TWI672895B - 被動電路與電源轉換器 - Google Patents

被動電路與電源轉換器 Download PDF

Info

Publication number
TWI672895B
TWI672895B TW106143074A TW106143074A TWI672895B TW I672895 B TWI672895 B TW I672895B TW 106143074 A TW106143074 A TW 106143074A TW 106143074 A TW106143074 A TW 106143074A TW I672895 B TWI672895 B TW I672895B
Authority
TW
Taiwan
Prior art keywords
unit
switch
coupled
capacitor
inductive
Prior art date
Application number
TW106143074A
Other languages
English (en)
Other versions
TW201926870A (zh
Inventor
陳揚霖
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW106143074A priority Critical patent/TWI672895B/zh
Publication of TW201926870A publication Critical patent/TW201926870A/zh
Application granted granted Critical
Publication of TWI672895B publication Critical patent/TWI672895B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

被動電路包含彼此耦合的第一電感單元、第二電感單元、第三電感單元、第四電感單元以及電容單元。第一電感單元的第一端耦接於第二電感單元的第一端。第一電感單元的第二端耦接於第三電感單元的第一端。第二電感單元的第二端耦接於第四電感單元的第一端。第三電感單元的第二端與第四電感單元的第二端分別耦接至電容單元。

Description

被動電路與電源轉換器
本揭示內容係關於一種被動電路,且特別係關於一種設置於電源轉換器中的被動電路。
隨著電力電子的技術發展,交換式電源轉換電路被廣泛應用在許多電源轉換設備當中。隨著高頻化的發展趨勢,為了降低切換損失,提升電源效率,如何實現開關的零電壓切換為目前本領域重要的研究課題。
本揭示內容的一態樣為一種被動電路。被動電路包含第一電感單元、第二電感單元、第三電感單元、第四電感單元以及電容單元。第一電感單元、第二電感單元、第三電感單元、第四電感單元彼此耦合,第一電感單元的第一端耦接於第二電感單元的第一端,第一電感單元的第二端耦接於第三電感單元的第一端,第二電感單元的第二端耦接於第四電感單元的第一端,第三電感單元的第二端與第四電感單元的第二端分別耦接至電容單元。
在部分實施例中,第一電感單元、第二電感單元、第三電感單元與第四電感單元集成在磁芯上。
在部分實施例中,被動電路更包含第一隔離變壓器與第二隔離變壓器,其中第一隔離變壓器的原邊繞組包含第一電感單元,第一隔離變壓器的副邊繞組包含第五電感單元,第二隔離變壓器的原邊繞組包含第二電感單元,第二隔離變壓器的副邊繞組包含第六電感單元,第五電感單元與第六電感單元彼此耦接。
在部分實施例中,電容單元包含第一電容器與第二電容器,第一電容器的第一端電性耦接於第三電感單元的第二端,第二電容器的第一端電性耦接於第四電感單元的第二端。
在部分實施例中,電容單元更包含第三電容器,第三電容器的第一端耦接於第一電容器的第二端與第二電容器的第二端,第三電容器的第二端用以接收參考電壓。
在部分實施例中,電容單元包含第一電容器,第三電感單元的第二端與第四電感單元的第二端彼此耦接,並共同分別電性耦接至第一電容器的第一端,第一電容器的第二端用以接收參考電壓。
本案的另一態樣為一種電源轉換器。電源轉換器包含被動電路以及切換電路。被動電路包含彼此耦合的第一電感單元、第二電感單元、第三電感單元、第四電感單元以及電容單元。第一電感單元的第一端耦接於第二電感單元的第一端,第一電感單元的第二端耦接於第三電感單元的第一端,第二電感單元的第二端耦接於第四電感單元的第一端,第三電感單元的第二端與第四電感單元的第二端分別耦接至電容單元。切換電路電性耦接於被動電路,切換電路包含複數個切換開關,切換開關用以選擇性地導通或關斷以將第一電壓轉換為第二電壓。
