔體室210內之熔化材料。 2 to 3, a illustrated non-limiting embodiment of an apparatus 200 for manufacturing a metal powder material includes a melt chamber 210 and a melting hearth 220 and a first heat source 230 positioned in the melt chamber 210. The melt chamber 210 is configured to maintain the atmosphere therein. The atmosphere may have a pressure below atmospheric pressure, above atmospheric pressure, or at atmospheric pressure. According to certain non-limiting embodiments, the gas atmosphere in the melt chamber 210 may be chemically inert with respect to the material heated in the melt chamber 210. According to certain non-limiting embodiments, the gas atmosphere in the melt chamber 210 may be helium, argon, a blend of helium and argon, or another inert gas or gas mixture 组合。 The compound. According to other non-limiting embodiments, other gases or gas blends are in the atmosphere in the melt chamber 210 if the gases or gas blends have not unacceptably contaminated the molten material in the melt chamber 210.

熔化爐床220經調適以接納進給材料240。根據某些非限制性實施例,進給材料240係純淨原材料。根據其他非限制性實施例,進給材料240包含以下各項或由以下各項組成:廢料、返回、回收材料及/或母合金。根據某些非限制性實施例,進給材料240包含微粒材料。根據其他非限制性實施例,進給材料240包含呈經製作或先前經熔化之電極之形式之材料(舉例而言,諸如呈圓柱體或矩形稜柱之形狀的先前經熔化之材料)或由該等材料組成。在任何情形中,在根據本發明之方法中,藉由將進給材料選擇性地添加至熔化爐床210而將在熔化爐床220中製造之熔化材料之化學組合物調整至所要組合物。 The melting hearth 220 is adapted to receive the feed material 240. According to certain non-limiting embodiments, the feed material 240 is a pure raw material. According to other non-limiting embodiments, the feed material 240 includes or consists of the following: scrap, return, recycled material, and / or master alloy. According to certain non-limiting embodiments, the feed material 240 comprises particulate material. According to other non-limiting embodiments, the feed material 240 comprises or consists of a material in the form of a fabricated or previously fused electrode (for example, a previously fused material such as a cylinder or rectangular prism). And other materials. In any case, in the method according to the present invention, the chemical composition of the molten material manufactured in the melting hearth 220 is adjusted to the desired composition by selectively adding a feed material to the melting hearth 210.

根據某些非限制性實施例,進給材料240主要包括鈦材料。根據某些非限制性實施例,進給材料240經選擇以提供具有以下各項中之一者之化學組合物之熔化材料:商業純鈦、鈦合金(例如,Ti-6Al-4V合金,其具有UNS R56400中所規定之組合物)及鈦鋁合金(例如,Ti-48Al-2Nb-2Cr合金)。根據另一非限制性實施例,進給材料240經選擇以提供按重量包括約4%之釩、約6%之鋁且其餘為鈦及雜質之熔化材料。(除非另有指示,否則本文中所有百分比皆係重量百分比。)根據再一非限制性實施例,進給材料240經選擇以提供具有以下各項中之一者之化學物組合物之熔化材料:商業純鎳、鎳合金(例如,合金718,其具有UNS N07718中所規定之組合物)、商業純鋯、鋯合金(例如,Zr 704合金,其具有UNS R60704中所規定之組合物)、商業純鈮、鈮合金(例如,ATI Nb1ZrTM合金(類型3及類型4),其具有UNS R04261中所規定之組合物)、商業純鉭、鉭合金(例如,鉭-10%鎢合金,其具有UNS 20255中所規定之組合物)、商業純鎢及鎢合金( ,90-7-3鎢合金)。將理解,本文中所闡述之方法及裝置並不限於製造具有前述化學組合物之材料。而是,可選擇起始材料以便提供具有所要化學組合物及其他所要性質之熔化組合物。在本文中之方法及裝置中霧化熔化材料,藉此提供霧化成粉末的具有熔化材料之化學組合物之金屬粉末材料。 According to certain non-limiting embodiments, the feed material 240 mainly comprises a titanium material. According to certain non-limiting embodiments, the feed material 240 is selected to provide a molten material having a chemical composition of one of the following: commercial pure titanium, titanium alloys ( e.g. , Ti-6Al-4V alloy, which It has the composition specified in UNS R56400) and titanium aluminum alloy ( for example , Ti-48Al-2Nb-2Cr alloy). According to another non-limiting embodiment, the feed material 240 is selected to provide a molten material that includes about 4% vanadium, about 6% aluminum, and the remainder titanium and impurities by weight. (Unless otherwise indicated, all percentages herein are weight percentages.) According to yet another non-limiting embodiment, the feed material 240 is selected to provide a molten material having a chemical composition of one of the following: : Commercial pure nickel, nickel alloy ( for example , alloy 718, which has the composition specified in UNS N07718), commercial pure zirconium, zirconium alloy ( for example , Zr 704 alloy, which has the composition specified in UNS R60704), Commercially pure niobium, niobium alloys ( e.g. , ATI Nb1Zr TM alloys (type 3 and type 4) having a composition specified in UNS R04261), commercial pure tantalum, tantalum alloys ( e.g. , tantalum-10% tungsten alloy, which having a composition), commercially pure tungsten and tungsten alloy (e.g., tungsten alloy 90-7-3) UNS 20255 as stipulated. It will be understood that the methods and apparatus described herein are not limited to the manufacture of materials with the aforementioned chemical compositions. Instead, the starting materials can be selected to provide a molten composition having the desired chemical composition and other desired properties. The molten material is atomized in the method and apparatus herein, thereby providing a metal powder material having a chemical composition of the molten material atomized into a powder.

根據某些非限制性實施例,進給材料240經由進給機構(舉例而言,諸如進給滑槽250)而進給至熔化爐床220中。根據某些非限制性實施例,進給機構包含振動進給器、滑槽及推送器中之至少一者。在其他非限制性實施例中,進給機構包含可將進給材料240適合地引入至熔化爐床220上之任何其他機構。 According to some non-limiting embodiments, the feed material 240 is fed into the melting hearth 220 via a feed mechanism, such as, for example, a feed chute 250. According to certain non-limiting embodiments, the feeding mechanism includes at least one of a vibrating feeder, a chute, and a pusher. In other non-limiting embodiments, the feed mechanism includes any other mechanism that can suitably introduce the feed material 240 onto the melting hearth 220.

根據某些非限制性實施例,與熔化爐床220相關聯之第一熱源230包含選自以下各項之至少一個加熱器件:電漿火炬、電子束產生器、產生電子之另一加熱器件、雷射、電弧器件及感應線圈。在一項實例中,第一熱源230經調適以使用電漿火炬來熔化熔化爐床220中之進給材料240,以藉此製造具有所要化學組合物之熔化材料260。第一熱源230經調適且經定位以將熔化爐床220中之進給材料加熱至與進給材料240之熔化溫度(液相線)至少同樣大之溫度且將彼等材料以熔化狀態維持在熔化爐床220中。在某些非限制性實施例中,第一熱源230加熱形成於熔化爐床220中之熔化材料以至少部分地精煉該熔化材料。根據某些非限制性實施例,第一熱源230可定位於熔化爐床220之上表面以上約100mm至約250mm處。根據其他非限制性實施例,第一熱源230包括第一電漿火炬,該第一電漿火炬相對於熔化爐床220中之熔化材料之頂部表面定位於一高度處使得由該第一電漿火炬製造之熱電漿之羽狀部之邊緣適合地加熱該材料。根據某些非限制性實施例,第一熱源230之功率位準、相對於熔化爐床220之位置及其他參數經選擇以將熔化爐床220中之熔化材料260加熱至包含該材料之液相線 直至該材料之熔點以上約500℃之溫度範圍。根據其他實施例,第一熱源230之功率位準、位置及其他參數經最佳化以將熔化爐床220中之材料過熱至包含該材料之液相線以上約50℃直至該材料之該液相線以上約300℃之溫度之溫度範圍。根據其他實施例,第一熱源230之功率位準、位置及其他參數經最佳化以使材料過熱至超出該材料之液相線任何適合度數之溫度,只要第一熱源230不使該材料蒸發及/或使該熔化材料之化學性質以非所要方式變化即可。 According to certain non-limiting embodiments, the first heat source 230 associated with the melting hearth 220 includes at least one heating device selected from the group consisting of a plasma torch, an electron beam generator, another heating device that generates electrons, Laser and arc devices and induction coils. In one example, the first heat source 230 is adapted to use a plasma torch to melt the feed material 240 in the melting hearth 220 to thereby manufacture a molten material 260 having a desired chemical composition. The first heat source 230 is adapted and positioned to heat the feed material in the melting hearth 220 to a temperature at least as large as the melting temperature (liquidus) of the feed material 240 and to maintain their materials in a molten state at Melting hearth 220. In certain non-limiting embodiments, the first heat source 230 heats the molten material formed in the melting hearth 220 to at least partially refine the molten material. According to certain non-limiting embodiments, the first heat source 230 may be positioned at about 100 mm to about 250 mm above the upper surface of the melting hearth 220. According to other non-limiting embodiments, the first heat source 230 includes a first plasma torch positioned at a height relative to a top surface of the molten material in the melting hearth 220 such that the first plasma torch The edges of the feathers of the torch-made thermoplasma suitably heat the material. According to certain non-limiting embodiments, the power level of the first heat source 230, its position relative to the melting hearth 220, and other parameters are selected to heat the molten material 260 in the melting hearth 220 to a liquid phase containing the material line A temperature range up to about 500 ° C above the melting point of the material. According to other embodiments, the power level, location and other parameters of the first heat source 230 are optimized to overheat the material in the melting hearth 220 to about 50 ° C above the liquidus line containing the material until the liquid of the material A temperature range of about 300 ° C above the phase line. According to other embodiments, the power level, position, and other parameters of the first heat source 230 are optimized to overheat the material to a temperature that exceeds any suitable degree of the liquidus line of the material, as long as the first heat source 230 does not evaporate the material And / or the chemical properties of the molten material may be changed in an undesired manner.

