TWI667884B - Clock circuit and method of operating the same - Google Patents

Clock circuit and method of operating the same Download PDF

Info

Publication number
TWI667884B
TWI667884B TW107125544A TW107125544A TWI667884B TW I667884 B TWI667884 B TW I667884B TW 107125544 A TW107125544 A TW 107125544A TW 107125544 A TW107125544 A TW 107125544A TW I667884 B TWI667884 B TW I667884B
Authority
TW
Taiwan
Prior art keywords
signal
clock
latch
node
circuit
Prior art date
Application number
TW107125544A
Other languages
Chinese (zh)
Other versions
TW201921841A (en
Inventor
楊皓義
李政宏
楊振麟
鄭基廷
吳福安
林洋緒
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201921841A publication Critical patent/TW201921841A/en
Application granted granted Critical
Publication of TWI667884B publication Critical patent/TWI667884B/en

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

本發明的實施例提供一種時脈電路,其包含第一鎖存器、第二鎖存器、第一觸發電路以及時脈觸發電路。第一鎖存器基於第一控制訊號、啟用訊號以及輸出時脈訊號而產生第一鎖存輸出訊號。第二鎖存器耦接至第一鎖存器,且經組態以回應於第二控制訊號而產生輸出時脈訊號。第一觸發電路耦接至第一鎖存器以及第二鎖存器,且經組態以至少回應於第一鎖存輸出訊號或重設訊號而調整輸出時脈訊號。時脈觸發電路藉由第一節點耦接至第一鎖存器以及第一觸發電路,經組態以回應於輸入時脈訊號而產生第一控制訊號,且經組態以至少基於第一控制訊號而控制第一鎖存器以及第一觸發電路。Embodiments of the present invention provide a clock circuit including a first latch, a second latch, a first trigger circuit, and a clock trigger circuit. The first latch generates a first latched output signal based on the first control signal, the enable signal, and the output clock signal. The second latch is coupled to the first latch and configured to generate an output clock signal in response to the second control signal. The first trigger circuit is coupled to the first latch and the second latch and configured to adjust the output clock signal in response to at least the first latch output signal or the reset signal. The clock trigger circuit is coupled to the first latch and the first trigger circuit by the first node, configured to generate the first control signal in response to the input clock signal, and configured to be based on at least the first control The first latch and the first trigger circuit are controlled by signals.

Description

時脈電路及操作其之方法Clock circuit and method of operating same

本發明實施例涉及一種時脈電路以及其操作方法。 Embodiments of the present invention relate to a clock circuit and an operation method thereof.

半導體積體電路(integrated circuit,IC)工業已產生多種數位裝置來解決多個不同區域中的問題。此等數位裝置中的一些,諸如時脈電路,經組態以產生一或多個時脈信號。隨著IC變得更小且更複雜,此等數位裝置之操作電壓不斷降低,從而影響IC效能。 The semiconductor integrated circuit (IC) industry has produced a variety of digital devices to solve problems in multiple different regions. Some of these digital devices, such as clock circuits, are configured to generate one or more clock signals. As ICs become smaller and more complex, the operating voltages of these digital devices continue to decrease, affecting IC performance.

本申請的一些實施例提供一種時脈電路,包括:第一鎖存器,經組態以基於第一控制訊號、啟用訊號以及輸出時脈訊號而產生第一鎖存輸出訊號;第二鎖存器,耦接至所述第一鎖存器,且經組態以回應於第二控制訊號而產生所述輸出時脈訊號;第一觸發電路,耦接至所述第一鎖存器以及所述第二鎖存器,且經組態以至少回應於所述第一鎖存輸出訊號或重設訊號而調整所述輸出時脈訊號;以及時脈觸發電路,藉由第一節點耦接至所述第一鎖存器以及所述第一觸發電路,經組態以回應於輸入時脈訊號而產生所述 第一控制訊號,且經組態以至少基於所述第一控制訊號而控制所述第一鎖存器以及所述第一觸發電路。 Some embodiments of the present application provide a clock circuit including: a first latch configured to generate a first latch output signal based on a first control signal, an enable signal, and an output clock signal; a second latch The first latch is coupled to the first latch and configured to generate the output clock signal in response to the second control signal; the first trigger circuit is coupled to the first latch and the The second latch is configured to adjust the output clock signal at least in response to the first latched output signal or the reset signal; and the clock trigger circuit is coupled to the first node by the first node The first latch and the first trigger circuit are configured to generate the response in response to inputting a clock signal a first control signal and configured to control the first latch and the first trigger circuit based at least on the first control signal.

此外,本申請的其他實施例提供一種時脈電路,包括:第一鎖存器,經組態以基於第一控制訊號、啟用訊號以及輸出時脈訊號而產生第一鎖存輸出訊號;第二鎖存器,耦接至所述第一鎖存器,且經組態以回應於第二控制訊號而產生所述輸出時脈訊號;第一觸發電路,耦接至所述第一鎖存器以及所述第二鎖存器,且經組態以至少回應於所述第一鎖存輸出訊號或重設訊號而調整所述輸出時脈訊號;時脈觸發電路,藉由第一節點耦接至所述第一鎖存器以及所述第一觸發電路,經組態以回應於具有第一電壓擺動的第一時脈訊號而產生所述第一控制訊號,且經組態以至少基於所述第一時脈訊號而控制所述第一鎖存器以及所述第一觸發電路;以及位準偏移器電路,至少耦接至所述時脈觸發電路,且經組態以產生具有第二電壓擺動的第二時脈訊號,所述第二電壓擺動不同於所述第一時脈訊號的所述第一電壓擺動。 In addition, other embodiments of the present application provide a clock circuit including: a first latch configured to generate a first latch output signal based on a first control signal, an enable signal, and an output clock signal; a latch coupled to the first latch and configured to generate the output clock signal in response to the second control signal; a first trigger circuit coupled to the first latch And the second latch, and configured to adjust the output clock signal at least in response to the first latch output signal or the reset signal; the clock trigger circuit coupled by the first node Up to the first latch and the first trigger circuit configured to generate the first control signal in response to a first clock signal having a first voltage swing, and configured to be based at least on Controlling the first latch and the first trigger circuit; and the level shifter circuit coupled to the clock trigger circuit at least, and configured to generate a second clock signal of the two voltage swings, the second voltage Moving said first clock signal is different from the first voltage swing.

另外,本申請的其他實施例提供一種操作時脈電路的方法,所述方法包括:藉由時脈觸發電路接收第一時脈訊號;回應於啟用訊號自第二電壓位準轉變為第一電壓位準而藉由第一鎖存器使第一鎖存輸出訊號自所述第一電壓位準轉變為所述第二電壓位準,所述第二電壓位準不同於所述第一電壓位準;回應於所述第一時脈訊號自所述第一電壓位準轉變為所述第二電壓位準而使所述時脈觸發電路將第一節點自所述第一電壓位準拉動至所述第二電壓位準,對所述第一節點的所述拉動由此使得所述時脈觸發電路之第一控制訊號自所述第一電壓位準轉變為所述第二電壓位準, 所述時脈觸發電路藉由所述第一節點連接至第一鎖存器的輸入端以及第一觸發電路,且來自所述時脈觸發電路的所述第一控制訊號自所述第一節點反饋回至所述第一鎖存器的所述輸入端;以及回應於所述第一時脈訊號轉變為所述第二電壓位準且回應於所述第一鎖存輸出訊號轉變為所述第二電壓位準而藉由所述第一觸發電路使輸出時脈訊號自所述第二電壓位準轉變為所述第一電壓位準。 In addition, another embodiment of the present application provides a method for operating a clock circuit, the method comprising: receiving a first clock signal by a clock trigger circuit; and converting to a first voltage in response to an enable signal from a second voltage level Leveling the first latch output signal from the first voltage level to the second voltage level by a first latch, the second voltage level being different from the first voltage level In response to the first clock signal transitioning from the first voltage level to the second voltage level, causing the clock trigger circuit to pull the first node from the first voltage level to The pulling of the first node by the second voltage level thereby causing the first control signal of the clock trigger circuit to transition from the first voltage level to the second voltage level, The clock trigger circuit is connected to the input end of the first latch and the first trigger circuit by the first node, and the first control signal from the clock trigger circuit is from the first node Feedback back to the input of the first latch; and in response to the first clock signal transitioning to the second voltage level and in response to the first latched output signal transitioning to the The second voltage level is used by the first trigger circuit to cause the output clock signal to transition from the second voltage level to the first voltage level.

100‧‧‧積體電路 100‧‧‧ integrated circuit

101、200、400、500、800‧‧‧時脈電路 101, 200, 400, 500, 800‧‧‧ clock circuits

102、201A‧‧‧鎖存電路 102, 201A‧‧‧Latch circuit

104‧‧‧SRAM狀態電路 104‧‧‧SRAM status circuit

106、201C‧‧‧SRAM狀態觸發電路 106, 201C‧‧‧SRAM state trigger circuit

108、201D、801D‧‧‧SRAM狀態鎖存電路 108, 201D, 801D‧‧‧SRAM state latch circuit

110、201B‧‧‧時脈觸發電路 110, 201B‧‧‧ clock trigger circuit

112‧‧‧SRAM電路 112‧‧‧SRAM circuit

116‧‧‧鎖存控制電路 116‧‧‧Latch control circuit

120‧‧‧輸出端子 120‧‧‧Output terminal

122‧‧‧反饋路徑 122‧‧‧Feedback path

202、228、602、616‧‧‧反相器 202, 228, 602, 616‧‧ ‧ inverter

204‧‧‧「或」閘 204‧‧‧"or" gate

206‧‧‧「反及」閘 206‧‧‧"Reverse" gate

208‧‧‧「反或」閘 208‧‧‧"Anti-or" gate

210、214、222、226、502、604、614‧‧‧NMOS電晶體 210, 214, 222, 226, 502, 604, 614‧‧‧ NMOS transistors

212、216、218、220、224、402、504、506、510、512、520、606、608、610、612、802‧‧‧PMOS電晶體 212, 216, 218, 220, 224, 402, 504, 506, 510, 512, 520, 606, 608, 610, 612, 802 ‧ ‧ PMOS transistors

300、700‧‧‧時序圖 300, 700‧‧‧ Timing Chart

600‧‧‧位準偏移器電路 600‧‧‧bit shift circuit

900‧‧‧方法 900‧‧‧ method

902、904、906、908、910、912、914、916、916、918、920、922、924‧‧‧操作 902, 904, 906, 908, 910, 912, 914, 916, 916, 918, 920, 922, 924‧‧‧ operations

CEB、CKPB、CKPBI、CKPI、CLK、CLKB、CLKB1、CLK_EN、CLK_ENB、CLK_LS、CLK_LSB、RSTCKB‧‧‧訊號 CEB, CKPB, CKPBI, CKPI, CLK, CLKB, CLKB1, CLK_EN, CLK_ENB, CLK_LS, CLK_LSB, RSTCKB‧‧‧ signals

N1、N2、N3、N4、N5、6-N1、6-N2‧‧‧節點 N1, N2, N3, N4, N5, 6-N1, 6-N2‧‧‧ nodes

Nout‧‧‧輸出端子 Nout‧‧‧ output terminal

t0、t1、t2、t3、t4、t5、t6、t7、t8、t9、t10、t11、t12、t13、t14、t15、t16、t17、t18、t19、t20‧‧‧時間 T0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15, t16, t17, t18, t19, t20‧‧

VDD、VDDM‧‧‧供應電壓 VDD, VDDM‧‧‧ supply voltage

當結合附圖閱讀時,自以下詳細描述最佳地理解本揭露內容之態樣。應注意,根據業界中的標準慣例,各種特徵未按比例繪製。事實上,可出於論述清楚起見,而任意地增加或減小各種特徵之尺寸。 The aspects of the present disclosure will be best understood from the following detailed description. It should be noted that various features are not drawn to scale according to standard practice in the art. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion.

圖1為根據一些實施例的時脈電路之方塊圖。 1 is a block diagram of a clock circuit in accordance with some embodiments.

圖2為根據一些實施例的時脈電路之電路圖。 2 is a circuit diagram of a clock circuit in accordance with some embodiments.

圖3為根據一些實施例的時脈電路之各種訊號之時序圖。 3 is a timing diagram of various signals of a clock circuit in accordance with some embodiments.

圖4為根據一些實施例的時脈電路之電路圖。 4 is a circuit diagram of a clock circuit in accordance with some embodiments.

圖5為根據一些實施例的時脈電路之各種訊號之時序圖。 FIG. 5 is a timing diagram of various signals of a clock circuit in accordance with some embodiments.

圖6為根據一些實施例的位準偏移器電路之電路圖。 6 is a circuit diagram of a level shifter circuit in accordance with some embodiments.

圖7為根據一些實施例的時脈電路之各種訊號之時序圖。 7 is a timing diagram of various signals of a clock circuit in accordance with some embodiments.

圖8為根據一些實施例的時脈電路之電路圖。 8 is a circuit diagram of a clock circuit in accordance with some embodiments.

圖9A至圖9B為根據一些實施例的操作時脈電路之方法之流程圖,所述時脈電路諸如圖1、圖2、圖4、圖5或圖8之時脈電路。 9A-9B are flow diagrams of a method of operating a clock circuit, such as the clock circuit of FIG. 1, FIG. 2, FIG. 4, FIG. 5, or FIG. 8, in accordance with some embodiments.

以下揭露內容提供用於實施所提供主題的特徵的不同實施例或實例。下文描述組件、材料、值、步驟、配置等之特定實例以簡化本揭露內容。當然,此等僅為實例且並非限制。涵蓋其他組件、材料、值、步驟、配置等。舉例而言,在以下描述中,第一特徵在第二特徵上方或上之形成可包含第一特徵以及第二特徵直接接觸地形成之實施例,且亦可包含額外特徵可在第一特徵與第二特徵之間形成,使得第一特徵以及第二特徵可不直接接觸之實施例。另外,本揭露內容可在各種實例中重複參考標號及/或字母。此重複是出於簡化及清楚之目的,且本身並不指示所論述的各種實施例及/或組態之間的關係。 The following disclosure provides different embodiments or examples for implementing the features of the subject matter provided. Specific examples of components, materials, values, steps, configurations, etc. are described below to simplify the disclosure. Of course, these are examples only and are not limiting. Covers other components, materials, values, steps, configurations, and more. For example, in the following description, the formation of the first feature above or over the second feature may comprise an embodiment in which the first feature and the second feature are formed in direct contact, and may also include additional features at the first feature and The second features are formed such that the first feature and the second feature may not be in direct contact with the embodiment. In addition, the present disclosure may repeat reference numerals and/or letters in various examples. This repetition is for the purpose of simplification and clarity, and is not intended to indicate the relationship between the various embodiments and/or configurations discussed.

此外,本文中可使用諸如「在...下方」、「在...以下」、「下部」、「在...上方」、「上部」以及其類似者之空間相對術語,以便於描述如圖式中所示的一個元件或特徵與另一元件或特徵之關係。除圖式中所描繪之定向以外,空間相對術語意欲涵蓋裝置在使用或操作中之不同定向。設備可以其他方式定向(旋轉90度或處於其他定向)且本文中所使用的空間相對描述詞可同樣相應地進行解譯。 In addition, spatial relative terms such as "below", "below", "lower", "above", "upper", and the like can be used in this article to facilitate description. The relationship of one element or feature to another element or feature is shown in the drawings. In addition to the orientation depicted in the drawings, spatially relative terms are intended to encompass different orientations of the device in use or operation. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may be interpreted accordingly accordingly.

根據一些實施例,時脈電路包含第一鎖存器、第二鎖存器、第一觸發電路以及時脈觸發電路。第一鎖存器經組態以基於第一控制訊號、啟用訊號以及輸出時脈訊號產生第一鎖存輸出訊號。第二鎖存器耦接至第一鎖存器,且經組態以回應於第二控制訊號而產生輸出時脈訊號。第一觸發電路耦接至第一鎖存器以及第二 鎖存器,且經組態以至少回應於第一鎖存輸出訊號或重設訊號而調整輸出時脈訊號。時脈觸發電路藉由第一節點耦接至第一鎖存器以及第一觸發電路,經組態以回應於輸入時脈訊號而產生第一控制訊號,且經組態以至少基於第一控制訊號而控制第一鎖存器以及第一觸發電路。 According to some embodiments, the clock circuit includes a first latch, a second latch, a first trigger circuit, and a clock trigger circuit. The first latch is configured to generate a first latched output signal based on the first control signal, the enable signal, and the output clock signal. The second latch is coupled to the first latch and configured to generate an output clock signal in response to the second control signal. The first trigger circuit is coupled to the first latch and the second And a latch configured to adjust the output clock signal in response to at least the first latched output signal or the reset signal. The clock trigger circuit is coupled to the first latch and the first trigger circuit by the first node, configured to generate the first control signal in response to the input clock signal, and configured to be based on at least the first control The first latch and the first trigger circuit are controlled by signals.

在一些實施例中,藉由使用時脈觸發電路來控制第一鎖存器以及第一觸發電路中之每一者,第一鎖存器以及第一觸發電路各自受單一時脈啟用路徑控制。藉由使用單一時脈啟用路徑來控制第一鎖存器以及第一觸發電路,本揭露內容之時脈電路相比於其他方法而言更不易受製程、電壓以及溫度(PVT)影響。在一些實施例中,藉由使用時脈觸發電路來控制第一鎖存電路以及第一觸發電路中之每一者,本揭露內容之時脈電路相比於其他方法而言在較大PVT變化範圍下沒有競爭(race free)。在一些實施例中,藉由使用時脈觸發電路來控制第一鎖存器以及第一觸發電路中之每一者,本揭露內容之時脈電路相比於其他方法而言對時脈擺動變化具有更佳抗性。在一些實施例中,藉由使用具有位準偏移器電路之時脈觸發電路,本揭露內容之時脈電路相比於其他方法而言具有更大操作電壓範圍。 In some embodiments, each of the first latch and the first trigger circuit is controlled by using a clock trigger circuit, each of which is controlled by a single clock enable path. By controlling the first latch and the first trigger circuit using a single clock enable path, the clock circuit of the present disclosure is less susceptible to process, voltage, and temperature (PVT) than other methods. In some embodiments, by using a clock trigger circuit to control each of the first latch circuit and the first trigger circuit, the clock circuit of the present disclosure changes in a larger PVT than other methods. There is no race under the scope (race free). In some embodiments, by using a clock trigger circuit to control each of the first latch and the first trigger circuit, the clock circuit of the present disclosure changes the clock swing compared to other methods. Better resistance. In some embodiments, the clock circuit of the present disclosure has a larger operating voltage range than other methods by using a clock trigger circuit with a level shifter circuit.

時脈電路 Clock circuit

圖1為根據一些實施例的積體電路100之方塊圖。在圖1之實施例中,積體電路100為靜態隨機存取記憶體(static random access memory,SRAM)巨集。SRAM用於示例,且其他類型之記憶體在各種實施例之範疇內。 FIG. 1 is a block diagram of an integrated circuit 100 in accordance with some embodiments. In the embodiment of FIG. 1, the integrated circuit 100 is a static random access memory (SRAM) macro. SRAM is used as an example, and other types of memory are within the scope of various embodiments.

積體電路100包含時脈電路101,其連接至SRAM電路 112。時脈電路101經組態以接收訊號CLK以及訊號CEB,且在輸出端子120上將訊號CKPB輸出至SRAM電路112。時脈電路101經組態以基於訊號CLK以及訊號CEB而產生訊號CKPB。訊號CKPB為SRAM電路112可使用的經產生時脈訊號。 The integrated circuit 100 includes a clock circuit 101 connected to the SRAM circuit 112. The clock circuit 101 is configured to receive the signal CLK and the signal CEB and output the signal CKPB to the SRAM circuit 112 at the output terminal 120. The clock circuit 101 is configured to generate a signal CKPB based on the signal CLK and the signal CEB. Signal CKPB is the generated clock signal that can be used by SRAM circuit 112.

訊號CLK為積體電路100之內部時脈訊號。訊號CEB為晶片賦能條(chip enable bar,CEB)訊號,其指示SRAM電路112處於作用中狀態或非作用中狀態。在一些實施例中,CEB訊號在SRAM電路112處於非作用中時為邏輯高,且CEB訊號在SRAM電路112處於作用中時為邏輯低。 The signal CLK is an internal clock signal of the integrated circuit 100. The signal CEB is a chip enable bar (CEB) signal that indicates that the SRAM circuit 112 is in an active or inactive state. In some embodiments, the CEB signal is logic high when the SRAM circuit 112 is inactive, and the CEB signal is logic low when the SRAM circuit 112 is active.

SRAM電路112經組態以接收訊號CKPB。SRAM電路112經組態以基於訊號CKPB而儲存資料、讀取資料或保留資料。在一些實施例中,訊號CKPB可由SRAM電路112用作指示SRAM電路112之狀態的時脈訊號。在一些實施例中,SRAM電路112之狀態包含寫入狀態、讀取狀態或備用狀態中之一或多者。SRAM用於SRAM電路112之示例,且用於電路112的其他類型之記憶體在各種實施例之範疇內。 SRAM circuit 112 is configured to receive signal CKPB. SRAM circuit 112 is configured to store data, read data, or retain data based on signal CKPB. In some embodiments, signal CKPB can be used by SRAM circuit 112 as a clock signal indicative of the state of SRAM circuit 112. In some embodiments, the state of SRAM circuit 112 includes one or more of a write state, a read state, or a standby state. SRAM is used for the example of SRAM circuit 112, and other types of memory for circuit 112 are within the scope of various embodiments.

時脈電路101包括鎖存電路102、SRAM狀態電路104以及時脈觸發電路110。 The clock circuit 101 includes a latch circuit 102, an SRAM state circuit 104, and a clock trigger circuit 110.

鎖存電路102耦接至SRAM狀態電路104以及時脈觸發電路110。鎖存電路102經組態以接收訊號CLKB、訊號CKPB以及訊號CEB。 The latch circuit 102 is coupled to the SRAM state circuit 104 and the clock trigger circuit 110. The latch circuit 102 is configured to receive the signal CLKB, the signal CKPB, and the signal CEB.