在部分實施例中,切換開關包含第一開關,第一開關電性耦接於第一電感單元的第二端以及第三電感單元的第一端,當第一開關自截止切換至導通時刻前,流經第三電感單元的電流大於流經第一電感單元的電流。
在部分實施例中,第一電感單元的第一端用以接收第一電壓,電容單元用以接收參考電壓。
在部分實施例中,切換開關更包含第二開關、第三開關以及第四開關,其中第一開關的第一端耦接於第一電感單元的第二端,第一開關的第二端耦接於參考電壓,第二開關的第一端耦接於第二電感單元的第二端,第二開關的第二端耦接於參考電壓,第三開關的第一端耦接於第一開關的第一端,第四開關的第一端耦接於第二開關的第一端,第三開關的第二端與第四開關的第二端彼此耦接,並用以接收或提供第二電壓。
在部分實施例中,第一電感單元、第二電感單元、第三電感單元與第四電感單元集成在磁芯上。
在部分實施例中,被動電路更包含第一隔離變壓器與第二隔離變壓器,其中第一隔離變壓器的原邊繞組包含第一電感單元,第一隔離變壓器的副邊繞組包含第五電感單元,第二隔離變壓器的原邊繞組包含第二電感單元,第二隔離變壓器的副邊繞組包含第六電感單元,第五電感單元的第一端與第六電感單元的第一端彼此耦接。
在部分實施例中,切換開關包含第一開關、第二開關、第三開關以及第四開關。第一開關的第一端電性耦接於第一電感單元的第二端,第一開關的第二端電性耦接於電容單元,第二開關的第一端電性耦接於第二電感單元的第二端,第二開關的第二端電性耦接於第一開關的第二端,第三開關的第一端耦接於第五電感單元的第二端,第四開關的第一端耦接於第六電感單元的第二端,第三開關的第二端與第四開關的第二端彼此耦接。
在部分實施例中,電容單元包含第一電容器與第二電容器,第一電容器的第一端電性耦接於第三電感單元的第二端,第二電容器的第一端電性耦接於第四電感單元的第二端。
在部分實施例中,電容單元更包含第三電容器,第三電容器的第一端耦接於第一電容器的第二端與第二電容器的第二端,第三電容器的第二端用以接收參考電壓。
在部分實施例中,電容單元包含第一電容器,第三電感單元的第二端與第四電感單元的第二端彼此耦接,並共同分別電性耦接至第一電容器的第一端,第一電容器的第二端用以接收參考電壓。
在部分實施例中,切換開關包含第一開關、第二開關、第三開關、第四開關、第五開關以及第六開關,其中第一開關的第一端、第三開關的第一端、第五開關的第一端彼此耦接,第一電感單元的第二端耦接於第一開關的第二端以及第二開關的第一端,第二電感單元的第二端耦接於第三開關的第二端以及第四開關的第一端,第三電感單元的第二端與第四電感單元的第二端彼此耦接,並共同分別電性耦接至電容單元的第一端,電容單元的第二端耦接於第五開關的第二端以及第六開關的第一端。
本案的另一態樣為一種電源轉換器。電源轉換器包含複數個被動電路以及複數個切換電路。複數個被動電路分別用以接收複數個輸入交流相電壓中相應之一者。複數個切換電路分別電性耦接於被動電路中相應之一者,切換電路的複數個直流輸出端彼此電性耦接。被動電路每一者分別包含彼此耦合的第一電感單元、第二電感單元、第三電感單元、第四電感單元以及電容單元,第一電感單元的第一端耦接於第二電感單元的第一端,第一電感單元的第二端耦接於第三電感單元的第一端,第二電感單元的第二端耦接於第四電感單元的第一端,第三電感單元的第二端與第四電感單元的第二端分別耦接至電容單元。
在部分實施例中,同一個被動電路中的第一電感單元、第二電感單元、第三電感單元與第四電感單元集成在磁芯上。
在部分實施例中,切換電路每一者分別包含複數個切換開關,用以選擇性地導通或關斷,切換開關包含第一開關,第一開關電性耦接於相應的被動電路中的第一電感單元的第二端以及第三電感單元的第一端,當第一開關自截止切換至導通時刻前,流經第三電感單元的電流大於流經第一電感單元的電流。
綜上所述,本揭示內容的被動電路可依據實際需求設置於不同的電源轉換電路架構中,透過其中彼此耦合的電感單元上電流的變化,將切換開關兩端的跨壓拉低至零電壓,以實現切換開關的零電壓切換。
下文係舉實施例配合所附圖式作詳細說明,以更好地理解本揭示內容的態樣,但所提供之實施例並非用以限制本揭露所涵蓋的範圍,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭露所涵蓋的範圍。此外,根據業界的標準及慣常做法,圖式僅以輔助說明為目的,並未依照原尺寸作圖,實際上各種特徵的尺寸可任意地增加或減少以便於說明。下述說明中相同元件將以相同之符號標示來進行說明以便於理解。
在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本揭露之描述上額外的引導。