根據某些非限制性實施例,霧化爐床270經安置以自熔化爐床220直接或間接地接納熔化材料260之至少一部分。一旦熔化且適合地加熱,熔化爐床220中之熔化材料260便可自熔化爐床220排洩且直接或間接地傳遞(例如,透過至少一個額外爐床)至霧化爐床270。霧化爐床270自霧化爐床270直接或間接地收集熔化材料260,且可在熔化材料260自霧化爐床270傳遞且傳遞至霧化裝置310之霧化噴嘴上時盛放熔化材料260之至少一部分,如在下文中進一步地闡釋。就此而言,霧化爐床270充當調節熔化材料260至霧化裝置310之流動的用於熔化材料260之「喘振緩衝器」。根據某些非限制性實施例,霧化爐床270與熔化爐床220一起安置於熔體室210中。根據其他實施例,霧化爐床270不與熔化爐床220一起在單個室中且替代地可位於另一室(諸如鄰接室)中。 According to certain non-limiting embodiments, the atomizing hearth 270 is positioned to directly or indirectly receive at least a portion of the molten material 260 from the melting hearth 220. Once melted and suitably heated, the molten material 260 in the melting hearth 220 can be drained from the melting hearth 220 and passed directly or indirectly ( eg, through at least one additional hearth) to the atomizing hearth 270. The atomizing hearth 270 collects the molten material 260 directly or indirectly from the atomizing hearth 270, and can hold the molten material when the molten material 260 is transferred from the atomizing hearth 270 and passed to the atomizing nozzle of the atomizing device 310. At least a portion of 260, as explained further below. In this regard, the atomizing hearth 270 functions as a "surge buffer" for the molten material 260 that regulates the flow of the molten material 260 to the atomizing device 310. According to certain non-limiting embodiments, the atomizing hearth 270 is disposed in the melt chamber 210 together with the melting hearth 220. According to other embodiments, the atomizing hearth 270 is not in a single chamber with the melting hearth 220 and may instead be located in another chamber, such as an adjoining chamber.

根據各種非限制性實施例,至少一個額外爐床安置於熔化爐床220與霧化爐床270中間,且熔化材料自熔化爐床260傳遞,穿過該至少一個額外爐床且進入霧化爐床270中。此配置在本文中經闡述為涉及熔化材料自熔化爐床間接地至霧化爐床之通過。 According to various non-limiting embodiments, at least one additional hearth is disposed between the melting hearth 220 and the atomizing hearth 270, and the molten material is transferred from the melting hearth 260, passes through the at least one additional hearth, and enters the atomizing furnace. Bed 270. This configuration is described herein as involving the passage of molten material indirectly from the melting hearth to the atomizing hearth.

根據某些非限制性實施例且參考圖5,熔化爐床220及霧化爐床270兩者皆係水冷式銅爐床。若存在,則存在於各種非限制性實施例中之一或多個額外爐床亦可係水冷式銅爐床。根據其他非限制性實施 例,熔化爐床220、霧化爐床270及一或多個額外爐床(若存在)中之至少一者係由任何其他適合材料及組件構造且經冷卻或以其他方式經調適以防止爐床在於其中加熱材料時熔化。根據某些非限制性實施例,熔化材料260之一部分接觸熔化爐床220之經冷卻壁且可凝固以形成第一凝殼280,該第一凝殼防止熔化材料260之剩餘部分接觸熔化爐床220之壁,藉此將熔化爐床220之壁與熔化材料260隔離。此外,在某些實施例中,熔化材料260之一部分在熔化材料260自熔化爐床220流動至霧化爐床270中時接觸霧化爐床270之經冷卻壁且可在該壁上凝固以形成第二凝殼290,該第二凝殼防止熔化材料260之剩餘部分接觸霧化爐床270之壁,藉此將霧化爐床270之壁與熔化材料260隔離。在某些非限制性實施例中,一或多個額外爐床(若存在)可以類似方式操作以防止熔化材料與爐床壁之不合意接觸。 According to certain non-limiting embodiments and referring to FIG. 5, both the melting hearth 220 and the atomizing hearth 270 are water-cooled copper hearths. If present, one or more additional hearths present in various non-limiting embodiments may also be water-cooled copper hearths. According to other non-limiting implementations For example, at least one of the melting hearth 220, the atomizing hearth 270, and one or more additional hearths (if present) are constructed of any other suitable material and component and cooled or otherwise adapted to prevent the furnace The bed melts as the material is heated. According to certain non-limiting embodiments, a portion of the molten material 260 contacts the cooled wall of the melting hearth 220 and can be solidified to form a first condensation shell 280 that prevents the remaining portion of the melting material 260 from contacting the melting hearth 220, thereby isolating the wall of the melting hearth 220 from the molten material 260. Further, in some embodiments, a portion of the molten material 260 contacts the cooled wall of the atomizing hearth 270 as the molten material 260 flows from the melting hearth 220 into the atomizing hearth 270 and may solidify on the wall to A second condensation shell 290 is formed, which prevents the remainder of the molten material 260 from contacting the wall of the atomizing hearth 270, thereby isolating the wall of the atomizing hearth 270 from the melting material 260. In certain non-limiting embodiments, one or more additional hearths, if present, can be operated in a similar manner to prevent undesired contact of the molten material with the hearth wall.

取決於特定方法或裝置200之使用要求或偏好,可在加熱熔化爐床220、霧化爐床270及一或多個額外爐床(若存在)上之材料時精煉及/或均質化該材料。舉例而言,在精煉熔化材料中,熔化材料中之高密度固體夾雜物及其他固體污染物可下沉至特定爐床中之熔化材料之底部且變得挾帶於爐床壁上之凝殼中。某些低密度固體夾雜物或其他固體污染物可漂浮於特定爐床中之熔化材料之表面上且藉由相關聯之熱源蒸發。其他低密度固體夾雜物或其他固體污染物可係具平衡浮力的並稍微低於熔化材料之表面而懸浮,且溶解於爐床中之熔化材料中。以此方式,精煉熔化材料260,此乃因固體夾雜物及其他固體污染物自熔化材料260移除或溶解於熔化材料260中。 Depending on the use requirements or preferences of a particular method or device 200, the material can be refined and / or homogenized while heating the material on the melting hearth 220, the atomizing hearth 270, and one or more additional hearths (if present) . For example, in refining molten material, high-density solid inclusions and other solid contaminants in the molten material can sink to the bottom of the molten material in a specific hearth and become entrained on the hearth wall in. Certain low-density solid inclusions or other solid contaminants can float on the surface of the molten material in a particular hearth and evaporate by an associated heat source. Other low-density solid inclusions or other solid contaminants can be suspended with equilibrium buoyancy and slightly below the surface of the molten material, and dissolved in the molten material in the hearth. In this manner, the molten material 260 is refined because solid inclusions and other solid contaminants are removed from or dissolved in the molten material 260.

亦參考圖4,根據所圖解說明之非限制性實施例,至少一個額外爐床292定位於熔化爐床220與霧化爐床270之間。熔化爐床220上之熔化材料260之至少一部分在傳遞至霧化爐床270中之前傳遞穿過一或多個額外爐床292。在某些非限制性實施例中,額外爐床292可用於以下 操作中之至少一者:精煉熔化材料260及均質化熔化材料260。「精煉」及「均質化」係技術術語且將被金屬粉末材料製造領域之一般技術者容易地理解。一般而言,與爐床組件有關,精煉可涉及移除、溶解或捕獲來自爐床中之熔化材料之雜質或不合意成分及防止雜質或不合意成分向下游前進。均質化可涉及混合或摻合熔化材料使得該材料具有較均勻組合物。根據某些非限制性實施例,一或多個額外爐床292與熔化爐床220及霧化爐床270串聯定位以提供呈大體直線或呈選自大體鋸齒形路徑、大體L形路徑及大體C形路徑之替代形狀的熔化材料260之流動路徑。根據某些非限制性實施例,額外熱源(未展示)與額外爐床292中之一或多者相關聯。根據某些非限制性實施例,額外熱源包含選自以下各項之一或多個加熱器件:電漿火炬、電子束產生器、產生電子之另一加熱器件、雷射、電弧器件及感應線圈。 Referring also to FIG. 4, according to the illustrated non-limiting embodiment, at least one additional hearth 292 is positioned between the melting hearth 220 and the atomizing hearth 270. At least a portion of the molten material 260 on the melting hearth 220 is passed through one or more additional hearths 292 before being transferred into the atomizing hearth 270. In certain non-limiting embodiments, the additional hearth 292 may be used in the following At least one of the operations: refining the molten material 260 and homogenizing the molten material 260. "Refining" and "homogenization" are technical terms and will be easily understood by those skilled in the art of metal powder material manufacturing. Generally speaking, in connection with hearth components, refining may involve removing, dissolving, or capturing impurities or undesired components from the molten material in the hearth and preventing the impurities or undesired components from proceeding downstream. Homogenization may involve mixing or blending the molten material so that the material has a more uniform composition. According to certain non-limiting embodiments, one or more additional hearths 292 are positioned in series with the melting hearth 220 and the atomizing hearth 270 to provide a substantially straight line or a path selected from a generally zigzag path, a generally L-shaped path, and a substantially A C-shaped path is an alternative shaped flow path of the molten material 260. According to certain non-limiting embodiments, an additional heat source (not shown) is associated with one or more of the additional hearths 292. According to certain non-limiting embodiments, the additional heat source includes one or more heating devices selected from the group consisting of a plasma torch, an electron beam generator, another heating device that generates electrons, a laser, an arc device, and an induction coil .