鎖存電路102經組態以回應於訊號CLKB、訊號CKPB以及訊號CEB而產生訊號CLK_EN。鎖存電路102經組態以閂鎖或儲存訊號CEB之狀態,且因此鎖存電路102被稱為CEB鎖存電 路。在一些實施例中,鎖存電路102經組態以藉由訊號CKPB重設。訊號CLK_EN為控制SRAM狀態電路104的啟用時脈訊號。訊號CLKB為由時脈觸發電路110產生的觸發訊號。在一些實施例中,訊號CLKB為反相時脈訊號(例如,訊號CLK)。 The latch circuit 102 is configured to generate a signal CLK_EN in response to the signal CLKB, the signal CKPB, and the signal CEB. The latch circuit 102 is configured to latch or store the state of the signal CEB, and thus the latch circuit 102 is referred to as a CEB latch. road. In some embodiments, latch circuit 102 is configured to be reset by signal CKPB. The signal CLK_EN is an enable clock signal that controls the SRAM state circuit 104. The signal CLKB is a trigger signal generated by the clock trigger circuit 110. In some embodiments, signal CLKB is an inverted clock signal (eg, signal CLK).

SRAM狀態電路104耦接至鎖存電路102、時脈觸發電路110、SRAM電路112。SRAM狀態電路104經組態以接收訊號CLK_EN、訊號CLKB以及訊號RSTCKB。SRAM狀態電路104經組態以閂鎖或儲存訊號CKPB之狀態。訊號RSTCKB為重設訊號。在一些實施例中,SRAM狀態電路104經組態以藉由訊號RSTCKB重設。在一些實施例中,訊號RSTCKB經觸發以基於追蹤位元線訊號(未圖示)而改變邏輯狀態。SRAM狀態電路104經組態以產生訊號CKPB。SRAM狀態電路104經組態以藉由經由反饋路徑122耦接至鎖存電路102而將訊號CKPB輸出至鎖存電路102。 The SRAM state circuit 104 is coupled to the latch circuit 102, the clock trigger circuit 110, and the SRAM circuit 112. The SRAM state circuit 104 is configured to receive the signal CLK_EN, the signal CLKB, and the signal RSTCKB. The SRAM state circuit 104 is configured to latch or store the state of the signal CKPB. The signal RSTCKB is a reset signal. In some embodiments, SRAM state circuit 104 is configured to be reset by signal RSTCKB. In some embodiments, signal RSTCKB is triggered to change the logic state based on tracking bit line signals (not shown). SRAM state circuit 104 is configured to generate signal CKPB. SRAM state circuit 104 is configured to output signal CKPB to latch circuit 102 by being coupled to latch circuit 102 via feedback path 122.

SRAM狀態電路104包含SRAM狀態觸發電路106以及SRAM狀態鎖存電路108。 The SRAM state circuit 104 includes an SRAM state trigger circuit 106 and an SRAM state latch circuit 108.

SRAM狀態觸發電路106耦接至鎖存電路102、SRAM狀態鎖存電路108以及時脈觸發電路110。SRAM狀態觸發電路106經組態以接收訊號CLK_EN、訊號CLKB以及訊號RSTCKB。在一些實施例中,SRAM狀態觸發電路106經組態以至少藉由訊號RSTCKB、訊號CLKB或訊號CLK_EN來控制SRAM狀態鎖存電路108之狀態。 The SRAM state trigger circuit 106 is coupled to the latch circuit 102, the SRAM state latch circuit 108, and the clock trigger circuit 110. The SRAM state trigger circuit 106 is configured to receive the signal CLK_EN, the signal CLKB, and the signal RSTCKB. In some embodiments, SRAM state trigger circuit 106 is configured to control the state of SRAM state latch circuit 108 by at least signal RSTCKB, signal CLKB, or signal CLK_EN.

SRAM狀態鎖存電路108藉由反饋路徑122耦接至鎖存電路102,且耦接至SRAM狀態觸發電路106。在一些實施例中,SRAM狀態觸發電路106為SRAM狀態鎖存電路108之部分,且 反之亦然。SRAM狀態鎖存電路108經組態以至少基於訊號RSTCKB、訊號CLKB或訊號CLK_EN而產生時脈訊號CKPB。SRAM狀態鎖存電路108經組態以閂鎖或儲存訊號CKPB之狀態。在一些實施例中,SRAM狀態鎖存電路108藉由訊號RSTCKB重設。 The SRAM state latch circuit 108 is coupled to the latch circuit 102 via the feedback path 122 and coupled to the SRAM state trigger circuit 106. In some embodiments, SRAM state trigger circuit 106 is part of SRAM state latch circuit 108, and vice versa. The SRAM state latch circuit 108 is configured to generate a clock signal CKPB based at least on the signal RSTCKB, the signal CLKB, or the signal CLK_EN. The SRAM state latch circuit 108 is configured to latch or store the state of the signal CKPB. In some embodiments, SRAM state latch circuit 108 is reset by signal RSTCKB.

時脈觸發電路110耦接至SRAM狀態觸發電路106以及鎖存電路102。時脈觸發電路110經組態以接收訊號CLK。時脈觸發電路110經組態以回應於訊號CLK而產生訊號CLKB。時脈觸發電路110經組態以藉由單一觸發訊號(例如,訊號CLKB)來控制鎖存電路102以及SRAM狀態觸發電路106中之每一者。相比於使用單獨觸發電路之其他方法,時脈觸發電路110為單一觸發電路。 The clock trigger circuit 110 is coupled to the SRAM state trigger circuit 106 and the latch circuit 102. The clock trigger circuit 110 is configured to receive the signal CLK. The clock trigger circuit 110 is configured to generate a signal CLKB in response to the signal CLK. The clock trigger circuit 110 is configured to control each of the latch circuit 102 and the SRAM state trigger circuit 106 by a single trigger signal (e.g., signal CLKB). The clock trigger circuit 110 is a single trigger circuit as compared to other methods using a separate trigger circuit.

在一些實施例中,相比於使用產生對應的單獨觸發信號之單獨觸發電路來控制對應的鎖存電路的其他方法,鎖存電路102以及SRAM狀態觸發電路106中之每一者受單一觸發電路(例如,時脈觸發電路110)以及對應的單一觸發訊號(例如,訊號CLKB)控制。 In some embodiments, each of latch circuit 102 and SRAM state trigger circuit 106 is subjected to a single trigger circuit as compared to other methods of controlling a corresponding latch circuit using a separate trigger circuit that generates a corresponding separate trigger signal. (eg, clock trigger circuit 110) and a corresponding single trigger signal (eg, signal CLKB) control.

在一些實施例中,藉由使用時脈觸發電路110來藉由單一訊號控制鎖存控制電路116以及SRAM狀態觸發電路106中之每一者,時脈電路101相比於其他方法而言更不易受PVT變化影響。在一些實施例中,藉由更不易受PVT變化影響,且使用時脈觸發電路110來控制鎖存控制電路116以及SRAM狀態觸發電路106中之每一者,時脈電路101相比於其他方法而言在更大PVT變化範圍下沒有競爭。在一些實施例中,藉由更不易受PVT變化 影響,且藉由使用時脈觸發電路110來控制鎖存控制電路116以及SRAM狀態觸發電路106中之每一者,時脈電路101相比於其他方法而言對時脈擺動變化具有更佳抗性。在一些實施例中,藉由更不易受PVT變化影響,且藉由使用時脈觸發電路110來控制鎖存控制電路116以及SRAM狀態觸發電路106中之每一者,時脈電路101相比於其他方法而言具有更大操作電壓範圍。 In some embodiments, by using the clock trigger circuit 110 to control each of the latch control circuit 116 and the SRAM state trigger circuit 106 by a single signal, the clock circuit 101 is less susceptible than other methods. Affected by changes in PVT. In some embodiments, clock circuit 101 is compared to other methods by being more susceptible to PVT variations and using clock trigger circuit 110 to control each of latch control circuit 116 and SRAM state trigger circuit 106. There is no competition for a larger range of PVT variations. In some embodiments, by being less susceptible to PVT changes Influence, and by using the clock trigger circuit 110 to control each of the latch control circuit 116 and the SRAM state trigger circuit 106, the clock circuit 101 is more resistant to clock swing variations than other methods. Sex. In some embodiments, the clock circuit 101 is compared to each of the latch control circuit 116 and the SRAM state trigger circuit 106 by being more susceptible to PVT variations and by using the clock trigger circuit 110. Other methods have a larger operating voltage range.

圖2為根據一些實施例的時脈電路200之電路圖。 2 is a circuit diagram of a clock circuit 200 in accordance with some embodiments.

時脈電路200為圖1之時脈電路101的一個實施例。與圖1以及圖3至圖9(在下文示出)中的一或多者中的彼等組件相同或類似的組件給定相同參考編號,且因此省略其詳細描述。 The clock circuit 200 is an embodiment of the clock circuit 101 of FIG. Components that are the same as or similar to those of one or more of FIG. 1 and FIGS. 3 to 9 (shown below) are given the same reference numerals, and thus detailed description thereof is omitted.

時脈電路200包括鎖存電路201A、時脈觸發電路201B、SRAM狀態觸發電路201C、SRAM狀態鎖存電路201D以及反相器202。 The clock circuit 200 includes a latch circuit 201A, a clock trigger circuit 201B, an SRAM state trigger circuit 201C, an SRAM state latch circuit 201D, and an inverter 202.

鎖存電路201A為圖1之鎖存電路102的一個實施例,且省略類似詳細描述。時脈觸發電路201B為圖1之時脈觸發電路110的一個實施例,且省略類似詳細描述。SRAM狀態觸發電路201C為圖1之SRAM狀態觸發電路106的一個實施例,且省略類似詳細描述。SRAM狀態鎖存電路201D為圖1之SRAM狀態鎖存電路108的一個實施例,且省略類似詳細描述。 The latch circuit 201A is one embodiment of the latch circuit 102 of FIG. 1, and a similar detailed description is omitted. The clock trigger circuit 201B is one embodiment of the clock trigger circuit 110 of FIG. 1, and a similar detailed description is omitted. The SRAM state trigger circuit 201C is one embodiment of the SRAM state trigger circuit 106 of FIG. 1, and a similar detailed description is omitted. The SRAM state latch circuit 201D is one embodiment of the SRAM state latch circuit 108 of FIG. 1, and a similar detailed description is omitted.

反相器202連接於鎖存電路201A與SRAM狀態鎖存電路201D之間。反相器202之輸入端子經組態以接收訊號CKPI。反相器202之輸出端子經組態以輸出訊號CKPBI。在一些實施例中,訊號CKPBI為訊號CKPI之反相版本。反相器202經組態以基於訊號CKPI產生訊號CKPBI。 The inverter 202 is connected between the latch circuit 201A and the SRAM state latch circuit 201D. The input terminal of inverter 202 is configured to receive signal CKPI. The output terminal of inverter 202 is configured to output signal CKPBI. In some embodiments, the signal CKPBI is an inverted version of the signal CKPI. Inverter 202 is configured to generate signal CKPBI based on signal CKPI.

鎖存電路201A包含「或(OR)」閘204、「反及(NAND)」閘206以及「反或(NOR)」閘208。 The latch circuit 201A includes an "OR" gate 204, a "NAND" gate 206, and a "NOR" gate 208.

「或」閘204的第一輸入端子經組態以接收訊號CLKB。「或」閘204的第一輸入端子、NMOS電晶體210的汲極端子、PMOS電晶體212的汲極端子以及NMOS電晶體214的源極端子中之每一者在節點N1處彼此耦接。訊號CLKB為節點N1的電壓。 The first input terminal of OR gate 204 is configured to receive signal CLKB. The first input terminal of the OR gate 204, the NMOS terminal of the NMOS transistor 210, the NMOS terminal of the PMOS transistor 212, and the source terminal of the NMOS transistor 214 are coupled to each other at the node N1. The signal CLKB is the voltage of the node N1.

「或」閘204的第二輸入端子經組態以接收訊號CLK_EN。「或」閘204的第二輸入端子、「反或」閘208的輸出端子以及NMOS電晶體214的閘極端子中之每一者在節點N2處彼此耦接。訊號CLK_EN為節點N2的電壓。 The second input terminal of the OR gate 204 is configured to receive the signal CLK_EN. The second input terminal of the OR gate 204, the output terminal of the "reverse OR" gate 208, and the gate terminal of the NMOS transistor 214 are coupled to each other at the node N2. The signal CLK_EN is the voltage of the node N2.

「或」閘204的輸出端子經組態以輸出「或」輸出訊號(未標註)。「或」閘204經組態以基於訊號CLK_EN以及訊號CLKB而產生「或」輸出訊號(未標註)。 The output terminal of the OR gate 204 is configured to output an OR signal (not labeled). The OR gate 204 is configured to generate an OR signal (not labeled) based on the signal CLK_EN and the signal CLKB.

「反及」閘206之第一輸入端子直接耦接至「或」閘204之輸出端子。「反及」閘206的第一輸入端子經組態以自「或」閘204接收「或」輸出訊號(未標註)。「反及」閘206之第二輸入端子直接耦接至反相器202之輸出端子。「反及」閘206的第二輸入端子經組態以接收訊號CKPBI。「反及」閘206的輸出端子經組態以輸出訊號CLK_ENB。「反及」閘206經組態以基於訊號CKPBI以及「或」輸出訊號(未標註)而產生訊號CLK_ENB。 The first input terminal of the "reverse" gate 206 is directly coupled to the output terminal of the OR gate 204. The first input terminal of the "reverse" gate 206 is configured to receive an "OR" output signal (not labeled) from the OR gate 204. The second input terminal of the "reverse" gate 206 is directly coupled to the output terminal of the inverter 202. The second input terminal of the "reverse" gate 206 is configured to receive the signal CKPBI. The output terminal of the "reverse" gate 206 is configured to output a signal CLK_ENB. The "Reverse" gate 206 is configured to generate a signal CLK_ENB based on the signal CKPBI and the OR signal (not labeled).

「反或」閘208的第一輸入端子經組態以接收訊號CEB。「反或」閘208的第二輸入端子經組態以接收訊號CLK_ENB。「反或」閘208之第二輸入端子直接耦接至「反及」閘206之輸出端 子。「反或」閘208的輸出端子經組態以將訊號CLK_EN輸出至節點N2。「反或」閘208經組態以設定節點N2之電壓。節點N2之電壓為訊號CLK_EN。「反或」閘208經組態以基於訊號CEB以及訊號CLK_ENB而產生訊號CLK_EN。時脈電路200之其他邏輯閘組態、邏輯閘數目或邏輯閘類型在本揭露內容之範疇內。 The first input terminal of the "OR" gate 208 is configured to receive the signal CEB. The second input terminal of the "OR" gate 208 is configured to receive the signal CLK_ENB. The second input terminal of the "reverse" gate 208 is directly coupled to the output of the "reverse" gate 206. child. The output terminal of the "OR" gate 208 is configured to output the signal CLK_EN to node N2. The "reverse" gate 208 is configured to set the voltage at node N2. The voltage at node N2 is the signal CLK_EN. The "OR" gate 208 is configured to generate a signal CLK_EN based on the signal CEB and the signal CLK_ENB. Other logic gate configurations, logic gate numbers, or logic gate types of the clock circuit 200 are within the scope of the present disclosure.

時脈觸發電路201B包含NMOS電晶體210以及PMOS電晶體212。 The clock trigger circuit 201B includes an NMOS transistor 210 and a PMOS transistor 212.

NMOS電晶體210的閘極端子經組態以接收時脈訊號CLK。NMOS電晶體210基於訊號CLK而接通或斷開。NMOS電晶體210的源極端子與供應參考電壓(supply reference voltage)VSS耦接。 The gate terminal of NMOS transistor 210 is configured to receive a clock signal CLK. The NMOS transistor 210 is turned on or off based on the signal CLK. The source terminal of the NMOS transistor 210 is coupled to a supply reference voltage VSS.

PMOS電晶體212的閘極端子經組態以接收時脈訊號CLK。PMOS電晶體212基於訊號CLK而接通或斷開。PMOS電晶體212的源極端子與供應電壓VDD耦接。NMOS電晶體210與PMOS電晶體212一起充當反相器,其經組態以設定節點N1之電壓。節點N1之電壓為訊號CLKB。 The gate terminal of PMOS transistor 212 is configured to receive a clock signal CLK. The PMOS transistor 212 is turned on or off based on the signal CLK. The source terminal of the PMOS transistor 212 is coupled to the supply voltage VDD. NMOS transistor 210, together with PMOS transistor 212, acts as an inverter configured to set the voltage at node N1. The voltage at node N1 is signal CLKB.

SRAM狀態觸發電路201C包含NMOS電晶體214、PMOS電晶體216、PMOS電晶體218、PMOS電晶體220以及NMOS電晶體222。 The SRAM state trigger circuit 201C includes an NMOS transistor 214, a PMOS transistor 216, a PMOS transistor 218, a PMOS transistor 220, and an NMOS transistor 222.

NMOS電晶體214的閘極端子經組態以自「反或」閘208接收訊號CLK_EN。NMOS電晶體214受「反或」閘208控制,且基於訊號CLK_EN而接通或斷開。NMOS電晶體214之源極端子至少耦接至節點N1。NMOS電晶體214的汲極端子、PMOS電晶體216的汲極端子、PMOS電晶體218的汲極端子、PMOS電晶 體220的汲極端子、NMOS電晶體222的汲極端子以及反相器228的輸入端子中之每一者在節點N3處彼此耦接。 The gate terminal of NMOS transistor 214 is configured to receive signal CLK_EN from "reverse OR" gate 208. NMOS transistor 214 is controlled by "reverse OR" gate 208 and is turned "on" or "off" based on signal CLK_EN. The source terminal of the NMOS transistor 214 is coupled to at least the node N1. The NMOS terminal of the NMOS transistor 214, the 汲 terminal of the PMOS transistor 216, the 汲 terminal of the PMOS transistor 218, and the PMOS transistor The 汲 terminal of the body 220, the 汲 terminal of the NMOS transistor 222, and the input terminal of the inverter 228 are coupled to each other at the node N3.

PMOS電晶體216之閘極端子耦接至NMOS電晶體210之閘極端子。PMOS電晶體216的閘極端子經組態以接收時脈訊號CLK。PMOS電晶體216基於訊號CLK而接通或斷開。在一些實施例中,PMOS電晶體216的閘極端子、PMOS電晶體212的閘極端子以及NMOS電晶體210的閘極端子中之每一者耦接在一起。PMOS電晶體216的源極端子、PMOS電晶體218的源極端子以及PMOS電晶體224的汲極端子中之每一者在節點N4處彼此耦接。 The gate terminal of the PMOS transistor 216 is coupled to the gate terminal of the NMOS transistor 210. The gate terminal of PMOS transistor 216 is configured to receive clock signal CLK. The PMOS transistor 216 is turned on or off based on the signal CLK. In some embodiments, each of the gate terminal of PMOS transistor 216, the gate terminal of PMOS transistor 212, and the gate terminal of NMOS transistor 210 are coupled together. The source terminal of PMOS transistor 216, the source terminal of PMOS transistor 218, and the NMOS terminal of PMOS transistor 224 are coupled to each other at node N4.

PMOS電晶體218的閘極端子經組態以接收訊號CLK_EN。PMOS電晶體218基於訊號CLK_EN而接通或斷開。在一些實施例中,PMOS電晶體218之閘極端子耦接至節點N2。在一些實施例中,PMOS電晶體218的閘極端子、NMOS電晶體214的閘極端子、「反或」閘208的輸出端子以及「或」閘204的第二輸入端子中之每一者在節點N2處彼此耦接。 The gate terminal of PMOS transistor 218 is configured to receive signal CLK_EN. The PMOS transistor 218 is turned on or off based on the signal CLK_EN. In some embodiments, the gate terminal of PMOS transistor 218 is coupled to node N2. In some embodiments, the gate terminal of PMOS transistor 218, the gate terminal of NMOS transistor 214, the output terminal of "reverse" gate 208, and the second input terminal of OR gate 204 are Nodes N2 are coupled to each other.

PMOS電晶體220的閘極端子經組態以接收訊號RSTCKB。PMOS電晶體220基於訊號RSTCKB而接通或斷開。PMOS電晶體220之源極端子與供應電壓VDD耦接。 The gate terminal of PMOS transistor 220 is configured to receive signal RSTCKB. The PMOS transistor 220 is turned on or off based on the signal RSTCKB. The source terminal of the PMOS transistor 220 is coupled to the supply voltage VDD.

NMOS電晶體222之閘極端子與PMOS電晶體220之閘極端子耦接。NMOS電晶體222的閘極端子經組態以接收訊號RSTCKB。NMOS電晶體222基於訊號RSTCKB而接通或斷開。NMOS電晶體222之源極端子與NMOS電晶體226之汲極端子耦接。NMOS電晶體222之汲極端子與PMOS電晶體220之汲極端 子耦接。PMOS電晶體220與NMOS電晶體222一起充當反相器,其經組態以設定節點N3之電壓。節點N3之電壓為訊號CKPB。在一些實施例中,節點N3對應於時脈電路200之輸出端子Nout。在一些實施例中,藉由將PMOS電晶體220定位於當前位置中,當PMOS電晶體220以及NMOS電晶體222接通或斷開時,使得節點N3浮動,從而產生動態邏輯型時脈電路(dynamic logic type clock circuit)。 The gate terminal of the NMOS transistor 222 is coupled to the gate terminal of the PMOS transistor 220. The gate terminal of NMOS transistor 222 is configured to receive signal RSTCKB. The NMOS transistor 222 is turned on or off based on the signal RSTCKB. The source terminal of the NMOS transistor 222 is coupled to the NMOS terminal of the NMOS transistor 226. The 汲 terminal of the NMOS transistor 222 and the 汲 terminal of the PMOS transistor 220 Sub-coupled. PMOS transistor 220, together with NMOS transistor 222, acts as an inverter that is configured to set the voltage at node N3. The voltage at node N3 is the signal CKPB. In some embodiments, node N3 corresponds to output terminal Nout of clock circuit 200. In some embodiments, by positioning the PMOS transistor 220 in the current position, when the PMOS transistor 220 and the NMOS transistor 222 are turned on or off, the node N3 is caused to float, thereby generating a dynamic logic type clock circuit ( Dynamic logic type clock circuit).