此外,在本文中所使用的用詞『包含』、『包括』、『具有』、『含有』等等,均為開放性的用語,即意指『包含但不限於』。此外,本文中所使用之『及/或』,包含相關列舉項目中一或多個項目的任意一個以及其所有組合。
於本文中,當一元件被稱為『連接』或『耦接』時,可指『電性連接』或『電性耦接』。『連接』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本發明。
請參考第1圖。第1圖為根據本揭示內容部分實施例所繪示的被動電路120的示意圖。如第1圖所示,被動電路120包含電感結構122以及電容單元Cx。在部分實施例中,電感結構122包含彼此耦合的電感單元L1、L2、Lx1、Lx2。
在結構上,電感單元L1的第一端(如:打點端)耦接於電感單元L2的第一端(如:非打點端),並耦接至電感結構122的節點NA。電感單元L1的第二端(如:非打點端)耦接於電感單元Lx1的第一端(如:非打點端),並耦接至電感結構122的節點Nsw1。電感單元L2的第二端(如:打點端)耦接於電感單元Lx2的第一端(如:打點端),並耦接至電感結構122的節點Nsw2。電感單元Lx1的第二端(如:打點端)與電感單元Lx2的第二端(如:非打點端)分別透過電感結構122的節點NB電性耦接至電容單元Cx。藉此,電容單元Cx便可於電感單元Lx1與電感單元Lx2兩者電流不同時進行調節,以吸收或提供多餘的電流。
在部分實施例中,電容單元Cx包含第一電容器C1。電感單元Lx1的第二端與電感單元Lx2的第二端彼此耦接,並共同分別電性耦接至第一電容器C1的第一端。第一電容器C1的第二端用以接收參考電壓Vref。舉例來說,第一電容器C1的第二端可耦接至接地端,但本案並不以此為限。在其他部分實施例中,電容單元Cx亦可根據實際需求包含複數個彼此串聯或並聯耦接的電容器,故第1圖中所示僅為示例,並非用以限制本案。
具體來說,在部分實施例中,電感單元L1、L2、Lx1、Lx2集成在一磁芯上。請一併參考第2圖。第2圖為根據本揭示內容部分實施例所繪示的電感結構122的示意圖。如第2圖所示,在部分實施例中,電感結構122可由五柱磁芯的方式實作。電感單元L1、L2分別由對應磁柱上的N匝繞組實現。電感單元Lx1、Lx2亦分別由對應磁柱上的Nx匝繞組實現。如第2圖所示,透過上述結構,含有繞組的四組磁柱所產生的磁通會流向沒有繞組的磁柱,然後流回原本的磁柱形成封閉迴路,進而實現電感單元L1、L2、Lx1、Lx2的耦合。
值得注意的是,電感單元Lx1、Lx2與電感單元L1、L2的繞組匝數皆可依照實際需求設計。換言之,電感單元Lx1、Lx2的繞組匝數可大於、小於或者等於電感單元L1、L2的繞組匝數。此外,各個磁柱的截面積及氣隙長度之間的比例關係亦可依照實際需求設計。換言之,各個磁柱的截面積可相同或相異,各個磁柱對應的氣隙長度可為零或是任意長度。藉此,各個磁柱上的等效磁阻值便可由其截面積、氣隙長度以及磁柱材料特性而決定。由於流經電感單元L1、L2、Lx1、 Lx2的電流與等效磁阻值有關,透過設計適當的氣隙長度、截面積等參數,便可調整各個磁柱上的等效磁阻,進而控制流經各個電感單元L1、L2以及電感單元Lx1、Lx2的峰值大小。
在其他實施例中,電感結構122亦可由不同結構的五柱磁芯實現。例如,上有繞組的四組磁柱可以矩形方式排列,沒有繞組的磁柱可設置於與四組磁柱等距離的中心位置。因此,第2圖中所繪示的耦合電感結構僅為本案可能的實施方式之一,並非用以限制本案。
在第1圖、第2圖中所繪示的被動電路120以及電感結構122可應用在各種交換式電源轉換器當中,透過設計流經各個電感單元L1、L2以及電感單元Lx1、Lx2的電流大小,以實現電源轉換器中切換開關的零電壓切換(Zero Voltage Switching)。為便於說明起見,以下段落將搭配圖式說明在各個實施例中,被動電路120在電源轉換器中的操作。
請參考第3圖。第3圖為根據本揭示內容部分實施例所繪示的電源轉換器100的示意圖。如第3圖所示,在部分實施例中電源轉換器100可為升壓型(Boost)、降壓型(Buck)或升降兩用型(Buck-Boost)的電源轉換器。
在結構上,電源轉換器100包含被動電路120以及切換電路140。切換電路140電性耦接於被動電路120,其中包含複數個切換開關Q1~Q4。切換開關Q1~Q4分別根據控制訊號S1~S4選擇性地導通或關斷,以將直流電壓V1轉換為直流電壓V2。
在第3圖所示實施例中,被動電路120中的電感結 構122的節點NA用以接收或提供直流電壓V1,電感結構122的節點NB電性耦接於電容單元Cx的第一端。電容單元Cx的第二端電性耦接於接地端,以接收一參考電壓GND。電感結構122的節點Nsw1、Nsw2分別耦接於切換電路140當中的切換開關Q1、Q3以及切換開關Q2、Q4。
