TWI676293B - Semiconductor devices and methods for forming same - Google Patents
Semiconductor devices and methods for forming same Download PDFInfo
- Publication number
- TWI676293B TWI676293B TW107135562A TW107135562A TWI676293B TW I676293 B TWI676293 B TW I676293B TW 107135562 A TW107135562 A TW 107135562A TW 107135562 A TW107135562 A TW 107135562A TW I676293 B TWI676293 B TW I676293B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- fluorine
- compound semiconductor
- semiconductor device
- item
- Prior art date
Links
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
一種半導體裝置,其包含通道層,設置於基底上方;阻障層,設置於通道層上方;化合物半導體層,設置於阻障層上方;一對源極/汲極,設置於基底上方且分別位於化合物半導體層的兩側;氟化區,設置於化合物半導體層內;以及閘極,設置於化合物半導體層上。 A semiconductor device includes a channel layer disposed above a substrate; a barrier layer disposed above the channel layer; a compound semiconductor layer disposed above the barrier layer; a pair of source / drain electrodes disposed above the substrate and located respectively Both sides of the compound semiconductor layer; a fluorinated region is provided in the compound semiconductor layer; and a gate electrode is provided on the compound semiconductor layer.
Description
本發明實施例是關於半導體製造技術,特別是有關於半導體裝置及其製造方法。 Embodiments of the present invention relate to semiconductor manufacturing technologies, and in particular, to semiconductor devices and manufacturing methods thereof.
高電子遷移率電晶體(high electron mobility transistor,HEMT),又稱為異質結構場效電晶體(heterostructure FET,HFET)或調變摻雜場效電晶體(modulation-doped FET,MODFET),為一種場效電晶體(field effect transistor,FET),其由具有不同能隙(energy gap)的半導體材料組成。在鄰近不同半導體材料的所形成界面處會產生二維電子氣(two dimensional electron gas,2 DEG)層。由於二維電子氣的高電子移動性,高電子遷移率電晶體可以具有高崩潰電壓、高電子遷移率、低導通電阻與低輸入電容等優點,因而適合用於高功率元件上。 High electron mobility transistor (HEMT), also known as heterostructure FET (HFET) or modulation-doped FET (MODFET), is a kind of Field effect transistor (FET), which is composed of semiconductor materials with different energy gaps. A two-dimensional electron gas (2 DEG) layer is generated near the formed interface adjacent to different semiconductor materials. Due to the high electron mobility of the two-dimensional electron gas, the high electron mobility transistor can have advantages such as high breakdown voltage, high electron mobility, low on-resistance, and low input capacitance, and is therefore suitable for high power components.
然而,現有的高電子遷移率電晶體雖大致符合需求,但並非在每個方面皆令人滿意,仍需進一步改良,以提升效能並具有更廣泛的應用。 However, although the existing high-electron mobility transistors generally meet the requirements, they are not satisfactory in every aspect, and further improvements are needed to improve performance and have wider applications.
根據本發明的一些實施例,提供半導體裝置。此 半導體裝置包含通道層,設置於基底上方;阻障層,設置於通道層上方;化合物半導體層,設置於阻障層上方;一對源極/汲極,設置於基底上方且分別位於化合物半導體層的兩側;氟化區,設置於化合物半導體層內;以及閘極,設置於化合物半導體層上。 According to some embodiments of the present invention, a semiconductor device is provided. this The semiconductor device includes a channel layer disposed above the substrate; a barrier layer disposed above the channel layer; a compound semiconductor layer disposed above the barrier layer; a pair of source / drain electrodes disposed above the substrate and respectively located on the compound semiconductor layer Two sides; a fluorinated region provided in the compound semiconductor layer; and a gate electrode provided on the compound semiconductor layer.
在一些實施例中,氟化區從化合物半導體層的頂部延伸至阻障層中。 In some embodiments, the fluorinated region extends from the top of the compound semiconductor layer into the barrier layer.
在一些實施例中,半導體裝置更包含氟化區更設置於化合物半導體層周圍的阻障層中。 In some embodiments, the semiconductor device further includes a fluorinated region disposed in a barrier layer around the compound semiconductor layer.
在一些實施例中,半導體裝置更包含第一氟保持層,設置於化合物半導體層頂部、內部或底部;及/或第二氟保持層,覆蓋化合物半導體層的側壁且延伸至這對源極/汲極與阻障層之間。 In some embodiments, the semiconductor device further includes a first fluorine holding layer disposed on the top, inside or bottom of the compound semiconductor layer; and / or a second fluorine holding layer covering a sidewall of the compound semiconductor layer and extending to the pair of source / Between the drain and the barrier layer.
在一些實施例中,這對源極/汲極穿過阻障層且延伸至通道層中,且第二氟保持層更設置在這對源極/汲極與通道層之間。 In some embodiments, the pair of source / drain electrodes pass through the barrier layer and extend into the channel layer, and the second fluorine retention layer is further disposed between the pair of source / drain electrodes and the channel layer.
在一些實施例中,在第一氟保持層和第二氟保持層內的氟含量大於在第一氟保持層和第二氟保持層外的氟含量。 In some embodiments, the fluorine content in the first fluorine-retaining layer and the second fluorine-retaining layer is greater than the fluorine content outside the first fluorine-retaining layer and the second fluorine-retaining layer.
在一些實施例中,第二氟保持層具有開口,此開口的面積小於或等於氟化區在化合物半導體層的頂部的面積,且閘極設置於此開口。 In some embodiments, the second fluorine-retaining layer has an opening, the area of the opening is smaller than or equal to the area of the fluorinated region on the top of the compound semiconductor layer, and the gate is disposed in the opening.
在一些實施例中,第一氟保持層與第二氟保持層各自獨立地包含氮化鋁、氮化鋁鎵、氮化銦鎵或前述之組 合。 In some embodiments, the first fluorine-retaining layer and the second fluorine-retaining layer each independently include aluminum nitride, aluminum gallium nitride, indium gallium nitride, or a combination thereof. Together.
在一些實施例中,第一氟保持層的厚度與第二氟保持層的厚度各自獨立地在0.5nm至5nm的範圍。 In some embodiments, the thickness of the first fluorine-retaining layer and the thickness of the second fluorine-retaining layer are each independently in a range of 0.5 nm to 5 nm.
在一些實施例中,半導體裝置更包含二維電子氣回復層,覆蓋化合物半導體層的側壁且延伸至這對源極/汲極與阻障層之間。 In some embodiments, the semiconductor device further includes a two-dimensional electron gas recovery layer covering the sidewall of the compound semiconductor layer and extending between the pair of source / drain and the barrier layer.
根據本發明的另一些實施例,提供半導體裝置的製造方法。此方法包含在基底上方形成通道層;在通道層上方形成阻障層;在阻障層上方形成化合物半導體層;在基底上方且在化合物半導體層的兩側形成一對源極/汲極;在化合物半導體層內導入氟;以及在化合物半導體層上方形成閘極。 According to other embodiments of the present invention, a method for manufacturing a semiconductor device is provided. This method includes forming a channel layer over a substrate; forming a barrier layer over the channel layer; forming a compound semiconductor layer over the barrier layer; forming a pair of source / drain electrodes over the substrate and on both sides of the compound semiconductor layer; in Introducing fluorine into the compound semiconductor layer; and forming a gate electrode over the compound semiconductor layer.
在一些實施例中,氟的導入包含使用蝕刻設備。 In some embodiments, the introduction of fluorine includes the use of etching equipment.
在一些實施例中,氟的導入包含使用反應性離子蝕刻、感應耦合電漿蝕刻或前述之組合。 In some embodiments, the introduction of fluorine includes using reactive ion etching, inductively coupled plasma etching, or a combination thereof.
在一些實施例中,導入氟的範圍從化合物半導體層的頂部延伸至阻障層中。 In some embodiments, the range of fluorine introduction extends from the top of the compound semiconductor layer into the barrier layer.
在一些實施例中,半導體裝置的製造方法更包含在導入氟之後且在形成閘極之前,執行第一熱處理。 In some embodiments, the method of manufacturing a semiconductor device further includes performing a first heat treatment after the fluorine is introduced and before the gate is formed.
在一些實施例中,半導體裝置的製造方法更包含在形成閘極之後,執行第二熱處理。 In some embodiments, the method for manufacturing a semiconductor device further includes performing a second heat treatment after forming the gate.
在一些實施例中,半導體裝置的製造方法更包含在化合物半導體層周圍的阻障層導入氟。 In some embodiments, the method for manufacturing a semiconductor device further includes introducing fluorine into the barrier layer surrounding the compound semiconductor layer.