SRAM狀態鎖存電路201D包含PMOS電晶體224、NMOS電晶體226以及反相器228。 The SRAM state latch circuit 201D includes a PMOS transistor 224, an NMOS transistor 226, and an inverter 228.

PMOS電晶體224的閘極端子經組態以自反相器228接收訊號CKPI。PMOS電晶體224基於訊號CKPI而接通或斷開。在一些實施例中,PMOS電晶體224之閘極端子耦接至NMOS電晶體226的閘極端子、反相器228的輸出端子以及反相器202的輸入端子中之每一者。PMOS電晶體224之源極端子與供應電壓VDD耦接。PMOS電晶體224之汲極端子至少與節點N4耦接。 The gate terminal of PMOS transistor 224 is configured to receive signal CKPI from inverter 228. The PMOS transistor 224 is turned on or off based on the signal CKPI. In some embodiments, the gate terminal of PMOS transistor 224 is coupled to each of a gate terminal of NMOS transistor 226, an output terminal of inverter 228, and an input terminal of inverter 202. The source terminal of the PMOS transistor 224 is coupled to the supply voltage VDD. The 汲 terminal of the PMOS transistor 224 is coupled to at least the node N4.

NMOS電晶體226的閘極端子、反相器228的輸出端子以及反相器202的輸入端子中之每一者在節點N5處彼此耦接。節點N5之電壓為訊號CKPI。NMOS電晶體226基於訊號CKPI而接通或斷開。NMOS電晶體226之源極端子耦接至供應參考電壓VSS。 Each of the gate terminal of the NMOS transistor 226, the output terminal of the inverter 228, and the input terminal of the inverter 202 is coupled to each other at the node N5. The voltage of the node N5 is the signal CKPI. The NMOS transistor 226 is turned on or off based on the signal CKPI. The source terminal of the NMOS transistor 226 is coupled to the supply reference voltage VSS.

反相器228的輸入端子經組態以接收訊號CKPB。反相器228的輸出端子經組態以輸出訊號CKPI。在一些實施例中,訊號CKPI為訊號CKPB之反相版本。反相器228經組態以基於訊號CKPB而產生訊號CKPI。反相器228經組態以藉由訊號CKPI設 定節點N5之電壓。在一些實施例中,訊號CKPI對應於反饋回至SRAM狀態鎖存電路201D之PMOS電晶體224的反饋訊號。時脈電路200之其他電晶體組態、電晶體數目或電晶體類型在本揭露內容之範疇內。 The input terminal of inverter 228 is configured to receive signal CKPB. The output terminal of inverter 228 is configured to output signal CKPI. In some embodiments, the signal CKPI is an inverted version of the signal CKPB. Inverter 228 is configured to generate signal CKPI based on signal CKPB. Inverter 228 is configured to be set by signal CKPI Set the voltage of node N5. In some embodiments, signal CKPI corresponds to a feedback signal that is fed back to PMOS transistor 224 of SRAM state latch circuit 201D. Other transistor configurations, transistor numbers, or transistor types of the clock circuit 200 are within the scope of the present disclosure.

波形 Waveform

圖3為根據一些實施例的時脈電路之波形的時序圖300,所述時脈電路諸如圖2中之時脈電路200或圖4中之時脈電路400。 3 is a timing diagram 300 of a waveform of a clock circuit, such as clock circuit 200 of FIG. 2 or clock circuit 400 of FIG. 4, in accordance with some embodiments.

在時間t0,訊號CEB自邏輯高轉變為邏輯低,且訊號CLK_ENB為邏輯低。 At time t0, signal CEB transitions from logic high to logic low, and signal CLK_ENB is logic low.

在時間t1,訊號CEB為邏輯低。 At time t1, signal CEB is logic low.

在時間t2,回應於訊號CEB轉變為邏輯低且訊號CLK_ENB為邏輯低,由「反或」閘208產生的訊號CLK_EN自邏輯低轉變為邏輯高。回應於訊號CLK_EN自邏輯低轉變為邏輯高,NMOS電晶體214接通,從而連接節點N3與節點N1,且PMOS電晶體218斷開,從而斷開節點N3與節點N4之連接。在一些實施例中,訊號CLK_EN對應於CEB鎖存電路201A之訊號CEB的經儲存或閂鎖狀態。 At time t2, in response to signal CEB transitioning to logic low and signal CLK_ENB being logic low, signal CLK_EN generated by "reverse" gate 208 transitions from logic low to logic high. In response to the signal CLK_EN transitioning from logic low to logic high, the NMOS transistor 214 is turned "on", thereby connecting the node N3 to the node N1, and the PMOS transistor 218 is turned off, thereby disconnecting the node N3 from the node N4. In some embodiments, signal CLK_EN corresponds to the stored or latched state of signal CEB of CEB latch circuit 201A.

在時間t3,訊號CLK_EN為邏輯高,且訊號CLK自邏輯低轉變為邏輯高。 At time t3, signal CLK_EN is logic high and signal CLK transitions from logic low to logic high.

在時間t4,訊號CLK為邏輯高,訊號CLKB自邏輯高轉變為邏輯低,且訊號CKPB自邏輯高轉變為邏輯低。 At time t4, signal CLK is logic high, signal CLKB transitions from logic high to logic low, and signal CKPB transitions from logic high to logic low.

回應於訊號CLK為邏輯高,NMOS電晶體210接通,且PMOS電晶體212以及PMOS電晶體216斷開。藉由使NMOS電 晶體210接通,將節點N1拉向VSS,且使得訊號CLKB自邏輯高轉變為邏輯低。然而,由於節點N1經由NMOS電晶體214連接至節點N3,因此藉由使NMOS電晶體210接通亦將節點N3拉向VSS,使得訊號CKPB自邏輯高轉變為邏輯低。 In response to signal CLK being logic high, NMOS transistor 210 is turned "on" and PMOS transistor 212 and PMOS transistor 216 are turned "off". By making NMOS Crystal 210 is turned "on", pulling node N1 to VSS and causing signal CLKB to transition from logic high to logic low. However, since node N1 is connected to node N3 via NMOS transistor 214, node N3 is also pulled to VSS by turning NMOS transistor 210 on, causing signal CKPB to transition from logic high to logic low.

在時間t5,訊號CLKB為邏輯低,且訊號CKPB為邏輯低。回應於訊號CKPB為邏輯低,訊號CKPI藉由反相器228而自邏輯低轉變為邏輯高。 At time t5, signal CLKB is logic low and signal CKPB is logic low. In response to signal CKPB being logic low, signal CKPI transitions from logic low to logic high by inverter 228.

在時間t6,訊號CKPI為邏輯高,且訊號CLK_ENB自邏輯低轉變為邏輯高。回應於訊號CKPB為邏輯低,反相器228藉由使訊號CKPB反相而使訊號CKPI成為邏輯高,從而使NMOS電晶體226接通。然而,NMOS電晶體222已藉由邏輯高的訊號RSTCKB接通。因此,藉由使NMOS電晶體226接通,NMOS電晶體226以及NMOS電晶體222加強訊號CKPB以保持邏輯低,從而加強訊號CKPI以成為邏輯高。 At time t6, signal CKPI is logic high and signal CLK_ENB transitions from logic low to logic high. In response to the signal CKPB being logic low, the inverter 228 causes the signal CKPI to be logic high by inverting the signal CKPB, thereby turning the NMOS transistor 226 on. However, the NMOS transistor 222 has been turned on by the logic high signal RSTCKB. Therefore, by turning on the NMOS transistor 226, the NMOS transistor 226 and the NMOS transistor 222 boost the signal CKPB to maintain a logic low, thereby enhancing the signal CKPI to become a logic high.

在時間t7,回應於訊號CLK_ENB轉變為邏輯高,使訊號CLK_EN自邏輯高轉變為邏輯低。換言之,「反或」閘208回應於訊號CLK_ENB轉變為邏輯高且訊號CEB為邏輯低而輸出邏輯低訊號(CLK_EN)。 At time t7, the signal CLK_EN transitions to a logic high, causing the signal CLK_EN to transition from a logic high to a logic low. In other words, the "anti-OR" gate 208 outputs a logic low signal (CLK_EN) in response to the signal CLK_ENB transitioning to logic high and the signal CEB being logic low.

在時間t8,訊號CLK_EN為邏輯低。回應於訊號CLK_EN為邏輯低,NMOS電晶體214斷開,從而斷開節點N3與節點N1之連接,且PMOS電晶體218接通,從而連接節點N3與節點N4。 At time t8, signal CLK_EN is logic low. In response to signal CLK_EN being logic low, NMOS transistor 214 is turned off, thereby disconnecting node N3 from node N1, and PMOS transistor 218 is turned "on", thereby connecting node N3 to node N4.

在時間t9,訊號CEB自邏輯低轉變為邏輯高。 At time t9, the signal CEB transitions from a logic low to a logic high.

在時間t10,訊號CLK自邏輯高轉變為邏輯低。回應於訊號CLK自邏輯高轉變為邏輯低,NMOS電晶體210開始斷開, 且PMOS電晶體212以及PMOS電晶體216開始接通。 At time t10, signal CLK transitions from a logic high to a logic low. In response to the signal CLK transitioning from logic high to logic low, the NMOS transistor 210 begins to turn off. And the PMOS transistor 212 and the PMOS transistor 216 start to turn on.

在時間t11,訊號CLK為邏輯低,訊號CEB為邏輯高,且訊號CLKB自邏輯低轉變為邏輯高。回應於訊號CLK為邏輯低,NMOS電晶體210斷開,且PMOS電晶體212以及PMOS電晶體216接通。藉由使PMOS電晶體212接通,節點N1被拉向供應電壓VDD,且訊號CLKB自邏輯低轉變為邏輯高。藉由PMOS電晶體216接通,節點N3經由PMOS電晶體216連接至節點N4。 At time t11, signal CLK is logic low, signal CEB is logic high, and signal CLKB transitions from logic low to logic high. In response to signal CLK being logic low, NMOS transistor 210 is turned off and PMOS transistor 212 and PMOS transistor 216 are turned "on". By turning PMOS transistor 212 on, node N1 is pulled toward supply voltage VDD and signal CLKB transitions from logic low to logic high. Switched on by PMOS transistor 216, node N3 is coupled to node N4 via PMOS transistor 216.

在時間t12,訊號RSTCKB自邏輯高轉變為邏輯低。回應於訊號RSTCKB自邏輯高轉變為邏輯低,NMOS電晶體222開始斷開且PMOS電晶體220開始接通。 At time t12, the signal RSTCKB transitions from a logic high to a logic low. In response to the signal RSTCKB transitioning from logic high to logic low, NMOS transistor 222 begins to turn off and PMOS transistor 220 begins to turn "on".

在時間t13,訊號RSTCKB為邏輯低,訊號CLKB為邏輯高,且訊號CKPB自邏輯低轉變為邏輯高。回應於訊號RSTCKB為邏輯低,NMOS電晶體222斷開,由此使得NMOS電晶體226經由NMOS電晶體222與節點N3斷開連接。回應於訊號RSTCKB為邏輯低,PMOS電晶體220接通,將節點N3拉向供應電壓VDD,從而使得訊號CKPB自邏輯低轉變為邏輯高。換言之,SRAM狀態鎖存電路201D藉由訊號RSTCKB重設為邏輯高。 At time t13, signal RSTCKB is logic low, signal CLKB is logic high, and signal CKPB transitions from logic low to logic high. In response to signal RSTCKB being logic low, NMOS transistor 222 is turned off, thereby causing NMOS transistor 226 to be disconnected from node N3 via NMOS transistor 222. In response to the signal RSTCKB being logic low, the PMOS transistor 220 is turned on, pulling the node N3 toward the supply voltage VDD, thereby causing the signal CKPB to transition from a logic low to a logic high. In other words, the SRAM state latch circuit 201D is reset to logic high by the signal RSTCKB.

在時間t14,訊號CKPB為邏輯高。 At time t14, signal CKPB is logic high.

在時間t15,回應於訊號CKPB在時間t14為邏輯高,反相器228藉由使訊號CKPB反相而使得訊號CKPI自邏輯高轉變為邏輯低。 At time t15, in response to signal CKPB being logic high at time t14, inverter 228 causes signal CKPI to transition from logic high to logic low by inverting signal CKPB.

在時間t16,訊號CKPI為邏輯低,且訊號CLK_ENB自邏輯高轉變為邏輯低。回應於訊號CKPI為邏輯低,PMOS電晶體224接通,且NMOS電晶體226斷開。藉由使PMOS電晶體224 接通,節點N4被拉向供應電壓VDD。然而,節點N4經由PMOS電晶體218以及PMOS電晶體216耦接至節點N3。因此,除PMOS電晶體220外,PMOS電晶體224將節點N3拉向供應電壓VDD。換言之,PMOS電晶體224加強訊號CKPB以保持邏輯高。 At time t16, signal CKPI is logic low and signal CLK_ENB transitions from logic high to logic low. In response to signal CKPI being logic low, PMOS transistor 224 is turned "on" and NMOS transistor 226 is turned "off". By making PMOS transistor 224 Turned on, node N4 is pulled toward supply voltage VDD. However, node N4 is coupled to node N3 via PMOS transistor 218 and PMOS transistor 216. Therefore, in addition to the PMOS transistor 220, the PMOS transistor 224 pulls the node N3 toward the supply voltage VDD. In other words, PMOS transistor 224 boosts signal CKPB to maintain a logic high.

在時間t17,訊號CLK_ENB為邏輯低,且訊號RSTCKB回應於訊號CKPI為邏輯低而自邏輯低轉變為邏輯高。藉由使訊號RSTCKB自邏輯低轉變為邏輯高,PMOS電晶體220斷開,且NMOS電晶體222接通。然而,節點N3以及訊號CKPB經由PMOS電晶體216、PMOS電晶體218以及PMOS電晶體224中之一或多者維持在供應電壓VDD下,且NMOS電晶體226斷開並且不將節點N3拉向VSS。 At time t17, signal CLK_ENB is logic low, and signal RSTCKB transitions from logic low to logic high in response to signal CKPI being logic low. By transitioning the signal RSTCKB from logic low to logic high, the PMOS transistor 220 is turned off and the NMOS transistor 222 is turned "on". However, node N3 and signal CKPB are maintained at supply voltage VDD via one or more of PMOS transistor 216, PMOS transistor 218, and PMOS transistor 224, and NMOS transistor 226 is turned off and node N3 is not pulled toward VSS. .

在時間t18,訊號RSTCKB為邏輯高且訊號CKPB為邏輯高。 At time t18, signal RSTCKB is logic high and signal CKPB is logic high.

時脈電路 Clock circuit

圖4為根據一些實施例的時脈電路400之電路圖。 FIG. 4 is a circuit diagram of a clock circuit 400 in accordance with some embodiments.

時脈電路400為圖2之時脈電路200的變體,且因此省略類似詳細描述。 The clock circuit 400 is a variation of the clock circuit 200 of FIG. 2, and thus a similar detailed description is omitted.

在一些實施例中,時脈電路400為靜態時脈產生電路。時脈電路400為圖1之時脈電路101的一個實施例。 In some embodiments, clock circuit 400 is a static clock generation circuit. Clock circuit 400 is one embodiment of clock circuit 101 of FIG.

與圖2之時脈電路200相比,時脈電路400之PMOS電晶體402在不同位置代替PMOS電晶體220。換言之,PMOS電晶體402類似於PMOS電晶體220,但定位於不同位置中。舉例而言,PMOS電晶體402與PMOS電晶體224並聯耦接在供應電壓VDD與節點N4之間。藉由將PMOS電晶體402定位成耦接至節 點N4,使得節點N3不在PMOS電晶體402以及NMOS電晶體222接通或斷開時浮動,從而產生靜態邏輯型時脈電路(static logic type clock circuit)。 The PMOS transistor 402 of the clock circuit 400 replaces the PMOS transistor 220 at a different location than the clock circuit 200 of FIG. In other words, PMOS transistor 402 is similar to PMOS transistor 220, but is positioned in different locations. For example, PMOS transistor 402 is coupled in parallel with PMOS transistor 224 between supply voltage VDD and node N4. By locating the PMOS transistor 402 to couple to the section The point N4 is such that the node N3 does not float when the PMOS transistor 402 and the NMOS transistor 222 are turned on or off, thereby generating a static logic type clock circuit.

PMOS電晶體402的閘極端子經組態以接收訊號RSTCKB。PMOS電晶體402基於訊號RSTCKB而接通或斷開。在一些實施例中,PMOS電晶體402之閘極與NMOS電晶體222之閘極耦接。PMOS電晶體402之源極端子與供應電壓VDD耦接。在一些實施例中,PMOS電晶體402之源極端子與PMOS電晶體224之源極端子耦接。 The gate terminal of PMOS transistor 402 is configured to receive signal RSTCKB. The PMOS transistor 402 is turned on or off based on the signal RSTCKB. In some embodiments, the gate of PMOS transistor 402 is coupled to the gate of NMOS transistor 222. The source terminal of the PMOS transistor 402 is coupled to the supply voltage VDD. In some embodiments, the source terminal of PMOS transistor 402 is coupled to the source terminal of PMOS transistor 224.

PMOS電晶體402的汲極端子、PMOS電晶體216的源極端子、PMOS電晶體218的源極端子以及PMOS電晶體224的汲極端子中之每一者在節點N4處彼此耦接。 The NMOS terminal of the PMOS transistor 402, the source terminal of the PMOS transistor 216, the source terminal of the PMOS transistor 218, and the NMOS terminal of the PMOS transistor 224 are coupled to each other at the node N4.

藉由不包含PMOS電晶體220,時脈電路400之節點N3不會僅基於訊號RSTCKB而被拉向供應電壓VDD。舉例而言,PMOS電晶體402藉由經對應的訊號CLK_EN或訊號CLK驅動之PMOS電晶體218或PMOS電晶體216耦接至節點N3。因此,PMOS電晶體402以及PMOS電晶體218或PMOS電晶體216經組態以分別基於訊號RSTCKB以及訊號CLK_EN或訊號CLK而將節點N3拉向供應電壓VDD。 By not including the PMOS transistor 220, the node N3 of the clock circuit 400 is not pulled to the supply voltage VDD based only on the signal RSTCKB. For example, the PMOS transistor 402 is coupled to the node N3 by the PMOS transistor 218 or the PMOS transistor 216 driven by the corresponding signal CLK_EN or signal CLK. Thus, PMOS transistor 402 and PMOS transistor 218 or PMOS transistor 216 are configured to pull node N3 toward supply voltage VDD based on signal RSTCKB and signal CLK_EN or signal CLK, respectively.

波形之時序圖300適用於圖2之時脈電路200以及時脈電路400,且因此省略類似詳細描述。然而,PMOS電晶體402的一些操作不同於PMOS電晶體220,且因此在下文進行描述。為簡潔起見,由此省略對時脈電路400以及時脈電路200的類似操作的詳細描述。 The timing diagram 300 of the waveform is applied to the clock circuit 200 and the clock circuit 400 of FIG. 2, and thus a similar detailed description is omitted. However, some operations of the PMOS transistor 402 are different from the PMOS transistor 220, and thus are described below. For the sake of brevity, a detailed description of similar operations of the clock circuit 400 and the clock circuit 200 is thus omitted.

在時間t12,訊號RSTCKB自邏輯高轉變為邏輯低。回應於訊號RSTCKB自邏輯高轉變為邏輯低,NMOS電晶體222開始斷開且PMOS電晶體402開始接通。 At time t12, the signal RSTCKB transitions from a logic high to a logic low. In response to signal RSTCKB transitioning from logic high to logic low, NMOS transistor 222 begins to turn off and PMOS transistor 402 begins to turn "on".

在時間t13,訊號RSTCKB為邏輯低,訊號CLKB為邏輯高,且訊號CKPB自邏輯低轉變為邏輯高。回應於訊號RSTCKB為邏輯低,NMOS電晶體222斷開,由此使得NMOS電晶體226經由NMOS電晶體222與節點N3斷開連接。回應於訊號RSTCKB為邏輯低,PMOS電晶體402接通,從而經由PMOS電晶體216以及PMOS電晶體218將節點N4連接至節點N3。因此,PMOS電晶體402經由節點N4將節點N3拉向供應電壓VDD,從而使訊號CKPB自邏輯低轉變為邏輯高。換言之,SRAM狀態鎖存電路藉由訊號RSTCKB重設為邏輯高。 At time t13, signal RSTCKB is logic low, signal CLKB is logic high, and signal CKPB transitions from logic low to logic high. In response to signal RSTCKB being logic low, NMOS transistor 222 is turned off, thereby causing NMOS transistor 226 to be disconnected from node N3 via NMOS transistor 222. In response to signal RSTCKB being logic low, PMOS transistor 402 is turned "on", thereby connecting node N4 to node N3 via PMOS transistor 216 and PMOS transistor 218. Thus, PMOS transistor 402 pulls node N3 to supply voltage VDD via node N4, thereby causing signal CKPB to transition from a logic low to a logic high. In other words, the SRAM state latch circuit is reset to logic high by the signal RSTCKB.

在時間t14,訊號CKPB為邏輯高。 At time t14, signal CKPB is logic high.

在時間t15,回應於訊號CKPB在時間t14為邏輯高,反相器228藉由使訊號CKPB反相而使得訊號CKPI自邏輯高轉變為邏輯低。 At time t15, in response to signal CKPB being logic high at time t14, inverter 228 causes signal CKPI to transition from logic high to logic low by inverting signal CKPB.

在時間t16,訊號CKPI為邏輯低,且訊號CLK_ENB自邏輯高轉變為邏輯低。回應於訊號CKPI為邏輯低,PMOS電晶體224接通,且NMOS電晶體226斷開。藉由使PMOS電晶體224接通,PMOS電晶體224亦將節點N4拉向供應電壓VDD。因此,藉由接通PMOS電晶體224而產生將節點N4以及節點N3拉向供應電壓VDD的額外路徑。換言之,PMOS電晶體224加強訊號CKPB以保持邏輯高。 At time t16, signal CKPI is logic low and signal CLK_ENB transitions from logic high to logic low. In response to signal CKPI being logic low, PMOS transistor 224 is turned "on" and NMOS transistor 226 is turned "off". By turning PMOS transistor 224 on, PMOS transistor 224 also pulls node N4 toward supply voltage VDD. Thus, an additional path to pull node N4 and node N3 toward supply voltage VDD is generated by turning on PMOS transistor 224. In other words, PMOS transistor 224 boosts signal CKPB to maintain a logic high.