在結構上,切換電路140中的切換開關Q1與Q3透過節點Nsw1電性耦接於電感單元L1的第二端以及電感單元Lx1的第一端。切換電路140中的切換開關Q2與Q4透過節點Nsw2電性耦接於電感單元L2的第二端以及電感單元Lx2的第一端。
具體來說,開關Q1的第一端耦接於電感單元L1的第二端,開關Q1的第二端耦接於參考電壓GND(即:接地端)。開關Q2的第一端耦接於電感單元L2的第二端。開關Q2的第二端耦接於參考電壓GND(即:接地端)。開關Q3的第一端耦接於開關Q1的第一端,開關Q4的第一端耦接於開關Q2的第一端。開關Q3的第二端與開關Q4的第二端彼此耦接,並用以接收或提供直流電壓V2。
如此一來,透過被動電路120與切換電路140的協同操作,電源轉換器100可透過電感單元L1的第一端接收直流電壓V1,並進行電壓轉換後,透過開關Q3的第二端與開關Q4的第二端提供並輸出相應的直流電壓V2。在反方向上,亦可透過開關Q3的第二端與開關Q4的第二端接收直流電壓V2,進行電壓轉換後,透過電感單元L1的第一端輸出直流電壓V1。藉此,電源轉換器100便可實現電源的升壓或降壓。
在不同實施例中,切換電路140中的開關Q1~Q4可根據實際需求操作在交錯控制模式下或同步控制模式下。請搭配參考第4A圖與第4B圖。第4A圖與第4B圖為第3圖中所繪示的電源轉換器100操作在交錯控制模式下的波形示意圖。
如第4A圖與第4B圖所示,在交錯控制模式下,當控制訊號S1自致能準位切換至禁能準位截止開關Q1後,經過死區時間(Deadtime)後,同組的控制訊號S3自禁能準位切換至致能準位導通開關Q3。相似地,當控制訊號S2自致能準位切換至禁能準位截止開關Q2後,經過死區時間(Deadtime)後,同組的控制訊號S4自禁能準位切換至致能準位導通開關Q4。在完整週期中,流經電感單元L1的電流I1於峰值與谷值之間呈現週期變化,可能如第4A圖中的波形所示,或如第4B圖中的波形所示。
如第4A圖、第4B圖中時刻T1處所示,當開關Q1根據控制訊號S1自截止切換至導通時刻前,流經電感單元Lx1的電流Ix大於流經電感單元L1的電流L1。如圖中虛線圓圈處所標示,當流經電感單元Lx1的電流Ix大於流經電感單元L1的電流I1時,電流會流經開關Q1內的順向的寄生二極體,以達成節點Nsw1上的電流平衡。換言之,此時開關Q1兩端的跨壓Vds1會被迫拉低至零電壓。
如此一來,透過適當設計電感單元L1~Lx2的相關參數,便可設計流經電感單元Lx1的電流Ix在控制訊號S1導通開關Q1的時刻前,超過電感單元L1的電流I1。藉此,開關Q1兩端的跨壓Vds1便可在開關Q1導通前(即:時刻T1前)降至零,以實現開關Q1的零電壓切換。相似地,開關Q2亦可透過類似設計,實現零電壓切換,其細節不再於此贅述。
值得注意的是,雖然第4A圖與第4B圖中的波形係以交錯控制模式為例,但本案並不以此為限。換言之,當第3圖中的電源轉換器100操作在同步控制模式下時,亦可透過設計流經電感單元Lx1的電流Ix在控制訊號S1導通開關Q1的時刻前,超過電感單元L1的電流I1,以將跨壓Vds1在開關Q1導通前(即:時刻T1前)降至零並實現開關Q1的零電壓切換。本領域具通常知識者可明白其操作方式,故不再於此贅述。
此外,在其他實施例中,被動電路120亦可設置於其他形式的電源轉換器100中,實現切換電路140的零電壓切換。
請參考第5A圖與第5B圖。第5A圖與第5B圖為根據本案其他部分實施例所繪示的電源轉換器100的示意圖。如第5A圖所示,在部分實施例中,電感結構122的節點NA電性耦接於接地端。切換電路140中的開關Q1的第一端與開關Q2的第一端彼此耦接,用以接收或提供直流電壓V1。開關Q3的第二端與開關Q4的第二端彼此耦接,用以接收或提供直流電壓V2。開關Q1的第二端與開關Q3的第一端電性耦接於電感結構122的節點Nsw1。開關Q2的第二端與開關Q4的第一端電性耦接於電感結構122的節點Nsw2。電容單元Cx的第一端電性耦接於節點NB。電容單元Cx的第二端耦接於開關Q3的第二端與開關Q4的第二端。
和第5A圖所示實施例相比,在第5B圖所示實施例中,電容單元Cx的第二端耦接於開關Q1的第一端與開關Q2的第一端。
藉此,第1圖中所繪示的被動電路120便可搭配第5A圖與第5B圖中不同架構的切換電路140進行電源升降壓轉換,並實現開關Q1~Q4的零電壓導通。
請參考第6圖。第6圖為根據本案其他部分實施例所繪示的電源轉換器100的示意圖。如第6圖所示,在部分實施例中,電源轉換器100可為圖騰柱整流器或換流器。如第6圖所示,切換電路140包含開關Q1、Q2、Q3、Q4、Q5以及Q6。在結構上,開關Q1、Q3、Q5的第一端彼此耦接,以耦接至直流電壓Vdc的正極端。開關Q2、Q4、Q6的第二端彼此耦接,以耦接至直流電壓Vdc的負極端(如:接地端)。