在一些實施例中,氟在化合物半導體層周圍的阻 障層的導入包含使用升溫設備、蝕刻設備或前述之組合。 In some embodiments, the resistance of fluorine around the compound semiconductor layer The introduction of the barrier layer includes using a temperature increasing device, an etching device, or a combination thereof.
在一些實施例中,半導體裝置的製造方法更包含在形成化合物半導體層期間,原位形成第一氟保持層;及/或在形成化合物半導體層之後且在形成閘極之前,在化合物半導體層的側壁上形成第二氟保持層,且第二氟保持層延伸至這對源極/汲極與通道層之間。 In some embodiments, the method for manufacturing a semiconductor device further includes forming the first fluorine-retaining layer in situ during the formation of the compound semiconductor layer; and / or after the compound semiconductor layer is formed and before the gate electrode is formed, A second fluorine holding layer is formed on the sidewall, and the second fluorine holding layer extends between the pair of source / drain and the channel layer.
在一些實施例中,半導體裝置的製造方法更包含這對源極/汲極穿過阻障層且延伸至通道層中,且第二氟保持層延伸至這對源極/汲極與阻障層之間。 In some embodiments, the method for manufacturing a semiconductor device further includes the pair of source / drain electrodes passing through the barrier layer and extending into the channel layer, and the second fluorine retention layer extending to the pair of source / drain electrodes and the barrier Between layers.
在一些實施例中,半導體裝置的製造方法更包含在化合物半導體層上方形成第二氟保持層的開口,從開口導入氟;以及在開口處形成閘極。 In some embodiments, the method for manufacturing a semiconductor device further includes forming an opening of the second fluorine holding layer above the compound semiconductor layer, introducing fluorine from the opening, and forming a gate at the opening.
在一些實施例中,半導體裝置的製造方法更包含在化合物半導體層的側壁上形成二維電子氣回復層,且二維電子氣回復層延伸至這對源極/汲極與通道層之間。 In some embodiments, the method for manufacturing a semiconductor device further includes forming a two-dimensional electron gas recovery layer on a sidewall of the compound semiconductor layer, and the two-dimensional electron gas recovery layer extends between the pair of source / drain electrodes and the channel layer.
100、200、300、400、500、600‧‧‧半導體裝置 100, 200, 300, 400, 500, 600‧‧‧ semiconductor devices
110‧‧‧基底 110‧‧‧ substrate
120‧‧‧成核層 120‧‧‧nucleation layer
130‧‧‧緩衝層 130‧‧‧ buffer layer
140‧‧‧通道層 140‧‧‧channel layer
150‧‧‧阻障層 150‧‧‧ barrier layer
160、160a‧‧‧化合物半導體層 160, 160a‧‧‧ compound semiconductor layer
170‧‧‧源極/汲極 170‧‧‧Source / Drain
180、180’‧‧‧氟化區 180, 180 ’‧‧‧ fluoride zone
190‧‧‧閘極 190‧‧‧Gate
310‧‧‧第一氟保持層 310‧‧‧First fluorine holding layer
410‧‧‧第二氟保持層 410‧‧‧Second fluorine retention layer
420‧‧‧開口 420‧‧‧ opening
610‧‧‧二維電子氣回復層 610‧‧‧Two-dimensional electron gas recovery layer
T1、T2、T3‧‧‧厚度 T1, T2, T3‧‧‧thickness
以下將配合所附圖式詳述本揭露之實施例。應注意的是,依據產業上的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本揭露的特徵。 The embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. It should be noted that, according to industry standard practices, various features are not drawn to scale and are used for illustration only. In fact, it is possible to arbitrarily enlarge or reduce the size of the element to clearly show the features of the present disclosure.
第1A-1F圖是根據一些實施例繪示在製造半導體裝置的各個階段之剖面示意圖。 1A-1F are schematic cross-sectional views illustrating various stages of manufacturing a semiconductor device according to some embodiments.
第2圖是根據一些實施例繪示半導體裝置的剖面示意圖。 FIG. 2 is a schematic cross-sectional view of a semiconductor device according to some embodiments.
第3圖是根據一些實施例繪示半導體裝置的剖面示意圖。 FIG. 3 is a schematic cross-sectional view of a semiconductor device according to some embodiments.
第4A-4D圖是根據一些實施例繪示在製造半導體裝置的各個階段之剖面示意圖。 4A-4D are schematic cross-sectional views illustrating various stages of manufacturing a semiconductor device according to some embodiments.
第5圖是根據一些實施例繪示半導體裝置的剖面示意圖。 FIG. 5 is a schematic cross-sectional view of a semiconductor device according to some embodiments.
第6圖是根據一些實施例繪示半導體裝置的剖面示意圖。 FIG. 6 is a schematic cross-sectional view of a semiconductor device according to some embodiments.
以下概述一些實施例,以使得本發明所屬技術領域中具有通常知識者可以更容易理解本發明。然而,這些實施例只是範例,並非用於限制本發明。可以理解的是,本發明所屬技術領域中具有通常知識者可以根據需求,調整以下描述的實施例,例如改變製程順序及/或包含比在此描述的更多或更少步驟。 Some embodiments are summarized below so that those skilled in the art to which the present invention pertains can more easily understand the present invention. However, these examples are only examples and are not intended to limit the present invention. It can be understood that those with ordinary knowledge in the technical field to which the present invention pertains can adjust the embodiments described below, such as changing the process sequence and / or including more or fewer steps than those described herein.
此外,可以在以下敘述的實施例的基礎上添加其他元件。舉例來說,「在第一元件上形成第二元件」的描述可能包含第一元件與第二元件直接接觸的實施例,也可能包含第一元件與第二元件之間具有其他元件,使得第一元件與第二元件不直接接觸的實施例,並且第一元件與第二元件的上下關係可能隨著裝置在不同方位操作或使用而改變。 In addition, other elements may be added to the embodiments described below. For example, the description of "forming a second element on a first element" may include an embodiment in which the first element is in direct contact with the second element, or may include other elements between the first element and the second element such that the first An embodiment in which one element is not in direct contact with the second element, and the up-down relationship between the first element and the second element may change as the device is operated or used in different orientations.
以下根據本發明的一些實施例,描述半導體裝置及其製造方法,且特別適用於高電子遷移率電晶體(HEMT)。本發明在半導體裝置的化合物半導體層中導入氟,形成氟化區,以提升表面電位並改變能帶,進而改善臨界電壓(threshold voltage,Vth)和閘極擺幅(gate swing)。 The following describes a semiconductor device and a manufacturing method thereof according to some embodiments of the present invention, and is particularly suitable for a high electron mobility transistor (HEMT). The present invention introduces fluorine into a compound semiconductor layer of a semiconductor device to form a fluorinated region to raise the surface potential and change the energy band, thereby improving threshold voltage (Vth) and gate swing.
第1A-1F圖是根據一些實施例繪示在製造半導體裝置100的各個階段之剖面示意圖。如第1A圖所示,半導體裝 置100包含基底110。可以使用任何適用於半導體裝置的基底材料。基底110可以是整塊的(bulk)半導體基底或包含由不同材料形成的複合基底,並且可以將基底110摻雜(例如使用p型或n型摻質)或不摻雜。在一些實施例中,基底110可以包含半導體基底、玻璃基底或陶瓷基底,例如矽基底、矽鍺基底、碳化矽(Silicon Carbide,SiC)、氮化鋁(Aluminium Nitride,AlN)基底、藍寶石(Sapphire)基底、前述之組合或類似的材料。在一些實施例中,基底110可以包含絕緣體上覆半導體(semiconductor-on-insulator,SOI)基底,其係經由在絕緣層上設置半導體材料所形成。 1A-1F are schematic cross-sectional views illustrating various stages of manufacturing the semiconductor device 100 according to some embodiments. As shown in Figure 1A, the semiconductor device The device 100 includes a substrate 110. Any base material suitable for a semiconductor device can be used. The substrate 110 may be a bulk semiconductor substrate or a composite substrate including different materials, and the substrate 110 may be doped (eg, using a p-type or n-type dopant) or undoped. In some embodiments, the substrate 110 may include a semiconductor substrate, a glass substrate, or a ceramic substrate, such as a silicon substrate, a silicon germanium substrate, a silicon carbide (SiC) substrate, an aluminum nitride (AlN) substrate, or a sapphire substrate. ) Substrate, a combination of the foregoing, or similar materials. In some embodiments, the substrate 110 may include a semiconductor-on-insulator (SOI) substrate, which is formed by disposing a semiconductor material on an insulating layer.