在時間t17,訊號CLK_ENB為邏輯低,且訊號RSTCKB 回應於訊號CKPI為邏輯低而自邏輯低轉變為邏輯高。藉由使訊號RSTCKB自邏輯低轉變為邏輯高,PMOS電晶體402斷開,且NMOS電晶體222接通。然而,節點N3以及訊號CKPB經由PMOS電晶體216、PMOS電晶體218以及PMOS電晶體224中之一或多者維持在供應電壓VDD下,且NMOS電晶體226斷開並且不將節點N3拉向VSS。 At time t17, the signal CLK_ENB is logic low and the signal RSTCKB In response to the signal CKPI is logic low and transitions from logic low to logic high. By transitioning the signal RSTCKB from logic low to logic high, the PMOS transistor 402 is turned off and the NMOS transistor 222 is turned "on". However, node N3 and signal CKPB are maintained at supply voltage VDD via one or more of PMOS transistor 216, PMOS transistor 218, and PMOS transistor 224, and NMOS transistor 226 is turned off and node N3 is not pulled toward VSS. .

在時間t18,訊號RSTCKB為邏輯高且訊號CKPB為邏輯高。 At time t18, signal RSTCKB is logic high and signal CKPB is logic high.

圖5為根據一些實施例的時脈電路500之電路圖。 FIG. 5 is a circuit diagram of a clock circuit 500 in accordance with some embodiments.

時脈電路500為使用具有兩個不同電壓域的時脈訊號(例如,訊號CLK以及訊號CLK_LS)的雙軌(dual-rail)電路實施。舉例而言,在一些實施例中,訊號CLK為具有低電壓域的時脈訊號,且訊號CLK_LS為具有高電壓域的時脈訊號。在一些實施例中,針對雙軌記憶體設計進一步用時脈位準偏移器(例如,位準偏移器電路600)實施時脈電路500。 The clock circuit 500 is implemented using a dual-rail circuit having two different voltage domains (eg, signal CLK and signal CLK_LS). For example, in some embodiments, the signal CLK is a clock signal having a low voltage domain, and the signal CLK_LS is a clock signal having a high voltage domain. In some embodiments, the clock circuit 500 is further implemented with a clock level shifter (eg, level shifter circuit 600) for a dual rail memory design.

時脈電路500為圖2之時脈電路200的變體,且因此省略類似詳細描述。與圖2之時脈電路200相比,時脈電路500不包含PMOS電晶體212、PMOS電晶體224以及PMOS電晶體220,但時脈電路500更包含NMOS電晶體502、PMOS電晶體504、PMOS電晶體506、PMOS電晶體510、PMOS電晶體512以及PMOS電晶體520。時脈電路500為圖1之時脈電路101的一個實施例。 The clock circuit 500 is a variation of the clock circuit 200 of FIG. 2, and thus a similar detailed description is omitted. Compared with the clock circuit 200 of FIG. 2, the clock circuit 500 does not include the PMOS transistor 212, the PMOS transistor 224, and the PMOS transistor 220, but the clock circuit 500 further includes an NMOS transistor 502, a PMOS transistor 504, and a PMOS. The transistor 506, the PMOS transistor 510, the PMOS transistor 512, and the PMOS transistor 520. Clock circuit 500 is an embodiment of clock circuit 101 of FIG.

NMOS電晶體502的閘極端子經組態以接收訊號CLK_LS。在一些實施例中,訊號CLK_LS由位準偏移器電路產生, 所述位準偏移器電路諸如圖6之位準偏移器電路600。NMOS電晶體502基於訊號CLK_LS而接通或斷開。NMOS電晶體502之源極端子耦接至供應參考電壓VSS。NMOS電晶體502之源極端子與NMOS電晶體210之源極端子耦接。NMOS電晶體502的汲極端子、PMOS電晶體504的汲極端子、NMOS電晶體210的汲極端子、NMOS電晶體214的源極端子以及「或」閘204的第一輸入端子中之每一者在節點N1處彼此耦接。 The gate terminal of NMOS transistor 502 is configured to receive signal CLK_LS. In some embodiments, the signal CLK_LS is generated by a level shifter circuit, The level shifter circuit is such as the level shifter circuit 600 of FIG. The NMOS transistor 502 is turned on or off based on the signal CLK_LS. The source terminal of the NMOS transistor 502 is coupled to the supply reference voltage VSS. The source terminal of the NMOS transistor 502 is coupled to the source terminal of the NMOS transistor 210. The NMOS terminal of the NMOS transistor 502, the 汲 terminal of the PMOS transistor 504, the 汲 terminal of the NMOS transistor 210, the source terminal of the NMOS transistor 214, and the first input terminal of the OR gate 204 The two are coupled to each other at node N1.

PMOS電晶體504的閘極端子經組態以接收訊號CLK_LS。PMOS電晶體504基於訊號CLK_LS而接通或斷開。PMOS電晶體504之源極端子耦接至PMOS電晶體506之汲極端子。 The gate terminal of PMOS transistor 504 is configured to receive signal CLK_LS. The PMOS transistor 504 is turned on or off based on the signal CLK_LS. The source terminal of the PMOS transistor 504 is coupled to the NMOS terminal of the PMOS transistor 506.

PMOS電晶體506的閘極端子經組態以接收訊號CLK。PMOS電晶體506基於訊號CLK而接通或斷開。PMOS電晶體506之源極端子耦接至供應電壓VDDM。在一些實施例中,供應電壓VDDM大於供應電壓VDD。在一些實施例中,供應電壓VDDM小於供應電壓VDD。在一些實施例中,供應電壓VDDM具有介於VDDM至VSS範圍內的電壓擺動。在一些實施例中,供應電壓VDD具有介於VDD至VSS範圍內的電壓擺動。 The gate terminal of PMOS transistor 506 is configured to receive signal CLK. The PMOS transistor 506 is turned on or off based on the signal CLK. The source terminal of the PMOS transistor 506 is coupled to the supply voltage VDDM. In some embodiments, the supply voltage VDDM is greater than the supply voltage VDD. In some embodiments, the supply voltage VDDM is less than the supply voltage VDD. In some embodiments, the supply voltage VDDM has a voltage swing in the range of VDDM to VSS. In some embodiments, the supply voltage VDD has a voltage swing in the range of VDD to VSS.

NMOS電晶體210、NMOS電晶體502、PMOS電晶體504以及PMOS電晶體506一起經組態以設定節點N1之電壓。節點N1之電壓對應於訊號CLKB。 NMOS transistor 210, NMOS transistor 502, PMOS transistor 504, and PMOS transistor 506 are configured together to set the voltage at node N1. The voltage of node N1 corresponds to signal CLKB.

與圖2之時脈電路200相比,圖5之PMOS電晶體510插入於PMOS電晶體216之源極端子與節點N4之間,且因此PMOS電晶體216之源極端子並未直接耦接至節點N4。PMOS電 晶體510的閘極端子經組態以接收訊號CLK_LS。PMOS電晶體510基於訊號CLK_LS而接通或斷開。PMOS電晶體510之汲極端子耦接至PMOS電晶體216之源極端子。PMOS電晶體510的源極端子、PMOS電晶體512的汲極端子以及PMOS電晶體218的源極端子中之每一者在節點N4處彼此耦接。 Compared with the clock circuit 200 of FIG. 2, the PMOS transistor 510 of FIG. 5 is inserted between the source terminal of the PMOS transistor 216 and the node N4, and thus the source terminal of the PMOS transistor 216 is not directly coupled to Node N4. PMOS The gate terminal of crystal 510 is configured to receive signal CLK_LS. The PMOS transistor 510 is turned on or off based on the signal CLK_LS. The NMOS terminal of PMOS transistor 510 is coupled to the source terminal of PMOS transistor 216. The source terminal of the PMOS transistor 510, the NMOS terminal of the PMOS transistor 512, and the source terminal of the PMOS transistor 218 are coupled to each other at the node N4.

PMOS電晶體512代替圖2之時脈電路200的PMOS電晶體224。PMOS電晶體512之源極端子耦接至供應電壓VDDM。PMOS電晶體512的閘極端子經組態以接收訊號CKPI。PMOS電晶體512基於訊號CKPI而接通或斷開。在一些實施例中,PMOS電晶體512之閘極端子耦接至節點N5。 The PMOS transistor 512 replaces the PMOS transistor 224 of the clock circuit 200 of FIG. The source terminal of the PMOS transistor 512 is coupled to the supply voltage VDDM. The gate terminal of PMOS transistor 512 is configured to receive signal CKPI. The PMOS transistor 512 is turned on or off based on the signal CKPI. In some embodiments, the gate terminal of PMOS transistor 512 is coupled to node N5.

PMOS電晶體520代替圖2之時脈電路200的PMOS電晶體220。PMOS電晶體512之源極端子耦接至供應電壓VDDM。PMOS電晶體520的閘極端子經組態以接收訊號RSTCKB。PMOS電晶體520基於訊號RSTCKB而接通或斷開。PMOS電晶體520之閘極端子與NMOS電晶體222之閘極端子耦接。在一些實施例中,PMOS電晶體512之閘極端子耦接至節點N5。PMOS電晶體520的汲極端子、NMOS電晶體214的汲極端子、PMOS電晶體216的汲極端子、PMOS電晶體218的汲極端子、NMOS電晶體222的汲極端子以及反相器228的輸入端子中之每一者在節點N3處耦接在一起。在一些實施例中,藉由將PMOS電晶體520定位於當前位置中,在PMOS電晶體520以及NMOS電晶體222接通或斷開時,使得節點N3浮動,從而產生動態邏輯型時脈電路。 The PMOS transistor 520 replaces the PMOS transistor 220 of the clock circuit 200 of FIG. The source terminal of the PMOS transistor 512 is coupled to the supply voltage VDDM. The gate terminal of PMOS transistor 520 is configured to receive signal RSTCKB. The PMOS transistor 520 is turned on or off based on the signal RSTCKB. The gate terminal of the PMOS transistor 520 is coupled to the gate terminal of the NMOS transistor 222. In some embodiments, the gate terminal of PMOS transistor 512 is coupled to node N5. The NMOS terminal of the PMOS transistor 520, the 汲 terminal of the NMOS transistor 214, the 汲 terminal of the PMOS transistor 216, the 汲 terminal of the PMOS transistor 218, the 汲 terminal of the NMOS transistor 222, and the inverter 228 Each of the input terminals are coupled together at node N3. In some embodiments, by positioning the PMOS transistor 520 in the current position, when the PMOS transistor 520 and the NMOS transistor 222 are turned "on" or "off", the node N3 is caused to float, thereby generating a dynamic logic type clock circuit.

在一些實施例中,藉由使用時脈電路500的雙軌記憶體設計,時脈電路500與其他方法相比而言具有更大的操作電壓範 圍。 In some embodiments, the clock circuit 500 has a larger operating voltage range than other methods by using the dual rail memory design of the clock circuit 500. Wai.

位準偏移器電路 Level shifter circuit

圖6為根據一些實施例的位準偏移器電路600之電路圖。 FIG. 6 is a circuit diagram of a level shifter circuit 600 in accordance with some embodiments.

位準偏移器電路600可與圖1的時脈電路101、圖5的時脈電路500或圖8的時脈電路800(下文所描述)中之一或多者一起使用。舉例而言,在一些實施例中,位準偏移器電路600耦接至時脈電路500或時脈電路800的NMOS電晶體502、PMOS電晶體504以及PMOS電晶體510,且位準偏移器電路600經組態以將訊號CLK_LS輸出至時脈電路500或時脈電路800的NMOS電晶體502、PMOS電晶體504以及PMOS電晶體510。 The level shifter circuit 600 can be used with one or more of the clock circuit 101 of FIG. 1, the clock circuit 500 of FIG. 5, or the clock circuit 800 of FIG. 8 (described below). For example, in some embodiments, the level shifter circuit 600 is coupled to the NMOS transistor 502, the PMOS transistor 504, and the PMOS transistor 510 of the clock circuit 500 or the clock circuit 800, and the level shift is The circuit 600 is configured to output the signal CLK_LS to the NMOS transistor 502 of the clock circuit 500 or the clock circuit 800, the PMOS transistor 504, and the PMOS transistor 510.

在一些實施例中,針對雙軌記憶體設計進一步用時脈位準偏移器(例如,位準偏移器電路600)來實施圖5的時脈電路500或圖8的時脈電路800。在一些實施例中,位準偏移器電路600可用以產生訊號CLK_LS(圖5、圖7以及圖8)。 In some embodiments, the clock circuit 500 of FIG. 5 or the clock circuit 800 of FIG. 8 is further implemented with a clock level shifter (eg, level shifter circuit 600) for a dual track memory design. In some embodiments, the level shifter circuit 600 can be used to generate the signal CLK_LS (Figs. 5, 7, and 8).

位準偏移器電路600為時脈位準偏移器電路,其經組態以使時脈訊號自使用供應電壓VDD之低電壓域偏移至使用供應電壓VDDM之高電壓域。 The level shifter circuit 600 is a clock level shifter circuit configured to shift the clock signal from a low voltage domain using the supply voltage VDD to a high voltage domain using the supply voltage VDDM.

位準偏移器電路600經組態以在輸入端子(未標註)上接收訊號CLK,且在輸出端子(未標註)上輸出訊號CLK_LS。訊號CLK對應於位準偏移器電路600的輸入訊號,且訊號CLK_LS對應於位準偏移器電路600的輸出訊號。位準偏移器電路600經組態以基於訊號CLK而產生訊號CLK_LS。 The level shifter circuit 600 is configured to receive the signal CLK on an input terminal (not labeled) and output a signal CLK_LS on an output terminal (not labeled). The signal CLK corresponds to the input signal of the level shifter circuit 600, and the signal CLK_LS corresponds to the output signal of the level shifter circuit 600. The level shifter circuit 600 is configured to generate a signal CLK_LS based on the signal CLK.

訊號CLK_LS對應於訊號CLK之位準偏移版本。在一些實施例中,位準偏移器電路600之訊號CLK的電壓位準小於位準 偏移器電路600之訊號CLK_LS的電壓位準。在一些實施例中,位準偏移器電路600之訊號CLK的電壓位準大於位準偏移器電路600之訊號CLK_LS的電壓位準。 The signal CLK_LS corresponds to the level offset version of the signal CLK. In some embodiments, the voltage level of the signal CLK of the level shifter circuit 600 is less than the level. The voltage level of the signal CLK_LS of the offset circuit 600. In some embodiments, the voltage level of the signal CLK of the level shifter circuit 600 is greater than the voltage level of the signal CLK_LS of the level shifter circuit 600.

位準偏移器電路600包含反相器602、NMOS電晶體604、PMOS電晶體606、PMOS電晶體608、PMOS電晶體610、PMOS電晶體612、NMOS電晶體614以及反相器616。 The level shifter circuit 600 includes an inverter 602, an NMOS transistor 604, a PMOS transistor 606, a PMOS transistor 608, a PMOS transistor 610, a PMOS transistor 612, an NMOS transistor 614, and an inverter 616.

反相器602之輸入端子經組態以接收訊號CLK。反相器602的輸入端子、PMOS電晶體606的閘極端子以及NMOS電晶體604的閘極端子中之每一者彼此耦接。反相器602的輸出端子經組態以輸出訊號CLKB1。在一些實施例中,訊號CLKB1為訊號CLK之反相版本。反相器602經組態以基於訊號CKPI而產生訊號CLKB1。在一些實施例中,訊號CLKB1對應於圖1至圖5以及圖7至圖8的訊號CLKB。反相器602耦接至供應電壓VDD。在一些實施例中,反相器602為CMOS反相器類型,其耦接至供應電壓VDD以及參考電壓VSS。 The input terminal of inverter 602 is configured to receive signal CLK. Each of the input terminal of the inverter 602, the gate terminal of the PMOS transistor 606, and the gate terminal of the NMOS transistor 604 are coupled to each other. The output terminal of inverter 602 is configured to output signal CLKB1. In some embodiments, signal CLKB1 is an inverted version of signal CLK. Inverter 602 is configured to generate signal CLKB1 based on signal CKPI. In some embodiments, signal CLKB1 corresponds to signal CLKB of FIGS. 1 through 5 and FIGS. 7 through 8. The inverter 602 is coupled to the supply voltage VDD. In some embodiments, inverter 602 is a CMOS inverter type that is coupled to supply voltage VDD and reference voltage VSS.

NMOS電晶體604的閘極端子經組態以接收時脈訊號CLK。NMOS電晶體604之源極端子耦接至供應參考電壓VSS。NMOS電晶體604的汲極端子、PMOS電晶體606的汲極端子、PMOS電晶體610的閘極端子以及反相器616的輸入端子中之每一者在節點6-N1處耦接在一起。 The gate terminal of NMOS transistor 604 is configured to receive clock signal CLK. The source terminal of the NMOS transistor 604 is coupled to the supply reference voltage VSS. The NMOS terminal of NMOS transistor 604, the NMOS terminal of PMOS transistor 606, the gate terminal of PMOS transistor 610, and the input terminals of inverter 616 are coupled together at node 6-N1.

PMOS電晶體606的閘極端子經組態以接收時脈訊號CLK。PMOS電晶體606之源極端子耦接至PMOS電晶體608之汲極端子。 The gate terminal of PMOS transistor 606 is configured to receive a clock signal CLK. The source terminal of the PMOS transistor 606 is coupled to the NMOS terminal of the PMOS transistor 608.

PMOS電晶體608之源極端子與供電電壓VDDM耦接。 PMOS電晶體608的閘極端子、NMOS電晶體614的汲極端子以及PMOS電晶體612的汲極端子中之每一者在節點6-N2處彼此耦接。PMOS電晶體608的閘極端子經組態以接收節點6-N2處之電壓。在一些實施例中,PMOS電晶體608基於節點6-N2處之電壓而接通或斷開。 The source terminal of the PMOS transistor 608 is coupled to the supply voltage VDDM. The gate terminal of the PMOS transistor 608, the NMOS terminal of the NMOS transistor 614, and the NMOS terminal of the PMOS transistor 612 are coupled to each other at the node 6-N2. The gate terminal of PMOS transistor 608 is configured to receive the voltage at node 6-N2. In some embodiments, PMOS transistor 608 is turned "on" or "off" based on the voltage at node 6-N2.

NMOS電晶體604、PMOS電晶體606以及PMOS電晶體608經組態以設定節點6-N1之電壓,所述電壓對應於訊號CLK_LSB。舉例而言,在一些實施例中,若NMOS電晶體604接通,則NMOS電晶體604經組態以將節點6-N1拉向參考電壓VSS。舉例而言,在一些實施例中,若PMOS電晶體606以及PMOS電晶體608接通,則PMOS電晶體606以及PMOS電晶體608經組態以將節點6-N1拉向供應電壓VDDM。 NMOS transistor 604, PMOS transistor 606, and PMOS transistor 608 are configured to set the voltage at node 6-N1, which corresponds to signal CLK_LSB. For example, in some embodiments, if NMOS transistor 604 is turned on, NMOS transistor 604 is configured to pull node 6-N1 toward reference voltage VSS. For example, in some embodiments, if PMOS transistor 606 and PMOS transistor 608 are turned on, PMOS transistor 606 and PMOS transistor 608 are configured to pull node 6-N1 toward supply voltage VDDM.

PMOS電晶體610之源極端子與供電電壓VDDM耦接。PMOS電晶體610之汲極端子與PMOS電晶體612之源極端子耦接。PMOS電晶體610之閘極端子至少耦接至節點6-N1。節點6-N1處之電壓對應於訊號CLK_LSB。PMOS電晶體610的閘極端子經組態以接收訊號CLK_LSB。在一些實施例中,PMOS電晶體610基於節點6-N1處之電壓接通或斷開,所述電壓對應於訊號CLK_LSB。 The source terminal of the PMOS transistor 610 is coupled to the supply voltage VDDM. The NMOS terminal of PMOS transistor 610 is coupled to the source terminal of PMOS transistor 612. The gate terminal of PMOS transistor 610 is coupled to at least node 6-N1. The voltage at node 6-N1 corresponds to signal CLK_LSB. The gate terminal of PMOS transistor 610 is configured to receive signal CLK_LSB. In some embodiments, PMOS transistor 610 is turned "on" or "off" based on the voltage at node 6-N1, which corresponds to signal CLK_LSB.

PMOS電晶體612的閘極端子經組態以自反相器602接收訊號CLKB1。PMOS電晶體612的閘極端子、NMOS電晶體614的閘極端子以及反相器602的輸出端子中之每一者彼此耦接。 The gate terminal of PMOS transistor 612 is configured to receive signal CLKB1 from inverter 602. Each of the gate terminal of the PMOS transistor 612, the gate terminal of the NMOS transistor 614, and the output terminal of the inverter 602 is coupled to each other.

NMOS電晶體614的閘極端子經組態以自反相器602接收訊號CLKB1。NMOS電晶體614之源極端子耦接至供應參考電 壓VSS。 The gate terminal of NMOS transistor 614 is configured to receive signal CLKB1 from inverter 602. The source terminal of the NMOS transistor 614 is coupled to the supply reference Press VSS.

NMOS電晶體614、PMOS電晶體610以及PMOS電晶體612經組態以設定節點6-N2之電壓,所述電壓對應於訊號CLK_LSB。舉例而言,在一些實施例中,若NMOS電晶體614接通,則NMOS電晶體614經組態以將節點6-N2拉向參考電壓VSS。舉例而言,在一些實施例中,若PMOS電晶體610以及PMOS電晶體612接通,則PMOS電晶體610以及PMOS電晶體612經組態以將節點6-N2拉向供應電壓VDDM。 NMOS transistor 614, PMOS transistor 610, and PMOS transistor 612 are configured to set the voltage at node 6-N2, which corresponds to signal CLK_LSB. For example, in some embodiments, if NMOS transistor 614 is turned on, NMOS transistor 614 is configured to pull node 6-N2 toward reference voltage VSS. For example, in some embodiments, if PMOS transistor 610 and PMOS transistor 612 are turned on, PMOS transistor 610 and PMOS transistor 612 are configured to pull node 6-N2 toward supply voltage VDDM.