電感結構122的節點Nsw1(即:電感單元L1的第二端)電性耦接於開關Q1的第二端以及開關Q2的第一端,節點Nsw2(即:電感單元L2的第二端)電性耦接於開關Q3的第二端以及開關Q4的第一端,節點NA電性耦接於交流電壓Vac的第一端,節點NB電性耦接於電容單元Cx的第一端。換言之,電感單元Lx1的第二端與電感單元Lx2的第二端彼此耦接,並共同分別電性耦接至電容單元Cx的第一端。電容單元Cx的第二端電性耦接於開關Q5的第二端以及開關Q6的第一端,並共同耦接於交流電壓Vac的第二端。
藉此,第1圖中所繪示的被動電路120便可搭配採用圖騰柱式的切換電路140進行交流電源與直流電源之間的電源轉換,並實現開關Q1~Q4的零電壓導通。
此外,在部分實施例中,亦可透過多組被動電路120以及切換電路140實現多相(如:三相)交流電源的電壓轉換。請參考第7圖。第7圖為根據本案部分實施例所繪示的電源轉換器100的示意圖。在第7圖所示實施例中,電源轉換器100包含複數個被動電路120a、120b、120c以及相應的複數個切換電路140a、140b、140c。
在本實施例中,各相的被動電路120a、120b、120c分別用以接收複數個輸入交流相電壓Va、Vb、Vc中相應之一者。具體來說,各相的被動電路120a、120b、120c分別包含電感結構122a、122b、122c以及相應的電容單元Cxa、Cxb、Cxc。在結構上,電容單元Cxa、Cxb、Cxc彼此電性耦接。具體來說,電容單元Cxa耦接於電感結構122a的節點NB以及電感結構122b的節點NB之間。電容單元Cxb耦接於電感結構122b的節點NB以及電感結構122c的節點NB之間。電容單元Cxc耦接於電感結構122c的節點NB以及電感結構122a的節點NB之間。電感結構122a、122b、122c可分別由第1圖中所繪示的電感結構122實現。換言之,在部分實施例中,同一個被動電路120a、120b、120c中的電感單元L1、電感單元L2、電感單元Lx1與電感單元Lx2集成在一磁芯上。故其細節以於先前段落詳細說明,於此不再於此贅述。
在結構上,切換電路140a、140b、140c分別電性耦接於被動電路120a、120b、120c中相應之一者,切換電路140a、140b、140c的複數個直流輸出端彼此電性耦接,用以提供直流電壓Vdc。
切換電路140a、140b、140c每一者分別包含複數個切換開關Q1a~Q4a、Q1b~Q4b、Q1c~Q4c,用以選擇性地導通或關斷。和先前實施例相似,以開關Q2a、Q2b、Q2c為例,開關Q2a、Q2b、Q2c分別電性耦接於相應的被動電路120a、120b、120c中的電感單元L1的第二端以及電感單元Lx1的第一端(即:節點Nsw1)。當開關Q2自截止切換至導通時刻前,流經電感單元Lx1的電流大於流經電感單元L1的電流。藉此,被動電路120a、120b、120c便可實現開關Q2a、Q2b、Q2c的零電壓導通。值得注意的是,雖然上述段落以開關Q2a~Q2c為例進行說明,但本案並不以此為限。在部分實施例中,被動電路120a、120b、120c亦可用以實現開關Q1a~Q1c、Q3a~Q3c或是Q4a~Q4c的零電壓導通。
綜上所述,本案的被動電路120可設置於各種架構的單相或多相(如:三相)的直流直流電源轉換器、直流交流電源轉換器中,實現電晶體開關的零電壓切換。
請參考第8A圖與第8B圖。第8A圖與第8B圖分別為根據本案其他部分實施例中所繪示的被動電路820a、820b的示意圖。如第8A圖所示,在部分實施例中,電容單元Cx包含第一電容器C1與第二電容器C2。結構上,第一電容器C1的第一端電性耦接於電感單元Lx1的第二端,第一電容器C1的第二端用以接收參考電壓Vref1。第二電容器C2的第一端電性耦接於電感單元Lx2的第二端。第二電容器C2的第二端用以接收參考電壓Vref2。換言之,在部分實施例中,第一電容器C1和第二電容器C2可分別連接到不同的電壓源,並以不同的參考電壓Vref1、Vref2實現電容單元Cx的操作。此外,在其他部分實施例中,第一電容器C1的第二端與第二電容器C2的第二端亦可彼此耦接,並接收相同的參考電壓Vref。換言之,第一電容器C1的第二端與第二電容器C2的第二端可有多種不同的電路連接變化。
如第8B圖所示,在其他部分實施例中,電容單元Cx可更進一步包含第三電容器C3。結構上,第三電容器C3的第一端耦接於第一電容器C1的第二端與第二電容器C2的第二端,第三電容器C3的第二端用以接收參考電壓Vref。此外,在其他部分實施例中,電容器C1、C2、C3亦可分別由一個或多個彼此串/並聯的電容器實現。