在一些實施例中,在基底110上方形成成核層120,以緩解基底110與上方成長的膜層之間的晶格差異,提升結晶品質。成核層120的形成可以包含沉積製程,例如有機金屬化學氣相沉積(Metal Organic Chemical Vapor Deposition,MOCVD)、原子層沉積(Atomic Layer Deposition,ALD)、分子束磊晶(Molecular Beam Epitaxy,MBE)、液相磊晶(Liquid Phase Epitaxy,LPE)、類似的製程或前述之組合。在一些實施例中,成核層120的厚度可以是在約1奈米(nanometer,nm)至約500nm的範圍,例如約200nm。 In some embodiments, a nucleation layer 120 is formed above the substrate 110 to alleviate the lattice difference between the substrate 110 and the film layer grown above, and improve the crystal quality. The formation of the nucleation layer 120 may include a deposition process, such as Metal Organic Chemical Vapor Deposition (MOCVD), Atomic Layer Deposition (ALD), and Molecular Beam Epitaxy (MBE). , Liquid Phase Epitaxy (LPE), a similar process or a combination of the foregoing. In some embodiments, the thickness of the nucleation layer 120 may be in a range of about 1 nanometer (nm) to about 500 nm, such as about 200 nm.
在一些實施例中,在成核層120上方形成緩衝層130,以緩解不同膜層之間的晶格差異,提升結晶品質。成核層120是選擇性的。在另一些實施例中,可以不設置成核層120,直接在基底上方形成緩衝層130,降低製程步驟亦可達到改善的效果。在一些實施例中,緩衝層130的材料可以包含 III-V族化合物半導體材料,例如III族氮化物。舉例來說,緩衝層130的材料可以包含氮化鎵(Gallium Nitride,GaN)、氮化鋁(AlN)、氮化鋁鎵(AlGaN)、氮化鋁銦(AlInN)、類似的材料或前述之組合。在一些實施例中,緩衝層130的形成可以包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。 In some embodiments, a buffer layer 130 is formed above the nucleation layer 120 to alleviate lattice differences between different film layers and improve crystal quality. The nucleation layer 120 is selective. In other embodiments, the core layer 120 may not be provided, and the buffer layer 130 may be formed directly on the substrate, and the improvement of the process may be achieved by reducing the process steps. In some embodiments, the material of the buffer layer 130 may include Group III-V compound semiconductor materials, such as group III nitrides. For example, the material of the buffer layer 130 may include Gallium Nitride (GaN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), similar materials, or the foregoing combination. In some embodiments, the formation of the buffer layer 130 may include a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, a similar process, or a combination thereof.
接著在緩衝層130上方形成通道層140。在一些實施例中,通道層140的材料可以包含一或多種III-V族化合物半導體材料,例如III族氮化物。在一些實施例中,通道層140的材料例如為GaN、AlGaN、InGaN、InAlGaN、類似的材料或前述之組合。此外,可以將通道層140摻雜或不摻雜。根據一些實施例,通道層140的形成可以包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。在一些實施例中,通道層140的厚度在約0.05微米(micrometer,μm)和約1μm之間的範圍,例如約0.2μm。 A channel layer 140 is then formed over the buffer layer 130. In some embodiments, the material of the channel layer 140 may include one or more group III-V compound semiconductor materials, such as a group III nitride. In some embodiments, the material of the channel layer 140 is, for example, GaN, AlGaN, InGaN, InAlGaN, a similar material, or a combination thereof. In addition, the channel layer 140 may be doped or undoped. According to some embodiments, the formation of the channel layer 140 may include a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, similar processes, or a combination thereof. In some embodiments, the thickness of the channel layer 140 is in a range between about 0.05 micrometers (μm) and about 1 μm, such as about 0.2 μm.
然後在通道層140上方形成阻障層150,以在通道層140和阻障層150之間的界面產生二維電子氣。阻障層150的形成可以包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。在一些實施例中,阻障層150的材料可以包含III-V族化合物半導體材料,例如III族氮化物。舉例來說,阻障層150可以包含AlN、AlGaN、AlInN、AlGaInN、類似的材料或前述之組合。阻障層150可以包含單層或多層結構,且阻障層150可以 是摻雜或不摻雜的。在一些實施例中,阻障層150的厚度可以在約1nm和約30nm之間的範圍內,例如約20nm。 A barrier layer 150 is then formed over the channel layer 140 to generate a two-dimensional electron gas at the interface between the channel layer 140 and the barrier layer 150. The formation of the barrier layer 150 may include a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, similar processes, or a combination thereof. In some embodiments, the material of the barrier layer 150 may include a group III-V compound semiconductor material, such as a group III nitride. For example, the barrier layer 150 may include AlN, AlGaN, AlInN, AlGaInN, similar materials, or a combination thereof. The barrier layer 150 may include a single-layer or multi-layer structure, and the barrier layer 150 may Doped or undoped. In some embodiments, the thickness of the barrier layer 150 may be in a range between about 1 nm and about 30 nm, such as about 20 nm.
接著如第1B圖所示,根據一些實施例,在阻障層150上方設置化合物半導體層160,以空乏閘極下方的二維電子氣,達成半導體裝置的常關(normally-off)狀態。在一些實施例中,化合物半導體層160包含u型、n型或p型摻雜的氮化鎵。化合物半導體層160的形成可以包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。在一些實施例中,化合物半導體層160的厚度可在約30nm和約150nm之間的範圍內,例如約80nm。 Next, as shown in FIG. 1B, according to some embodiments, a compound semiconductor layer 160 is provided above the barrier layer 150 to achieve a normally-off state of the semiconductor device with a two-dimensional electron gas under the empty gate. In some embodiments, the compound semiconductor layer 160 includes u-type, n-type, or p-type doped gallium nitride. The formation of the compound semiconductor layer 160 may include a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, a similar process, or a combination thereof. In some embodiments, the thickness of the compound semiconductor layer 160 may be in a range between about 30 nm and about 150 nm, such as about 80 nm.
接著,如第1C圖所示,根據一些實施例,在化合物半導體層160上形成圖案化遮罩層(未繪示),然後蝕刻化合物半導體層160,以移除化合物半導體層160未被圖案化遮罩層覆蓋的部分,並且形成化合物半導體層160a。化合物半導體層160a的位置係根據預定設置閘極的位置調整。 Next, as shown in FIG. 1C, according to some embodiments, a patterned masking layer (not shown) is formed on the compound semiconductor layer 160, and then the compound semiconductor layer 160 is etched to remove the compound semiconductor layer 160 without being patterned. A portion covered by the mask layer forms the compound semiconductor layer 160a. The position of the compound semiconductor layer 160a is adjusted in accordance with a position where a gate electrode is predetermined to be provided.
在一些實施例中,圖案化遮罩層可以是光阻,例如正型光阻或負型光阻。在另一些實施例中,圖案化遮罩層可以是硬遮罩,例如氧化矽、氮化矽、氮氧化矽、碳化矽、氮碳化矽、類似的材料或前述之組合。在一些實施例中,圖案化遮罩層的形成可以包含旋轉塗佈(spin-on coating)、物理氣相沉積(Physical Vapor Deposition,PVD)、化學氣相沉積(Chemical Vapor Deposition,CVD)、類似的製程或前述之組合。 In some embodiments, the patterned masking layer may be a photoresist, such as a positive photoresist or a negative photoresist. In other embodiments, the patterned masking layer may be a hard mask, such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon nitride carbide, similar materials, or a combination thereof. In some embodiments, the formation of the patterned masking layer may include spin-on coating, Physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD), similar Process or a combination of the foregoing.
在一些實施例中,化合物半導體層160的蝕刻可以使用乾式蝕刻製程、濕式蝕刻製程或前述之組合。舉例來說,化合物半導體層160的蝕刻包含反應性離子蝕刻(Reactive Ion Etch,RIE)、感應耦合式電漿(Inductively-Coupled Plasma,ICP)蝕刻、中子束蝕刻(Neutral Beam Etch,NBE)、電子迴旋共振式(Electron Cyclotron Resonance,ERC)蝕刻、類似的蝕刻製程或前述之組合。此外,雖然圖式中化合物半導體層160a具有大致上垂直的側壁和平坦的上表面,但本發明不限於此,化合物半導體層160a也可以是其他形狀,例如傾斜的側壁及/或不平坦的上表面。 In some embodiments, the etching of the compound semiconductor layer 160 may use a dry etching process, a wet etching process, or a combination thereof. For example, the etching of the compound semiconductor layer 160 includes Reactive Ion Etch (RIE), Inductively-Coupled Plasma (ICP) etching, Neutron Beam Etch (NBE), Electron Cyclotron Resonance (ERC) etching, similar etching process, or a combination of the foregoing. In addition, although the compound semiconductor layer 160a has a substantially vertical sidewall and a flat upper surface in the figure, the present invention is not limited thereto, and the compound semiconductor layer 160a may have other shapes, such as an inclined sidewall and / or an uneven top surface. surface.