根據某些非限制性實施例,第二熱源300經調適以加熱霧化爐床270中之熔化材料260。根據某些非限制性實施例,第二熱源300包含選自以下各項之至少一個熱源:電漿火炬、電子槍、產生電子之加熱器件、雷射、電弧及感應線圈。第二熱源300經定位以將霧化爐床270中之熔化材料之頂部表面加熱至與該材料之熔化溫度(液相線)至少同樣大之溫度。根據某些非限制性實施例,第二熱源300可定位於霧化爐床270以上約100mm至約250mm處。根據某些非限制性實施例,第二熱源300包括電漿火炬,該電漿火炬相對於霧化爐床270上之熔化材料之頂部表面定位於一高度處使得熱電漿之羽狀部之邊緣適合地加熱該材料。根據某些非限制性實施例,第二熱源300之功率位準、相對於霧化爐床270之位置及其他參數經選擇以使霧化爐床270上之材料過熱至該材料之液相線以上約50℃至該材料之液相線以上約400℃之溫度範圍。根據其他實施例,第二熱源300之功率位準、位置及其他參數經最佳化以使霧化爐床270上之材料過熱至該材料之液相線以上約 100℃至該材料之該液相線以上約200℃之溫度範圍。根據其他實施例,第二熱源300之功率位準、位置及其他參數經最佳化以使材料過熱至超過液相線任何適合度數之溫度,只要第二熱源300不使該材料蒸發及/或使該熔化材料之化學性質以非所要方式變化即可。 According to certain non-limiting embodiments, the second heat source 300 is adapted to heat the molten material 260 in the atomizing hearth 270. According to certain non-limiting embodiments, the second heat source 300 includes at least one heat source selected from the group consisting of a plasma torch, an electron gun, an electron generating heating device, a laser, an arc, and an induction coil. The second heat source 300 is positioned to heat the top surface of the molten material in the atomizing hearth 270 to a temperature at least as great as the melting temperature (liquidus) of the material. According to certain non-limiting embodiments, the second heat source 300 may be positioned at about 100 mm to about 250 mm above the atomizing hearth 270. According to certain non-limiting embodiments, the second heat source 300 includes a plasma torch positioned at a height relative to the top surface of the molten material on the atomizing hearth 270 such that the edges of the plume of the thermoplasma The material is suitably heated. According to certain non-limiting embodiments, the power level of the second heat source 300, its position relative to the atomizing hearth 270, and other parameters are selected to overheat the material on the atomizing hearth 270 to the liquidus line of the material A temperature range above about 50 ° C to about 400 ° C above the liquidus of the material. According to other embodiments, the power level, position, and other parameters of the second heat source 300 are optimized to overheat the material on the atomizing hearth 270 to about the liquidus line of the material. A temperature range from 100 ° C to about 200 ° C above the liquidus of the material. According to other embodiments, the power level, location, and other parameters of the second heat source 300 are optimized to overheat the material to a temperature above any suitable degree of the liquidus, as long as the second heat source 300 does not vaporize the material and / or The chemical properties of the molten material may be changed in an undesired manner.

根據某些非限制性實施例,霧化裝置310包含經調適以形成熔化材料260之小滴噴霧之霧化噴嘴,且傳送單元320在霧化裝置310上游。舉例而言,傳送單元320可將熔化材料直接地傳遞至霧化噴嘴。傳送單元320耦合至霧化爐床270及霧化裝置310。第二熱源300經設計以使流動至傳送單元320中之熔化材料260保持處於熔化狀態中,且傳送單元320經調適以將熔化材料260之至少一部分以熔化狀態自霧化爐床270傳遞至霧化裝置310。雖然在所圖解說明之裝置200中僅包含單個傳送單元與單個霧化裝置之組合,但預期,包含多個霧化裝置(諸如多個霧化噴嘴)之實施例可係有利的。舉例而言,在採用在霧化爐床270下游之多個傳送單元320及一或多個霧化噴嘴或其他霧化裝置310之裝置中,可增加製程速率且可減少材料製造成本。 According to certain non-limiting embodiments, the atomizing device 310 includes an atomizing nozzle adapted to form a droplet spray of the molten material 260, and the transfer unit 320 is upstream of the atomizing device 310. For example, the transfer unit 320 may directly transfer the molten material to the atomizing nozzle. The transfer unit 320 is coupled to the atomizing hearth 270 and the atomizing device 310. The second heat source 300 is designed to keep the molten material 260 flowing into the transfer unit 320 in a molten state, and the transfer unit 320 is adapted to transfer at least a portion of the molten material 260 from the atomizing hearth 270 to the mist in a molten state.化 装置 310。 The device 310. Although only a combination of a single transfer unit and a single atomizing device is included in the illustrated device 200, it is contemplated that embodiments including multiple atomizing devices, such as multiple atomizing nozzles, may be advantageous. For example, in a device employing multiple transfer units 320 and one or more atomizing nozzles or other atomizing devices 310 downstream of the atomizing hearth 270, the process rate can be increased and material manufacturing costs can be reduced.

參考圖5,根據所圖解說明之非限制性實施例,傳送單元320係冷感應導引件(CIG)。圖6圖解說明根據本發明之另一非限制性實施例之裝置200’。裝置200’之傳送單元320包含感應導引件382,該感應導引件視情況包含除CIG 388之外的傾注凹槽384及分段感應模具386。在裝置200’之所圖解說明之非限制性實施例中,額外熱源390與傾注凹槽384及分段感應模具386相關聯。 Referring to FIG. 5, according to the illustrated non-limiting embodiment, the transfer unit 320 is a cold induction guide (CIG). Figure 6 illustrates a device 200 'according to another non-limiting embodiment of the invention. The transfer unit 320 of the device 200 'includes an induction guide 382, which optionally includes a pouring groove 384 other than CIG 388 and a segmented induction mold 386. In the illustrated non-limiting embodiment of the device 200 ', an additional heat source 390 is associated with the pouring groove 384 and the segmented induction mold 386.

傳送單元320藉由保護熔化材料260免受外部氛圍影響而維持在熔化爐床220中製造且自霧化爐床270傳遞至霧化裝置310之熔化材料260之純度。傳送單元亦可經構造以保護熔化材料免受可由於使用習用霧化噴嘴而導致之氧化物之污染。傳送單元320亦可用於計量熔化材料260自霧化爐床270至霧化裝置310之流動,如在下文中進一步闡 釋。一般技術者將在考量本說明書之後旋即能夠提供能夠在霧化爐床與霧化裝置之間可控制地傳送熔化材料260(經維持處於熔化狀態中)之傳送單元及相關聯之裝備之各種可能替代設計,如在本發明裝置及方法之實施例中所採用。可併入至本發明之方法及裝置中之所有此等傳送單元設計囊括於本發明內。 The transfer unit 320 maintains the purity of the molten material 260 manufactured in the melting hearth 220 and transferred from the atomizing hearth 270 to the atomizing device 310 by protecting the molten material 260 from the external atmosphere. The transfer unit may also be configured to protect the molten material from oxide contamination that may result from the use of conventional atomizing nozzles. The transfer unit 320 can also be used to measure the flow of the molten material 260 from the atomizing hearth 270 to the atomizing device 310, as explained further below. release. After considering this manual, a person of ordinary skill will be able to provide various possibilities of a transfer unit and associated equipment capable of controllingly transferring the molten material 260 (maintained in a molten state) between the atomizing hearth and the atomizing device. Alternative designs, as used in embodiments of the apparatus and method of the present invention. All such transfer unit designs that can be incorporated into the methods and devices of the present invention are encompassed within the present invention.

根據某些非限制性實施例,傳送單元320包含毗鄰霧化爐床270之入口330及毗鄰霧化裝置310之出口340,且一或多個導電線圈350定位於入口330處。電流源(未展示)與導電線圈350選擇性地電連接以加熱熔化材料260且起始熔化材料260之至少一部分至霧化裝置310之流動。根據某些非限制性實施例,導電線圈350經調適以將熔化材料260加熱至在該材料之液相線高達該液相線以上500℃之範圍內之溫度。 According to certain non-limiting embodiments, the transfer unit 320 includes an inlet 330 adjacent to the atomizing hearth 270 and an outlet 340 adjacent to the atomizing device 310, and one or more conductive coils 350 are positioned at the inlet 330. A current source (not shown) is selectively electrically connected to the conductive coil 350 to heat the molten material 260 and initiate flow of at least a portion of the molten material 260 to the atomizing device 310. According to certain non-limiting embodiments, the conductive coil 350 is adapted to heat the molten material 260 to a temperature within a range of the material's liquidus up to 500 ° C above the liquidus.