反相器616的輸入端子經組態以自節點6-N1接收訊號CLK_LSB。反相器616的輸出端子經組態以輸出訊號CLK_LS。在一些實施例中,訊號CLK_LS為訊號CLK_LSB之反相版本。反相器616經組態以基於訊號CLK_LSB而產生訊號CLK_LS。反相器616耦接至供應電壓VDDM。在一些實施例中,反相器616為CMOS反相器類型,其耦接至供應電壓VDDM以及參考電壓VSS。訊號CLK_LS對應於位準偏移器電路600之輸出訊號。訊號CLK_LS為訊號CLK之位準偏移版本。舉例而言,訊號CLK_LS為使用供應電壓VDDM之高電壓域時脈訊號,且訊號CLK為使用供應電壓VDD之低電壓域時脈訊號。 The input terminal of inverter 616 is configured to receive signal CLK_LSB from node 6-N1. The output terminal of inverter 616 is configured to output signal CLK_LS. In some embodiments, signal CLK_LS is an inverted version of signal CLK_LSB. Inverter 616 is configured to generate signal CLK_LS based on signal CLK_LSB. The inverter 616 is coupled to the supply voltage VDDM. In some embodiments, inverter 616 is a CMOS inverter type that is coupled to supply voltage VDDM and reference voltage VSS. The signal CLK_LS corresponds to the output signal of the level shifter circuit 600. The signal CLK_LS is a level offset version of the signal CLK. For example, the signal CLK_LS is a high voltage domain clock signal using the supply voltage VDDM, and the signal CLK is a low voltage domain clock signal using the supply voltage VDD.

圖7為根據一些實施例的時脈電路之波形的時序圖700,所述時脈電路諸如圖5中之時脈電路500或圖8中之時脈電路800。 7 is a timing diagram 700 of a waveform of a clock circuit, such as clock circuit 500 of FIG. 5 or clock circuit 800 of FIG. 8, in accordance with some embodiments.

在時間t0,訊號CEB自邏輯高轉變為邏輯低。 At time t0, signal CEB transitions from a logic high to a logic low.

在時間t1,訊號CEB為邏輯低。 At time t1, signal CEB is logic low.

在時間t2,回應於訊號CEB轉變為邏輯低且訊號 CLK_ENB為邏輯低,由「反或」閘208產生的訊號CLK_EN自邏輯低轉變為邏輯高。回應於訊號CLK_EN自邏輯低轉變為邏輯高,NMOS電晶體214接通,從而連接節點N3與節點N1,且PMOS電晶體218斷開,從而斷開節點N3與節點N4之連接。在一些實施例中,訊號CLK_EN對應於CEB鎖存電路201A之訊號CEB的經儲存或閂鎖狀態。 At time t2, the signal CEB changes to a logic low and the signal CLK_ENB is logic low, and the signal CLK_EN generated by the "reverse OR" gate 208 transitions from a logic low to a logic high. In response to the signal CLK_EN transitioning from logic low to logic high, the NMOS transistor 214 is turned "on", thereby connecting the node N3 to the node N1, and the PMOS transistor 218 is turned off, thereby disconnecting the node N3 from the node N4. In some embodiments, signal CLK_EN corresponds to the stored or latched state of signal CEB of CEB latch circuit 201A.

在時間t3,訊號CLK_EN為邏輯高,且訊號CLK自邏輯低轉變為邏輯高。回應於訊號CLK自邏輯低轉變為邏輯高,NMOS電晶體210接通,且PMOS電晶體606以及PMOS電晶體216斷開。藉由接通NMOS電晶體210,NMOS電晶體210將節點N1拉向VSS,從而引起訊號CLKB自邏輯高轉變為邏輯低。 At time t3, signal CLK_EN is logic high and signal CLK transitions from logic low to logic high. In response to signal CLK transitioning from logic low to logic high, NMOS transistor 210 is turned "on" and PMOS transistor 606 and PMOS transistor 216 are turned "off". By turning on the NMOS transistor 210, the NMOS transistor 210 pulls the node N1 toward VSS, causing the signal CLKB to transition from a logic high to a logic low.

在時間t4,訊號CLK為邏輯高,訊號CLK_LS自邏輯低轉變為第二邏輯高位準(例如,供應電壓VDDM),訊號CLKB自邏輯高轉變為邏輯低,且訊號CKPB自第二邏輯高水準(例如,供應電壓VDDM)轉變為邏輯低。 At time t4, the signal CLK is logic high, the signal CLK_LS transitions from a logic low to a second logic high level (eg, supply voltage VDDM), the signal CLKB transitions from a logic high to a logic low, and the signal CKPB is at a second logic high level ( For example, the supply voltage VDDM) transitions to a logic low.

回應於訊號CLK_LS自邏輯低轉變為第二邏輯高位準(例如,供應電壓VDDM),NMOS電晶體502接通,且PMOS電晶體604以及PMOS電晶體610斷開。藉由接通NMOS電晶體502,NMOS電晶體502輔助NMOS電晶體210將節點N1拉向VSS,由此使得訊號CLKB自邏輯高轉變為邏輯低。 In response to the signal CLK_LS transitioning from a logic low to a second logic high level (eg, supply voltage VDDM), NMOS transistor 502 is turned "on" and PMOS transistor 604 and PMOS transistor 610 are turned "off". By turning on NMOS transistor 502, NMOS transistor 502 assists NMOS transistor 210 to pull node N1 toward VSS, thereby causing signal CLKB to transition from logic high to logic low.

回應於訊號CLK為邏輯高,NMOS電晶體210接通且將節點N3拉向參考電壓VSS,從而使得訊號CKPB自第二邏輯高位準(例如,供應電壓VDDM)轉變為邏輯低。 In response to signal CLK being logic high, NMOS transistor 210 is turned "on" and node N3 is pulled toward reference voltage VSS, causing signal CKPB to transition from a second logic high level (eg, supply voltage VDDM) to a logic low.

在時間t5,訊號CLKB為邏輯低,訊號CLK_LS處於第 二邏輯高位準且訊號CKPB為邏輯低。回應於訊號CKPB為邏輯低,訊號CKPI藉由反相器228自邏輯低轉變為第二邏輯高位準。 At time t5, signal CLKB is logic low and signal CLK_LS is at The second logic high level and the signal CKPB is logic low. In response to the signal CKPB being logic low, the signal CKPI is transitioned from logic low to second logic high level by inverter 228.

在時間t6,訊號CKPI處於第二邏輯高位準,且訊號CLK_ENB自邏輯低轉變為邏輯高。回應於訊號CKPB為邏輯低,反相器228藉由使訊號CKPB反相而使得訊號CKPI處於第二邏輯高位準,從而使NMOS電晶體226接通。然而,NMOS電晶體222已藉由處於第二邏輯高位準之訊號RSTCKB接通。因此,藉由使NMOS電晶體226接通,NMOS電晶體226以及NMOS電晶體222加強訊號CKPB以保持邏輯低,從而加強訊號CKPI以處於第二邏輯高位準。 At time t6, signal CKPI is at a second logic high level and signal CLK_ENB transitions from a logic low to a logic high. In response to the signal CKPB being logic low, the inverter 228 causes the signal CKPI to be at the second logic high level by inverting the signal CKPB, thereby turning the NMOS transistor 226 on. However, the NMOS transistor 222 has been turned on by the signal RSTCKB at the second logic high level. Therefore, by turning on the NMOS transistor 226, the NMOS transistor 226 and the NMOS transistor 222 boost the signal CKPB to maintain a logic low, thereby enhancing the signal CKPI to be at the second logic high level.

在時間t7,回應於訊號CLK_ENB轉變為邏輯高,使訊號CLK_EN自邏輯高轉變為邏輯低。換言之,「反或」閘208回應於訊號CLK_ENB轉變為邏輯高且訊號CEB為邏輯低而輸出邏輯低訊號(CLK_EN)。 At time t7, the signal CLK_EN transitions to a logic high, causing the signal CLK_EN to transition from a logic high to a logic low. In other words, the "anti-OR" gate 208 outputs a logic low signal (CLK_EN) in response to the signal CLK_ENB transitioning to logic high and the signal CEB being logic low.

在時間t8,訊號CLK_EN為邏輯低。回應於訊號CLK_EN為邏輯低,NMOS電晶體214斷開,從而斷開節點N3與節點N1之連接,且PMOS電晶體218接通,從而連接節點N3與節點N4。 At time t8, signal CLK_EN is logic low. In response to signal CLK_EN being logic low, NMOS transistor 214 is turned off, thereby disconnecting node N3 from node N1, and PMOS transistor 218 is turned "on", thereby connecting node N3 to node N4.

在時間t9,訊號CEB自邏輯低轉變為邏輯高。 At time t9, the signal CEB transitions from a logic low to a logic high.

在時間t10,訊號CLK自邏輯高轉變為邏輯低。回應於訊號CLK自邏輯高轉變為邏輯低,NMOS電晶體210開始斷開,且PMOS電晶體506以及PMOS電晶體216開始接通。藉由接通PMOS電晶體216,節點N3連接至節點N4。 At time t10, signal CLK transitions from a logic high to a logic low. In response to signal CLK transitioning from logic high to logic low, NMOS transistor 210 begins to open and PMOS transistor 506 and PMOS transistor 216 begin to turn "on". Node N3 is coupled to node N4 by turning on PMOS transistor 216.

在時間t11,訊號CLK為邏輯低,且CLK_LS自第二邏輯高位準轉變為邏輯低。回應於訊號CLK為邏輯低,NMOS電晶 體210斷開,且PMOS電晶體506以及PMOS電晶體216接通。回應於訊號CLK_LS自第二邏輯高位準(例如,供應電壓VDDM)轉變為邏輯低,NMOS電晶體502開始斷開,且PMOS電晶體604以及PMOS電晶體610開始接通。藉由接通PMOS電晶體506,PMOS電晶體506以及PMOS電晶體504開始將節點N1拉向供應電壓VDDM。 At time t11, signal CLK is logic low and CLK_LS transitions from a second logic high level to a logic low. In response to signal CLK is logic low, NMOS transistor Body 210 is disconnected and PMOS transistor 506 and PMOS transistor 216 are turned "on". In response to signal CLK_LS transitioning from a second logic high level (eg, supply voltage VDDM) to a logic low, NMOS transistor 502 begins to open, and PMOS transistor 604 and PMOS transistor 610 begin to turn "on". By turning on PMOS transistor 506, PMOS transistor 506 and PMOS transistor 504 begin to pull node N1 toward supply voltage VDDM.

在時間t12,訊號RSTCKB自第二邏輯高位準轉變為邏輯低。回應於訊號RSTCKB自第二邏輯高位準轉變為邏輯低,NMOS電晶體222斷開,由此使得NMOS電晶體222與節點N3斷開連接。回應於訊號RSTCKB自第二邏輯高位準轉變為邏輯低,PMOS電晶體520接通。當PMOS電晶體520接通時,PMOS電晶體520將節點N3拉向供應電壓VDDM。 At time t12, signal RSTCKB transitions from a second logic high level to a logic low. In response to the signal RSTCKB transitioning from a second logic high level to a logic low, the NMOS transistor 222 is turned off, thereby causing the NMOS transistor 222 to be disconnected from the node N3. In response to the signal RSTCKB transitioning from a second logic high level to a logic low, the PMOS transistor 520 is turned "on". When the PMOS transistor 520 is turned on, the PMOS transistor 520 pulls the node N3 toward the supply voltage VDDM.

在時間t13,訊號CLK_LS為邏輯低,從而使得NMOS電晶體502斷開,且PMOS電晶體504以及PMOS電晶體510接通,由此使得訊號CLKB自邏輯低轉變為第二邏輯高位準(例如,供應電壓VDDM)。舉例而言,藉由接通PMOS電晶體504以及PMOS電晶體510,PMOS電晶體504輔助PMOS電晶體506將節點N1拉向供應電壓VDDM,由此使得訊號CLKB自邏輯低轉變為第二邏輯高位準。藉由PMOS電晶體216以及PMOS電晶體510接通,節點N3經由PMOS電晶體216以及PMOS電晶體510連接至節點N4。 At time t13, signal CLK_LS is logic low, causing NMOS transistor 502 to turn off, and PMOS transistor 504 and PMOS transistor 510 are turned on, thereby causing signal CLKB to transition from a logic low to a second logic high level (eg, Supply voltage VDDM). For example, by turning on the PMOS transistor 504 and the PMOS transistor 510, the PMOS transistor 504 assists the PMOS transistor 506 to pull the node N1 toward the supply voltage VDDM, thereby causing the signal CLKB to transition from a logic low to a second logic high. quasi. The node N3 is connected to the node N4 via the PMOS transistor 216 and the PMOS transistor 510 by being turned on by the PMOS transistor 216 and the PMOS transistor 510.

在時間t14,訊號RSTCKB為邏輯低,且訊號CKPB自邏輯低轉變為第二邏輯高位準。回應於訊號RSTCKB為邏輯低,NMOS電晶體222斷開,由此使得NMOS電晶體226經由NMOS 電晶體222與節點N3斷開連接。回應於訊號RSTCKB為邏輯低,PMOS電晶體520接通,將節點N3拉向供應電壓VDDM,從而使得訊號CKPB自邏輯低轉變為第二邏輯高位準。換言之,SRAM狀態鎖存電路藉由訊號RSTCKB重設為第二邏輯高位準。 At time t14, the signal RSTCKB is logic low and the signal CKPB transitions from a logic low to a second logic high level. In response to the signal RSTCKB being logic low, the NMOS transistor 222 is turned off, thereby causing the NMOS transistor 226 to pass through the NMOS. The transistor 222 is disconnected from the node N3. In response to the signal RSTCKB being logic low, the PMOS transistor 520 is turned on, pulling the node N3 toward the supply voltage VDDM, thereby causing the signal CKPB to transition from a logic low to a second logic high level. In other words, the SRAM state latch circuit is reset to the second logic high level by the signal RSTCKB.

在時間t15,訊號CLKB為邏輯高。 At time t15, signal CLKB is logic high.

在時間t16,訊號CKPB處於第二邏輯高位準。 At time t16, the signal CKPB is at the second logic high level.

在時間t17,回應於訊號CKPB處於第二邏輯高位準,訊號CKPI自第二邏輯高位準轉變為邏輯低。 At time t17, in response to the signal CKPB being at the second logic high level, the signal CKPI transitions from the second logic high level to a logic low.

在時間t18,訊號CKPI為邏輯低,且訊號CLK_ENB自邏輯高轉變為邏輯低。回應於訊號CKPI為邏輯低,PMOS電晶體512接通,且NMOS電晶體226斷開。藉由使PMOS電晶體512接通,節點N4被拉向供應電壓VDD。然而,節點N4經由兩個路徑耦接至節點N3;經由PMOS電晶體218以及經由PMOS電晶體216及PMOS電晶體510。因此,除PMOS電晶體520外,PMOS電晶體216、PMOS電晶體510、PMOS電晶體218以及PMOS電晶體512將節點N3拉向供應電壓VDDM。換言之,PMOS電晶體520加強訊號CKPB以保持在第二邏輯高位準。 At time t18, signal CKPI is logic low and signal CLK_ENB transitions from logic high to logic low. In response to signal CKPI being logic low, PMOS transistor 512 is turned "on" and NMOS transistor 226 is turned "off". By turning on the PMOS transistor 512, the node N4 is pulled toward the supply voltage VDD. However, node N4 is coupled to node N3 via two paths; via PMOS transistor 218 and via PMOS transistor 216 and PMOS transistor 510. Therefore, in addition to the PMOS transistor 520, the PMOS transistor 216, the PMOS transistor 510, the PMOS transistor 218, and the PMOS transistor 512 pull the node N3 toward the supply voltage VDDM. In other words, the PMOS transistor 520 boosts the signal CKPB to remain at the second logic high level.

在時間t19,訊號CLK_ENB為邏輯低,且訊號RSTCKB回應於訊號CKPI為邏輯低而自邏輯低轉變為第二邏輯高位準。藉由使訊號RSTCKB自邏輯低轉變為第二邏輯高位準,PMOS電晶體520斷開,且NMOS電晶體222接通。然而,節點N3以及訊號CKPB經由PMOS電晶體216、PMOS電晶體510、PMOS電晶體218以及PMOS電晶體512中之一或多者維持在供應電壓VDDM下,且NMOS電晶體226斷開並且不將節點N3拉向VSS。 At time t19, signal CLK_ENB is logic low, and signal RSTCKB transitions from logic low to second logic high level in response to signal CKPI being logic low. By transitioning the signal RSTCKB from a logic low to a second logic high level, the PMOS transistor 520 is turned off and the NMOS transistor 222 is turned "on". However, the node N3 and the signal CKPB are maintained at the supply voltage VDDM via one or more of the PMOS transistor 216, the PMOS transistor 510, the PMOS transistor 218, and the PMOS transistor 512, and the NMOS transistor 226 is turned off and will not Node N3 is pulled to VSS.

在時間t20,訊號RSTCKB處於第二邏輯高位準(例如,供應電壓VDDM)且訊號CKPB處於第二邏輯高位準。 At time t20, signal RSTCKB is at a second logic high level (eg, supply voltage VDDM) and signal CKPB is at a second logic high level.

時脈電路 Clock circuit

圖8為根據一些實施例的時脈電路800之電路圖。 FIG. 8 is a circuit diagram of a clock circuit 800 in accordance with some embodiments.

時脈電路800為圖4之時脈電路400以及圖5之時脈電路500的變體,且因此省略類似詳細描述。換言之,時脈電路800組合時脈電路400以及時脈電路500之特徵。舉例而言,時脈電路800利用與圖5之時脈電路500之位準偏移器特徵組合的圖4之靜態時脈電路400。 The clock circuit 800 is a variant of the clock circuit 400 of FIG. 4 and the clock circuit 500 of FIG. 5, and thus a similar detailed description is omitted. In other words, the clock circuit 800 combines the features of the clock circuit 400 and the clock circuit 500. For example, clock circuit 800 utilizes static clock circuit 400 of FIG. 4 in combination with the level shifter feature of clock circuit 500 of FIG.

時脈電路800為使用具有兩個不同電壓域的時脈訊號(例如,訊號CLK以及訊號CLK_LS)的靜態雙軌電路實施。在一些實施例中,針對雙軌記憶體設計進一步用時脈位準偏移器(例如,位準偏移器電路600)實施時脈電路800。時脈電路800為圖1之時脈電路101的一個實施例。 The clock circuit 800 is implemented using a static two-track circuit having two different voltage domains (eg, signal CLK and signal CLK_LS). In some embodiments, the clock circuit 800 is further implemented with a clock level shifter (eg, level shifter circuit 600) for the dual track memory design. Clock circuit 800 is one embodiment of clock circuit 101 of FIG.

與圖5之時脈電路500相比,時脈電路800之PMOS電晶體802在不同位置代替PMOS電晶體520。換言之,PMOS電晶體802類似於PMOS電晶體520,但定位於不同位置中。舉例而言,PMOS電晶體802與PMOS電晶體512並聯耦接在供應電壓VDDM與節點N4之間。藉由將PMOS電晶體802定位成耦接至節點N4,使得節點N3不在PMOS電晶體802以及NMOS電晶體222接通或斷開時浮動,從而產生靜態邏輯型電路。 The PMOS transistor 802 of the clock circuit 800 replaces the PMOS transistor 520 at a different location than the clock circuit 500 of FIG. In other words, PMOS transistor 802 is similar to PMOS transistor 520, but is positioned in different locations. For example, the PMOS transistor 802 is coupled in parallel with the PMOS transistor 512 between the supply voltage VDDM and the node N4. By locating the PMOS transistor 802 to be coupled to the node N4, the node N3 does not float when the PMOS transistor 802 and the NMOS transistor 222 are turned "on" or "off", thereby generating a static logic type circuit.

PMOS電晶體802的閘極端子經組態以接收訊號RSTCKB。PMOS電晶體802基於訊號RSTCKB而接通或斷開。在一些實施例中,PMOS電晶體82之閘極與NMOS電晶體222 之閘極耦接。PMOS電晶體802之源極端子與供應電壓VDDM耦接。在一些實施例中,PMOS電晶體802之源極端子與PMOS電晶體512之源極端子耦接。PMOS電晶體802的汲極端子、PMOS電晶體510的源極端子、PMOS電晶體218的源極端子以及PMOS電晶體512的汲極端子中之每一者在節點N4處彼此耦接。 The gate terminal of PMOS transistor 802 is configured to receive signal RSTCKB. The PMOS transistor 802 is turned on or off based on the signal RSTCKB. In some embodiments, the gate of PMOS transistor 82 and NMOS transistor 222 The gate is coupled. The source terminal of the PMOS transistor 802 is coupled to the supply voltage VDDM. In some embodiments, the source terminal of PMOS transistor 802 is coupled to the source terminal of PMOS transistor 512. The NMOS terminal of PMOS transistor 802, the source terminal of PMOS transistor 510, the source terminal of PMOS transistor 218, and the NMOS terminal of PMOS transistor 512 are coupled to each other at node N4.