接著如第1D圖所示,根據一些實施例,在基底上方設置一對源極/汲極170,且此對源極/汲極170分別位於化合物半導體層160a的兩側。在一些實施例中,此對源極/汲極170的形成包含執行圖案化製程,以在化合物半導體層160a的兩側凹蝕阻障層150和通道層140,形成穿過阻障層150並延伸至通道層140中的一對凹陷,然後在此對凹陷沉積導電材料,並對沉積的導電材料執行圖案化製程,以形成此對源極/汲極170。 Next, as shown in FIG. 1D, according to some embodiments, a pair of source / drain electrodes 170 is disposed above the substrate, and the pair of source / drain electrodes 170 are located on both sides of the compound semiconductor layer 160 a, respectively. In some embodiments, the formation of the source / drain 170 pair includes performing a patterning process to etch the barrier layer 150 and the channel layer 140 on both sides of the compound semiconductor layer 160a to form a barrier layer 150 and Extending to a pair of recesses in the channel layer 140, a conductive material is deposited on the recesses, and a patterning process is performed on the deposited conductive materials to form the pair of source / drain electrodes 170.
在一些實施例中,導電材料的沉積製程可以包含物理氣相沉積、化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。在一些實施例中,導電材料可以包含金屬、金屬矽化物、半導體材料、類似的材料或前述之組合。舉例來說,金屬可以是金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅 (Cu)、氮化鈦(TiN)、類似的材料、前述之合金、前述之多層結構或前述之組合,並且半導體材料可以包含多晶矽或多晶鍺。此外,此對源極/汲極170的形狀不限於圖式中的垂直側壁,也可以是錐形側壁或具有其他輪廓。 In some embodiments, the deposition process of the conductive material may include physical vapor deposition, chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, similar processes, or a combination thereof. In some embodiments, the conductive material may include a metal, a metal silicide, a semiconductor material, a similar material, or a combination of the foregoing. For example, the metal can be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al) ),copper (Cu), titanium nitride (TiN), similar materials, the foregoing alloy, the foregoing multilayer structure, or a combination thereof, and the semiconductor material may include polycrystalline silicon or polycrystalline germanium. In addition, the shape of the pair of source / drain electrodes 170 is not limited to the vertical sidewalls in the drawings, and may be a tapered sidewall or have other contours.
雖然在第1D圖繪示的實施例中,此對源極/汲極170位於阻障層150上,並延伸至阻障層150和通道層140內,但本發明不限於此,可以依據選用的製程及設備調整此對源極/汲極170延伸的深度。舉例來說,此對源極/汲極170也可以只延伸至部分阻障層150內,或不延伸至阻障層150內,以避免此對源極/汲極170穿過二維電子氣,進而維持通道層140和阻障層150之間的界面的二維電子氣。 Although in the embodiment shown in FIG. 1D, the pair of source / drain 170 is located on the barrier layer 150 and extends into the barrier layer 150 and the channel layer 140, the present invention is not limited thereto, and may be selected according to The process and equipment adjust the depth of the source / drain 170 extension. For example, the pair of source / drain electrodes 170 may also extend into part of the barrier layer 150 or not extend into the barrier layer 150 to prevent the pair of source / drain electrodes 170 from passing through the two-dimensional electron gas. Thus, the two-dimensional electron gas at the interface between the channel layer 140 and the barrier layer 150 is maintained.
然後如第1E圖所示,在化合物半導體層160a中導入氟,形成氟化區180。本發明在化合物半導體層160a中導入氟,形成氟化區180,可以提升表面電位並改變能帶。表面電位的提升可以增加閘極金屬接觸的功函數,進而改善臨界電壓(Vth)和閘極擺幅。此外,對於n型或p型摻雜的氮化鎵的化合物半導體層160a而言,由於導入的氟不會影響導電類型,因此不會在化合物半導體層160a中形成p-n接面,有利於半導體裝置100的開關性能。另外,氟離子在氮化鎵中的鍵結會拉高能帶分布,具有空乏二維電子氣的效果,也可以達到增加臨界電壓的效果。 Then, as shown in FIG. 1E, fluorine is introduced into the compound semiconductor layer 160 a to form a fluorinated region 180. The present invention introduces fluorine into the compound semiconductor layer 160a to form a fluorinated region 180, which can raise the surface potential and change the energy band. The increase of the surface potential can increase the work function of the gate metal contact, thereby improving the threshold voltage (Vth) and the gate swing. In addition, for n-type or p-type doped gallium nitride compound semiconductor layer 160a, since the introduced fluorine does not affect the conductivity type, a pn junction is not formed in the compound semiconductor layer 160a, which is beneficial to semiconductor devices. 100 switching performance. In addition, the bonding of fluorine ions in gallium nitride will increase the energy band distribution, which has the effect of vacant two-dimensional electron gas, and can also achieve the effect of increasing the threshold voltage.
在一些實施例中,氟化區180的形成可以包含使用遮罩(未繪示),露出部分的化合物半導體層160a,然後對露出部分的化合物半導體層160a導入氟。遮罩的形狀將決定氟 化區180的範圍。在一些實施例中,遮罩可以大致覆蓋化合物半導體層160a以外的區域,以在化合物半導體層160a內形成均勻濃度的氟。在另一些實施例中,遮罩可以是網狀的(mesh),以將氟的導入分成多個分開的部分,在化合物半導體層160a內形成多個濃度較高的部分,避免氟化區180的氟含量過高。 In some embodiments, the formation of the fluorinated region 180 may include using a mask (not shown) to expose a portion of the compound semiconductor layer 160a, and then introducing fluorine to the exposed portion of the compound semiconductor layer 160a. The shape of the mask will determine the fluorine The extent of the area 180. In some embodiments, the mask may substantially cover a region other than the compound semiconductor layer 160a to form a uniform concentration of fluorine within the compound semiconductor layer 160a. In other embodiments, the mask may be meshed to divide the introduction of fluorine into a plurality of separate parts, to form a plurality of higher concentration parts in the compound semiconductor layer 160a, to avoid the fluorinated region 180 The fluorine content is too high.
在一些實施例中,可以使用蝕刻設備導入氟。在一些實施例中,蝕刻設備可以包含例如反應性離子蝕刻(RIE)、感應耦合電漿蝕刻(ICP)、類似的設備或前述之組合。氟源可以使用四氟化碳(Tetrafluoromethane,CF4)、三氟甲烷(Trifluoromethane,CHF3)、六氟化硫(Sulfur hexafluoride,SF6)、類似的材料或前述之組合。在一些實施例中,氟導入的量在約1×1012原子/平方公分(atoms/cm2)和約5×1015原子/平方公分之間的範圍,例如在約5×1014原子/平方公分和約1×1015原子/平方公分之間的範圍,可以改善臨界電壓並且使周圍組件可能受到的影響降至最低。 In some embodiments, the fluorine may be introduced using an etching apparatus. In some embodiments, the etching equipment may include, for example, reactive ion etching (RIE), inductively coupled plasma etching (ICP), similar equipment, or a combination of the foregoing. The fluorine source may be Tetrafluoromethane (CF 4 ), Trifluoromethane (CHF 3 ), Sulfur hexafluoride (SF 6 ), similar materials, or a combination thereof. In some embodiments, the amount of fluorine introduced is in a range between about 1 × 10 12 atoms / cm 2 and about 5 × 10 15 atoms / cm 2, for example, about 5 × 10 14 atoms / The range between cm 2 and about 1 × 10 15 atoms / cm 2 can improve the threshold voltage and minimize the possible impact on surrounding components.
在使用蝕刻設備導入氟的實施例中,由於蝕刻設備相對於離子佈植可以達到相對甚低的離子加速電壓,因此可以降低對元件的轟擊傷害,同時達到較穩定的離子濃度及分佈。 In the embodiment where the etching equipment is used to introduce fluorine, since the etching equipment can achieve a relatively low ion acceleration voltage relative to the ion implantation, the bombardment damage to the element can be reduced, and a more stable ion concentration and distribution can be achieved.