根據某些非限制性實施例,傳送單元320包含用於接納熔化材料260之熔體容器360,且傳送單元320之傳送區域經組態以包含經構造以自熔體容器360接納熔化材料260之通路370。通路370之壁由若干個液冷式金屬分段界定。根據某些非限制性實施例,傳送單元320包含定位於出口340處之一或多個導電線圈380。線圈380藉由使適合冷卻劑(諸如水或另一導熱流體)循環穿過與出口340相關聯之導管而冷卻。熔化材料260之一部分接觸傳送單元320之通路370之經冷卻壁且可凝固以形成凝殼,該凝殼將該壁與熔化材料260之剩餘部分的接觸隔離。爐床壁之冷卻及凝殼之形成保證熔體不被形成傳送單元320之內壁之材料污染。 According to certain non-limiting embodiments, the transfer unit 320 includes a melt container 360 for receiving the melted material 260, and the transfer area of the transfer unit 320 is configured to include a melt container 360 configured to receive the melted material 260 from the melt container 360. Pathway 370. The wall of the passage 370 is delimited by several liquid-cooled metal segments. According to certain non-limiting embodiments, the transfer unit 320 includes one or more conductive coils 380 positioned at the outlet 340. The coil 380 is cooled by circulating a suitable coolant, such as water or another thermally conductive fluid, through a conduit associated with the outlet 340. A portion of the molten material 260 contacts the cooled wall of the passage 370 of the transfer unit 320 and may solidify to form a coagulation shell that isolates the wall from contact with the remaining portion of the molten material 260. The cooling of the hearth wall and the formation of the condensation shell ensure that the melt is not contaminated by the materials forming the inner wall of the transfer unit 320.

在熔化材料260正自傳送單元320之熔體容器360流動穿過通路370之時間期間,電流以足以感應地加熱熔化材料260且以熔化形式維持熔化材料260之強度傳遞穿過導電線圈380。線圈380充當感應加熱線圈且可調整地加熱傳遞穿過傳送單元320之出口340之熔化材料260。根據某些非限制性實施例,導電線圈380經調適以將熔化材料 260加熱至在該材料之液相線以上50℃高達該液相線以上400℃之範圍內之溫度。在其他實施例中,導電線圈380經調適以將熔化材料260加熱至在該材料之液相線溫度高達該液相線以上500℃之範圍內之溫度。根據某些其他非限制性實施例,導電線圈380經調適以選擇性地防止熔化材料260至霧化裝置310之通過。 During the time that the molten material 260 is flowing from the melt container 360 of the transfer unit 320 through the passage 370, an electric current is transmitted through the conductive coil 380 with an intensity sufficient to inductively heat the molten material 260 and maintain the strength of the molten material 260 in a molten form. The coil 380 acts as an induction heating coil and adjustably heats the molten material 260 passed through the outlet 340 of the transfer unit 320. According to certain non-limiting embodiments, the conductive coil 380 is adapted to transfer molten material 260 is heated to a temperature ranging from 50 ° C above the liquidus of the material to 400 ° C above the liquidus. In other embodiments, the conductive coil 380 is adapted to heat the molten material 260 to a temperature within the range of the liquidus temperature of the material up to 500 ° C above the liquidus. According to certain other non-limiting embodiments, the conductive coil 380 is adapted to selectively prevent the passage of the molten material 260 to the atomizing device 310.

根據某些非限制性實施例,熔化材料260之至少一部分連續地傳遞至霧化裝置310。在此等非限制性實施例中,熔化材料260自熔化爐床220連續地流動至霧化爐床270,穿過傳送單元320,離開傳送單元320之出口340,且傳遞至霧化裝置310中。在某些非限制性實施例中,熔化材料260至霧化爐床270之流動可係不連續的(亦即,具有開始及停止)。在各種非限制性實施例中,熔化材料260自熔化爐床220流動穿過至少一個額外爐床,且流動至霧化爐床270,穿過傳送單元320,離開傳送單元320之出口340,且傳遞至霧化裝置310中。根據某些非限制性實施例,霧化裝置310包括包含會聚於一點處且形成熔化材料260之小滴噴霧之複數個電漿霧化火炬之霧化噴嘴。根據其他非限制性實施例,霧化噴嘴包含經相等地分佈以界定彼此之間的約120°之角度之三個電漿火炬。在此等實施例中,電漿火炬中之每一者亦可經定位以關於霧化噴嘴之軸形成30°之角度。根據某些非限制性實施例,霧化裝置310包含霧化噴嘴,該霧化噴嘴包含由在20kW至40kW之功率範圍內操作之D.C.槍產生之電漿噴流。根據某些非限制性實施例,霧化裝置310包括霧化噴嘴,該霧化噴嘴形成將熔化材料260分散以形成小滴噴霧之至少一個氣體噴流。 According to certain non-limiting embodiments, at least a portion of the molten material 260 is continuously transferred to the atomizing device 310. In these non-limiting embodiments, the molten material 260 flows continuously from the melting hearth 220 to the atomizing hearth 270, passes through the transfer unit 320, leaves the outlet 340 of the transfer unit 320, and is transferred to the atomizing device 310 . In certain non-limiting embodiments, the flow of molten material 260 to the atomizing hearth 270 may be discontinuous ( ie , have a start and stop). In various non-limiting embodiments, the molten material 260 flows from the melting hearth 220 through at least one additional hearth, and flows to the atomizing hearth 270, passes through the transfer unit 320, exits the exit 340 of the transfer unit 320, and Transfer to the atomizing device 310. According to certain non-limiting embodiments, the atomizing device 310 includes an atomizing nozzle including a plurality of plasma atomizing torches that converge at one point and form a spray of droplets of the molten material 260. According to other non-limiting embodiments, the atomizing nozzle includes three plasma torches that are equally distributed to define an angle of about 120 ° between each other. In these embodiments, each of the plasma torches may also be positioned to form an angle of 30 ° with respect to the axis of the atomizing nozzle. According to certain non-limiting embodiments, the atomizing device 310 includes an atomizing nozzle including a plasma jet generated by a DC gun operating in a power range of 20 kW to 40 kW. According to certain non-limiting embodiments, the atomizing device 310 includes an atomizing nozzle that forms at least one gas jet that disperses the molten material 260 to form a droplet spray.

所得小滴噴霧引導至收集器400中。根據某些非限制性實施例,收集器400相對於霧化噴嘴或其他霧化裝置310之位置係可調整的。霧化點與收集器400之間的距離可控制沈積於收集器400中之材料中之固體分數。因此,當沈積材料時,可調整收集器400相對於霧化噴嘴或 其他霧化裝置310之位置,使得適合地維持收集器400中之所收集材料之表面與該霧化噴嘴或其他霧化裝置310之間的距離。根據某些非限制性實施例,收集器400係選自室、模具及旋轉心軸。舉例而言,在某些非限制性實施例中,當將材料沈積至收集器400中時,收集器400可旋轉以較佳地確保小滴均勻地沈積於收集器400之表面上方。 The resulting droplet spray is directed into a collector 400. According to certain non-limiting embodiments, the position of the collector 400 relative to the atomizing nozzle or other atomizing device 310 is adjustable. The distance between the atomization point and the collector 400 can control the solid fraction in the material deposited in the collector 400. Therefore, when the material is deposited, the collector 400 may be adjusted relative to the atomizing nozzle or The position of the other atomizing device 310 is such that the distance between the surface of the collected material in the collector 400 and the atomizing nozzle or other atomizing device 310 is appropriately maintained. According to certain non-limiting embodiments, the collector 400 is selected from a chamber, a mold, and a rotating mandrel. For example, in certain non-limiting embodiments, when material is deposited into the collector 400, the collector 400 may be rotated to better ensure that droplets are evenly deposited over the surface of the collector 400.

雖然對裝置200之前述說明將熔化爐床220、霧化爐床270、霧化裝置310、傳送單元320及收集器400稱為串聯地相關聯之裝置之相對離散單元或組件,但將理解,裝置200不必以彼方式構造。並非係由離散、可斷開連接之熔化(及/或熔化/精煉)單元、傳送單元、霧化單元及收集器單元構造,根據本發明之裝置(諸如裝置200)可併入提供彼等單元中之每一者之基本特徵、但不能夠解構成離散及個別可操作裝置或單元之元件或區域。因此,隨附申請專利範圍中對熔化爐床、霧化爐床、霧化裝置、傳送單元及收集器之提及不應被解釋為意味著此等不同單元可在不損失可操作性之情況下與所主張之裝置取消關聯。 Although the foregoing description of the device 200 refers to the melting hearth 220, the atomizing hearth 270, the atomizing device 310, the transfer unit 320, and the collector 400 as relatively discrete units or components of serially associated devices, it will be understood that The device 200 need not be constructed in another way. Rather than being constructed of discrete, disconnectable melting (and / or melting / refining) units, transfer units, atomizing units, and collector units, devices (such as device 200) according to the present invention may be incorporated to provide them The basic characteristics of each of them, but not the elements or areas that can be decomposed into discrete and individually operable devices or units. Therefore, references to melting hearths, atomizing hearths, atomizing devices, transfer units and collectors in the scope of the accompanying patent application should not be construed to mean that these different units can be used without loss of operability Disassociate from the claimed device.