藉由不包含PMOS電晶體520,時脈電路800之節點N3不會僅基於訊號RSTCKB而被拉向供應電壓VDDM。舉例而言,PMOS電晶體802藉由PMOS電晶體218(其由訊號CLK_EN驅動)或藉由PMOS電晶體510以及PMOS電晶體216(其由對應的訊號CLK_LS以及訊號CLK驅動)耦接至節點N3。由此,在第一組態中,PMOS電晶體802以及PMOS電晶體218經組態以基於訊號RSTCKB以及訊號CLK_EN而將節點N3拉向供應電壓VDDM。在第二組態中,PMOS電晶體802、PMOS電晶體510以及PMOS電晶體216經組態以分別基於訊號RSTCKB、訊號CLK_LS以及訊號CLK而將節點N3拉向供應電壓VDDM。在一些實施例中,供應電壓VDD介於約0.3伏特至約1.3伏特之範圍內。在一些實施例中,供應電壓VDDM介於約0.3伏特至約1.3伏特之範圍內。 By not including the PMOS transistor 520, the node N3 of the clock circuit 800 is not pulled to the supply voltage VDDM based only on the signal RSTCKB. For example, the PMOS transistor 802 is coupled to the node N3 by the PMOS transistor 218 (which is driven by the signal CLK_EN) or by the PMOS transistor 510 and the PMOS transistor 216 (which is driven by the corresponding signal CLK_LS and the signal CLK). . Thus, in the first configuration, PMOS transistor 802 and PMOS transistor 218 are configured to pull node N3 to supply voltage VDDM based on signal RSTCKB and signal CLK_EN. In a second configuration, PMOS transistor 802, PMOS transistor 510, and PMOS transistor 216 are configured to pull node N3 toward supply voltage VDDM based on signal RSTCKB, signal CLK_LS, and signal CLK, respectively. In some embodiments, the supply voltage VDD is in the range of from about 0.3 volts to about 1.3 volts. In some embodiments, the supply voltage VDDM is in a range from about 0.3 volts to about 1.3 volts.

在一些實施例中,藉由使用時脈電路800的雙軌記憶體設計,時脈電路800與其他方法相比而言具有更大的操作電壓範圍。 In some embodiments, the clock circuit 800 has a larger operating voltage range than other methods by using the dual rail memory design of the clock circuit 800.

波形之時序圖700適用於圖5之時脈電路500以及時脈電路800,且因此省略類似詳細描述。然而,PMOS電晶體802的一些操作不同於PMOS電晶體520,且因此在下文進行描述。為簡 潔起見,由此省略對時脈電路800以及時脈電路500的類似操作的詳細描述。 The timing diagram 700 of the waveform is applied to the clock circuit 500 and the clock circuit 800 of FIG. 5, and thus a similar detailed description is omitted. However, some operations of the PMOS transistor 802 are different from the PMOS transistor 520, and thus are described below. Simple A detailed description of the similar operation of the clock circuit 800 and the clock circuit 500 is omitted here.

在時間t12,訊號RSTCKB自第二邏輯高位準(例如,供應電壓VDDM)轉變為邏輯低。回應於訊號RSTCKB自第二邏輯高位準轉變為邏輯低,NMOS電晶體222開始斷開且PMOS電晶體802開始接通。 At time t12, signal RSTCKB transitions from a second logic high level (eg, supply voltage VDDM) to a logic low. In response to signal RSTCKB transitioning from a second logic high level to a logic low, NMOS transistor 222 begins to turn off and PMOS transistor 802 begins to turn "on".

在時間t13,訊號CLKB自邏輯低轉變為邏輯高。 At time t13, signal CLKB transitions from a logic low to a logic high.

在時間t14,訊號RSTCKB為邏輯低,且訊號CKPB自邏輯低轉變為第二邏輯高位準。回應於訊號RSTCKB為邏輯低,NMOS電晶體222斷開,由此使得NMOS電晶體226經由NMOS電晶體222與節點N3斷開連接。回應於訊號RSTCKB為邏輯低,PMOS電晶體802接通,從而經由PMOS電晶體510、PMOS電晶體216以及PMOS電晶體218將節點N4連接至節點N3。因此,PMOS電晶體802經由節點N4將節點N3拉向供應電壓VDD,從而使訊號CKPB自邏輯低轉變為第二邏輯高位準。換言之,SRAM狀態鎖存電路801D藉由訊號RSTCKB重設為第二邏輯高位準。 At time t14, the signal RSTCKB is logic low and the signal CKPB transitions from a logic low to a second logic high level. In response to signal RSTCKB being logic low, NMOS transistor 222 is turned off, thereby causing NMOS transistor 226 to be disconnected from node N3 via NMOS transistor 222. In response to signal RSTCKB being logic low, PMOS transistor 802 is turned "on", thereby connecting node N4 to node N3 via PMOS transistor 510, PMOS transistor 216, and PMOS transistor 218. Thus, PMOS transistor 802 pulls node N3 to supply voltage VDD via node N4, thereby transitioning signal CKPB from a logic low to a second logic high level. In other words, the SRAM state latch circuit 801D is reset to the second logic high level by the signal RSTCKB.

在時間t15,訊號CLKB為邏輯高。 At time t15, signal CLKB is logic high.

在時間t16,訊號CKPB處於第二邏輯高位準。 At time t16, the signal CKPB is at the second logic high level.

在時間t17,回應於訊號CKPB在時間t16處於第二邏輯高位準,反相器228藉由使訊號CKPB反相而使得訊號CKPI自第二邏輯高位準轉變為邏輯低。 At time t17, in response to signal CKPB being at a second logic high level at time t16, inverter 228 causes signal CKPI to transition from a second logic high level to a logic low by inverting signal CKPB.

在時間t18,訊號CKPI為邏輯低,且訊號CLK_ENB自邏輯高轉變為邏輯低。回應於訊號CKPI為邏輯低,PMOS電晶體512接通,且NMOS電晶體226斷開。藉由使PMOS電晶體512 接通,PMOS電晶體512亦將節點N4拉向供應電壓VDDM。因此,藉由接通PMOS電晶體512而產生將節點N4以及節點N3拉向供應電壓VDDM的額外路徑。換言之,PMOS電晶體512加強訊號CKPB以保持在第二邏輯高位準。 At time t18, signal CKPI is logic low and signal CLK_ENB transitions from logic high to logic low. In response to signal CKPI being logic low, PMOS transistor 512 is turned "on" and NMOS transistor 226 is turned "off". By making PMOS transistor 512 Turned on, PMOS transistor 512 also pulls node N4 toward supply voltage VDDM. Thus, an additional path to pull node N4 and node N3 toward supply voltage VDDM is generated by turning on PMOS transistor 512. In other words, the PMOS transistor 512 boosts the signal CKPB to remain at the second logic high level.

在時間t19,訊號CLK_ENB為邏輯低,且訊號RSTCKB回應於訊號CKPI為邏輯低而自邏輯低轉變為第二邏輯高位準。藉由使訊號RSTCKB自邏輯低轉變為第二邏輯高位準,PMOS電晶體802斷開,且NMOS電晶體222接通。然而,節點N3以及訊號CKPB經由PMOS電晶體216、PMOS電晶體218、PMOS電晶體510以及PMOS電晶體512中之一或多者維持在供應電壓VDDM下,且NMOS電晶體226斷開並且不將節點N3拉向VSS。 At time t19, signal CLK_ENB is logic low, and signal RSTCKB transitions from logic low to second logic high level in response to signal CKPI being logic low. By transitioning the signal RSTCKB from a logic low to a second logic high level, the PMOS transistor 802 is turned off and the NMOS transistor 222 is turned "on". However, the node N3 and the signal CKPB are maintained at the supply voltage VDDM via one or more of the PMOS transistor 216, the PMOS transistor 218, the PMOS transistor 510, and the PMOS transistor 512, and the NMOS transistor 226 is turned off and will not Node N3 is pulled to VSS.

在時間t20,訊號RSTCKB處於第二邏輯高位準且訊號CKPB處於第二邏輯高位準。 At time t20, the signal RSTCKB is at the second logic high level and the signal CKPB is at the second logic high level.

方法 method

圖9為根據一些實施例的操作時脈電路之方法之流程圖,所述時脈電路諸如圖1至圖2、圖4至圖5或圖8的時脈電路。應理解,額外操作可在圖9中所描繪的方法900之前、期間及/或之後執行,且一些其他製程在本文中可僅簡單描述。應理解,方法900利用圖3的時序圖300、圖6的位準偏移器電路600或圖7的時序圖700中之一或多者的特徵。 9 is a flow diagram of a method of operating a clock circuit, such as the clock circuit of FIGS. 1-2, 4-5, or 8, in accordance with some embodiments. It should be understood that additional operations may be performed before, during, and/or after the method 900 depicted in FIG. 9, and some other processes may be described briefly herein. It should be understood that the method 900 utilizes features of one or more of the timing diagram 300 of FIG. 3, the level shifter circuit 600 of FIG. 6, or the timing diagram 700 of FIG.

在方法900之操作902中,藉由時脈觸發電路201B接收第一時脈訊號(CLK)。在一些實施例中,操作902更包括藉由第一鎖存器(CEB鎖存電路201A)接收啟用訊號(CEB)。 In operation 902 of method 900, the first clock signal (CLK) is received by clock trigger circuit 201B. In some embodiments, operation 902 further includes receiving an enable signal (CEB) by the first latch (CEB latch circuit 201A).

在方法900之操作904中,第一鎖存器(CEB鎖存電路 201A)回應於啟用訊號(訊號CEB)自第二電壓位準(VDD)轉變為第一電壓位準(VSS)而使第一鎖存輸出訊號(CLK_EN)自所述第一電壓位準轉變為所述第二電壓位準。在一些實施例中,第二電壓位準不同於第一電壓位準。在一些實施例中,操作904由「反或」閘208執行。 In operation 904 of method 900, the first latch (CEB latch circuit) 201A) in response to the enable signal (signal CEB) transitioning from a second voltage level (VDD) to a first voltage level (VSS), causing the first latch output signal (CLK_EN) to transition from the first voltage level to The second voltage level. In some embodiments, the second voltage level is different than the first voltage level. In some embodiments, operation 904 is performed by an "anti-OR" gate 208.

在方法900之操作906中,時脈觸發電路201B回應於第一時脈訊號(CLK)自第一電壓位準(VSS)轉變為第二電壓位準(VDD)而將第一節點(例如,節點N1)自第一電壓位準拉動至第二電壓位準。在一些實施例中,操作906之拉動第一節點由此使得時脈觸發電路201B之第一控制訊號(CLKB)自第一電壓位準轉變為第二電壓位準。在一些實施例中,時脈觸發電路201B藉由第一節點(例如,節點N1)連接至第一鎖存器(例如,鎖存電路201A)之輸入端以及第一觸發電路(例如,SRAM狀態觸發電路201C)。在一些實施例中,來自時脈觸發電路201B之第一控制訊號(CLKB)自第一節點(節點N1)反饋回至第一鎖存器(鎖存電路201A)之輸入端。 In operation 906 of method 900, clock trigger circuit 201B transitions the first node (VSS) to a second voltage level (VDD) from the first voltage level (CLK) to the first node (eg, Node N1) pulls from a first voltage level to a second voltage level. In some embodiments, pulling the first node of operation 906 thereby causes the first control signal (CLKB) of the clock trigger circuit 201B to transition from the first voltage level to the second voltage level. In some embodiments, the clock trigger circuit 201B is coupled to the input of the first latch (eg, latch circuit 201A) and the first trigger circuit (eg, SRAM state) by a first node (eg, node N1) Trigger circuit 201C). In some embodiments, the first control signal (CLKB) from the clock trigger circuit 201B is fed back from the first node (node N1) to the input of the first latch (latch circuit 201A).

在一些實施例中,操作906更包含回應於訊號CLK在時間t3(圖3)自第一電壓位準轉變為第二電壓位準而使NMOS電晶體210接通且將節點N1拉向參考電壓VSS,由此使得訊號CLKB在時間t4(圖5)自第二電壓位準轉變為第一電壓位準。 In some embodiments, operation 906 further includes turning on NMOS transistor 210 and pulling node N1 toward the reference voltage in response to signal CLK transitioning from the first voltage level to the second voltage level at time t3 (FIG. 3). VSS, thereby causing signal CLKB to transition from a second voltage level to a first voltage level at time t4 (FIG. 5).

在方法900之操作908中,第一觸發電路(例如,SRAM狀態觸發電路201C)使輸出時脈訊號(例如,訊號CKPB)自第二電壓位準轉變為第一電壓位準。 In operation 908 of method 900, a first trigger circuit (eg, SRAM state trigger circuit 201C) causes an output clock signal (eg, signal CKPB) to transition from a second voltage level to a first voltage level.

在一些實施例中,操作908包含第一觸發電路(例如, SRAM狀態觸發電路201C)回應於第一時脈訊號(CLK)轉變為第二電壓位準且回應於第一鎖存輸出訊號(CLK_EN)轉變為第二電壓位準而使得輸出時脈訊號(例如,訊號CKPB)自第二電壓位準轉變為第一電壓位準。舉例而言,在一些實施例中,操作908更包含回應於第一鎖存輸出訊號(例如,訊號CLK_EN)使第一N型電晶體(例如,NMOS電晶體214)接通由此將第二節點(例如,節點N3)耦接至第一節點(例如,節點N1),回應於訊號CLK在時間t3(圖3)自第一電壓位準轉變為第二電壓位準而使第二N型電晶體(NMOS電晶體210)接通且將第一節點(節點N1)拉向參考電壓VSS,其亦將第二節點(節點N3)拉向第一電壓位準VSS,由此使得訊號CKPB在時間t5(圖3)自第二電壓位準轉變為第一電壓位準。 In some embodiments, operation 908 includes a first trigger circuit (eg, The SRAM state trigger circuit 201C) outputs a clock signal in response to the first clock signal (CLK) transitioning to the second voltage level and in response to the first latch output signal (CLK_EN) transitioning to the second voltage level (eg, , signal CKPB) transitions from the second voltage level to the first voltage level. For example, in some embodiments, operation 908 further includes turning on the first N-type transistor (eg, NMOS transistor 214) in response to the first latched output signal (eg, signal CLK_EN) thereby A node (eg, node N3) is coupled to the first node (eg, node N1), in response to signal CLK transitioning from a first voltage level to a second voltage level at time t3 (FIG. 3) to cause a second N-type The transistor (NMOS transistor 210) is turned on and pulls the first node (node N1) toward the reference voltage VSS, which also pulls the second node (node N3) toward the first voltage level VSS, thereby causing the signal CKPB to be Time t5 (Fig. 3) transitions from the second voltage level to the first voltage level.

在方法900之操作910中,第一鎖存器(鎖存電路201A)回應於輸出時脈訊號(CKPB)自第二電壓位準轉變為第一電壓位準而使經反相第一鎖存輸出訊號(例如,訊號CLK_ENB)自第一電壓位準轉變為第二電壓位準。在一些實施例中,操作910由「反及」閘206至少回應於訊號CKPBI而執行。 In operation 910 of method 900, the first latch (latch circuit 201A) causes the inverted first latch to be inverted in response to the output clock signal (CKPB) transitioning from the second voltage level to the first voltage level. The output signal (eg, signal CLK_ENB) transitions from a first voltage level to a second voltage level. In some embodiments, operation 910 is performed by "reverse" gate 206 in response to at least signal CKPBI.

在方法900之操作912中,第一鎖存器(鎖存電路201A)回應於經反相第一鎖存輸出訊號(CLK_ENB)自第一電壓位準(VSS)轉變為第二電壓位準(VDD)而使第一鎖存輸出訊號(CLK_EN)自第二電壓位準轉變為第一電壓位準。在一些實施例中,操作912由「反或」閘208在時間t7(圖3)執行。 In operation 912 of method 900, the first latch (latch circuit 201A) transitions from the first voltage level (VSS) to the second voltage level in response to the inverted first latched output signal (CLK_ENB) ( VDD) causes the first latched output signal (CLK_EN) to transition from the second voltage level to the first voltage level. In some embodiments, operation 912 is performed by "reverse OR" gate 208 at time t7 (FIG. 3).

在方法900之操作914中,反相器(例如,反相器228)回應於輸出時脈訊號(CKPB)自第二電壓位準轉變為第一電壓位 準而使第二控制訊號(CKPI)自第一電壓位準轉變為第二電壓位準。在一些實施例中,操作914在時間t5(圖3)執行。 In operation 914 of method 900, an inverter (eg, inverter 228) transitions from a second voltage level to a first voltage level in response to an output clock signal (CKPB). The second control signal (CKPI) is converted from the first voltage level to the second voltage level. In some embodiments, operation 914 is performed at time t5 (FIG. 3).

在方法900之操作916中,啟用訊號(CEB)自第一電壓位準轉變為第二電壓位準。在一些實施例中,操作916在時間t9(圖3)執行。 In operation 916 of method 900, the enable signal (CEB) transitions from a first voltage level to a second voltage level. In some embodiments, operation 916 is performed at time t9 (Fig. 3).

在方法900之操作918中,時脈觸發電路(NMOS電晶體210/PMOS電晶體212)回應於第一時脈訊號(CLK)自第二電壓位準轉變為第一電壓位準而將第一節點(節點N1)自第二電壓位準拉動至第一電壓。在一些實施例中,操作918之拉動第一節點由此使得時脈觸發電路201B之第一控制訊號(CLKB)自第二電壓位準轉變為第一電壓位準。 In operation 918 of method 900, the clock trigger circuit (NMOS transistor 210 / PMOS transistor 212) is first to respond to the first clock signal (CLK) transitioning from the second voltage level to the first voltage level. The node (node N1) is pulled from the second voltage level to the first voltage. In some embodiments, pulling the first node of operation 918 thereby causes the first control signal (CLKB) of the clock trigger circuit 201B to transition from the second voltage level to the first voltage level.

在方法900之操作920中,重設訊號(例如,訊號RSTCKB)回應於輸出時脈訊號(例如,訊號CKPB)自第二電壓位準轉變為第一電壓位準而自第二電壓位準轉變為第一電壓位準。在一些實施例中,操作920至少回應於第二控制訊號(CKPI)自第一電壓位準轉變為第二電壓位準而發生。 In operation 920 of method 900, the reset signal (eg, signal RSTCKB) transitions from the second voltage level in response to the output clock signal (eg, signal CKPB) transitioning from the second voltage level to the first voltage level. Is the first voltage level. In some embodiments, operation 920 occurs in response to at least a second control signal (CKPI) transitioning from a first voltage level to a second voltage level.

在方法900之操作922中,第一觸發電路(SRAM狀態觸發電路201C)回應於重設訊號(RSTCKB)自第二電壓位準轉變為第一電壓位準而使輸出時脈訊號(CKPB)自第一電壓位準轉變為第二電壓位準。 In operation 922 of method 900, the first trigger circuit (SRAM state trigger circuit 201C) causes the output clock signal (CKPB) to be self-converted from the second voltage level to the first voltage level in response to the reset signal (RSTCKB). The first voltage level transitions to a second voltage level.

在一些實施例中,操作922包含回應於重設訊號(例如,訊號RSTCKB)自第二電壓位準轉變為第一電壓位準而使第二N型電晶體(例如,NMOS電晶體222)斷開,由此使第二節點(例如,節點N3)與第三N型電晶體(例如,NMOS電晶體226)斷 開連接。 In some embodiments, operation 922 includes breaking the second N-type transistor (eg, NMOS transistor 222) in response to the reset signal (eg, signal RSTCKB) transitioning from the second voltage level to the first voltage level. Turning on, thereby causing the second node (eg, node N3) to be disconnected from the third N-type transistor (eg, NMOS transistor 226) Open the connection.

在一些實施例中,操作922更包含回應於重設訊號(例如,訊號RSTCKB)自第二電壓位準轉變為第一電壓位準VSS而使第一P型電晶體(例如,PMOS電晶體220)接通,由此將第二節點(例如,節點N3)拉向供應電壓VDD之第二電壓位準。 In some embodiments, the operation 922 further includes: in response to the reset signal (eg, the signal RSTCKB) transitioning from the second voltage level to the first voltage level VSS to cause the first P-type transistor (eg, the PMOS transistor 220) Turning on, thereby pulling the second node (eg, node N3) to the second voltage level of the supply voltage VDD.

在方法900之操作924中,重設訊號(例如,訊號RSTCKB)回應於輸出時脈訊號(例如,訊號CKPB)自第一電壓位準VSS轉變為第二電壓位準VDD而自第一電壓位準轉變為第二電壓位準。在一些實施例中,操作924至少回應於第二控制訊號(CKPI)自第二電壓位準轉變為第一電壓位準而發生。舉例而言,在一些實施例中,操作924在圖3之對應於第二控制訊號CKPI轉變為第一電壓位準的時間t16之後發生,所述操作斷開NMOS電晶體226且防止NMOS電晶體226將第二節點(節點N3)拉向第一電壓位準。 In operation 924 of method 900, the reset signal (eg, signal RSTCKB) is responsive to the output clock signal (eg, signal CKPB) transitioning from the first voltage level VSS to the second voltage level VDD from the first voltage level. The quasi-conversion to the second voltage level. In some embodiments, operation 924 occurs at least in response to the second control signal (CKPI) transitioning from the second voltage level to the first voltage level. For example, in some embodiments, operation 924 occurs after time t16 of FIG. 3 corresponding to transition of second control signal CKPI to a first voltage level, the operation turning off NMOS transistor 226 and preventing NMOS transistor 226 pulls the second node (node N3) toward the first voltage level.

在一些實施例中,操作924包含回應於重設訊號(例如,訊號RSTCKB)自第一電壓位準轉變為第二電壓位準而使第二N型電晶體(例如,NMOS電晶體222)接通,由此將第二節點(例如,節點N3)連接至第三N型電晶體(NMOS電晶體226)。 In some embodiments, operation 924 includes causing the second N-type transistor (eg, NMOS transistor 222) to be connected in response to the reset signal (eg, signal RSTCKB) transitioning from the first voltage level to the second voltage level. The second node (e.g., node N3) is thereby connected to the third N-type transistor (NMOS transistor 226).

在一些實施例中,操作924更包含回應於重設訊號(例如,訊號RSTCKB)自第一電壓位準轉變為第二電壓位準而使第一P型電晶體(例如,PMOS電晶體220)斷開,由此使第二節點(例如,節點N3)與第三N型電晶體(NMOS電晶體226)或供應電壓VDD斷開連接。 In some embodiments, operation 924 further includes causing the first P-type transistor (eg, PMOS transistor 220) to transition from the first voltage level to the second voltage level in response to the reset signal (eg, signal RSTCKB). Disconnected thereby disconnecting the second node (eg, node N3) from the third N-type transistor (NMOS transistor 226) or supply voltage VDD.