然後選擇性地對氟化區180進行熱處理,例如快速熱處理(Rapid Thermal Process,RTP),以控制氟的分布。此步驟的熱處理可以修復受氟離子轟擊的元件表面,同時使氟離子在元件內重新分佈到穩定的值,提升元件的操作性能 與可靠度。在一些實施例中,熱處理的溫度在約300℃和約500℃之間的範圍,且時間在約5分鐘和約15分鐘之間的範圍。 The fluorinated region 180 is then optionally subjected to a heat treatment, such as a Rapid Thermal Process (RTP), to control the distribution of fluorine. The heat treatment in this step can repair the surface of the element bombarded by fluoride ions, and at the same time redistribute the fluoride ions to a stable value in the element, and improve the operating performance of the element And reliability. In some embodiments, the temperature of the heat treatment is in a range between about 300 ° C and about 500 ° C, and the time is in a range between about 5 minutes and about 15 minutes.
雖然在繪示的範例中,氟化區180從化合物半導體層160a的頂部延伸至阻障層150中,但本發明不限於此。在一些實施例中,可以使氟化區180從化合物半導體層160a的頂部進一步延伸至通道層140中,例如藉由調整熱處理的參數或增加導入氟的功率。在另一些實施例中,氟化區180也可以僅位於化合物半導體層160a內,而不延伸至阻障層150中,以調節臨界電壓(Vth)。 Although the fluorinated region 180 extends from the top of the compound semiconductor layer 160 a into the barrier layer 150 in the illustrated example, the present invention is not limited thereto. In some embodiments, the fluorinated region 180 can be further extended from the top of the compound semiconductor layer 160a into the channel layer 140, for example, by adjusting the parameters of the heat treatment or increasing the power of introducing fluorine. In other embodiments, the fluorinated region 180 may also be located only in the compound semiconductor layer 160 a and does not extend into the barrier layer 150 to adjust the threshold voltage (Vth).
接著如第1F圖所示,在化合物半導體層160a上方設置閘極190,形成半導體裝置100。在一些實施例中,閘極190的形成包含在化合物半導體層160a上方沉積導電材料,然後對沉積的導電材料執行圖案化製程,以形成閘極190。 Next, as shown in FIG. 1F, a gate electrode 190 is provided above the compound semiconductor layer 160 a to form a semiconductor device 100. In some embodiments, the formation of the gate electrode 190 includes depositing a conductive material over the compound semiconductor layer 160a, and then performing a patterning process on the deposited conductive material to form the gate electrode 190.
在一些實施例中,導電材料的沉積製程和材料可以採用如前所述關於形成源極/汲極170之導電材料的沉積製程和材料,在此不重複敘述,並且源極/汲極170和閘極190的形成可以獨立地包含相同或不同的製程和材料。另外,雖然在此描述在形成源極/汲極170之後形成閘極190,但本發明不限於此。舉例來說,可以在同一步驟中形成源極/汲極170和閘極190。 In some embodiments, the deposition process and the material of the conductive material may be the deposition process and the material of the conductive material forming the source / drain 170 as described above, which will not be repeated here, and the source / drain 170 and The formation of the gate 190 may independently include the same or different processes and materials. In addition, although it is described herein that the gate 190 is formed after the source / drain 170 is formed, the present invention is not limited thereto. For example, the source / drain 170 and the gate 190 may be formed in the same step.
此外,閘極190的形狀不限於圖式中的垂直側壁,也可以是傾斜的側壁或具有其他形貌。雖然在第1F圖繪示的實施例中,閘極190的底面與氟化區180的頂面大致上具 有相同面積,但本發明不限於此,閘極190的底面也可以大於或小於氟化區180的頂面。 In addition, the shape of the gate electrode 190 is not limited to the vertical sidewall in the figure, and may be an inclined sidewall or have other shapes. Although in the embodiment shown in FIG. 1F, the bottom surface of the gate electrode 190 and the top surface of the fluorinated region 180 are substantially They have the same area, but the present invention is not limited to this. The bottom surface of the gate electrode 190 may also be larger or smaller than the top surface of the fluorinated region 180.
然後可以進行熱處理,例如快速熱處理(Rapid Thermal Process,RTP),以調整氟化區180的分布,並且可以改善閘極金屬的接觸特性。在一些實施例中,熱處理的溫度在約300℃和約400℃之間的範圍,且時間在約5分鐘和約10分鐘之間的範圍。 A heat treatment, such as a Rapid Thermal Process (RTP), may then be performed to adjust the distribution of the fluorinated regions 180 and improve the contact characteristics of the gate metal. In some embodiments, the temperature of the heat treatment is in a range between about 300 ° C and about 400 ° C, and the time is in a range between about 5 minutes and about 10 minutes.
雖然在此描述執行兩次熱處理,但是可以根據氟化區180預定的分布範圍和氟離子注入的穩定性控制能力,執行一次或多次熱處理。在一些實施例中,可以僅執行形成閘極之後的熱處理,而不執行形成閘極之前的熱處理,以減少製程步驟。在另一些實施例中,可以在形成閘極前後各自執行一次熱處理,以更良好控制氟化區180的分布範圍。 Although it is described herein that the heat treatment is performed twice, one or more heat treatments may be performed according to a predetermined distribution range of the fluorinated region 180 and a stability control ability of fluorine ion implantation. In some embodiments, only the heat treatment after the gate formation is performed, and the heat treatment before the gate formation is not performed to reduce the process steps. In other embodiments, a heat treatment may be performed once before and after the gate is formed to better control the distribution range of the fluorinated region 180.
第2圖是根據一些實施例繪示半導體裝置200的剖面示意圖。在一些實施例中,如第2圖所示,氟化區180可以更分布於化合物半導體層160a周圍的阻障層150中,形成氟化區180’,以抑制漏電。 FIG. 2 is a schematic cross-sectional view of a semiconductor device 200 according to some embodiments. In some embodiments, as shown in FIG. 2, the fluorinated regions 180 may be further distributed in the barrier layer 150 around the compound semiconductor layer 160 a to form fluorinated regions 180 ′ to suppress leakage.
在一些實施例中,氟化區180’的形成可以是在形成氟化區180之後,再次使用如前所述用於形成氟化區180的方法和氟源,以將氟導入化合物半導體層160a周圍的阻障層150。或者,在另一些實施例中,可以使用露出化合物半導體層160a和其周圍的阻障層150的遮罩,以在同一步驟形成氟化區180’。或者,在又另一些實施例中,可以控制如前所述的一或多次熱處理,使氟化區180的氟擴散進入阻障層150中, 形成氟化區180’,而無須另外導入氟,減少製程步驟和成本,並且提升產能。 In some embodiments, the formation of the fluorinated region 180 ′ may be that the method and the fluorine source for forming the fluorinated region 180 described above are used again after forming the fluorinated region 180 to introduce fluorine into the compound semiconductor layer 160 a. Around the barrier layer 150. Alternatively, in other embodiments, a mask that exposes the compound semiconductor layer 160a and the surrounding barrier layer 150 may be used to form the fluorinated region 180 'in the same step. Alternatively, in still other embodiments, the one or more heat treatments described above can be controlled to diffuse the fluorine in the fluorinated region 180 into the barrier layer 150. Forming a fluorinated region 180 'without introducing additional fluorine, reducing process steps and costs, and increasing productivity.
在第2圖繪示的半導體裝置200中,在化合物半導體層160a周圍的阻障層150中設置氟化區180’,可以抑制漏電,提升半導體裝置200的良率。 In the semiconductor device 200 shown in FIG. 2, a fluorinated region 180 ′ is provided in the barrier layer 150 around the compound semiconductor layer 160 a, which can suppress leakage and improve the yield of the semiconductor device 200.
第3圖是根據一些實施例繪示半導體裝置300的剖面示意圖。在一些實施例中,如第3圖所示,可以在化合物半導體層160a中設置第一氟保持層310,以與氟化區180中的氟形成穩定的化合物,避免氟向外擴散,影響其他元件。第一氟保持層310的材料可以包含氮化鋁(AlN)、氮化鋁鎵(AlGaN)、氮化銦鎵(AlInN)、類似的材料或前述之組合,這些材料可以與導入的氟形成氟化鋁(Aluminium Fluoride,AlF)。由於形成的氟化鋁在後續製程的熱處理下穩定,可以增加氟化區180的熱穩定性。因此,在第一氟保持層310內的氟含量大於在第一氟保持層310外的氟含量。 FIG. 3 is a schematic cross-sectional view of a semiconductor device 300 according to some embodiments. In some embodiments, as shown in FIG. 3, a first fluorine-retaining layer 310 may be provided in the compound semiconductor layer 160 a to form a stable compound with the fluorine in the fluorinated region 180 to prevent fluorine from diffusing outward and affecting other element. The material of the first fluorine-retaining layer 310 may include aluminum nitride (AlN), aluminum gallium nitride (AlGaN), indium gallium nitride (AlInN), a similar material, or a combination thereof. These materials may form fluorine with the introduced fluorine. Aluminium Fluoride (AlF). Since the formed aluminum fluoride is stable under the heat treatment of the subsequent process, the thermal stability of the fluoride region 180 can be increased. Therefore, the fluorine content in the first fluorine-retaining layer 310 is larger than the fluorine content outside the first fluorine-retaining layer 310.
