TWI663198B - 奈米多孔性高分子薄膜製備方法及奈米多孔性薄膜製備方法 - Google Patents

奈米多孔性高分子薄膜製備方法及奈米多孔性薄膜製備方法 Download PDF

Info

Publication number
TWI663198B
TWI663198B TW107105826A TW107105826A TWI663198B TW I663198 B TWI663198 B TW I663198B TW 107105826 A TW107105826 A TW 107105826A TW 107105826 A TW107105826 A TW 107105826A TW I663198 B TWI663198 B TW I663198B
Authority
TW
Taiwan
Prior art keywords
polymer film
nanoporous
film
solvent
polymer
Prior art date
Application number
TW107105826A
Other languages
English (en)
Other versions
TW201936739A (zh
Inventor
何榮銘
孟哈
希蘇翰
簡佑丞
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW107105826A priority Critical patent/TWI663198B/zh
Priority to US16/104,190 priority patent/US11059205B2/en
Application granted granted Critical
Publication of TWI663198B publication Critical patent/TWI663198B/zh
Publication of TW201936739A publication Critical patent/TW201936739A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/06Polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1644Composition of the substrate porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/06PS, i.e. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本發明提供一種奈米多孔性高分子薄膜製備方法,包含以下步驟。提供高分子薄膜,將高分子溶液塗於基材上形成高分子薄膜,高分子溶液包含高分子;提供膨潤退火作業,使蒸氣室內含呈蒸氣狀態之一第一溶劑,將高分子薄膜置於蒸氣室中使高分子薄膜膨潤後並持續置於蒸氣室中進行退火以形成膨潤高分子薄膜,膨潤高分子薄膜包含高分子及第一溶劑;提供快速降溫作業,將膨潤高分子薄膜快速降溫以使第一溶劑結晶;以及提供第一溶劑去除作業,利用第二溶劑移除第一溶劑以取得奈米多孔性高分子薄膜。藉此具有製程簡單且兼具經濟效益。