雖然上文參考圖2至圖3描述方法900,但應理解,方法 900利用圖4至圖5、圖6或圖7中之一或多者的特徵。舉例而言,在一些實施例中,方法900與圖5之時脈電路500以及圖6之位準偏移器電路600一起使用。在此等實施例中,方法900之操作902更包括藉由時脈觸發電路接收具有第二電壓擺動(VDDM)的第二時脈訊號(CLK_LS),所述第二電壓擺動不同於第一時脈訊號之第一電壓擺動(VDD)。此外,在此等實施例中,方法900之其他操作將至少藉由第一時脈訊號(CLK)或第二時脈訊號(CLK_LS)執行,且第二電壓位準VDD經供應電壓VDDM取代。舉例而言,在一些實施例中,使時脈觸發電路拉動第一節點包括使時脈觸發電路回應於第二時脈訊號自第三電壓位準轉變為第一電壓位準而將第一節點自第一電壓位準拉動至第三電壓位準,所述第三電壓位準不同於第一電壓位準以及第二電壓位準。 Although method 900 is described above with respect to Figures 2 through 3, it should be understood that the method 900 utilizes features of one or more of Figures 4 through 5, 6, or 7. For example, in some embodiments, method 900 is used with clock circuit 500 of FIG. 5 and level offset circuit 600 of FIG. In these embodiments, operation 902 of method 900 further includes receiving, by the clock trigger circuit, a second clock signal (CLK_LS) having a second voltage swing (VDDM), the second voltage swing being different from the first time The first voltage swing of the pulse signal (VDD). Moreover, in these embodiments, other operations of method 900 will be performed by at least a first clock signal (CLK) or a second clock signal (CLK_LS), and the second voltage level VDD is replaced by a supply voltage VDDM. For example, in some embodiments, causing the clock trigger circuit to pull the first node includes causing the clock trigger circuit to change the first node from the third voltage level to the first voltage level in response to the second clock signal Pulling from a first voltage level to a third voltage level, the third voltage level being different from the first voltage level and the second voltage level.

本說明書的一個態樣係關於一種時脈電路。所述時脈電路包括:第一鎖存器,經組態以基於第一控制訊號、啟用訊號以及輸出時脈訊號而產生第一鎖存輸出訊號;第二鎖存器,耦接至所述第一鎖存器,且經組態以回應於第二控制訊號而產生所述輸出時脈訊號;第一觸發電路,耦接至所述第一鎖存器以及所述第二鎖存器,且經組態以至少回應於所述第一鎖存輸出訊號或重設訊號而調整所述輸出時脈訊號;以及時脈觸發電路,藉由第一節點耦接至所述第一鎖存器以及所述第一觸發電路,經組態以回應於輸入時脈訊號而產生第一控制訊號,且經組態以至少基於所述第一控制訊號而控制所述第一鎖存器以及所述第一觸發電路。在一些實施例中,所述時脈觸發電路包括:第一P型電晶體,其源極與第一供應電壓耦接,所述第一P型電晶體之閘極經組態以接收所述輸 入時脈訊號,且所述第一P型電晶體之汲極藉由所述第一節點與所述第一鎖存器以及所述第一觸發電路耦接;以及第一N型電晶體,其閘極經組態以接收所述輸入時脈訊號,所述第一N型電晶體之源極與不同於所述第一供應電壓的第二供應電壓耦接,且所述第一N型電晶體之汲極藉由所述第一節點與所述第一鎖存器、所述第一觸發電路以及所述第一P型電晶體之所述汲極耦接。在一些實施例中,所述第一鎖存器包括「或」邏輯閘,其包括:所述「或」邏輯閘之第一輸入端子,經組態以接收所述第一控制訊號且至少耦接至所述第一節點;所述「或」邏輯閘之第二輸入端子,經組態以接收所述第一鎖存輸出訊號且至少耦接至第二節點;以及所述「或」邏輯閘之輸出端子,經組態以基於所述第一鎖存輸出訊號以及所述第一控制訊號而輸出「或」輸出訊號。在一些實施例中,所述第一鎖存器更包括「反及」邏輯閘,其包括:所述「反及」邏輯閘之第一輸入端子,耦接至所述「或」邏輯閘之所述輸出端子,所述「反及」邏輯閘之所述第一輸入端子經組態以接收所述「或」輸出訊號;所述「反及」邏輯閘之第二輸入端子,經組態以接收經反相第二控制訊號;以及所述「反及」邏輯閘之輸出端子,經組態以基於所述經反相第二控制訊號以及所述「或」輸出訊號而輸出第一「反及」輸出訊號。在一些實施例中,所述第一鎖存器更包括「反或」邏輯閘,其包括:所述「反或」邏輯閘之第一輸入端子,經組態以接收所述啟用訊號;所述「反或」邏輯閘之第二輸入端子,經組態以接收所述第一「反及」輸出訊號且耦接至所述「反及」邏輯閘之所述輸出端子;以及所述「反或」邏輯閘之輸出端子,經組態以基於所述啟用訊號以及所述第一「反及」輸出訊號而輸出 所述第一鎖存輸出訊號,所述「反或」邏輯閘之所述輸出端子至少耦接至所述第二節點,且所述「反或」邏輯閘經組態以設定所述第二節點之電壓,所述第二節點之所述電壓對應於所述第一鎖存輸出訊號。在一些實施例中,所述第二鎖存器包括具有輸入端子以及輸出端子之反相器,所述反相器之所述輸入端子經組態以接收所述輸出時脈訊號且耦接至所述第一觸發電路之第三節點;且所述反相器之所述輸出端子經組態以回應於所述輸出時脈訊號而輸出所述第二控制訊號。在一些實施例中,所述第二鎖存器更包括:第一P型電晶體,其源極與第一供應電壓耦接,所述第一P型電晶體之汲極與所述第一觸發電路之第二節點耦接,且所述第一P型電晶體之閘極耦接至所述反相器之所述輸出端子且經組態以接收所述第二控制訊號;以及第一N型電晶體,其源極與不同於所述第一供應電壓的第二供應電壓耦接,所述第一N型電晶體之汲極與所述第一觸發電路之所述第三節點耦接,且所述第一N型電晶體之閘極耦接至所述反相器之所述輸出端子且經組態以接收所述第二控制訊號。在一些實施例中,所述第一觸發電路包括:第一N型電晶體,其源極與所述第一節點耦接,所述第一N型電晶體之閘極經組態以接收所述第一鎖存輸出訊號且藉由第二節點耦接至所述第一鎖存器,且所述第一N型電晶體之汲極與所述第一觸發電路之第三節點耦接;以及第一P型電晶體,其源極與所述第一觸發電路之第四節點耦接,所述第一P型電晶體之閘極經組態以接收所述輸入時脈訊號,且所述第一P型電晶體之汲極藉由所述第一觸發電路之所述第三節點與所述第一N型電晶體之所述汲極耦接。在一些實施例中,所述第一觸發電路更包括:第二P型電 晶體,其源極與所述第一觸發電路之所述第四節點耦接,所述第二P型電晶體之閘極經組態以接收所述第一鎖存輸出訊號,且所述第二P型電晶體之汲極藉由所述第一觸發電路之所述第三節點與所述第一N型電晶體之所述汲極以及所述第一P型電晶體之所述汲極耦接。在一些實施例中,所述第一觸發電路更包括:第二N型電晶體,其源極與所述第二鎖存器耦接,所述第二N型電晶體之閘極經組態以接收所述重設訊號,且所述第二N型電晶體之汲極與所述第一觸發電路之所述第三節點耦接;以及第三P型電晶體,其源極與第一供應電壓耦接,所述第三P型電晶體之閘極經組態以接收所述重設訊號,以及以下組態中之一者:所述第三P型電晶體之汲極藉由所述第一觸發電路之所述第三節點與所述第二N型電晶體之所述汲極耦接;或所述第三P型電晶體之所述汲極藉由所述第一觸發電路之所述第四節點與所述第一P型電晶體之所述源極耦接。 One aspect of the present specification relates to a clock circuit. The clock circuit includes: a first latch configured to generate a first latch output signal based on the first control signal, the enable signal, and the output clock signal; and a second latch coupled to the a first latch, configured to generate the output clock signal in response to the second control signal; a first trigger circuit coupled to the first latch and the second latch, And configured to adjust the output clock signal at least in response to the first latch output signal or the reset signal; and the clock trigger circuit is coupled to the first latch by the first node And the first trigger circuit configured to generate a first control signal in response to the input clock signal, and configured to control the first latch and the at least based on the first control signal The first trigger circuit. In some embodiments, the clock trigger circuit includes: a first P-type transistor having a source coupled to a first supply voltage, a gate of the first P-type transistor configured to receive the lose Entering a clock signal, and a drain of the first P-type transistor is coupled to the first latch and the first trigger circuit by the first node; and a first N-type transistor, The gate is configured to receive the input clock signal, the source of the first N-type transistor is coupled to a second supply voltage different from the first supply voltage, and the first N-type A drain of the transistor is coupled to the first latch, the first flip-flop circuit, and the drain of the first P-type transistor by the first node. In some embodiments, the first latch includes an OR logic gate including: a first input terminal of the OR logic gate configured to receive the first control signal and coupled to at least Connected to the first node; a second input terminal of the OR logic gate configured to receive the first latch output signal and coupled to at least a second node; and the OR logic An output terminal of the gate configured to output an OR signal based on the first latch output signal and the first control signal. In some embodiments, the first latch further includes a "reverse" logic gate, including: a first input terminal of the "reverse" logic gate coupled to the OR logic gate The output terminal, the first input terminal of the "reverse" logic gate is configured to receive the OR signal; the second input terminal of the "reverse" logic gate is configured Receiving an inverted second control signal; and an output terminal of the "reverse" logic gate configured to output a first "based on the inverted second control signal and the OR signal" In contrast to the output signal. In some embodiments, the first latch further includes an "reverse" logic gate, including: a first input terminal of the "reverse" logic gate configured to receive the enable signal; a second input terminal of the "reverse" logic gate configured to receive the first "reverse" output signal and coupled to the output terminal of the "reverse" logic gate; and the And an output terminal of the logic gate configured to output based on the enable signal and the first "reverse" output signal The first latch output signal, the output terminal of the "reverse" logic gate is coupled to the second node, and the "reverse OR" logic gate is configured to set the second The voltage of the node, the voltage of the second node corresponding to the first latch output signal. In some embodiments, the second latch includes an inverter having an input terminal and an output terminal, the input terminal of the inverter being configured to receive the output clock signal and coupled to a third node of the first trigger circuit; and the output terminal of the inverter is configured to output the second control signal in response to the output clock signal. In some embodiments, the second latch further includes: a first P-type transistor having a source coupled to the first supply voltage, a drain of the first P-type transistor and the first a second node of the trigger circuit is coupled, and a gate of the first P-type transistor is coupled to the output terminal of the inverter and configured to receive the second control signal; and first An N-type transistor having a source coupled to a second supply voltage different from the first supply voltage, a drain of the first N-type transistor coupled to the third node of the first trigger circuit And the gate of the first N-type transistor is coupled to the output terminal of the inverter and configured to receive the second control signal. In some embodiments, the first trigger circuit includes: a first N-type transistor having a source coupled to the first node, and a gate of the first N-type transistor configured to receive The first latch output signal is coupled to the first latch by a second node, and the drain of the first N-type transistor is coupled to the third node of the first flip-flop circuit; And a first P-type transistor having a source coupled to a fourth node of the first flip-flop circuit, a gate of the first P-type transistor configured to receive the input clock signal, and The drain of the first P-type transistor is coupled to the drain of the first N-type transistor by the third node of the first flip-flop circuit. In some embodiments, the first trigger circuit further includes: a second P-type battery a crystal having a source coupled to the fourth node of the first flip-flop circuit, a gate of the second P-type transistor configured to receive the first latch output signal, and the The drain of the second P-type transistor is performed by the third node of the first flip-flop circuit and the drain of the first N-type transistor and the drain of the first P-type transistor Coupling. In some embodiments, the first trigger circuit further includes: a second N-type transistor, a source thereof is coupled to the second latch, and a gate of the second N-type transistor is configured Receiving the reset signal, and the drain of the second N-type transistor is coupled to the third node of the first flip-flop circuit; and the third P-type transistor, the source and the first The supply voltage is coupled, the gate of the third P-type transistor is configured to receive the reset signal, and one of the following configurations: the drain of the third P-type transistor is The third node of the first flip-flop circuit is coupled to the drain of the second N-type transistor; or the drain of the third P-type transistor is provided by the first flip-flop circuit The fourth node is coupled to the source of the first P-type transistor.

本說明書的另一態樣係關於一種時脈電路。所述時脈電路包括:第一鎖存器,經組態以基於第一控制訊號、啟用訊號以及輸出時脈訊號而產生第一鎖存輸出訊號;第二鎖存器,耦接至所述第一鎖存器,且經組態以回應於第二控制訊號而產生所述輸出時脈訊號;第一觸發電路,耦接至所述第一鎖存器以及所述第二鎖存器,且經組態以至少回應於所述第一鎖存輸出訊號或重設訊號而調整所述輸出時脈訊號;時脈觸發電路,藉由第一節點耦接至所述第一鎖存器以及所述第一觸發電路,經組態以回應於具有第一電壓擺動的第一時脈訊號而產生所述第一控制訊號,且經組態以至少基於所述第一時脈訊號而控制所述第一鎖存器以及所述第一觸 發電路;以及位準偏移器電路,至少耦接至所述時脈觸發電路,且經組態以產生具有第二電壓擺動的第二時脈訊號,所述第二電壓擺動不同於所述第一時脈訊號的所述第一電壓擺動。在一些實施例中,所述時脈觸發電路包括:第一N型電晶體,其源極與第一供應電壓耦接,所述第一N型電晶體之閘極經組態以接收所述第一時脈訊號,且所述第一N型電晶體之汲極藉由所述第一節點與所述第一鎖存器以及所述第一觸發電路耦接;以及第二N型電晶體,其源極至少與所述第一供應電壓耦接,所述第二N型電晶體之閘極經組態以接收所述第二時脈訊號,且所述第二N型電晶體之汲極藉由所述第一節點與所述第一鎖存器、所述第一觸發電路以及所述第一N型電晶體之所述汲極耦接。在一些實施例中,所述時脈觸發電路更包括:第一P型電晶體,其源極與不同於所述第一供應電壓的第二供應電壓耦接,且所述第一P型電晶體之閘極經組態以接收所述第一時脈訊號;以及第二P型電晶體,其源極與所述第一P型電晶體之汲極耦接,所述第二P型電晶體之閘極經組態以接收所述第二時脈訊號,且所述第二P型電晶體之汲極藉由所述第一節點與所述第一鎖存器、所述第一觸發電路、所述第一N型電晶體的所述汲極以及所述第二N型電晶體之所述汲極耦接。在一些實施例中,所述第一觸發電路包括:第一N型電晶體,其源極與所述第一節點耦接,所述第一N型電晶體之閘極經組態以接收所述第一鎖存輸出訊號且藉由第二節點耦接至所述第一鎖存器,且所述第一N型電晶體之汲極與所述第一觸發電路之第三節點耦接;以及第一P型電晶體,所述第一P型電晶體之閘極經組態以接收所述第一時脈訊號,且所述第一P型電晶體之汲 極藉由所述第一觸發電路之所述第三節點與所述第一N型電晶體之所述汲極耦接。在一些實施例中,所述第一觸發電路更包括:第二P型電晶體,其源極與第一觸發電路之第四節點耦接,所述第二P型電晶體之閘極經組態以接收所述第二時脈訊號,且所述第二P型電晶體之汲極與所述第一P型電晶體之源極耦接;以及第三P型電晶體,其源極藉由所述第一觸發電路之所述第四節點與所述第二P型電晶體之所述源極耦接,所述第三P型電晶體之閘極經組態以接收所述第一鎖存輸出訊號,且所述第三P型電晶體之汲極藉由所述第一觸發電路之所述第三節點與所述第一N型電晶體之所述汲極以及所述第一P型電晶體之所述汲極耦接。在一些實施例中,所述第一觸發電路更包括:第二N型電晶體,其源極與所述第二鎖存器耦接,所述第二N型電晶體之閘極經組態以接收所述重設訊號,且所述第二N型電晶體之汲極與所述第一觸發電路之所述第三節點耦接;以及第四P型電晶體,其源極與第一供應電壓耦接,所述第四P型電晶體之閘極經組態以接收所述重設訊號,以及以下組態中之一者:所述第四P型電晶體之汲極藉由所述第一觸發電路之所述第三節點與所述第二N型電晶體之所述汲極耦接;或所述第四P型電晶體之所述汲極藉由所述第一觸發電路之所述第四節點與所述第二P型電晶體之所述源極以及所述第三P型電晶體之所述源極耦接。 Another aspect of the present specification relates to a clock circuit. The clock circuit includes: a first latch configured to generate a first latch output signal based on the first control signal, the enable signal, and the output clock signal; and a second latch coupled to the a first latch, configured to generate the output clock signal in response to the second control signal; a first trigger circuit coupled to the first latch and the second latch, And configured to adjust the output clock signal at least in response to the first latch output signal or the reset signal; the clock trigger circuit is coupled to the first latch by the first node and The first trigger circuit is configured to generate the first control signal in response to a first clock signal having a first voltage swing, and is configured to control the at least based on the first clock signal a first latch and the first touch And a level shifter circuit coupled to at least the clock trigger circuit and configured to generate a second clock signal having a second voltage swing, the second voltage swing being different from The first voltage swing of the first clock signal. In some embodiments, the clock trigger circuit includes: a first N-type transistor having a source coupled to a first supply voltage, a gate of the first N-type transistor configured to receive the a first clock signal, and a drain of the first N-type transistor is coupled to the first latch and the first trigger circuit by the first node; and a second N-type transistor a source at least coupled to the first supply voltage, a gate of the second N-type transistor configured to receive the second clock signal, and a second N-type transistor The pole is coupled to the first latch, the first trigger circuit, and the drain of the first N-type transistor by the first node. In some embodiments, the clock trigger circuit further includes: a first P-type transistor having a source coupled to a second supply voltage different from the first supply voltage, and the first P-type power a gate of the crystal configured to receive the first clock signal; and a second P-type transistor having a source coupled to a drain of the first P-type transistor, the second P-type a gate of the crystal is configured to receive the second clock signal, and a drain of the second P-type transistor is coupled to the first latch and the first trigger by the first node The circuit, the drain of the first N-type transistor, and the drain of the second N-type transistor are coupled. In some embodiments, the first trigger circuit includes: a first N-type transistor having a source coupled to the first node, and a gate of the first N-type transistor configured to receive The first latch output signal is coupled to the first latch by a second node, and the drain of the first N-type transistor is coupled to the third node of the first flip-flop circuit; And a first P-type transistor, the gate of the first P-type transistor configured to receive the first clock signal, and the first P-type transistor The third node of the first trigger circuit is coupled to the drain of the first N-type transistor. In some embodiments, the first trigger circuit further includes: a second P-type transistor, a source of which is coupled to a fourth node of the first flip-flop circuit, and a gate of the second P-type transistor a state of receiving the second clock signal, and a drain of the second P-type transistor is coupled to a source of the first P-type transistor; and a third P-type transistor, the source of which is borrowed The fourth node of the first flip-flop circuit is coupled to the source of the second P-type transistor, and the gate of the third P-type transistor is configured to receive the first And latching the output signal, and the drain of the third P-type transistor is performed by the third node of the first flip-flop circuit and the drain of the first N-type transistor and the first The drain of the P-type transistor is coupled. In some embodiments, the first trigger circuit further includes: a second N-type transistor, a source thereof is coupled to the second latch, and a gate of the second N-type transistor is configured Receiving the reset signal, and the drain of the second N-type transistor is coupled to the third node of the first flip-flop circuit; and the fourth P-type transistor, the source and the first The supply voltage is coupled, the gate of the fourth P-type transistor is configured to receive the reset signal, and one of the following configurations: the drain of the fourth P-type transistor is The third node of the first flip-flop circuit is coupled to the drain of the second N-type transistor; or the drain of the fourth P-type transistor is coupled to the first trigger circuit The fourth node is coupled to the source of the second P-type transistor and the source of the third P-type transistor.