在某些非限制性實施例中,本文中所揭示的根據方法之各種非限制性實施例或藉由裝置之各種非限制性實施例而製造之金屬粉末材料包括10微米至150微米之平均粒子大小。在某些非限制性實施例中,本文中所揭示的根據方法之各種非限制性實施例或藉由裝置之各種非限制性實施例而製造之金屬粉末材料具有40微米至120微米之粒子大小分佈(亦即,實質上所有粉末粒子之粒子大小皆在40微米至120微米之範圍內)。具有40微米至120微米之粒子大小分佈之金屬粉末材料在電子束增材製造應用中係尤其有用的。在某些非限制性實施例中,本文中所揭示的根據方法之各種非限制性實施例或藉由裝置之各種非限制性實施例而製造之金屬粉末材料具有15微米至45微米之粒子大小分佈(亦即,實質上所有粉末粒子之粒子大小皆在15微米至45微 米之範圍內)。具有15微米至45微米之粒子大小分佈之金屬粉末材料在雷射增材製造應用中係尤其有用的。根據某些非限制性實施例,金屬粉末材料包括球形粒子。在某些其他非限制性實施例中,金屬粉末材料之至少一部分具有其他幾何形式,包含(但不限於)薄片、碎屑、針狀物及其組合。 In certain non-limiting embodiments, the various non-limiting embodiments of the method disclosed herein or the metal powder material manufactured by the various non-limiting embodiments of the device include an average particle of 10 microns to 150 microns size. In certain non-limiting embodiments, the various non-limiting embodiments of the method disclosed herein or the metal powder materials manufactured by the various non-limiting embodiments of the device have a particle size of 40 microns to 120 microns Distribution ( ie , the particle size of virtually all powder particles is in the range of 40 microns to 120 microns). Metal powder materials with a particle size distribution of 40 microns to 120 microns are particularly useful in electron beam additive manufacturing applications. In certain non-limiting embodiments, the various non-limiting embodiments of the method disclosed herein or the metal powder material manufactured by the various non-limiting embodiments of the device have a particle size of 15 to 45 microns Distribution ( ie , the particle size of virtually all powder particles is in the range of 15 microns to 45 microns). Metal powder materials with a particle size distribution of 15 to 45 microns are particularly useful in laser additive manufacturing applications. According to certain non-limiting embodiments, the metal powder material includes spherical particles. In certain other non-limiting embodiments, at least a portion of the metal powder material has other geometric forms including, but not limited to, flakes, chips, needles, and combinations thereof.

根據某些非限制性實施例,金屬粉末材料具有無法藉由習用鑄錠冶金(例如,熔化及鑄造技術)而容易地製造之組合物。亦即,本文中已闡述之方法可能夠利用將係極易於離析的或者具有防止其藉由習用鑄錠冶金而鑄造之性質之組合物製造金屬粉末材料。根據某些非限制性實施例,基於總粉末材料重量,金屬粉末材料之硼含量大於10ppm。在習用鑄錠熔化及鑄造中,10ppm以上之硼位準可製造有害硼化物。相比而言,本文中所闡述之方法之各種非限制性實施例准許在不展現不可接受之有害相位或性質之情況下製造具有大於10ppm之硼含量之金屬粉末材料。此擴展可經製造之金屬粉末材料之組合物之可能性。 According to certain non-limiting embodiments, the metal powder material has a composition that cannot be easily manufactured by conventional ingot metallurgy ( eg , melting and casting techniques). That is, the methods that have been described herein may be able to make metal powder materials using compositions that are highly segregatable or have properties that prevent them from being cast by conventional ingot metallurgy. According to certain non-limiting embodiments, the boron content of the metal powder material is greater than 10 ppm based on the total powder material weight. In the melting and casting of conventional ingots, boron levels above 10 ppm can produce harmful borides. In contrast, various non-limiting embodiments of the methods set forth herein permit the manufacture of metal powder materials with boron content greater than 10 ppm without exhibiting unacceptable harmful phases or properties. This expands the possibilities of a composition of metal powder materials that can be manufactured.

根據本發明之方法及裝置製成之金屬粉末材料可具有使用本發明方法及裝置適合地製成之任何組合物。根據某些非限制性實施例,金屬粉末材料具有以下各項中之一者之化學組合物:商業純鈦、鈦合金(例如,Ti-6Al-4V合金,其具有UNS R56400中所規定之組合物)及鈦鋁合金(例如,Ti-48Al-2Nb-2Cr合金)。根據另一非限制性實施例,金屬粉末材料具有按重量包括約4%之釩、約6%之鋁且其餘為鈦及雜質之化學組合物材料。(除非另有指示,否則本文中所有百分比係重量百分比。)根據再一非限制性實施例,金屬粉末材料具有以下各項中之一者之化學組合物:商業純鎳、鎳合金(例如,合金718,其具有UNS N07718中所規定之組合物)、商業純鋯、鋯合金(例如,Zr 704合金,其具有UNS R60704中所規定之組合物)、商業純鈮、鈮合金( ,ATI Nb1ZrTM合金(類型3及類型4),其具有UNS R04261中所規定之組合物)、商業純鉭、鉭合金(例如,鉭-10%鎢合金,其具有UNS 20255中所規定之組合物)、商業純鎢及鎢合金(例如,90-7-3鎢合金)。將理解,本文中所闡述之方法及裝置並不限於製造具有前述化學組合物之金屬粉末材料。而是,可選擇起始材料以便提供具有所要化學組合物及其他所要性質之金屬粉末材料。 Metal powder materials made according to the methods and devices of the present invention may have any composition suitably made using the methods and devices of the present invention. According to certain non-limiting embodiments, the metal powder material has a chemical composition of one of the following: commercial pure titanium, titanium alloys ( e.g. , Ti-6Al-4V alloys having a combination specified in UNS R56400 Materials) and titanium aluminum alloys ( for example , Ti-48Al-2Nb-2Cr alloy). According to another non-limiting embodiment, the metal powder material has a chemical composition material that includes about 4% vanadium, about 6% aluminum, and the remainder titanium and impurities by weight. (Unless otherwise indicated, all percentages herein are weight percentages.) According to yet another non-limiting embodiment, the metal powder material has a chemical composition of one of the following: commercial pure nickel, nickel alloys ( e.g. , alloy 718, having a composition of UNS N07718 as stipulated), commercially pure zirconium, zirconium alloy (e.g., Zr 704 alloy, having a composition UNS R60704 as stipulated), commercially pure niobium, niobium alloys (e.g., ATI Nb1Zr TM alloy (type 3 and type 4), which has the composition specified in UNS R04261, commercial pure tantalum, tantalum alloy ( e.g. , tantalum-10% tungsten alloy, which has the composition specified in UNS 20255 ), Commercial pure tungsten and tungsten alloys ( for example , 90-7-3 tungsten alloys). It will be understood that the methods and apparatus described herein are not limited to the manufacture of metal powder materials with the foregoing chemical compositions. Instead, the starting materials can be selected to provide a metal powder material having the desired chemical composition and other desired properties.

可藉由用於由冶金粉末形成物件之熱均壓技術及其他適合習用技術而將根據本發明方法及/或使用本發明裝置製成之金屬粉末材料製成金屬(例如,金屬及金屬合金)物件。一般技術者將在考量本發明之後旋即容易地明瞭此等其他適合技術。 Metals ( e.g. , metals and metal alloys) made from metal powder materials made according to the method of the present invention and / or using the apparatus of the present invention can be made by means of hot equalization techniques for forming objects from metallurgical powders and other suitable conventional techniques. object. Those of ordinary skill will readily understand these other suitable technologies after considering the present invention.

雖然前述說明已必要地提供僅有限數目項實施例,但相關技術領域之一般技術者將瞭解,可由熟習此項技術者對已在本文中闡述並圖解說明之實例之方法及裝置及其他細節作出各種改變,且所有此等修改將保持處於如在本文中且在隨附申請專利範圍中所表達之本發明之原則及範疇內。因此,應理解,本發明並不限於本文中所揭示或併入之特定實施例,而是意欲涵蓋在如由申請專利範圍所界定之本發明之原則及範疇內之修改。熟習此項技術者亦將瞭解,可在不背離本發明之寬廣發明性概念之情況下對以上實施例作出改變。 Although the foregoing description has necessarily provided only a limited number of embodiments, those of ordinary skill in the relevant art will understand that methods and apparatus and other details of the examples that have been illustrated and illustrated herein can be made by those skilled in the art. Various changes, and all such modifications will remain within the principles and scope of the invention as expressed herein and within the scope of the accompanying patent applications. Therefore, it should be understood that the invention is not limited to the specific embodiments disclosed or incorporated herein, but is intended to cover modifications within the principles and scope of the invention as defined by the scope of the patent application. Those skilled in the art will also understand that changes can be made to the above embodiments without departing from the broad inventive concepts of the invention.