Description

奈米多孔性高分子薄膜製備方法及奈米多孔性薄膜 製備方法
本發明是有關於一種薄膜製備方法,且尤其是有關一種奈米多孔性高分子薄膜製備方法及奈米多孔性薄膜製備方法。
奈米多孔性材料的優越性質使其被廣泛的應用於各個領域,例如光學、生物、醫學等。習知的奈米多孔性材料可用倒相法、相分離法或溶膠凝膠法製得,但此些方法不僅複雜且製程時間較久,而有其缺點存在。
有鑑於此,如何發展出一種奈米多孔性膜的製備方法,使其具有較短的製程時間及較佳的經濟效應,遂成相關業者努力的目標。
本發明提供一種奈米多孔性高分子薄膜製備方法及奈米多孔性薄膜製備方法,透過其步驟可以縮短製程時 間,且奈米多孔性高分子薄膜具有高比表面積,而具有極佳的經濟效應。
依據本發明之一態樣提供一種奈米多孔性高分子薄膜製備方法,依序包含以下步驟:提供一高分子薄膜,將一高分子溶液塗於一基材上以形成高分子薄膜,其中高分子溶液包含一高分子;提供一膨潤退火作業,使一蒸氣室含呈蒸氣狀態之一第一溶劑,將高分子薄膜置於蒸氣室中,使高分子薄膜膨潤後並持續置於蒸氣室中進行退火以形成一膨潤高分子薄膜,且膨潤高分子薄膜包含高分子及第一溶劑;提供一快速降溫作業,將膨潤高分子薄膜快速降溫至等於或低於第一溶劑的一結晶溫度,以使第一溶劑結晶;以及提供一第一溶劑去除作業,利用一第二溶劑移除第一溶劑,以取得奈米多孔性高分子薄膜。
藉此,膨潤退火作業可使高分子薄膜轉為具有第一溶劑及高分子相分離的膨潤高分子薄膜,而透過快速降溫作業及第一溶劑去除作業可製得奈米多孔性高分子薄膜。
依據前述之奈米多孔性高分子薄膜製備方法,其中高分子可為聚苯乙烯(Polystyrene,PS),第一溶劑可為N,N-二甲基甲醯胺(N,N-Dimethylformamide,DMF),第二溶劑可為甲醇(Methanol)。或於膨潤退火作業中,可使用一氣體調整蒸氣室中呈蒸氣狀態之第一溶劑的莫耳分率,以改變膨潤高分子薄膜中第一溶劑的比例。其中氣體可為氮氣,或膨潤高分子薄膜中第一溶劑的比例大於或等 於6%。或膨潤退火作業的時間可為5分鐘至60分鐘。或於快速降溫作業中,可通入一液態氮使膨潤高分子薄膜降溫。
依據本發明之一態樣提供一種奈米多孔性薄膜製備方法,依序包含:提供一奈米多孔性模板,依前述之奈米多孔性高分子薄膜製備方法製成一奈米多孔性高分子薄膜;提供一填充作業,製備一混合膜,混合膜包含一第一材料與奈米多孔性高分子薄膜,第一材料填充於奈米多孔性高分子薄膜的複數孔隙;以及提供一模板移除作業,將奈米多孔性高分子薄膜移除,以形成奈米多孔性薄膜,奈米多孔性薄膜包含第一材料。
藉此,藉由奈米多孔性高分子薄膜的製備簡單及易去除特性,可以更有助於製得具有高比表面積的奈米多孔性薄膜。
依據前述之奈米多孔性薄膜製備方法,其中第一材料可為金屬、陶瓷或低級脂肪醇。或第一材料可為二氧化矽或二氧化鈦。
100‧‧‧奈米多孔性高分子薄膜製備方法
110、120、130、140‧‧‧步驟
210‧‧‧高分子溶液
211‧‧‧高分子
212‧‧‧孔隙
220‧‧‧高分子薄膜
230‧‧‧膨潤高分子薄膜
240‧‧‧奈米多孔性高分子薄膜
300‧‧‧基材
400‧‧‧蒸氣室
510‧‧‧蒸氣
520‧‧‧氣體
530‧‧‧第一溶劑
540‧‧‧液態氮
600‧‧‧奈米多孔性薄膜製備方法
610、620、630‧‧‧步驟
700‧‧‧第一材料
第1圖繪示依照本發明一實施方式之一種奈米多孔性高分子薄膜製備方法的步驟流程圖;第2圖繪示第1圖之奈米多孔性高分子薄膜製備方法的步驟示意圖;第3圖繪示第1圖之一步驟的厚度與時間關係; 第4圖繪示高分子薄膜之不同第一溶劑吸收率與厚度關係;第5A圖繪示本發明之第1實驗例的奈米多孔性高分子薄膜的俯視圖;第5B圖繪示本發明之第1實驗例的奈米多孔性高分子薄膜的剖視圖;第5C圖繪示本發明之第2實驗例的奈米多孔性高分子薄膜的俯視圖;第5D圖繪示本發明之第2實驗例的奈米多孔性高分子薄膜的剖視圖;第5E圖繪示本發明之第4實驗例的奈米多孔性高分子薄膜的俯視圖;第5F圖繪示本發明之第4實驗例的奈米多孔性高分子薄膜的剖視圖;第6圖為第1實驗例至第4實驗例的SAXS量測結果圖;第7A圖至第7D圖繪示第1實驗例至第4實驗例的BET法量測結果圖;第8圖繪示第1實驗例至第4實驗例由BJH法量測的核尺寸結果圖;第9圖繪示依照本發明另一實施方式之一種奈米多孔性薄膜製備方法的步驟流程圖;第10圖繪示第9圖之奈米多孔性薄膜製備方法的步驟示意圖;第11A圖繪示第9圖之奈米多孔性薄膜製備方法製成之一奈米多孔性薄膜; 第11B圖繪示第9圖之奈米多孔性薄膜製備方法製成之另一奈米多孔性薄膜;以及第11C圖繪示第9圖之奈米多孔性薄膜製備方法製成之又一奈米多孔性薄膜。