請參考第9圖。第9圖為根據本案其他部分實施例中所繪示的被動電路920的示意圖。如第9圖所示,在部分實施例中,被動電路920中的電感結構922中,可更包含隔離變壓器T1與隔離變壓器T2。隔離變壓器T1的原邊繞組包含電感單元L1。隔離變壓器T1的副邊繞組包含電感單元Ls1。隔離變壓器T2的原邊繞組包含電感單元L2,隔離變壓器T2的副邊繞組包含電感單元Ls2。
具體來說,電感單元Ls1、電感單元Ls2可由分別與電感單元L1、L2共用磁柱的繞組實作,以實現隔離變壓器T1、T2。透過設置電感單元Ls1、電感單元Ls2,被動電路920可進一步應用於隔離型電源轉換器當中。
請一併參考第10圖。第10圖為根據本案部分實施例所繪示包含第9圖的被動電路920的電源轉換器100。舉例來說,電源轉換器100可為反馳式電源轉換器。在本實施例中的電源轉換器100中,切換電路140中的切換開關包含開關Q1~Q4。
在結構上,直流電壓V1的一正極端耦接於電感結構922的節點NA。開關Q1的第一端電性耦接於電感單元L1的第二端(即:節點Nsw1)。開關Q2的第一端電性耦接於電感單元L2的第二端(即:節點Nsw2),開關Q1的第二端電性耦接於開關Q2的第二端,並共同電性耦接於電容單元Cx的第二端以及直流電壓V1的一負極端。
開關Q3的第一端耦接於電感單元Ls1的第二端(即:節點NZ)。開關Q4的第一端耦接於電感單元Ls2的第二端(即:節點NU)。開關Q3的第二端與開關Q4的第二端彼此耦接至直流電壓V2的一正極端。電感單元Ls1的第一端NX與電感單元Ls2的第一端NY彼此耦接至直流電壓V2的一負極端。
如此一來,被動電路920便可搭配切換電路140形成隔離型反馳式電源轉換器架構,並透過電感單元L1、L2、Ls1、Ls2實現直流電壓V1、V2之間的隔離與轉換。
綜上所述,本案各個實施例中的被動電路120、820、920可依據實際需求設置於不同的電源轉換電路架構中,以實現電晶體開關的零電壓切換。此外,雖然圖式中繪示了彼此耦合的電感單元L1~L2、Lx1~Lx2以及電感單元Ls1~Ls2的極點方向,但僅為示例之用。換言之,各個實施例中的各個電感單元L1~Ls2的極點方向皆可以依需要變更。
此外,在不衝突的情況下,在本揭示內容各個圖式、實施例及實施例中的特徵與電路可以相互組合。圖式中所繪示的電路僅為示例之用,係簡化以使說明簡潔並便於理解,並非用以限制本案。
此外,本領域技術人員當明白,在各個實施例中,各個電路單元可以由各種類型的數位或類比電路實現,亦可分別由不同的積體電路晶片實現。各個元件亦可整合至單一的積體電路晶片。上述僅為例示,本揭示內容並不以此為限。電子元件如電阻、電容、電感、二極體、電晶體開關等等,皆可由各種適當的器件實作。舉例來說,開關Q1~Q6可根據需求選用金氧半場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)、雙極性接面型電晶體(Bipolar Junction Transistor,BJT)或其他各種類型的電晶體實作。
雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。
100 電源轉換器 120、120a、120b、120c、820、920 被動電路 122、122a、122b、122c、922 電感結構 140、140a、140b、140c 切換電路 Cx、Cxa、Cxb、Cxc 電容單元 C1~C3 電容器 L1、L2、Lx1、Lx2、Ls1、Ls2 電感單元 Q1~Q6、Q1a~Q4a、Q1b~Q4b、Q1c~Q4c 開關 S1~S6 控制訊號 NA、NB、Nsw1、Nsw2、NX、NY、NZ、NU 節點 Vref、Vref1、Vref2、GND 參考電壓 V1、V2、Vdc 直流電壓 I1、Ix 電流 Vds1 跨壓 T1 時刻 Vac 交流電壓 Va、Vb、Vc 交流相電壓
第1圖為根據本揭示內容部分實施例所繪示的被動電路的示意圖。 第2圖為根據本揭示內容部分實施例所繪示的電感結構的示意圖。 第3圖為根據本揭示內容部分實施例所繪示的電源轉換器的示意圖。 第4A圖與第4B圖為第3圖中所繪示的電源轉換器操作在交錯控制模式下的波形示意圖。 第5A圖與第5B圖為根據本案其他部分實施例所繪示的電源轉換器的示意圖。 第6圖為根據本案其他部分實施例所繪示的電源轉換器的示意圖。 第7圖為根據本案部分實施例所繪示的電源轉換器的示意圖。 第8A圖與第8B圖分別為根據本案其他部分實施例中所繪示的被動電路的示意圖。 第9圖為根據本案其他部分實施例中所繪示的被動電路的示意圖。 第10圖為根據本案部分實施例所繪示包含第9圖的被動電路的電源轉換器。