本說明書的另一態樣係關於一種操作時脈電路的方法。所述方法包括:藉由時脈觸發電路接收第一時脈訊號;回應於啟用訊號自第二電壓位準轉變為第一電壓位準而藉由第一鎖存器使第一鎖存輸出訊號自所述第一電壓位準轉變為所述第二電壓位準, 所述第二電壓位準不同於所述第一電壓位準;回應於所述第一時脈訊號自所述第一電壓位準轉變為所述第二電壓位準而使所述時脈觸發電路將第一節點自所述第一電壓位準拉動至所述第二電壓位準,對所述第一節點之拉動由此使得所述時脈觸發電路之第一控制訊號自所述第一電壓位準轉變為所述第二電壓位準,所述時脈觸發電路藉由所述第一節點連接至第一鎖存器之輸入端以及第一觸發電路,且來自所述時脈觸發電路之所述第一控制訊號自所述第一節點反饋回至所述第一鎖存器之所述輸入端;以及回應於所述第一時脈訊號轉變為所述第二電壓位準且回應於所述第一鎖存輸出訊號轉變為所述第二電壓位準而藉由所述第一觸發電路使輸出時脈訊號自所述第二電壓位準轉變為所述第一電壓位準。在一些實施例中,所述方法更包括:回應於所述輸出時脈訊號自所述第二電壓位準轉變為所述第一電壓位準而使重設訊號自所述第二電壓位準轉變為所述第一電壓位準;回應於所述重設訊號自所述第二電壓位準轉變為所述第一電壓位準而使所述輸出時脈訊號自所述第一電壓位準轉變為所述第二電壓位準;以及回應於所述輸出時脈訊號自所述第一電壓位準轉變為所述第二電壓位準而使所述重設訊號自所述第一電壓位準轉變為所述第二電壓位準。在一些實施例中,藉由所述第一觸發電路使所述輸出時脈訊號自所述第二電壓位準轉變為所述第一電壓位準包括:回應於所述第一鎖存輸出訊號而使第一N型電晶體接通,由此將第二節點耦接至所述第一節點,且將所述第二節點拉向所述第一電壓位準。在一些實施例中,回應於所述重設訊號自所述第二電壓位準轉變為所述第一電壓位準而藉由所述第一觸發電路使所述輸出時脈訊號自所述 第一電壓位準轉變為所述第二電壓位準包括:回應於所述重設訊號自所述第二電壓位準轉變為所述第一電壓位準而使第二N型電晶體斷開,由此使所述第二節點與第三N型電晶體斷開連接;以及回應於所述重設訊號自所述第二電壓位準轉變為所述第一電壓位準而使第一P型電晶體接通,由此將所述第二節點拉向第一供應電壓的所述第二電壓位準。在一些實施例中,回應於所述輸出時脈訊號自所述第一電壓位準轉變為所述第二電壓位準而使所述重設訊號自所述第一電壓位準轉變為所述第二電壓位準包括:回應於所述重設訊號自所述第一電壓位準轉變為所述第二電壓位準而使所述第二N型電晶體接通,由此將所述第二節點連接至所述第三N型電晶體;以及回應於所述重設訊號自所述第一電壓位準轉變為所述第二電壓位準而使所述第一P型電晶體斷開,由此使所述第二節點與所述第一供應電壓斷開連接。 Another aspect of the present specification is directed to a method of operating a clock circuit. The method includes: receiving, by a clock trigger circuit, a first clock signal; and responding to the enabling signal from a second voltage level to a first voltage level, and causing the first latch output signal by the first latch Transitioning from the first voltage level to the second voltage level, The second voltage level is different from the first voltage level; the clock is triggered in response to the first clock signal transitioning from the first voltage level to the second voltage level The circuit pulls the first node from the first voltage level to the second voltage level, and pulls the first node to thereby cause the first control signal of the clock trigger circuit to be from the first The voltage level is converted to the second voltage level, and the clock trigger circuit is connected to the input end of the first latch and the first trigger circuit by the first node, and from the clock trigger circuit The first control signal is fed back from the first node to the input end of the first latch; and in response to the first clock signal being converted to the second voltage level and responding Converting the output clock signal from the second voltage level to the first voltage level by the first trigger circuit when the first latch output signal is converted to the second voltage level. In some embodiments, the method further includes: in response to the output clock signal transitioning from the second voltage level to the first voltage level, causing the reset signal to be from the second voltage level Converting to the first voltage level; causing the output clock signal to be from the first voltage level in response to the reset signal transitioning from the second voltage level to the first voltage level Converting to the second voltage level; and causing the reset signal to be from the first voltage level in response to the output clock signal transitioning from the first voltage level to the second voltage level Quasi-transition to the second voltage level. In some embodiments, the converting the output clock signal from the second voltage level to the first voltage level by the first trigger circuit comprises: responding to the first latch output signal The first N-type transistor is turned on, thereby coupling the second node to the first node and pulling the second node toward the first voltage level. In some embodiments, the output clock signal is caused by the first trigger circuit in response to the reset signal being converted from the second voltage level to the first voltage level. Converting the first voltage level to the second voltage level includes: disconnecting the second N-type transistor in response to the reset signal transitioning from the second voltage level to the first voltage level Thereby disconnecting the second node from the third N-type transistor; and causing the first P to be converted from the second voltage level to the first voltage level in response to the reset signal The type transistor is turned on, thereby pulling the second node toward the second voltage level of the first supply voltage. In some embodiments, the reset signal is converted from the first voltage level to the said response to the output clock signal transitioning from the first voltage level to the second voltage level. The second voltage level includes: turning on the second N-type transistor in response to the reset signal transitioning from the first voltage level to the second voltage level, thereby Connecting a second node to the third N-type transistor; and disconnecting the first P-type transistor in response to the reset signal transitioning from the first voltage level to the second voltage level Thereby disconnecting the second node from the first supply voltage.

已描述許多實施例。儘管如此,應理解可在不背離本揭露內容之精神及範疇的情況下進行各種修改。舉例而言,出於說明的目的將各種電晶體示出為特定摻雜劑類型(例如,N型金屬氧化物半導體或P型金屬氧化物半導體(N-type Metal Oxide Semiconductor/P-type Metal Oxide Semiconductor(NMOS/PMOS))。本揭露內容之實施例不限於特定類型。針對特定電晶體選擇不同摻雜劑類型在各種實施例之範疇內。用於上文描述之各種訊號的低或高邏輯值亦用於說明。在啟動及/或停用訊號時,各種實施例不限於特定邏輯值。選擇不同邏輯值在各種實施例之範疇內。在各種實施例中,電晶體充當開關。代替電晶體使用的開關電路在各種實施例之範疇內。在各種實施例中,電晶體之源極可經組態為汲 極,且汲極可經組態為源極。因此,術語源極與汲極可互換使用。各種訊號由對應的電路產生,但簡單起見並未示出所述電路。 A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. For example, various transistors are shown as specific dopant types for illustrative purposes (eg, N-type metal oxide semiconductors or P-type metal oxide semiconductors (N-type Metal Oxide Semiconductor/P-type Metal Oxide) Semiconductor (NMOS/PMOS). Embodiments of the present disclosure are not limited to a particular type. Selecting different dopant types for a particular transistor is within the scope of various embodiments. Low or high logic for the various signals described above. Values are also used to illustrate. The various embodiments are not limited to a particular logic value when the signal is activated and/or deactivated. The selection of different logic values is within the scope of various embodiments. In various embodiments, the transistor acts as a switch. The switching circuit used in the crystal is within the scope of various embodiments. In various embodiments, the source of the transistor can be configured as 汲 The pole and the drain can be configured as a source. Therefore, the terms source and drain are used interchangeably. The various signals are generated by corresponding circuits, but the circuit is not shown for simplicity.

各種圖式出於說明示出使用離散電容器之電容電路。可使用等效電路。舉例而言,可代替離散電容器而使用電容元件、電路或網路(例如,電容器、電容元件、裝置、電路等之組合)。以上說明包括例示性步驟,但所述步驟不一定按所示次序執行。根據所揭露實施例的精神以及範疇,可視需要添加步驟、替換步驟、改變步驟的次序及/或消除步驟。 Various figures show capacitor circuits using discrete capacitors for illustration. An equivalent circuit can be used. For example, capacitive elements, circuits, or networks (eg, combinations of capacitors, capacitive elements, devices, circuits, etc.) can be used in place of discrete capacitors. The above description includes illustrative steps, but the steps are not necessarily performed in the order shown. Depending on the spirit and scope of the disclosed embodiments, steps, replacement steps, order of changing steps, and/or elimination steps may be added as needed.

前文概述若干實施例之特徵以使得所屬領域中具通常知識者可更佳地理解本發明的實施例之態樣。在本領域的技術人員應理解,其可易於使用本發明的實施例作為設計或修改用於實現本文中所引入之實施例的相同目的及/或達成相同優點的其他方法及結構之基礎。本領域的技術人員亦應認識到,此類等效構造並不脫離本揭露內容之精神以及範疇,且本領域的技術人員可在不脫離本揭露內容的精神以及範疇的情況下在本文中進行作出改變、替代及更改。 The foregoing has outlined the features of several embodiments so that those of ordinary skill in the art can better understand the embodiments of the invention. It will be appreciated by those skilled in the art that the embodiments of the present invention can be used as a basis for designing or modifying other methods and structures for achieving the same objectives and/or achieving the same advantages. A person skilled in the art should also understand that such equivalent constructions do not depart from the spirit and scope of the disclosure, and those skilled in the art can carry out the invention without departing from the spirit and scope of the disclosure. Make changes, substitutions and changes.

Claims (10)

一種時脈電路,包括:第一鎖存器,經組態以基於第一控制訊號、啟用訊號以及輸出時脈訊號而產生第一鎖存輸出訊號;第二鎖存器,耦接至所述第一鎖存器,且經組態以回應於第二控制訊號而產生所述輸出時脈訊號;第一觸發電路,耦接至所述第一鎖存器以及所述第二鎖存器,且經組態以至少回應於所述第一鎖存輸出訊號或重設訊號而調整所述輸出時脈訊號;以及時脈觸發電路,藉由第一節點耦接至所述第一鎖存器以及所述第一觸發電路,經組態以回應於輸入時脈訊號而產生所述第一控制訊號,且經組態以至少基於所述第一控制訊號而控制所述第一鎖存器以及所述第一觸發電路。 A clock circuit includes: a first latch configured to generate a first latch output signal based on a first control signal, an enable signal, and an output clock signal; a second latch coupled to the a first latch, configured to generate the output clock signal in response to the second control signal; a first trigger circuit coupled to the first latch and the second latch, And configured to adjust the output clock signal at least in response to the first latch output signal or the reset signal; and the clock trigger circuit is coupled to the first latch by the first node And the first trigger circuit configured to generate the first control signal in response to an input clock signal, and configured to control the first latch based on at least the first control signal and The first trigger circuit. 如申請專利範圍第1項所述的時脈電路,其中所述時脈觸發電路包括:第一P型電晶體,其源極與第一供應電壓耦接,所述第一P型電晶體之閘極經組態以接收所述輸入時脈訊號,且所述第一P型電晶體之汲極藉由所述第一節點與所述第一鎖存器以及所述第一觸發電路耦接;以及第一N型電晶體,其閘極經組態以接收所述輸入時脈訊號,所述第一N型電晶體之源極與不同於所述第一供應電壓的第二供應電壓耦接,且所述第一N型電晶體之汲極藉由所述第一節點與所述第一鎖存器、所述第一觸發電路以及所述第一P型電晶體之所述汲極耦接。 The clock circuit of claim 1, wherein the clock trigger circuit comprises: a first P-type transistor, a source coupled to the first supply voltage, the first P-type transistor The gate is configured to receive the input clock signal, and the drain of the first P-type transistor is coupled to the first latch and the first trigger circuit by the first node And a first N-type transistor having a gate configured to receive the input clock signal, a source of the first N-type transistor coupled to a second supply voltage different from the first supply voltage And the drain of the first N-type transistor is performed by the first node and the first latch, the first trigger circuit, and the drain of the first P-type transistor Coupling. 如申請專利範圍第1項所述的時脈電路,其中所述第一鎖存器包括:或(OR)邏輯閘,包括:所述或邏輯閘之第一輸入端子,經組態以接收所述第一控制訊號且至少耦接至所述第一節點;所述或邏輯閘之第二輸入端子,經組態以接收所述第一鎖存輸出訊號且至少耦接至第二節點;以及所述或邏輯閘之輸出端子,經組態以基於所述第一鎖存輸出訊號以及所述第一控制訊號而輸出或輸出訊號。 The clock circuit of claim 1, wherein the first latch comprises: an OR gate, comprising: a first input terminal of the OR logic gate configured to receive The first control signal is coupled to the first node; the second input terminal of the OR logic gate is configured to receive the first latch output signal and is coupled to at least the second node; The output terminal of the OR logic gate is configured to output or output a signal based on the first latch output signal and the first control signal. 如申請專利範圍第1項所述的時脈電路,其中所述第二鎖存器包括:反相器,具有輸入端子以及輸出端子,所述反相器之所述輸入端子經組態以接收所述輸出時脈訊號且耦接至所述第一觸發電路之第三節點;且所述反相器之所述輸出端子經組態以回應於所述輸出時脈訊號而輸出所述第二控制訊號。 The clock circuit of claim 1, wherein the second latch comprises: an inverter having an input terminal and an output terminal, the input terminal of the inverter being configured to receive The output clock signal is coupled to a third node of the first trigger circuit; and the output terminal of the inverter is configured to output the second in response to the output clock signal Control signal. 如申請專利範圍第1項所述的時脈電路,其中所述第一觸發電路包括:第一N型電晶體,其源極與所述第一節點耦接,所述第一N型電晶體之閘極經組態以接收所述第一鎖存輸出訊號且藉由第二節點耦接至所述第一鎖存器,且所述第一N型電晶體之汲極與所述第一觸發電路之第三節點耦接;以及第一P型電晶體,其源極與所述第一觸發電路之第四節點耦接,所述第一P型電晶體之閘極經組態以接收所述輸入時脈訊號, 且所述第一P型電晶體之汲極藉由所述第一觸發電路之所述第三節點與所述第一N型電晶體之所述汲極耦接。 The clock circuit of claim 1, wherein the first trigger circuit comprises: a first N-type transistor, a source of which is coupled to the first node, the first N-type transistor The gate is configured to receive the first latch output signal and is coupled to the first latch by a second node, and the first N-type transistor has a drain and the first a third node of the trigger circuit is coupled; and a first P-type transistor, the source of which is coupled to the fourth node of the first trigger circuit, and the gate of the first P-type transistor is configured to receive The input clock signal, And the drain of the first P-type transistor is coupled to the drain of the first N-type transistor by the third node of the first flip-flop circuit. 一種時脈電路,包括:第一鎖存器,經組態以基於第一控制訊號、啟用訊號以及輸出時脈訊號而產生第一鎖存輸出訊號;第二鎖存器,耦接至所述第一鎖存器,且經組態以回應於第二控制訊號而產生所述輸出時脈訊號;第一觸發電路,耦接至所述第一鎖存器以及所述第二鎖存器,且經組態以至少回應於所述第一鎖存輸出訊號或重設訊號而調整所述輸出時脈訊號;時脈觸發電路,藉由第一節點耦接至所述第一鎖存器以及所述第一觸發電路,經組態以回應於具有第一電壓擺動的第一時脈訊號而產生所述第一控制訊號,且經組態以至少基於所述第一時脈訊號而控制所述第一鎖存器以及所述第一觸發電路;以及位準偏移器電路,至少耦接至所述時脈觸發電路,且經組態以產生具有第二電壓擺動的第二時脈訊號,所述第二電壓擺動不同於所述第一時脈訊號的所述第一電壓擺動。 A clock circuit includes: a first latch configured to generate a first latch output signal based on a first control signal, an enable signal, and an output clock signal; a second latch coupled to the a first latch, configured to generate the output clock signal in response to the second control signal; a first trigger circuit coupled to the first latch and the second latch, And configured to adjust the output clock signal at least in response to the first latch output signal or the reset signal; the clock trigger circuit is coupled to the first latch by the first node and The first trigger circuit is configured to generate the first control signal in response to a first clock signal having a first voltage swing, and is configured to control the at least based on the first clock signal The first latch and the first trigger circuit; and a level shifter circuit coupled to the clock trigger circuit at least, and configured to generate a second clock signal having a second voltage swing The second voltage swing is different from the first clock signal Said first voltage swing. 如申請專利範圍第6項所述的時脈電路,其中所述時脈觸發電路包括:第一N型電晶體,其源極與第一供應電壓耦接,所述第一N型電晶體之閘極經組態以接收所述第一時脈訊號,且所述第一N型電晶體之汲極藉由所述第一節點與所述第一鎖存器以及所述第一觸發電路耦接;以及第二N型電晶體,其源極至少與所述第一供應電壓耦接,所 述第二N型電晶體之閘極經組態以接收所述第二時脈訊號,且所述第二N型電晶體之汲極藉由所述第一節點與所述第一鎖存器、所述第一觸發電路以及所述第一N型電晶體的所述汲極耦接。 The clock circuit of claim 6, wherein the clock trigger circuit comprises: a first N-type transistor, a source coupled to the first supply voltage, the first N-type transistor The gate is configured to receive the first clock signal, and the drain of the first N-type transistor is coupled to the first latch and the first trigger circuit by the first node And a second N-type transistor having a source coupled to the first supply voltage at least a gate of the second N-type transistor configured to receive the second clock signal, and a drain of the second N-type transistor by the first node and the first latch The first trigger circuit and the drain of the first N-type transistor are coupled. 如申請專利範圍第6項所述的時脈電路,其中所述第一觸發電路包括:第一N型電晶體,其源極與所述第一節點耦接,所述第一N型電晶體之閘極經組態以接收所述第一鎖存輸出訊號且藉由第二節點耦接至所述第一鎖存器,且所述第一N型電晶體之汲極與所述第一觸發電路之第三節點耦接;以及第一P型電晶體,所述第一P型電晶體之閘極經組態以接收所述第一時脈訊號,且所述第一P型電晶體之汲極藉由所述第一觸發電路之所述第三節點與所述第一N型電晶體之所述汲極耦接。 The clock circuit of claim 6, wherein the first trigger circuit comprises: a first N-type transistor, a source of which is coupled to the first node, the first N-type transistor The gate is configured to receive the first latch output signal and is coupled to the first latch by a second node, and the first N-type transistor has a drain and the first a third node of the trigger circuit is coupled; and a first P-type transistor, the gate of the first P-type transistor is configured to receive the first clock signal, and the first P-type transistor The drain is coupled to the drain of the first N-type transistor by the third node of the first flip-flop circuit. 一種操作時脈電路的方法,所述方法包括:藉由時脈觸發電路接收第一時脈訊號;回應於啟用訊號自第二電壓位準轉變為第一電壓位準而藉由第一鎖存器使第一鎖存輸出訊號自所述第一電壓位準轉變為所述第二電壓位準,所述第二電壓位準不同於所述第一電壓位準;回應於所述第一時脈訊號自所述第一電壓位準轉變為所述第二電壓位準而使所述時脈觸發電路將第一節點自所述第一電壓位準拉動至所述第二電壓位準,對所述第一節點的所述拉動由此使得所述時脈觸發電路之第一控制訊號自所述第一電壓位準轉變為所述第二電壓位準,所述時脈觸發電路藉由所述第一節點連接至第一鎖存器的輸入端以及第一觸發電路,且來自所述時脈觸發電 路的所述第一控制訊號自所述第一節點反饋回至所述第一鎖存器的所述輸入端;以及回應於所述第一時脈訊號轉變為所述第二電壓位準且回應於所述第一鎖存輸出訊號轉變為所述第二電壓位準而藉由所述第一觸發電路使輸出時脈訊號自所述第二電壓位準轉變為所述第一電壓位準。 A method for operating a clock circuit, the method comprising: receiving a first clock signal by a clock trigger circuit; and responding to the first voltage by activating the signal from a second voltage level to a first voltage level Translating the first latched output signal from the first voltage level to the second voltage level, the second voltage level being different from the first voltage level; in response to the first time Converting the pulse signal from the first voltage level to the second voltage level, causing the clock trigger circuit to pull the first node from the first voltage level to the second voltage level, The pulling of the first node thereby causes the first control signal of the clock trigger circuit to change from the first voltage level to the second voltage level, and the clock trigger circuit is The first node is connected to the input end of the first latch and the first trigger circuit, and the clock is triggered from the clock The first control signal of the circuit is fed back from the first node to the input end of the first latch; and in response to the first clock signal being converted to the second voltage level and Relating to the first trigger circuit to cause the output clock signal to transition from the second voltage level to the first voltage level in response to the first latch output signal transitioning to the second voltage level . 如申請專利範圍第9項所述的操作時脈電路的方法,更包括:回應於所述輸出時脈訊號自所述第二電壓位準轉變為所述第一電壓位準而使重設訊號自所述第二電壓位準轉變為所述第一電壓位準;回應於所述重設訊號自所述第二電壓位準轉變為所述第一電壓位準而使所述輸出時脈訊號自所述第一電壓位準轉變為所述第二電壓位準;以及回應於所述輸出時脈訊號自所述第一電壓位準轉變為所述第二電壓位準而使所述重設訊號自所述第一電壓位準轉變為所述第二電壓位準。 The method for operating a clock circuit according to claim 9, further comprising: resetting the signal in response to the output clock signal transitioning from the second voltage level to the first voltage level Converting from the second voltage level to the first voltage level; and outputting the clock signal in response to the reset signal transitioning from the second voltage level to the first voltage level Converting from the first voltage level to the second voltage level; and causing the resetting in response to the output clock signal transitioning from the first voltage level to the second voltage level The signal transitions from the first voltage level to the second voltage level.
TW107125544A 2017-07-28 2018-07-24 Clock circuit and method of operating the same TWI667884B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762538462P 2017-07-28 2017-07-28
US62/538,462 2017-07-28

Publications (2)

Publication Number Publication Date
TW201921841A TW201921841A (en) 2019-06-01
TWI667884B true TWI667884B (en) 2019-08-01

Family

ID=67702083

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107125544A TWI667884B (en) 2017-07-28 2018-07-24 Clock circuit and method of operating the same

Country Status (1)

Country Link
TW (1) TWI667884B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801969A1 (en) * 2005-12-23 2007-06-27 Infineon Technologies AG True single phase clock flip-flop
TW200926600A (en) * 2007-08-20 2009-06-16 Fairchild Semiconductor Clockless serialization using delay circuits
US7622955B2 (en) * 2008-04-17 2009-11-24 Texas Instruments Incorporated Power savings with a level-shifting boundary isolation flip-flop (LSIFF) and a clock controlled data retention scheme
US8812893B1 (en) * 2012-06-01 2014-08-19 Altera Corporation Apparatus and methods for low-skew channel bonding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801969A1 (en) * 2005-12-23 2007-06-27 Infineon Technologies AG True single phase clock flip-flop
TW200926600A (en) * 2007-08-20 2009-06-16 Fairchild Semiconductor Clockless serialization using delay circuits
US7622955B2 (en) * 2008-04-17 2009-11-24 Texas Instruments Incorporated Power savings with a level-shifting boundary isolation flip-flop (LSIFF) and a clock controlled data retention scheme
US8812893B1 (en) * 2012-06-01 2014-08-19 Altera Corporation Apparatus and methods for low-skew channel bonding

Also Published As

Publication number Publication date
TW201921841A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
KR102045360B1 (en) Clock circuit and method of operating the same
US11677400B2 (en) Level shifter circuit and method of operating the same
KR102232554B1 (en) Level shifter
TWI727455B (en) Power switch control circuit, memory device and method for operating memory device
TW201806319A (en) Level shifter circuit using boosting circuit
JP5012208B2 (en) Level converter
TWI667884B (en) Clock circuit and method of operating the same
JP2008017101A (en) Power on reset circuit
JP2016058115A (en) Data reading circuit
KR100514413B1 (en) Circuit for generating a reset signal
KR101893388B1 (en) Voltage Switching Circuit
KR100866134B1 (en) Pulse generator
KR100973720B1 (en) Latch circuit for semiconductor memory device
JP2011114817A (en) Semiconductor device
TWM598007U (en) High performance voltage level converter
TWM528555U (en) Voltage level converter
TWM551788U (en) Voltage level shifter
TWM508849U (en) Voltage level converter
TWM455893U (en) Voltage level converter having low leakage current