以下將參照圖式說明本發明之實施方式。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,閱讀者應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示;並且重複之元件將可能使用相同的編號表示。
<奈米多孔性高分子薄膜製備方法>
請參閱第1圖、第2圖及第3圖,其中第1圖繪示依照本發明一實施方式之一種奈米多孔性高分子薄膜製備方法100的步驟流程圖,第2圖繪示第1圖之奈米多孔性高分子薄膜製備方法100的步驟示意圖,第3圖繪示第1圖之步驟120的厚度與時間關係。奈米多孔性高分子薄膜製備方法100包含步驟110、步驟120、步驟130及步驟140。
於步驟110中,提供一高分子薄膜220,其是將一高分子溶液210塗於一基材300上以形成高分子薄膜220,其中高分子溶液210包含一高分子211。
於步驟120中,提供一膨潤退火作業,使一蒸氣室400包含呈蒸氣狀態之一第一溶劑530,將高分子薄膜220置於蒸氣室400中,使高分子薄膜220膨潤後並持續置於蒸氣室400中進行退火以形成一膨潤高分子薄膜230,且膨潤高分子薄膜230包含高分子211及第一溶劑530。
於步驟130中,提供一快速降溫作業,將膨潤高分子薄膜230快速降溫至等於或低於第一溶劑530的一結晶溫度,以使第一溶劑530結晶。
於步驟140中,提供一第一溶劑去除作業,利用一第二溶劑移除第一溶劑530,以取得奈米多孔性高分子薄膜240。
藉此,膨潤退火作業可使高分子薄膜220轉為具有第一溶劑530及高分子211微相分離的膨潤高分子薄膜230,而透過快速降溫作業及第一溶劑去除作業可製得奈米多孔性高分子薄膜240。後面將詳述奈米多孔性高分子薄膜製備方法100的細節。
本實施例之高分子薄膜220所包含的高分子211為聚苯乙烯,而基材300可以是矽晶圓。在製作高分子溶液210時,其是將聚苯乙烯混於氯苯(Chlorobenzene)中,再以旋轉塗佈的方式將高分子溶液210塗於基材300上,並置入真空烤箱中烘烤,以保留具有高分子211的高分子薄膜220。在其他實施例中,高分子211亦可以是聚甲基丙烯酸甲酯(poly(methyl-methacrylate),PMMA)、聚碸(polysulfone,PSf)或聚碳酸酯(polycarbonate,PC), 包含上述但不限於此。較佳的,高分子211為非晶聚合物(Amorphous polymers)。
在步驟120的膨潤退火作業中,可先讓蒸氣室400內具有呈蒸氣狀態之一第一溶劑530,再置入高分子薄膜220於蒸氣室400中,也就是說,蒸氣室400中具有蒸氣510,且蒸氣510由第一溶劑530形成,其具有第一溶劑530在常溫時的飽和蒸氣壓,而第一溶劑530可為N,N-二甲基甲醯胺。如第3圖所示,高分子薄膜220接觸蒸氣510後開始膨潤使厚度增加,且當厚度增加至一定值後會維持固定,之後持續進行蒸氣退火,最後可轉為膨潤高分子薄膜230,且蒸氣退火有助於使膨潤高分子薄膜230中的高分子211與第一溶劑530產生奈米尺度的微相分離。在其他實施例中,第一溶劑530可以是二甲基亞碸(Dimethyl sulfoxide,DMSO),包含上述但不限於此。較佳的,第一溶劑530為可結晶的溶劑(Crystalline solvents),在常溫下是液體,而在低溫時可結晶。