Claims (20)

  1. 一種被動電路,包含:一第一電感單元、一第二電感單元、一第三電感單元、一第四電感單元以及一電容單元;其中該第一電感單元、該第二電感單元、該第三電感單元、該第四電感單元彼此耦合,該第一電感單元的一第一端耦接於該第二電感單元的一第一端,該第一電感單元的一第二端耦接於該第三電感單元的一第一端,該第二電感單元的一第二端耦接於該第四電感單元的一第一端,該第三電感單元的一第二端與該第四電感單元的一第二端分別耦接至該電容單元。
  2. 如請求項1所述的被動電路,其中該第一電感單元、該第二電感單元、該第三電感單元與該第四電感單元集成在一磁芯上。
  3. 如請求項1所述的被動電路,更包含一第一隔離變壓器與一第二隔離變壓器,其中該第一隔離變壓器的原邊繞組包含該第一電感單元,該第一隔離變壓器的副邊繞組包含一第五電感單元,該第二隔離變壓器的原邊繞組包含該第二電感單元,該第二隔離變壓器的副邊繞組包含一第六電感單元,該第五電感單元與該第六電感單元彼此耦接。
  4. 如請求項1所述的被動電路,其中該電容單元包含一第一電容器與一第二電容器,該第一電容器的一第 一端電性耦接於該第三電感單元的該第二端,該第二電容器的一第一端電性耦接於該第四電感單元的該第二端。
  5. 如請求項4所述的被動電路,其中該電容單元更包含一第三電容器,該第三電容器的一第一端耦接於該第一電容器的該第二端與該第二電容器的該第二端,該第三電容器的一第二端用以接收一參考電壓。
  6. 如請求項1所述的被動電路,其中該電容單元包含一第一電容器,該第三電感單元的該第二端與該第四電感單元的該第二端彼此耦接,並共同分別電性耦接至該第一電容器的一第一端,該第一電容器的一第二端用以接收一參考電壓。
  7. 一種電源轉換器,包含:一被動電路,包含彼此耦合的一第一電感單元、一第二電感單元、一第三電感單元、一第四電感單元以及一電容單元,該第一電感單元的一第一端耦接於該第二電感單元的一第一端,該第一電感單元的一第二端耦接於該第三電感單元的一第一端,該第二電感單元的一第二端耦接於該第四電感單元的一第一端,該第三電感單元的一第二端與該第四電感單元的一第二端分別耦接至該電容單元;以及一切換電路,電性耦接於該被動電路,該切換電路包含複數個切換開關,該些切換開關用以選擇性地導通或關斷以將一第一電壓轉換為一第二電壓。
  8. 如請求項7所述的電源轉換器,其中該些切換開關包含一第一開關,該第一開關電性耦接於該第一電感單元的該第二端以及該第三電感單元的該第一端,當該第一開關自截止切換至導通時刻前,流經該第三電感單元的電流大於流經該第一電感單元的電流。
  9. 如請求項8所述的電源轉換器,其中該第一電感單元的該第一端用以接收該第一電壓,該電容單元用以接收一參考電壓。
  10. 如請求項9所述的電源轉換器,其中該些切換開關更包含一第二開關、一第三開關以及一第四開關,其中該第一開關的一第一端耦接於該第一電感單元的該第二端,該第一開關的一第二端耦接於該參考電壓,該第二開關的一第一端耦接於該第二電感單元的該第二端,該第二開關的一第二端耦接於該參考電壓,該第三開關的一第一端耦接於該第一開關的該第一端,該第四開關的一第一端耦接於該第二開關的該第一端,該第三開關的一第二端與該第四開關的一第二端彼此耦接,並用以接收或提供該第二電壓。
  11. 如請求項7所述的電源轉換器,其中該第一電感單元、該第二電感單元、該第三電感單元與該第四電感單元集成在一磁芯上。
  12. 如請求項7所述的電源轉換器,其中該被動電路更包含一第一隔離變壓器與一第二隔離變壓器,其中該第一隔離變壓器的原邊繞組包含該第一電感單元,該第一隔離變壓器的副邊繞組包含一第五電感單元,該第二隔離變壓器的原邊繞組包含該第二電感單元,該第二隔離變壓器的副邊繞組包含一第六電感單元,該第五電感單元的一第一端與該第六電感單元的一第一端彼此耦接。
  13. 如請求項12所述的電源轉換器,其中該些切換開關包含一第一開關、一第二開關、一第三開關以及一第四開關,該第一開關的一第一端電性耦接於該第一電感單元的該第二端,該第一開關的一第二端電性耦接於該電容單元,該第二開關的一第一端電性耦接於該第二電感單元的該第二端,該第二開關的一第二端電性耦接於該第一開關的該第二端,該第三開關的一第一端耦接於該第五電感單元的一第二端,該第四開關的一第一端耦接於該第六電感單元的一第二端,該第三開關的一第二端與該第四開關的一第二端彼此耦接。
  14. 如請求項7所述的電源轉換器,其中該電容單元包含一第一電容器與一第二電容器,該第一電容器的一第一端電性耦接於該第三電感單元的該第二端,該第二電容器的一第一端電性耦接於該第四電感單元的該第二端。
  15. 如請求項14所述的電源轉換器,其中該電 容單元更包含一第三電容器,該第三電容器的一第一端耦接於該第一電容器的該第二端與該第二電容器的該第二端,該第三電容器的一第二端用以接收一參考電壓。
  16. 如請求項7所述的電源轉換器,其中該電容單元包含一第一電容器,該第三電感單元的該第二端與該第四電感單元的該第二端彼此耦接,並共同分別電性耦接至該第一電容器的一第一端,該第一電容器的一第二端用以接收一參考電壓。
  17. 如請求項7所述的電源轉換器,其中該些切換開關包含一第一開關、一第二開關、一第三開關、一第四開關、一第五開關以及一第六開關,其中該第一開關的一第一端、該第三開關的一第一端、該第五開關的一第一端彼此耦接,該第一電感單元的該第二端耦接於該第一開關的一第二端以及該第二開關的一第一端,該第二電感單元的該第二端耦接於該第三開關的一第二端以及該第四開關的一第一端,該第三電感單元的該第二端與該第四電感單元的該第二端彼此耦接,並共同分別電性耦接至該電容單元的一第一端,該電容單元的一第二端耦接於該第五開關的一第二端以及該第六開關的一第一端。
  18. 一種電源轉換器,包含:複數個被動電路,該些被動電路分別用以接收複數個輸入交流相電壓中相應之一者;以及 複數個切換電路,該些切換電路分別電性耦接於該些被動電路中相應之一者,該些切換電路的複數個直流輸出端彼此電性耦接;其中該些被動電路每一者分別包含彼此耦合的一第一電感單元、一第二電感單元、一第三電感單元、一第四電感單元以及一電容單元,該第一電感單元的一第一端耦接於該第二電感單元的一第一端,該第一電感單元的一第二端耦接於該第三電感單元的一第一端,該第二電感單元的一第二端耦接於該第四電感單元的一第一端,該第三電感單元的一第二端與該第四電感單元的一第二端分別耦接至該電容單元。
  19. 如請求項18所述的電源轉換器,其中同一個被動電路中的該第一電感單元、該第二電感單元、該第三電感單元與該第四電感單元集成在一磁芯上。
  20. 如請求項18所述的電源轉換器,其中該些切換電路每一者分別包含複數個切換開關,用以選擇性地導通或關斷,該些切換開關包含一第一開關,該第一開關電性耦接於相應的該被動電路中的該第一電感單元的該第二端以及該第三電感單元的該第一端,當該第一開關自截止切換至導通時刻前,流經該第三電感單元的電流大於流經該第一電感單元的電流。
TW106143074A 2017-12-08 2017-12-08 被動電路與電源轉換器 TWI672895B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106143074A TWI672895B (zh) 2017-12-08 2017-12-08 被動電路與電源轉換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106143074A TWI672895B (zh) 2017-12-08 2017-12-08 被動電路與電源轉換器