Claims (44)

一種製造金屬粉末材料之方法,該方法包括:將進給材料供應至熔化爐床;利用第一熱源熔化該熔化爐床中之該等進給材料,藉此製造熔化材料;將該熔化材料之至少一部分自該熔化爐床直接或間接地傳遞至霧化爐床;利用第二熱源加熱該霧化爐床中之該熔化材料;將該熔化材料之至少一部分以熔化狀態自該霧化爐床傳遞穿過冷感應導引件至霧化噴嘴,其中該冷感應導引件包括毗鄰該霧化爐床之入口及毗鄰該霧化噴嘴之出口,且其中導電線圈定位於該入口處且經調適以加熱該熔化材料以起始將該熔化材料之該至少一部分自該霧化爐床傳遞至該霧化噴嘴;及利用該霧化噴嘴形成該熔化材料之小滴噴霧,隨後將該小滴噴霧之至少一部分凝固以提供金屬粉末材料。A method for manufacturing a metal powder material, the method comprising: supplying a feed material to a melting hearth; melting the feed material in the melting hearth with a first heat source, thereby manufacturing a molten material; At least a portion is directly or indirectly transferred from the melting hearth to the atomizing hearth; a second heat source is used to heat the melting material in the atomizing hearth; at least a part of the melting material is from the atomizing hearth in a molten state Passed through the cold induction guide to the atomizing nozzle, wherein the cold induction guide includes an inlet adjacent to the atomizing hearth and an outlet adjacent to the atomizing nozzle, and wherein the conductive coil is positioned at the inlet and adjusted Heating the molten material to initiate transfer of the at least a portion of the molten material from the atomizing hearth to the atomizing nozzle; and using the atomizing nozzle to form a droplet spray of the molten material, followed by spraying the droplet At least a portion of it is solidified to provide a metal powder material. 如請求項1之方法,其中該熔化材料之該至少一部分在進入該霧化爐床之前自該熔化爐床傳遞穿過至少一個額外爐床。The method of claim 1, wherein the at least a portion of the molten material is passed from the melting hearth through the at least one additional hearth before entering the atomizing hearth. 如請求項1之方法,其中該第一熱源及該第二熱源各自獨立地包括以下各項中之至少一者:電漿火炬、電子束產生器、產生電子之加熱器件、雷射、電弧器件及感應線圈。The method of claim 1, wherein the first heat source and the second heat source each independently include at least one of the following: a plasma torch, an electron beam generator, a heating device that generates electrons, a laser, and an arc device And induction coils. 如請求項1之方法,其中在該熔化材料傳遞至該霧化噴嘴中之前對該熔化材料進行以下操作中之至少一者:精煉及均質化。The method of claim 1, wherein before the molten material is transferred into the atomizing nozzle, at least one of the following operations is performed on the molten material: refining and homogenization. 如請求項1之方法,其中該導電線圈經調適以在該材料之液相線至該液相線以上500℃之範圍內加熱該熔化材料。The method of claim 1, wherein the conductive coil is adapted to heat the molten material in a range from a liquidus of the material to 500 ° C above the liquidus. 如請求項1之方法,其中該冷感應導引件包括毗鄰該霧化爐床之入口及毗鄰該霧化噴嘴之出口,且其中導電線圈定位於該出口處且經調適以可調整地加熱該熔化材料。The method of claim 1, wherein the cold induction guide includes an inlet adjacent to the atomizing hearth and an outlet adjacent to the atomizing nozzle, and wherein the conductive coil is positioned at the outlet and is adapted to adjustably heat the Melt material. 如請求項6之方法,其中該導電線圈經調適以在該材料之液相線至該液相線以上500℃之範圍內加熱該熔化材料。The method of claim 6, wherein the conductive coil is adapted to heat the molten material in a range from a liquidus of the material to 500 ° C above the liquidus. 如請求項1之方法,其中該冷感應導引件包括毗鄰該霧化爐床之入口及毗鄰該霧化噴嘴之出口,其中導電線圈定位於該出口處且經調適以停止該熔化材料至該霧化噴嘴之通過。The method of claim 1, wherein the cold induction guide comprises an inlet adjacent to the atomizing hearth and an outlet adjacent to the atomizing nozzle, wherein a conductive coil is positioned at the outlet and adapted to stop the molten material to the The passage of the atomizing nozzle. 如請求項1之方法,其中該霧化噴嘴包含形成會聚於一點處且使該小滴噴霧由該熔化材料形成之電漿噴流之複數個電漿霧化火炬。The method of claim 1, wherein the atomizing nozzle comprises a plurality of plasma atomizing torches that form a plasma jet that converges at one point and sprays the droplets formed of the molten material. 如請求項1之方法,其中該霧化噴嘴形成將該熔化材料分散成該小滴噴霧之至少一個氣體噴流。The method of claim 1, wherein the atomizing nozzle forms at least one gas jet that disperses the molten material into the droplet spray. 如請求項1之方法,其中該熔化材料之該至少一部分連續地傳遞至該霧化噴嘴。The method of claim 1, wherein the at least a portion of the molten material is continuously transferred to the atomizing nozzle. 如請求項1之方法,其中該金屬粉末材料之組合物係選自商業純鈦、鈦合金、鈦鋁合金、商業純鎳、鎳合金、商業純鋯、鋯合金、商業純鈮、鈮合金、商業純鉭、鉭合金、商業純鎢及鎢合金。The method of claim 1, wherein the composition of the metal powder material is selected from commercial pure titanium, titanium alloy, titanium aluminum alloy, commercial pure nickel, nickel alloy, commercial pure zirconium, zirconium alloy, commercial pure niobium, niobium alloy, Commercial pure tantalum, tantalum alloy, commercial pure tungsten and tungsten alloy. 如請求項1之方法,其中該金屬粉末材料之組合物包括大於10ppm之硼。The method of claim 1, wherein the composition of the metal powder material comprises more than 10 ppm of boron. 如請求項1之方法,其中該金屬粉末材料之組合物按重量包括約4%之釩、約6%之鋁且其餘為鈦及雜質。The method of claim 1, wherein the composition of the metal powder material comprises about 4% vanadium, about 6% aluminum by weight and the balance is titanium and impurities. 如請求項1之方法,其中該金屬粉末材料之平均粒子大小在10微米至150微米之範圍內。The method of claim 1, wherein the average particle size of the metal powder material is in a range of 10 to 150 microns. 如請求項1之方法,其中該金屬粉末材料之粒子大小分佈係40微米至120微米。The method of claim 1, wherein the metal powder material has a particle size distribution of 40 to 120 microns. 如請求項1之方法,其中該金屬粉末材料之粒子大小分佈係15微米至45微米。The method of claim 1, wherein the metal powder material has a particle size distribution of 15 to 45 microns. 一種金屬粉末材料,其係藉由請求項1之方法製造,其中該金屬粉末材料之組合物按重量包括約4%之釩、約6%之鋁且其餘為鈦及雜質。A metal powder material manufactured by the method of claim 1, wherein the composition of the metal powder material includes about 4% of vanadium, about 6% of aluminum by weight, and the balance is titanium and impurities. 如請求項18之金屬粉末材料,其中該金屬粉末材料之組合物係選自商業純鈦、鈦合金、鈦鋁合金、商業純鎳、鎳合金、商業純鋯、鋯合金、商業純鈮、鈮合金、商業純鉭、鉭合金、商業純鎢及鎢合金。The metal powder material of claim 18, wherein the composition of the metal powder material is selected from commercial pure titanium, titanium alloy, titanium aluminum alloy, commercial pure nickel, nickel alloy, commercial pure zirconium, zirconium alloy, commercial pure niobium, niobium Alloy, commercial pure tantalum, tantalum alloy, commercial pure tungsten and tungsten alloy. 如請求項18之金屬粉末材料,其中該金屬粉末材料之平均粒子大小係10微米至150微米。The metal powder material of claim 18, wherein the metal powder material has an average particle size of 10 to 150 microns. 如請求項18之金屬粉末材料,其中該金屬粉末材料之粒子大小分佈係40微米至120微米。The metal powder material of claim 18, wherein the particle size distribution of the metal powder material is 40 micrometers to 120 micrometers. 如請求項18之金屬粉末材料,其中該金屬粉末材料之粒子大小分佈係15微米至45微米。The metal powder material of claim 18, wherein the particle size distribution of the metal powder material is 15 micrometers to 45 micrometers. 如請求項18之金屬粉末材料,其中該金屬粉末材料包括大於10ppm之硼。The metal powder material of claim 18, wherein the metal powder material includes boron greater than 10 ppm. 一種製造金屬粉末材料之裝置,該裝置包括:熔化爐床,其經調適以接納進給材料;第一熱源,其經調適以熔化該等進給材料以提供熔化材料;霧化爐床,其經安置以自該熔化爐床直接或間接地接納該熔化材料之至少一部分;第二熱源,其經調適以加熱該霧化爐床中之熔化材料;霧化噴嘴,其經調適以使小滴噴霧由該熔化材料形成;傳送單元,其耦合至該霧化爐床及該霧化噴嘴,其中該傳送單元經調適以將熔化材料以熔化狀態自該霧化爐床傳遞至該霧化噴嘴;及收集器,其經調適以接納該小滴噴霧。An apparatus for manufacturing a metal powder material, the apparatus comprising: a melting hearth adapted to receive a feed material; a first heat source adapted to melt the feed material to provide a molten material; an atomizing hearth which Arranged to receive at least a portion of the molten material directly or indirectly from the melting hearth; a second heat source adapted to heat the molten material in the atomizing hearth; an atomizing nozzle adapted to cause droplets The spray is formed by the melting material; a transfer unit coupled to the atomizing hearth and the atomizing nozzle, wherein the transferring unit is adapted to transfer the molten material from the atomizing hearth to the atomizing nozzle in a molten state; And a collector, which is adapted to receive the droplet spray. 