在步驟130的快速降溫作業中,是可通入液態氮540於蒸氣室400中,而可以快速讓膨潤高分子薄膜230冷凍,在其他實施例中,亦可以使用任何可以讓膨潤高分子薄膜230快速冷凍的方式,不受上述揭露拘束。當膨潤高分子薄膜230降低至第一溶劑530的結晶溫度後,第一溶劑530即結晶而不再產生作用,進而可以保持住高分子211與第一溶劑530的微相分離狀態。
在步驟140中,可以使用甲醇作為第二溶劑以將第一溶劑530移除,其中當第一溶劑530被移除時會有些微的溫度上升,而可以更有利於第一溶劑530的移除。在其他實施例中,第二溶劑亦可以是乙醇(ethanol)或異丙醇(isopropyl alcohol),較佳的,第二溶劑為低級脂肪醇(Lower aliphatic alcohols)。
是以,膨潤高分子薄膜230在冷凍及移除第一溶劑530後,可轉為奈米多孔性高分子薄膜240,也就是說,奈米多孔性高分子薄膜240包含高分子211及複數孔隙212,其中孔隙212是移除第一溶劑530後所留下之網狀空間。
在奈米多孔性高分子薄膜製備方法100中,高分子薄膜220曝於蒸氣510後,第一溶劑530擴散進入高分子薄膜220,膨潤以形成包含高分子211及第一溶劑530的膨潤高分子薄膜230,在初始階段中,第一溶劑530與高分子211呈均勻空間分佈(homogeneous spatial distribution),接著第一溶劑530與高分子211開始微相分離,最後透過在液態氮540中驟冷的方式以動力學控制發展中的微相分離。而在低溫狀態下,第一溶劑530結晶,隨後被第二溶劑移除,最後可生成具有複數孔隙212的奈米多孔性高分子薄膜240。
請參閱第4圖,其中第4圖繪示高分子薄膜220之不同第一溶劑530吸收率與厚度關係。上述孔隙212在奈米多孔性高分子薄膜240中的密度可透過步驟120的膨潤退 火作業調整。更仔細的說,在膨潤退火作業中,可使用一氣體520調整蒸氣室400中之呈蒸氣狀態之第一溶劑530的莫耳分率,以改變膨潤高分子薄膜230中第一溶劑530的比例。藉此,透過氣體520來改變蒸氣510於蒸氣室400中的比例,高分子薄膜220吸第一溶劑530的比例(即膨潤高分子薄膜230中所含的第一溶劑530比例)改變,如第4圖所示,導致高分子薄膜220膨潤後的厚度改變,進而改變奈米多孔性高分子薄膜240中孔隙212的密度(孔隙度)。
在一實驗例中,當改變蒸氣510於蒸氣室400中的比例,使膨潤高分子薄膜230中第一溶劑530的比例為38%時(在膨潤退火作業時間5分鐘的條件下),奈米多孔性高分子薄膜240的平均孔隙度是40%,而在另一實驗例中,當改變蒸氣510於蒸氣室400中的比例,使膨潤高分子薄膜230中第一溶劑530的比例變為24%時(在膨潤退火作業時間5分鐘的條件下),奈米多孔性高分子薄膜240的平均孔隙度是30%,可知當高分子薄膜220吸收第一溶劑530的比例增加時,確實可以增加奈米多孔性高分子薄膜240的孔隙度。較佳的,膨潤高分子薄膜230中第一溶劑530的比例大於或等於6%;氣體520可為氮氣,或其他不與高分子211作用之氣體。
另外,控制膨潤退火作業時間可以控制孔隙212的大小,當高分子薄膜220在蒸氣510中作用的時間愈短,孔隙212的尺寸愈小,反之,當高分子薄膜220在蒸氣510中作用的時間愈長,孔隙212的尺寸愈大。較佳的,可 讓膨潤退火作業的時間為5分鐘至240分鐘,更佳的,可讓膨潤退火作業的時間為5分鐘至60分鐘。
在此要特別說明的是,上述的微相分離是典型基於動力學的旋節分解(spinodal decomposition),而聚合物混合物或聚合物溶液中的旋節分解是自發性的相分離過程,其發生的時機是系統於均相時,由於相分離過程引起系統中自由能降低而導致系統中極小的波動開始產生指數性的成長。在膨潤退火作業初期,高分子薄膜因第一溶劑之蒸氣膨潤出現短暫不穩定狀態,之後當有波動產生時會進行快速的相分離,而退火有助於相分離特徵的發展。
<實驗例>