在一些實施例中,第一氟保持層310的形成可以包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。可以在形成化合物半導體層160a期間,原位(in situ)形成第一氟保持層310。雖然在繪示的實施例中,第一氟保持層310位於化合物半導體層160a內部,但本發明不限於此。在一些實施例中,第一氟保持層310也可以設置於化合物半導體層160a的頂部或底部。在一些實施例中,第一氟保持層310的厚度T1在約0.5nm至約5nm的範圍,例如約4nm。 In some embodiments, the formation of the first fluorine-retaining layer 310 may include a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, a similar process, or a combination thereof. The first fluorine holding layer 310 may be formed in situ during the formation of the compound semiconductor layer 160a. Although the first fluorine-retaining layer 310 is located inside the compound semiconductor layer 160a in the illustrated embodiment, the present invention is not limited thereto. In some embodiments, the first fluorine-retaining layer 310 may also be disposed on the top or bottom of the compound semiconductor layer 160a. In some embodiments, the thickness T1 of the first fluorine-retaining layer 310 is in a range of about 0.5 nm to about 5 nm, such as about 4 nm.
根據本發明的一些實施例,在化合物半導體層160a設置第一氟保持層310,除了可以提升氟的熱穩定性,避免氟向外擴散,更可以保護其下方的區域,避免後續製程影響下方的區域,提升半導體裝置300的良率。 According to some embodiments of the present invention, the first fluorine-retaining layer 310 is provided on the compound semiconductor layer 160a. In addition to improving the thermal stability of the fluorine, preventing the fluorine from diffusing outward, it can also protect the area below it, and prevent subsequent processes from affecting the underlying Area, improving the yield of the semiconductor device 300.
第4A-4D圖是根據一些實施例繪示在製造半導體裝置400的各個階段之剖面示意圖。第4A圖係接續第1C圖的描述,以相同符號描述相同元件,並且這些元件的形成方式和材料如前所述,在此不重複敘述。 4A-4D are schematic cross-sectional views illustrating various stages of manufacturing the semiconductor device 400 according to some embodiments. FIG. 4A is a continuation of the description of FIG. 1C, and the same elements are described with the same symbols, and the formation methods and materials of these elements are as described above, and are not repeated here.
在一些實施例中,如第4A圖所示,可以設置第二氟保持層410覆蓋化合物半導體層160a的側壁且延伸至這對源極/汲極170與阻障層150之間,以避免氟的擴散並保護其下方的元件。在一些實施例中,第二氟保持層410的形成可以選用如前所述第一氟保持層310的製程和材料。在一些實施例中,第二氟保持層410的厚度T2在約0.5nm至約5nm的範圍,例如約4nm。 In some embodiments, as shown in FIG. 4A, a second fluorine-retaining layer 410 may be provided to cover the sidewall of the compound semiconductor layer 160 a and extend between the pair of source / drain 170 and barrier layer 150 to avoid fluorine. Diffusion and protect the components below it. In some embodiments, the formation and material of the second fluorine-retaining layer 410 may be selected from the processes and materials of the first fluorine-retaining layer 310 described above. In some embodiments, the thickness T2 of the second fluorine-retaining layer 410 ranges from about 0.5 nm to about 5 nm, such as about 4 nm.
如前所述,可以調整此對源極/汲極170延伸至膜層的深度,因此亦可因應調整第二氟保持層410的位置。舉例來說,在一些實施例中,對於此對源極/汲極170只延伸至部分阻障層150內,或不延伸至阻障層150內的情況,第二氟保持層410設置延伸至這對源極/汲極170與阻障層150之間。另一方面,對於此對源極/汲極170進一步延伸至通道層140內的情況,第二氟保持層410更設置在這對源極/汲極170與通道層140之間。 As described above, the depth at which the pair of source / drain electrodes 170 extend to the film layer can be adjusted, so the position of the second fluorine-retaining layer 410 can also be adjusted accordingly. For example, in some embodiments, for the case where the pair of source / drain 170 extends only partially into the barrier layer 150, or does not extend into the barrier layer 150, the second fluorine retention layer 410 is provided to extend to The pair of source / drain 170 and barrier layer 150. On the other hand, for the case where the pair of source / drain 170 further extends into the channel layer 140, the second fluorine holding layer 410 is further disposed between the pair of source / drain 170 and the channel layer 140.
然後如第4B圖所示,在第二氟保持層410中形成 開口420,且開口420位於化合物半導體層160a上方。開口420的位置係根據預定設置閘極的位置調整。在一些實施例中,開口420的形成可以使用圖案化遮罩層(未繪示),蝕刻被圖案化遮罩層露出的一部分的第二氟保持層410,以移除這部分的第二氟保持層410。形成圖案化遮罩層的材料和方法如前所述,在此不重複描述。 Then, as shown in FIG. 4B, a second fluorine-retaining layer 410 is formed. The opening 420 is located above the compound semiconductor layer 160a. The position of the opening 420 is adjusted according to the position where the gate electrode is predetermined. In some embodiments, the opening 420 may be formed using a patterned masking layer (not shown), and a portion of the second fluorine-retaining layer 410 exposed by the patterned masking layer is etched to remove this portion of the second fluorine. Holding layer 410. The materials and methods for forming the patterned masking layer are as described above, and are not repeated here.
在一些實施例中,第二氟保持層410的蝕刻可以使用乾式蝕刻製程、濕式蝕刻製程或前述之組合。舉例來說,第二氟保持層410的蝕刻包含反應性離子蝕刻(RIE)、感應耦合式電漿(ICP)蝕刻、中子束蝕刻(NBE)、電子迴旋共振式(ERC)蝕刻、類似的蝕刻製程或前述之組合。 In some embodiments, the etching of the second fluorine-retaining layer 410 may use a dry etching process, a wet etching process, or a combination thereof. For example, the etching of the second fluorine holding layer 410 includes reactive ion etching (RIE), inductively coupled plasma (ICP) etching, neutron beam etching (NBE), electron cyclotron resonance (ERC) etching, and the like Etching process or a combination of the foregoing.
接著如第4C圖所示,從開口420導入氟,形成氟化區180。可以選用如前所述的製程和材料形成氟化區180,且可以在形成氟化區180之後,選擇性地執行熱處理,更可以如第2圖所示,形成延伸至化合物半導體層160a周圍的阻障層150的氟化區180’。此外,由於從開口420導入氟,因此開口420的面積大致上小於或等於氟化區180/180’在化合物半導體層160a的頂部面積。另外,可以使用與開口420相同的圖案化遮罩層導入氟,以減少製程步驟。 Next, as shown in FIG. 4C, fluorine is introduced from the opening 420 to form a fluorinated region 180. The fluorinated region 180 can be formed using the processes and materials described above, and after the fluorinated region 180 is formed, a heat treatment can be selectively performed, and as shown in FIG. The fluorinated region 180 ′ of the barrier layer 150. In addition, since fluorine is introduced from the opening 420, the area of the opening 420 is substantially smaller than or equal to the top area of the compound semiconductor layer 160a of the fluorinated region 180/180 '. In addition, fluorine can be introduced using the same patterned mask layer as the opening 420 to reduce the number of process steps.
接著如第4D圖所示,在化合物半導體層160a上方的開口420設置閘極190,形成半導體裝置400。形成閘極190的材料和製程如前所述,在此不重複敘述。可以使用與開口420相同的圖案化遮罩層形成閘極190,以減少製程步驟。另外,雖然在此描述形成源極/汲極170之後形成閘極190,但本 發明不限於此。舉例來說,可以同時形成源極/汲極170和閘極190。 Next, as shown in FIG. 4D, a gate electrode 190 is provided in the opening 420 above the compound semiconductor layer 160 a to form a semiconductor device 400. The materials and processes for forming the gate electrode 190 are as described above, and are not repeated here. The gate electrode 190 can be formed using the same patterned mask layer as the opening 420 to reduce the number of process steps. In addition, although it is described herein that the gate 190 is formed after the source / drain 170 is formed, The invention is not limited to this. For example, the source / drain 170 and the gate 190 may be formed simultaneously.