如請求項24之裝置,其進一步包括在該熔化爐床與該霧化爐床中間且與該熔化爐床及該霧化爐床連通之至少一個額外爐床。The device of claim 24, further comprising at least one additional hearth between the melting hearth and the atomizing hearth and in communication with the melting hearth and the atomizing hearth. 如請求項25之裝置,其中該熔化爐床、該霧化爐床及該至少一個額外爐床定位在一條線上。The apparatus of claim 25, wherein the melting hearth, the atomizing hearth, and the at least one additional hearth are positioned on a line. 如請求項25之裝置,其中該熔化爐床、該霧化爐床及該至少一個額外爐床以選自鋸齒形配置、L形配置及C形配置之圖案以偏移配置定位。The device of claim 25, wherein the melting hearth, the atomizing hearth, and the at least one additional hearth are positioned in an offset configuration with a pattern selected from a sawtooth configuration, an L-shaped configuration, and a C-shaped configuration. 如請求項25之裝置,其中該熔化爐床、該霧化爐床及該至少一個額外爐床中之至少一者經調適以進行以下操作中之至少一者:精煉該熔化材料及均質化該熔化材料。The apparatus of claim 25, wherein at least one of the melting hearth, the atomizing hearth, and the at least one additional hearth is adapted to perform at least one of the following: refining the molten material and homogenizing the Melt material. 如請求項24之裝置,其中該第一熱源與該熔化爐床相關聯且該第二熱源與該霧化爐床相關聯。The apparatus of claim 24, wherein the first heat source is associated with the melting hearth and the second heat source is associated with the atomizing hearth. 如請求項29之裝置,其中該第一熱源及該第二熱源各自獨立地包括電漿火炬、電子束產生器、產生電子之加熱器件、雷射、電弧器件及感應線圈中之至少一者。The device of claim 29, wherein the first heat source and the second heat source each independently include at least one of a plasma torch, an electron beam generator, an electron generating heating device, a laser, an arc device, and an induction coil. 如請求項25之裝置,其中額外熱源與該至少一個額外爐床相關聯,且其中該額外熱源包括以下各項中之至少一者:電漿火炬、電子束產生器、產生電子之加熱器件、雷射、電弧器件及感應線圈。The device of claim 25, wherein the additional heat source is associated with the at least one additional hearth, and wherein the additional heat source includes at least one of the following: a plasma torch, an electron beam generator, a heating device that generates electrons, Laser and arc devices and induction coils. 如請求項24之裝置,其中該傳送單元包括冷感應導引件。The device of claim 24, wherein the transfer unit includes a cold induction guide. 如請求項32之裝置,其中該冷感應導引件包括毗鄰該霧化爐床之入口及毗鄰該霧化噴嘴之出口,且其中導電線圈定位於該入口處且經調適以加熱該熔化材料以起始將該熔化材料之該至少一部分傳遞至該霧化噴嘴。The device of claim 32, wherein the cold induction guide includes an inlet adjacent to the atomizing hearth and an outlet adjacent to the atomizing nozzle, and wherein a conductive coil is positioned at the inlet and adapted to heat the molten material to The at least a portion of the molten material is initially transferred to the atomizing nozzle. 如請求項33之裝置,其中該導電線圈經調適以在該材料之液相線至該液相線以上500℃之範圍內加熱該熔化材料。The device of claim 33, wherein the conductive coil is adapted to heat the molten material in a range from the liquidus of the material to 500 ° C above the liquidus. 如請求項32之裝置,其中該冷感應導引件包括毗鄰該霧化爐床之入口及毗鄰該霧化噴嘴之出口,且其中導電線圈定位於該出口處且經調適以可調整地加熱該熔化材料。The device of claim 32, wherein the cold induction guide includes an inlet adjacent to the atomizing hearth and an outlet adjacent to the atomizing nozzle, and wherein the conductive coil is positioned at the outlet and is adapted to adjustably heat the Melt material. 如請求項35之裝置,其中該導電線圈經調適以在該材料之液相線至該液相線以上500℃之範圍內加熱該熔化材料。The device of claim 35, wherein the conductive coil is adapted to heat the molten material in a range from the liquidus of the material to 500 ° C above the liquidus. 如請求項35之裝置,其中該冷感應導引件包括毗鄰該霧化爐床之入口及毗鄰該霧化噴嘴之出口,且其中導電線圈定位於該出口處且經調適以停止該熔化材料至該霧化噴嘴之通過。The device of claim 35, wherein the cold induction guide includes an inlet adjacent to the atomizing hearth and an outlet adjacent to the atomizing nozzle, and wherein the conductive coil is positioned at the outlet and adapted to stop the molten material to The atomizing nozzle passes. 如請求項24之裝置,其中該霧化噴嘴包含形成會聚於一點處且形成該熔化材料之該小滴噴霧之電漿噴流之複數個電漿霧化火炬。The device of claim 24, wherein the atomizing nozzle comprises a plurality of plasma atomizing torches that form a plasma jet of the droplet spray that converges at one point and forms the molten material. 如請求項24之裝置,其中該霧化噴嘴形成將該熔化材料分散成該小滴噴霧之至少一個氣體噴流。The device of claim 24, wherein the atomizing nozzle forms at least one gas jet that disperses the molten material into the droplet spray. 如請求項24之裝置,其中該收集器相對於該霧化噴嘴之位置係可調整的。The device of claim 24, wherein the position of the collector relative to the atomizing nozzle is adjustable. 如請求項24之裝置,其中該收集器係選自室、模具及旋轉心軸。The device of claim 24, wherein the collector is selected from the group consisting of a chamber, a mold, and a rotating mandrel. 一種製造金屬粉末材料之方法,該方法包括:將進給材料供應至熔化爐床;利用第一熱源熔化該熔化爐床中之該等進給材料,藉此製造熔化材料;將該熔化材料之至少一部分自該熔化爐床直接或間接地傳遞至霧化爐床;利用第二熱源加熱該霧化爐床中之該熔化材料;將該熔化材料之至少一部分以熔化狀態自該霧化爐床傳遞至霧化噴嘴;及利用該霧化噴嘴形成該熔化材料之小滴噴霧,隨後將該小滴噴霧之至少一部分凝固以提供金屬粉末材料,其中該金屬粉末材料之組合物包括大於10ppm之硼。A method for manufacturing a metal powder material, the method comprising: supplying a feed material to a melting hearth; melting the feed material in the melting hearth with a first heat source, thereby manufacturing a molten material; At least a portion is directly or indirectly transferred from the melting hearth to the atomizing hearth; a second heat source is used to heat the melting material in the atomizing hearth; at least a part of the melting material is from the atomizing hearth in a molten state Pass to an atomizing nozzle; and use the atomizing nozzle to form a droplet spray of the molten material, and then solidify at least a portion of the droplet spray to provide a metal powder material, wherein the composition of the metal powder material includes greater than 10 ppm of boron . 一種製造金屬粉末材料之方法,該方法包括:將進給材料供應至熔化爐床;利用第一熱源熔化該熔化爐床中之該等進給材料,藉此製造熔化材料;將該熔化材料之至少一部分自該熔化爐床直接或間接地傳遞至霧化爐床;利用第二熱源加熱該霧化爐床中之該熔化材料;將該熔化材料之至少一部分以熔化狀態自該霧化爐床傳遞至霧化噴嘴;及利用該霧化噴嘴形成該熔化材料之小滴噴霧,隨後將該小滴噴霧之至少一部分凝固以提供金屬粉末材料,其中該金屬粉末材料之組合物按重量包括約4%之釩、約6%之鋁且其餘為鈦及雜質。A method for manufacturing a metal powder material, the method comprising: supplying a feed material to a melting hearth; melting the feed material in the melting hearth with a first heat source, thereby manufacturing a molten material; At least a portion is directly or indirectly transferred from the melting hearth to the atomizing hearth; a second heat source is used to heat the melting material in the atomizing hearth; at least a part of the melting material is from the atomizing hearth in a molten state Passing to the atomizing nozzle; and using the atomizing nozzle to form a droplet spray of the molten material, and then solidifying at least a portion of the droplet spray to provide a metal powder material, wherein the composition of the metal powder material includes about 4 by weight % Of vanadium, about 6% of aluminum and the rest are titanium and impurities. 一種金屬粉末材料,其係藉由請求項1之方法製造,其中該金屬粉末材料包括大於10ppm之硼。A metal powder material manufactured by the method of claim 1, wherein the metal powder material includes boron greater than 10 ppm.
TW105108866A 2015-05-14 2016-03-22 Methods and apparatuses for producing metallic powder material TWI677387B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/712,103 US20160332232A1 (en) 2015-05-14 2015-05-14 Methods and apparatuses for producing metallic powder material
US14/712,103 2015-05-14