請參閱第5A圖、第5B圖、第5C圖、第5D圖、第5E圖及第5F圖,其中第5A圖繪示本發明之第1實驗例的奈米多孔性高分子薄膜的俯視圖,第5B圖繪示本發明之第1實驗例的奈米多孔性高分子薄膜的剖視圖,第5C圖繪示本發明之第2實驗例的奈米多孔性高分子薄膜的俯視圖,第5D圖繪示本發明之第2實驗例的奈米多孔性高分子薄膜的剖視圖,第5E圖繪示本發明之第4實驗例的奈米多孔性高分子薄膜的俯視圖,第5F圖繪示本發明之第4實驗例的奈米多孔性高分子薄膜的剖視圖。
在第1實驗例至第4實驗例中,高分子為聚苯乙烯(購自Scientific polymer products,Inc.,分子量為280000克每莫耳),且可將聚苯乙烯混於氯苯(購自於Alfa Aesar,99% GC))中以製成高分子溶液,其中聚苯乙烯的 重量百分比為7。製程時,將高分子溶液以2000每分鐘轉的速度旋轉塗佈於基材上形成高分子薄膜後,置於真空烤箱中烘烤1分鐘。
之後將高分子薄膜置於蒸氣室中以進行膨潤退火作業,其中蒸氣室中具有呈蒸氣狀的第一溶劑,其中第一溶劑為N,N-二甲基甲醯胺(購自JT Baker,98% GC),且蒸氣室中的呈蒸氣狀的第一溶劑具有飽和蒸氣壓,而第1實驗例的膨潤退火作業的時間為5分鐘,第2實驗例的膨潤退火作業的時間為30分鐘,第3實驗例的膨潤退火作業的時間為45分鐘,第4實驗例的膨潤退火作業的時間為60分鐘。
由第5A圖、第5B圖、第5C圖、第5D圖、第5E圖及第5F圖可知,本發明之奈米多孔性高分子薄膜製備方法100確實可製得具有複數孔隙的奈米多孔性高分子薄膜。且相比於第1實驗例,由於第2實驗例之膨潤退火作業時間較長,而使得孔隙具有較大尺寸,而膨潤退火作業時間最長的第4實驗例具有最大的孔隙尺寸。
請參閱第6圖,其中第6圖為第1實驗例至第4實驗例的SAXS量測結果圖。如第6圖所示,使用小角度X光散射(Small-Angle X-ray Scattering,SAXS)方式所測得之結果,其中X光波長為0.1555nm,且第1實驗例、第2實驗例、第3實驗例及第4實驗例的奈米多孔性高分子薄膜都具有寬廣的散射峰,是以可知第1實驗例至第4實驗例之奈米多孔性高分子薄膜具有中尺度結構不均的紊亂相分離狀態,而具有紊亂的奈米多孔結構。此結構源自於不同波動的 旋節分解,例如是膨潤退火的作業特間(其中膨潤過後持續置於蒸氣室內的時間影響較大),而此不同波動會使散射向量q=2π/d的光繞射,其中d為奈米多孔性高分子薄膜的微區間距(interdomain spacing)。
請參閱第7A圖、第7B圖、第7C圖及第7D圖,其中第7A圖至第7D圖繪示第1實驗例至第4實驗例的BET法量測結果圖,其量測第1實驗例至第4實驗例在77K(絕對溫度)的氮氣等溫吸附。由第7A圖至第7D圖可知,第1實驗例至第4實驗例的奈米多孔性高分子薄膜在氮氣的吸附上接近飽和(p/p0=0.99),而可以說明孔隙可達奈米多孔性高分子薄膜的內部。
請參閱第8圖,其中第8圖繪示第1實驗例至第4實驗例由BJH法量測的核尺寸結果圖。由第8圖可知,第1實驗例至第4實驗例具有不同的核尺寸(峰值位置不同),而可知透過膨潤退火作業時間的控制,不僅可以使奈米多孔性高分子薄膜具有高比面積,且亦可以有效的控制核尺寸的大小。
上述第1實驗例至第4實驗例之奈米多孔性高分子薄膜所測得之結構參數如表1所示,結構參數包含孔骨架尺寸(framework size)、微區間距(interdomain spacing)、核直徑(Pore diameter)、孔隙度(porosity)及比表面積(BET specific surface area)。
<奈米多孔性薄膜製備方法>
請參閱第9圖及第10圖,並請參閱第1圖及第2圖,其中第9圖繪示依照本發明另一實施方式之一種奈米多孔性薄膜製備方法600的步驟流程圖,第10圖繪示第9圖之奈米多孔性薄膜製備方法600的步驟示意圖。奈米多孔性薄膜製備方法600包含步驟610、步驟620及步驟630。
於步驟610中,提供一奈米多孔性模板,依前述之奈米多孔性高分子薄膜製備方法100製成一奈米多孔性高分子薄膜240。
於步驟620中,提供一填充作業,製備一混合膜,混合膜包含一第一材料700與奈米多孔性高分子薄膜 240,且第一材料700填充於奈米多孔性高分子薄膜240的複數孔隙212。