雖然在第4D圖繪示的實施例中,開口420與閘極190的底面與氟化區180的頂面大致上具有相同面積,但本發明不限於此。另外,閘極190不限於如圖所示的垂直側壁,閘極190也可以具有傾斜的側壁或覆蓋部分的第二氟保持層410的階梯狀側壁。 Although in the embodiment shown in FIG. 4D, the bottom surface of the opening 420 and the gate electrode 190 and the top surface of the fluorinated region 180 have substantially the same area, the present invention is not limited thereto. In addition, the gate electrode 190 is not limited to the vertical sidewall shown in the figure, and the gate electrode 190 may have an inclined sidewall or a stepped sidewall of the second fluorine-retaining layer 410 covering the portion.
然後可以對半導體裝置400再次進行熱處理,例如快速熱處理,以調整氟化區180的範圍。熱處理的溫度、時間和次數如前所述,在此不重複敘述。 The semiconductor device 400 may then be subjected to a heat treatment, such as a rapid heat treatment, to adjust the range of the fluorinated region 180. The temperature, time and number of heat treatments are as described above, and will not be repeated here.
根據本發明的一些實施例,在半導體裝置400設置第二氟保持層410覆蓋化合物半導體層160a的側壁且延伸至這對源極/汲極170與阻障層150之間,除了可以與氟形成穩定的化合物,提升氟化區180的熱穩定性,以避免此區的氟向外擴散,還可以在後續製程期間保護其下方的區域,提升半導體裝置400的良率。 According to some embodiments of the present invention, a second fluorine-retaining layer 410 is provided on the semiconductor device 400 to cover the sidewall of the compound semiconductor layer 160a and extends between the pair of source / drain 170 and the barrier layer 150, except that it can be formed with fluorine. The stable compound improves the thermal stability of the fluorinated region 180 to prevent the fluorine in this region from diffusing outward. It can also protect the region below it during subsequent processes and improve the yield of the semiconductor device 400.
第5圖是根據一些實施例繪示半導體裝置500的剖面示意圖。在一些實施例中,如第5圖所示,可以同時設置第一氟保持層310和第二氟保持層410,以進一步提升氟保持層180的熱穩定性,並更完整保護第一氟保持層310和第二氟保持層410下方的區域,提升半導體裝置500的良率。第一氟保持層310和第二氟保持層410的位置、材料與製程如前所述,在此不重複說明。 FIG. 5 is a schematic cross-sectional view of a semiconductor device 500 according to some embodiments. In some embodiments, as shown in FIG. 5, the first fluorine-retaining layer 310 and the second fluorine-retaining layer 410 may be provided at the same time to further improve the thermal stability of the fluorine-retaining layer 180 and more completely protect the first fluorine-retaining layer. The area under the layer 310 and the second fluorine-retaining layer 410 improves the yield of the semiconductor device 500. The positions, materials, and processes of the first fluorine-retaining layer 310 and the second fluorine-retaining layer 410 are as described above, and the description is not repeated here.
為了方便繪示,第一氟保持層310的厚度T1和第 二氟保持層410的厚度T2大致上相同,但本發明不限於此,可以使厚度T1大於、等於或小於厚度T2。此外,第一氟保持層310和第二氟保持層410的形成可以選用相同或不同的製程和材料,還可以調整第一氟保持層310和第二氟保持層410的位置。 For the convenience of illustration, the thickness T1 and The thickness T2 of the difluoride-retaining layer 410 is substantially the same, but the present invention is not limited thereto, and the thickness T1 may be greater than, equal to, or less than the thickness T2. In addition, the first fluorine-retaining layer 310 and the second fluorine-retaining layer 410 can be formed using the same or different processes and materials, and the positions of the first fluorine-retaining layer 310 and the second fluorine-retaining layer 410 can also be adjusted.
第6圖是根據一些實施例繪示半導體裝置600的剖面示意圖。在一些實施例中,如第6圖所示,半導體裝置600更包含二維電子氣回復層610,覆蓋化合物半導體層160a的側壁且延伸至這對源極/汲極170與阻障層150之間,以回復源極/汲極170周圍的二維電子氣的通道。 FIG. 6 is a schematic cross-sectional view of a semiconductor device 600 according to some embodiments. In some embodiments, as shown in FIG. 6, the semiconductor device 600 further includes a two-dimensional electron gas recovery layer 610 covering the sidewall of the compound semiconductor layer 160 a and extending to the source / drain 170 and the barrier layer 150. In order to restore the two-dimensional electron gas channel around the source / drain 170.
在一些實施例中,二維電子氣回復層610的形成包含沉積製程,例如有機金屬化學氣相沉積、原子層沉積、分子束磊晶、液相磊晶、類似的製程或前述之組合。二維電子氣回復層610的材料可以包含六方晶系(hexagonal crystal)的二元化合物半導體、石墨烯(graphene)、類似的材料或前述之組合。在一些實施例中,二維電子氣回復層610的材料包含氮化鋁(AlN)、氧化鋅(Zinc Oxide,ZnO)、氮化銦(Indium Nitride,InN)、類似的材料或前述之組合。 In some embodiments, the formation of the two-dimensional electron gas recovery layer 610 includes a deposition process, such as organic metal chemical vapor deposition, atomic layer deposition, molecular beam epitaxy, liquid phase epitaxy, a similar process, or a combination thereof. The material of the two-dimensional electron gas recovery layer 610 may include a binary compound semiconductor of hexagonal crystal, graphene, a similar material, or a combination thereof. In some embodiments, the material of the two-dimensional electron gas recovery layer 610 includes aluminum nitride (AlN), zinc oxide (ZnO), indium nitride (Indium Nitride, InN), a similar material, or a combination thereof.
如前所述,可以調整此對源極/汲極170延伸至膜層的深度,因此亦可根據需求設置二維電子氣回復層610的位置。此外,二維電子氣回復層610可以具有設置閘極190的開口,並且從開口導入氟,因此開口的面積大致上小於或等於氟化區180在化合物半導體層160a的頂部面積。開口的形成方式及導入氟的製程如前所述,在此不重複敘述。 As described above, the depth at which the pair of source / drain electrodes 170 extend to the film layer can be adjusted, so the position of the two-dimensional electron gas recovery layer 610 can also be set according to requirements. In addition, the two-dimensional electron gas recovery layer 610 may have an opening in which the gate electrode 190 is provided, and fluorine is introduced from the opening, so the area of the opening is substantially smaller than or equal to the top area of the fluorinated region 180 on the compound semiconductor layer 160a. The method of forming the opening and the process of introducing fluorine are as described above, and will not be repeated here.
此外,雖然在第6圖中繪示半導體裝置600具有第一氟保持層310和二維電子氣回復層610,但本發明不限於此。舉例來說,可以僅設置二維電子氣回復層610。 In addition, although the semiconductor device 600 is shown in FIG. 6 with the first fluorine holding layer 310 and the two-dimensional electron gas recovery layer 610, the present invention is not limited thereto. For example, only the two-dimensional electron gas recovery layer 610 may be provided.
在一些實施例中,二維電子氣回復層610的厚度T3在約0.5nm至約5nm的範圍,例如約4nm。為了方便繪示,第一氟保持層310的厚度T1和二維電子氣回復層610的厚度T3大致上相同,但本發明不限於此,可以使厚度T1大於、等於或小於厚度T3。此外,第一氟保持層310和二維電子氣回復層610的位置不限於說明用的圖式,例如第一氟保持層310可以設置於化合物半導體層160a的底部。 In some embodiments, the thickness T3 of the two-dimensional electron gas recovery layer 610 ranges from about 0.5 nm to about 5 nm, such as about 4 nm. For ease of illustration, the thickness T1 of the first fluorine-retaining layer 310 and the thickness T3 of the two-dimensional electron gas recovery layer 610 are substantially the same, but the present invention is not limited thereto, and the thickness T1 may be greater than, equal to, or less than the thickness T3. In addition, the positions of the first fluorine-retaining layer 310 and the two-dimensional electron gas recovery layer 610 are not limited to the illustrations. For example, the first fluorine-retaining layer 310 may be provided on the bottom of the compound semiconductor layer 160a.
根據本發明的一些實施例,在半導體裝置600設置二維電子氣回復層610,除了可以降低接面電阻(RC)、改善導通電阻(RON),還可以保護下方的膜層不受到後續製程的影響,提升半導體裝置600的效能和良率。 According to some embodiments of the present invention, in the two-dimensional electron gas 600 is provided a semiconductor device reply layer 610, in addition to reducing the surface resistance (R C), to improve the on-resistance (R ON), the protective layer may also not be below the subsequent The impact of the manufacturing process improves the efficiency and yield of the semiconductor device 600.