Publications (2)

Publication Number Publication Date
TW201926870A TW201926870A (zh) 2019-07-01
TWI672895B true TWI672895B (zh) 2019-09-21

Family

ID=68048949

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106143074A TWI672895B (zh) 2017-12-08 2017-12-08 被動電路與電源轉換器

Country Status (1)

Country Link
TW (1) TWI672895B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166592A (zh) * 2011-12-16 2013-06-19 立积电子股份有限公司 具静电保护机制之整合被动元件
US20140085937A1 (en) * 2012-09-27 2014-03-27 Industrial Technology Research Institute Dc-dc converter and method of driving the same
TWM531695U (zh) * 2016-05-23 2016-11-01 Walsin Technology Corp 具有寬頻抑制能力之低通濾波器
TWI606688B (zh) * 2017-01-20 2017-11-21 Voltage controlled oscillation circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166592A (zh) * 2011-12-16 2013-06-19 立积电子股份有限公司 具静电保护机制之整合被动元件
US20140085937A1 (en) * 2012-09-27 2014-03-27 Industrial Technology Research Institute Dc-dc converter and method of driving the same
TWM531695U (zh) * 2016-05-23 2016-11-01 Walsin Technology Corp 具有寬頻抑制能力之低通濾波器
TWI606688B (zh) * 2017-01-20 2017-11-21 Voltage controlled oscillation circuit

Also Published As

Publication number Publication date
TW201926870A (zh) 2019-07-01

Similar Documents

Publication Publication Date Title
TWI690952B (zh) 磁性元件及其適用之電源轉換裝置
US10193459B2 (en) High static gain bi-directional DC-DC resonant converter
CN109275349B (zh) 基于变压器的混杂功率转换器
Hakemi et al. Δ-source impedance network
US7170268B2 (en) DC to DC converter with high frequency zigzag transformer
EP2512025B1 (en) Magnetic integration double-ended converter
US9019061B2 (en) Magnetic device formed with U-shaped core pieces and power converter employing the same
US8374000B2 (en) Interleaved flyback converter device with leakage energy recycling
US7183754B2 (en) DC/DC converter
Khan et al. Three-phase three-limb coupled inductor for three-phase direct PWM AC–AC converters solving commutation problem
Khan et al. Magnetic integration of discrete-coupled inductors in single-phase direct PWM AC–AC converters
JPH09117141A (ja) コンバータ
US20130336012A1 (en) Switched-Mode Power Supply and a Two-Phase DC to DC Converter
TWI737129B (zh) 直流/直流變換系統
CN109905014B (zh) 被动电路与电源转换器
US10164542B2 (en) Electronic converter, and corresponding method for designing a magnetic component
TW201737607A (zh) 交錯式升壓轉換器
TWI672895B (zh) 被動電路與電源轉換器
Naayagi et al. Design of high frequency air-core inductor for DAB converter
Sree et al. Hybrid modulated extended secondary universal current-fed ZVS converter for wide voltage range: Analysis, design, and experimental results
JP6045664B1 (ja) 電力変換装置
US10205406B2 (en) Passive boost network and DC-DC boost converter applying the same
Wong et al. A four-phase forward converter using an integrated transformer
CN217904260U (zh) 磁集成电感和双向dc-dc变换器
TW201916554A (zh) 高降壓轉換器