於步驟630中,提供一模板移除作業,將奈米多孔性高分子薄膜240移除,以形成一奈米多孔性薄膜,奈米多孔性薄膜具有第一材料700。
藉此,可以用低成本之奈米多孔性高分子薄膜240來形成奈米多孔性薄膜,使奈米多孔性薄膜具有高比表面積及高孔隙度。
在一實施例中,第一材料為二氧化矽,故在步驟620的填充作業中,可以將二氧化矽的前驅物(四乙氧基矽烷),於具有三維結構雙連續奈米孔道(即複數孔隙212)的奈米多孔性高分子薄膜240中進行溶凝膠反應,則可製備出高分子/二氧化矽的混合膜。而於步驟630中,可使混合膜在高溫下鍛燒,將奈米多孔性高分子薄膜240去除,則可獲得具有高孔隙度以及高比表面積的二氧化矽奈米多孔性薄膜。在其他實施例中,第一材料亦可換為二氧化鈦。
在另一實施例中,第一材料為鎳,故在步驟620的填充作業中,可利用無電電鍍法(electroless plating)來製備,在含有鎳離子的水溶液中,透過自催化的還原反應可製備出具有雙連續金屬網狀結構的高分子/鎳的混合膜。而於步驟630中,可利用溶劑處理將奈米多孔性高分子薄膜240移除,而獲得鎳奈米多孔性薄膜。
在其他實施例中,第一材料也可為其他金屬、陶瓷或低級脂肪醇,不以上述揭露為限。
請參閱第11A圖、第11B圖及第11C圖,其中第11A圖繪示第9圖之奈米多孔性薄膜製備方法600製成之一奈米多孔性薄膜,第11B圖繪示第9圖之奈米多孔性薄膜製備方法600製成之另一奈米多孔性薄膜,第11C圖繪示第9圖之奈米多孔性薄膜製備方法600製成之又一奈米多孔性薄膜。
第11A圖之奈米多孔性薄膜製備方法600使用二氧化矽作為第一材料,故可得到二氧化矽奈米多孔性薄膜。由於此二氧化矽奈米多孔性薄膜是使用第1實驗例之奈米多孔性高分子薄膜作為模板(孔隙度29%),因此預估二氧化矽奈米多孔性薄膜的孔隙度應為71%,而實際測得之二氧化矽奈米多孔性薄膜的孔隙度為63%,與預估值接近,而可證明奈米多孔性薄膜製備方法600製得之奈米多孔性薄膜可以具有高孔隙度。由於二氧化矽奈米多孔性薄膜具有優異的抗反射和高穿透性質,是以其極低折射率特性可增加光線的穿透,進而改善光電設備的效率,而被控制孔隙度及孔隙大小的二氧化矽奈米多孔性薄膜可被應用於有機發光二極體的活化層,藉此加強輸出偶和效率。
第11B圖之奈米多孔性薄膜製備方法600使用二氧化鈦作為第一材料,可得到二氧化鈦奈米多孔性薄膜。而具有高比表面積的二氧化鈦奈米多孔性薄膜可被應用於鈣鈦礦太陽能電池,以增加其太陽能電池中活性鈣鈦礦材料的有效分散性,且鈣鈦礦太陽能電池與二氧化鈦奈米多孔性薄膜結合後的效率,遠高於提高量子的效率好幾倍。
第11C圖之奈米多孔性薄膜製備方法600使用鎳作為第一材料,可得到鎳奈米多孔性薄膜。鎳奈米多孔性薄膜對未飽和苯環化合物展現出絕佳的催化能力,並且具有良好的選擇性以及轉換效率。
此外,當第一材料為低級脂肪醇時,可得低級脂肪醇奈米多孔性薄膜,擁有較小孔隙大小(10奈米)的低級脂肪醇奈米多孔性薄膜可發出紫光,當孔隙大小增加時,低級脂肪醇奈米多孔性薄膜則會展現非常清晰的紅移現象,故透過孔隙控制,可以使低級脂肪醇奈米多孔性薄膜表現出各種不同的色光。
由上述實施方式及實驗例可知,透過上述的奈米多孔性高分子薄膜製備方法,可精準調控其孔隙大小以及孔隙度,是以可得到孔隙大小10~100奈米且具有良好相連性和雙連續網狀結構的奈米多孔性高分子薄膜。其中膨潤退火作業使膨潤高分子薄膜中的高分子和第一溶劑的奈米尺度微觀相分離,再藉由冷凍相分離膨潤高分子薄膜,以及移除冰凍的第一溶劑,可得具有奈米多孔性和良好相連性的雙連續網狀結構的奈米多孔性高分子薄膜,製程簡單且具有經濟效益。
透過控制膨潤退火作業的動力學,可以精準控制奈米多孔性高分子薄膜的奈米尺度大小。在膨潤退火作業之下,由於透過在奈米尺度下的離相分解形成雙連續相,可製備出有大範圍能控制孔隙大小的奈米多孔性高分子薄膜。藉由增加膨潤退火作業的時間,可增加奈米多孔性高分 子薄膜的孔隙尺寸,且其孔隙度可透過在膨潤階段薄膜吸收第一溶劑的量(或比例)來有效控制。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。