Publications (2)

Publication Number Publication Date
TW201703902A TW201703902A (en) 2017-02-01
TWI677387B true TWI677387B (en) 2019-11-21

Family

ID=55650718

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105108866A TWI677387B (en) 2015-05-14 2016-03-22 Methods and apparatuses for producing metallic powder material

Country Status (18)

Country Link
US (3) US20160332232A1 (en)
EP (1) EP3294482B1 (en)
JP (1) JP6883525B2 (en)
KR (1) KR102401270B1 (en)
CN (1) CN107635701B (en)
AU (1) AU2016260949B2 (en)
BR (1) BR112017024489B1 (en)
CA (1) CA2983669A1 (en)
ES (1) ES2862420T3 (en)
IL (1) IL255324B (en)
MX (1) MX2017014320A (en)
RU (1) RU2714718C2 (en)
SA (1) SA517390308B1 (en)
SG (1) SG11201708554YA (en)
TW (1) TWI677387B (en)
UA (1) UA122691C2 (en)
WO (1) WO2016182631A1 (en)
ZA (1) ZA201707460B (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
EP4324577A1 (en) 2015-12-16 2024-02-21 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
US10583492B2 (en) * 2016-12-21 2020-03-10 Carpenter Technology Corporation Titanium powder production apparatus and method
TWI618589B (en) * 2016-12-23 2018-03-21 悅城科技股份有限公司 Device and method for manufacturing material particles
JP6955354B2 (en) * 2017-03-31 2021-10-27 株式会社フジミインコーポレーテッド Modeling material for use in additive manufacturing
JP6544836B2 (en) * 2017-07-03 2019-07-17 株式会社 東北テクノアーチ Device and method for producing metal powder
US20170305065A1 (en) * 2017-07-07 2017-10-26 Cheng Kuan Wu Manufacturing process
EP3768450A4 (en) * 2018-03-17 2021-07-14 Pyrogenesis Canada Inc. Method and apparatus for the production of high purity spherical metallic powders from a molten feedstock
JP7424994B2 (en) 2018-04-13 2024-01-30 タニオビス ゲー・エム・ベー・ハー Metal powder for 3D printing
WO2019246257A1 (en) 2018-06-19 2019-12-26 Amastan Technologies Inc. Process for producing spheroidized powder from feedstock materials
JP2020100880A (en) * 2018-12-21 2020-07-02 昭和電工株式会社 Method for producing metal powder
CN113646116A (en) * 2019-02-07 2021-11-12 埃奎斯费雷斯公司 Alloys having low precipitate density for applications including remelting processes and methods of making the same
KR20240036705A (en) 2019-04-30 2024-03-20 6케이 인크. Lithium lanthanum zirconium oxide (llzo) powder
AU2020264446A1 (en) 2019-04-30 2021-11-18 6K Inc. Mechanically alloyed powder feedstock
RU2743474C2 (en) * 2019-07-03 2021-02-18 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Method of plasma synthesis of powders of inorganic materials and apparatus for implementation thereof
CN114641462A (en) 2019-11-18 2022-06-17 6K有限公司 Unique raw material for spherical powder and manufacturing method
CN110756818A (en) * 2019-11-28 2020-02-07 天钛隆(天津)金属材料有限公司 Atomization device and method for preparing spherical titanium powder
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
EP4076802A1 (en) * 2019-12-20 2022-10-26 ArcelorMittal Metal powder for additive manufacturing
WO2021123896A1 (en) * 2019-12-20 2021-06-24 Arcelormittal Metal powder for additive manufacturing
CN111112634A (en) * 2020-01-17 2020-05-08 上海理工大学 Device and method for preparing metal powder
KR20230029836A (en) 2020-06-25 2023-03-03 6케이 인크. Microcomposite alloy structure
CN111633216B (en) * 2020-07-15 2021-03-16 湖南省天心博力科技有限公司 Copper powder water atomization system and atomization structure thereof
CA3186082A1 (en) 2020-09-24 2022-03-31 6K Inc. Systems, devices, and methods for starting plasma
EP4237174A1 (en) 2020-10-30 2023-09-06 6K Inc. Systems and methods for synthesis of spheroidized metal powders
RU2765285C1 (en) * 2020-12-08 2022-01-28 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Method for three-dimensional printing of products of electrically conductive raw materials
CN112570722A (en) * 2020-12-17 2021-03-30 江苏博迁新材料股份有限公司 Device for preparing ultrafine powder by plasma arc atomization method
CN112872361A (en) * 2021-01-13 2021-06-01 南京工业大学 Titanium and titanium alloy liquid finish machining linkage precise regulation and control method based on melt temperature
WO2022212291A1 (en) 2021-03-31 2022-10-06 6K Inc. Systems and methods for additive manufacturing of metal nitride ceramics
CN114921673B (en) * 2022-06-06 2022-11-22 核工业西南物理研究院 Nano oxide particle dispersion strengthened copper and preparation method thereof
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
US12094688B2 (en) 2022-08-25 2024-09-17 6K Inc. Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP)
JP7565038B1 (en) 2024-03-29 2024-10-10 株式会社エヌ・ティ・ティ・データ・ザムテクノロジーズ Manufacturing method of Ta alloy member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932635A (en) * 1988-07-11 1990-06-12 Axel Johnson Metals, Inc. Cold hearth refining apparatus
US5084091A (en) * 1989-11-09 1992-01-28 Crucible Materials Corporation Method for producing titanium particles
US5707419A (en) * 1995-08-15 1998-01-13 Pegasus Refractory Materials, Inc. Method of production of metal and ceramic powders by plasma atomization

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925554B1 (en) * 1969-05-16 1974-07-01
JPS4925554A (en) * 1972-09-27 1974-03-07
SU529005A1 (en) * 1975-06-19 1976-09-25 Предприятие П/Я Г-4236 Plant for producing powder by centrifugal melt spraying
US5263689A (en) * 1983-06-23 1993-11-23 General Electric Company Apparatus for making alloy power
US4778516A (en) * 1986-11-03 1988-10-18 Gte Laboratories Incorporated Process to increase yield of fines in gas atomized metal powder
DE4011392B4 (en) * 1990-04-09 2004-04-15 Ald Vacuum Technologies Ag Process and device for forming a pouring jet
US5272718A (en) * 1990-04-09 1993-12-21 Leybold Aktiengesellschaft Method and apparatus for forming a stream of molten material
US5201359A (en) * 1990-09-24 1993-04-13 General Motors Corporation Rapid solidification apparatus
US5366204A (en) * 1992-06-15 1994-11-22 General Electric Company Integral induction heating of close coupled nozzle
JPH06346115A (en) * 1993-06-03 1994-12-20 Mitsubishi Materials Corp Method for producing metal powder and device
US5516081A (en) * 1994-07-18 1996-05-14 General Electric Company Water-cooled molten metal refining hearth
JP2816110B2 (en) * 1995-01-30 1998-10-27 住友シチックス株式会社 Method and apparatus for producing metal powder
US5769151A (en) * 1995-12-21 1998-06-23 General Electric Company Methods for controlling the superheat of the metal exiting the CIG apparatus in an electroslag refining process
US6460595B1 (en) * 1999-02-23 2002-10-08 General Electric Company Nucleated casting systems and methods comprising the addition of powders to a casting
US6425504B1 (en) * 1999-06-29 2002-07-30 Iowa State University Research Foundation, Inc. One-piece, composite crucible with integral withdrawal/discharge section
US6219372B1 (en) * 1999-12-29 2001-04-17 General Electric Company Guide tube structure for flux concentration
US6358466B1 (en) * 2000-04-17 2002-03-19 Iowa State University Research Foundation, Inc. Thermal sprayed composite melt containment tubular component and method of making same
US6496529B1 (en) * 2000-11-15 2002-12-17 Ati Properties, Inc. Refining and casting apparatus and method
US7913884B2 (en) * 2005-09-01 2011-03-29 Ati Properties, Inc. Methods and apparatus for processing molten materials
CN100488671C (en) * 2007-02-09 2009-05-20 北京蓝景创新科技有限公司 Apparatus for preparing metal powder
US20160144435A1 (en) * 2014-11-24 2016-05-26 Ati Properties, Inc. Atomizing apparatuses, systems, and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932635A (en) * 1988-07-11 1990-06-12 Axel Johnson Metals, Inc. Cold hearth refining apparatus
US5084091A (en) * 1989-11-09 1992-01-28 Crucible Materials Corporation Method for producing titanium particles
US5707419A (en) * 1995-08-15 1998-01-13 Pegasus Refractory Materials, Inc. Method of production of metal and ceramic powders by plasma atomization

Also Published As

Publication number Publication date
IL255324B (en) 2021-08-31
MX2017014320A (en) 2018-03-07
AU2016260949B2 (en) 2020-11-19
US20220288684A1 (en) 2022-09-15
TW201703902A (en) 2017-02-01
UA122691C2 (en) 2020-12-28
ES2862420T3 (en) 2021-10-07
JP2018522136A (en) 2018-08-09
CN107635701A (en) 2018-01-26
BR112017024489B1 (en) 2021-08-03
WO2016182631A1 (en) 2016-11-17
SA517390308B1 (en) 2021-06-01
RU2714718C2 (en) 2020-02-20
JP6883525B2 (en) 2021-06-09
US20190381571A1 (en) 2019-12-19
CN107635701B (en) 2021-06-18
AU2016260949A1 (en) 2018-01-04
IL255324A0 (en) 2017-12-31
RU2017143576A (en) 2019-06-17
RU2017143576A3 (en) 2019-08-30
ZA201707460B (en) 2022-06-29
EP3294482B1 (en) 2020-12-16
KR102401270B1 (en) 2022-05-23
NZ738183A (en) 2021-08-27
US20160332232A1 (en) 2016-11-17
EP3294482A1 (en) 2018-03-21
SG11201708554YA (en) 2017-11-29
BR112017024489A2 (en) 2018-07-24
CA2983669A1 (en) 2016-11-17
KR20180006385A (en) 2018-01-17

Similar Documents

Publication Publication Date Title
TWI677387B (en) Methods and apparatuses for producing metallic powder material
JP4733908B2 (en) Apparatus and method for refining and casting
US10232434B2 (en) Refining and casting apparatus and method
JP2004523359A5 (en)
AU2002220245A1 (en) Refining and casting apparatus and method
JPH03183706A (en) Manufacture of titanium particles
KR102077416B1 (en) Systems and methods for casting metallic materials
JP2001212662A (en) Clean metal nucleation casting article
NZ738183B2 (en) Methods and apparatuses for producing metallic powder material
JP4959897B2 (en) Casting apparatus and method with an eccentric source of liquid metal
JPH0518677A (en) Control method of continuous smelting and outflow of material