根據一些實施例,本發明在半導體裝置的化合物半導體層中導入氟,形成化合物半導體層中的氟化區,可以提升表面電位並改變能帶,進而改善半導體裝置的臨界電壓和閘極擺幅。由於導入的氟不與化合物半導體層形成p-n接面,有利於半導體裝置的開關性能。此外,還可以藉由調整氟的分布和含量,例如使氟進入化合物半導體周圍的阻障層中,以抑制漏電。另外,使用蝕刻設備導入氟更可以降低對元件的轟擊傷害並且達到較穩定的離子濃度及分佈。 According to some embodiments, the present invention introduces fluorine into a compound semiconductor layer of a semiconductor device to form a fluorinated region in the compound semiconductor layer, which can raise the surface potential and change the energy band, thereby improving the threshold voltage and gate swing of the semiconductor device. Since the introduced fluorine does not form a p-n junction with the compound semiconductor layer, it is beneficial to the switching performance of the semiconductor device. In addition, by adjusting the distribution and content of fluorine, for example, fluorine can be allowed to enter the barrier layer around the compound semiconductor to suppress leakage. In addition, the use of etching equipment to introduce fluorine can reduce the damage to the element and achieve a more stable ion concentration and distribution.
根據另一些實施例,本發明在化合物半導體層頂部、內部、底部及/或側壁上設置氟保持層,可避免氟化區的 氟向外擴散,更可避免後續製程影響氟保持層以內的區域,提升半導體裝置的良率。另外,根據又另一些實施例,設置二維電子氣回復層覆蓋化合物半導體層的側壁且延伸至源極/汲極與阻障層之間,可以回復源極/汲極周圍的二維電子氣的通道,以降低接面電阻(RC),並改善導通電阻(RON),更可保護其下方的區域。 According to other embodiments, a fluorine retention layer is provided on the top, the inside, the bottom and / or the sidewall of the compound semiconductor layer according to the present invention, which can prevent the fluorine in the fluorinated region from diffusing outward, and can also avoid the subsequent process from affecting the area within the fluorine retention layer To improve the yield of semiconductor devices. In addition, according to still other embodiments, a two-dimensional electron gas recovery layer is provided to cover the sidewall of the compound semiconductor layer and extends between the source / drain and the barrier layer, so as to recover the two-dimensional electron gas around the source / drain. the channels to reduce junction resistance (R C), and to improve the on-resistance (R oN), but also protect the area thereunder.
雖然本發明已以多個實施例描述如上,但這些實施例並非用於限定本發明。本發明所屬技術領域中具有通常知識者應可理解,他們能以本發明實施例為基礎,做各式各樣的改變、取代和替換,以達到與在此描述的多個實施例相同的目的及/或優點。本發明所屬技術領域中具有通常知識者也可理解,此類修改或設計並未悖離本發明的精神和範圍。因此,本發明之保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been described above with a plurality of embodiments, these embodiments are not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains should understand that they can make various changes, substitutions and replacements based on the embodiments of the present invention to achieve the same purpose as the multiple embodiments described herein. And / or advantages. Those skilled in the art to which the present invention pertains can also understand that such modifications or designs do not depart from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the attached patent application.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107135562A TWI676293B (en) | 2018-10-09 | 2018-10-09 | Semiconductor devices and methods for forming same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107135562A TWI676293B (en) | 2018-10-09 | 2018-10-09 | Semiconductor devices and methods for forming same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI676293B true TWI676293B (en) | 2019-11-01 |
TW202015241A TW202015241A (en) | 2020-04-16 |
Family
ID=69188779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107135562A TWI676293B (en) | 2018-10-09 | 2018-10-09 | Semiconductor devices and methods for forming same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI676293B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113161416A (en) * | 2020-01-22 | 2021-07-23 | 聚力成半导体(重庆)有限公司 | Structure of enhancement mode gallium nitride transistor and packaging chip using structure |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI755091B (en) * | 2020-10-08 | 2022-02-11 | 世界先進積體電路股份有限公司 | Semiconductor device and method of forming the same |
US11450764B2 (en) | 2020-12-29 | 2022-09-20 | Vanguard International Semiconductor Corporation | Semiconductor device and method of forming the same |
TWI784460B (en) * | 2021-03-31 | 2022-11-21 | 錸鐽科技有限公司 | Normally closed transistor and its manufacturing method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201242016A (en) * | 2011-02-24 | 2012-10-16 | Fujitsu Ltd | Method of producing semiconductor device and semiconductor device |
TWI482280B (en) * | 2011-09-15 | 2015-04-21 | Fujitsu Ltd | Semiconductor device, method for manufacturing the same, power supply apparatus and high-frequency amplification unit |
TWI509796B (en) * | 2012-08-09 | 2015-11-21 | Taiwan Semiconductor Mfg Co Ltd | High electron mobility transistor and method of forming the same |
TWI515894B (en) * | 2012-03-29 | 2016-01-01 | 富士通股份有限公司 | Semiconductor device and method for manufacturing semiconductor device |
TWI577009B (en) * | 2015-07-13 | 2017-04-01 | Nat Chung-Hsing Univ | Enhanced High Electron Mobility Crystal |
-
2018
- 2018-10-09 TW TW107135562A patent/TWI676293B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201242016A (en) * | 2011-02-24 | 2012-10-16 | Fujitsu Ltd | Method of producing semiconductor device and semiconductor device |
TWI482280B (en) * | 2011-09-15 | 2015-04-21 | Fujitsu Ltd | Semiconductor device, method for manufacturing the same, power supply apparatus and high-frequency amplification unit |
TWI515894B (en) * | 2012-03-29 | 2016-01-01 | 富士通股份有限公司 | Semiconductor device and method for manufacturing semiconductor device |
TWI509796B (en) * | 2012-08-09 | 2015-11-21 | Taiwan Semiconductor Mfg Co Ltd | High electron mobility transistor and method of forming the same |
TWI577009B (en) * | 2015-07-13 | 2017-04-01 | Nat Chung-Hsing Univ | Enhanced High Electron Mobility Crystal |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113161416A (en) * | 2020-01-22 | 2021-07-23 | 聚力成半导体(重庆)有限公司 | Structure of enhancement mode gallium nitride transistor and packaging chip using structure |
TWI769431B (en) * | 2020-01-22 | 2022-07-01 | 大陸商聚力成半導體(重慶)有限公司 | Structure of enhanced gallium nitride transistor and packaging chip using the same |
Also Published As
Publication number | Publication date |
---|---|
TW202015241A (en) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI608568B (en) | Semiconductor device and method for fabricating the same | |
TWI593102B (en) | High electron mobility transistor and fabrication thereof | |
TWI676293B (en) | Semiconductor devices and methods for forming same | |
US11545567B2 (en) | Methods for forming fluorine doped high electron mobility transistor (HEMT) devices | |
US9048174B2 (en) | Compound semiconductor device having gallium nitride gate structures | |
US10700189B1 (en) | Semiconductor devices and methods for forming the same | |
US11398546B2 (en) | Semiconductor devices and methods for fabricating the same | |
US12027625B2 (en) | Semiconductor device having fins and method of fabricating the same | |
JP5166576B2 (en) | GaN-based semiconductor device manufacturing method | |
CN108198855B (en) | Semiconductor element, semiconductor substrate and forming method thereof | |
US20200127116A1 (en) | Semiconductor devices and methods for fabricating the same | |
TW202115912A (en) | Integrated transistor device and method of forming integrated transistor device | |
TW202025258A (en) | Method of manufacturing gate structure for gallium nitride hemt | |
CN110875383B (en) | Semiconductor device and method for manufacturing the same | |
TWI693716B (en) | Semiconductor devices and methods for fabricating the same | |
TWI673868B (en) | Semiconductor devices and methods for fabricating the same | |
CN111092118B (en) | Semiconductor device and method for manufacturing the same | |
TW202329461A (en) | High electron mobility transistor and method for fabricating the same | |
TW202042308A (en) | Semiconductor devices and methods for fabricating the same | |
JP7057473B1 (en) | Semiconductor devices and methods for manufacturing semiconductor devices | |
TWI740058B (en) | Semiconductor devices and methods for forming same | |
TWI726316B (en) | High electron mobility transistor devices and methods for forming the same | |
TW202032787A (en) | Semiconductor devices and methods for fabricating the same | |
TWI791364B (en) | Method of manufacturing normally-off gallium nitride device | |
TWI710133B (en) | Semiconductor device and manufacturing method of the same |