Claims (8)

  1. 一種奈米多孔性高分子薄膜製備方法,依序包含:提供一高分子薄膜,將一高分子溶液塗於一基材上,以形成該高分子薄膜,其中該高分子溶液包含一高分子;提供一膨潤退火作業,使一蒸氣室內含呈蒸氣狀態之一第一溶劑,將該高分子薄膜置於該蒸氣室中,使該高分子薄膜膨潤後並持續置於該蒸氣室中進行退火以形成一膨潤高分子薄膜,且該膨潤高分子薄膜包含該高分子及該第一溶劑,該膨潤退火作業的時間為5分鐘至60分鐘;提供一快速降溫作業,將該膨潤高分子薄膜快速降溫至等於或低於該第一溶劑的一結晶溫度,以使該第一溶劑結晶;以及提供一第一溶劑去除作業,利用一第二溶劑移除該第一溶劑,以取得該奈米多孔性高分子薄膜。
  2. 如申請專利範圍第1項所述之奈米多孔性高分子薄膜製備方法,其中該高分子為聚苯乙烯(Polystyrene,PS),該第一溶劑為N,N-二甲基甲醯胺(N,N-Dimethylformamide,DMF),該第二溶劑為甲醇(Methanol)。
  3. 如申請專利範圍第1項所述之奈米多孔性高分子薄膜製備方法,其中於該膨潤退火作業中,使用一氣體調整該蒸氣室中呈蒸氣狀態之該第一溶劑的莫耳分率,以改變該膨潤高分子薄膜中該第一溶劑的比例。
  4. 如申請專利範圍第3項所述之奈米多孔性高分子薄膜製備方法,其中該膨潤高分子薄膜中該第一溶劑的比例大於或等於6%。
  5. 如申請專利範圍第3項所述之奈米多孔性高分子薄膜製備方法,其中該氣體是氮氣。
  6. 如申請專利範圍第1項所述之奈米多孔性高分子薄膜製備方法,其中於該快速降溫作業中,通入一液態氮使該膨潤高分子薄膜降溫。
  7. 一種奈米多孔性薄膜製備方法,依序包含:提供一奈米多孔性模板,依申請專利範圍第1項所述之奈米多孔性高分子薄膜製備方法製成該奈米多孔性高分子薄膜;提供一填充作業,製備一混合膜,該混合膜包含一第一材料與該奈米多孔性高分子薄膜,且該第一材料填充於該奈米多孔性高分子薄膜的複數孔隙,其中該第一材料為金屬、陶瓷或低級脂肪醇;以及提供一模板移除作業,將該奈米多孔性高分子薄膜移除,以形成一奈米多孔性薄膜,該奈米多孔性薄膜具有該第一材料。
  8. 一種奈米多孔性薄膜製備方法,依序包含:提供一奈米多孔性模板,依申請專利範圍第1項所述之奈米多孔性高分子薄膜製備方法製成該奈米多孔性高分子薄膜;提供一填充作業,製備一混合膜,該混合膜包含一第一材料與該奈米多孔性高分子薄膜,且該第一材料填充於該奈米多孔性高分子薄膜的複數孔隙,其中該第一材料為二氧化矽或二氧化鈦;以及提供一模板移除作業,將該奈米多孔性高分子薄膜移除,以形成一奈米多孔性薄膜,該奈米多孔性薄膜具有該第一材料。
TW107105826A 2018-02-21 2018-02-21 奈米多孔性高分子薄膜製備方法及奈米多孔性薄膜製備方法 TWI663198B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107105826A TWI663198B (zh) 2018-02-21 2018-02-21 奈米多孔性高分子薄膜製備方法及奈米多孔性薄膜製備方法
US16/104,190 US11059205B2 (en) 2018-02-21 2018-08-17 Method for fabricating nanoporous polymer thin film and corresponding method for fabricating nanoporous thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107105826A TWI663198B (zh) 2018-02-21 2018-02-21 奈米多孔性高分子薄膜製備方法及奈米多孔性薄膜製備方法

Publications (2)

Publication Number Publication Date
TWI663198B true TWI663198B (zh) 2019-06-21
TW201936739A TW201936739A (zh) 2019-09-16

Family

ID=67617511

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107105826A TWI663198B (zh) 2018-02-21 2018-02-21 奈米多孔性高分子薄膜製備方法及奈米多孔性薄膜製備方法

Country Status (2)

Country Link
US (1) US11059205B2 (zh)
TW (1) TWI663198B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020205913A1 (en) * 2019-04-03 2020-10-08 University Of Central Florida Research Foundation, Inc. Frozen, porous thin films and methods of making and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201520058A (zh) * 2013-10-17 2015-06-01 Lintec Corp 隔熱薄膜及其製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398081A (en) * 1971-06-02 1975-06-18 Porvair Ltd Method of making microporous polymer materials
US3839516A (en) * 1971-06-25 1974-10-01 Res Triangle Inst Process for the preparation of opencelled microporous films
US4230463A (en) * 1977-09-13 1980-10-28 Monsanto Company Multicomponent membranes for gas separations
US6660211B2 (en) * 2001-04-23 2003-12-09 Kimberly-Clark Worldwide, Inc. Methods of making biodegradable films having enhanced ductility and breathability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201520058A (zh) * 2013-10-17 2015-06-01 Lintec Corp 隔熱薄膜及其製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Colm T. O’Mahony, Microphase Separation of a PS-b-PFS Block Copolymer via Solvent Annealing:Effect of Solvent, Substrate, and Exposure Time on Morphology, Hindawi Publishing Corporation International Journal of Polymer Science, Volume 2015, Article ID 270891, 10 pages. *
潘忠誠,聚苯乙烯-聚甲基丙烯酸甲酯兩嵌段共聚物薄膜在丙酮蒸汽退火下的形貌演化,化學學報,2012年第70卷,第12期,1371~1378 *
潘忠誠,聚苯乙烯-聚甲基丙烯酸甲酯兩嵌段共聚物薄膜在丙酮蒸汽退火下的形貌演化,化學學報,2012年第70卷,第12期,1371~1378。

Also Published As

Publication number Publication date
US11059205B2 (en) 2021-07-13
TW201936739A (zh) 2019-09-16
US20190255745A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
KR100567296B1 (ko) 발광 소자 및 그의 제조 방법
CN109311052A (zh) 复合退火和选择性沈积方法
CN109072428A (zh) 复合退火以及选择性沈积系统
US11390518B2 (en) Formation of antireflective surfaces
US20080317953A1 (en) Mesoporous materials and methods
TWI663198B (zh) 奈米多孔性高分子薄膜製備方法及奈米多孔性薄膜製備方法
TW201301554A (zh) 於一基材上形成奈米結構的方法及其之用途
CN107032328B (zh) 一种自支撑还原氧化石墨烯薄膜的制备方法
WO2015081876A1 (zh) 太阳能电池的表面制绒处理方法
Pan et al. Selective control of cubic and hexagonal mesophases for titania and silica thin films with spin-coating
Amin-Chalhoub et al. Chemical vapor deposition of low reflective cobalt (II) oxide films
KR101516151B1 (ko) 태양 광전지 커버 유리용 매크로 기공성 반사방지 조성물과 이를 사용한 태양광전지
TW201607606A (zh) 阻水氣複合膜及其製備方法
JP4497863B2 (ja) 金属酸化物を含有する膜及びその製造方法
JP2009539124A (ja) フォトニック結晶の製造方法
KR101745080B1 (ko) 알루미나 기반 광 디퓨저 제조방법 및 이를 통해 제작된 광 디퓨저
CN108373136A (zh) 一种非密排有序聚苯乙烯纳米球模板的制备方法
US20140213044A1 (en) Method for producing periodic crystalline silicon nanostructures
JP2016160175A (ja) メソポーラス構造体及びメソ構造体シリカ薄膜の製造方法
KR20160106390A (ko) 불소화 복합체의 제조 방법, 이로부터 얻어지는 불소화 복합체, 및 이를 포함하는 배리어 막
EP2875522B1 (fr) Procédé de fabrication d&#39;une couche mince de nanoreliefs de silicium ordonnes
JP2010115772A (ja) 新規の犠牲層材料を利用した基板の表面でのナノワイヤのパターニング方法
WO2019087624A1 (ja) フィルター成形体の製造方法
TWI522501B (zh) 網狀材料與其製法
CN114887493B (zh) 一种三维多孔材料及其制备方法