TWI660432B - Method for improving the electrical conductivity of metal oxide semiconductor layers - Google Patents

Method for improving the electrical conductivity of metal oxide semiconductor layers Download PDF

Info

Publication number
TWI660432B
TWI660432B TW103120479A TW103120479A TWI660432B TW I660432 B TWI660432 B TW I660432B TW 103120479 A TW103120479 A TW 103120479A TW 103120479 A TW103120479 A TW 103120479A TW I660432 B TWI660432 B TW I660432B
Authority
TW
Taiwan
Prior art keywords
layer
gold
oxide semiconductor
metal oxide
semiconductor layer
Prior art date
Application number
TW103120479A
Other languages
Chinese (zh)
Other versions
TW201508841A (en
Inventor
馬諾伊 南格
艾潔 布胡路坎
羅伯特 牧樂
Original Assignee
愛美科公司
荷蘭應用自然科學研究組織
比利時魯汶天主教大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛美科公司, 荷蘭應用自然科學研究組織, 比利時魯汶天主教大學 filed Critical 愛美科公司
Publication of TW201508841A publication Critical patent/TW201508841A/en
Application granted granted Critical
Publication of TWI660432B publication Critical patent/TWI660432B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Abstract

本揭示內容提供一種在預設位置處改善金氧半導體層的導電性的方法。該方法包括:在一基板上提供一金氧半導體層;藉由原子層沉積在該金氧半導體層的頂端提供一金氧層,其中,該金氧層在該些預設位置處物理性接觸該金氧半導體層。驚人的發現是,此方法會導致該金氧半導體層在該些預設位置處有高導電性。本揭示內容的方法能夠有利地使用在自我對齊頂端閘極金氧半導體薄膜電晶體的製作過程中,用以改善源極區與汲極區中的導電性。 The present disclosure provides a method for improving the conductivity of a metal-oxide semiconductor layer at a predetermined position. The method includes: providing a gold-oxide semiconductor layer on a substrate; providing a gold-oxide layer on top of the gold-oxide semiconductor layer by atomic layer deposition, wherein the gold-oxide layer is in physical contact at the predetermined positions. The metal oxide semiconductor layer. It is surprisingly found that this method causes the gold-oxygen semiconductor layer to have high conductivity at the predetermined positions. The method of the present disclosure can be advantageously used in the manufacturing process of self-aligned top gate metal-oxide semiconductor thin film transistors to improve the conductivity in the source region and the drain region.

Description

改善金氧半導體層之導電性的方法 Method for improving conductivity of metal oxide semiconductor layer

本揭示內容關於局部改善金氧半導體層之導電性的方法。 The present disclosure relates to a method for locally improving the conductivity of a metal-oxide semiconductor layer.

本揭示內容進一步關於製作以金氧半導體為基礎的薄膜電晶體的方法。 The present disclosure further relates to a method for fabricating a thin film transistor based on a metal-oxide semiconductor.

非晶金氧半導體薄膜電晶體(Thin Film Transistor,TFT)(例如,舉例來說,非晶氧化銦鎵鋅(Amorphous Indium-Gallium-Zinc Oxide,a-IGZO)薄膜電晶體)已經被研究成為平板顯示器應用中以矽為基礎的TFT的潛在替代品,因為它們有更高的移動係數及較大區域均勻性。 Amorphous metal oxide thin film transistors (TFTs) (for example, Amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin film transistors) have been studied as flat plates Potential alternatives to silicon-based TFTs in display applications because of their higher coefficient of movement and larger area uniformity.

被當作主動式矩陣液晶顯示器中的切換裝置的習知非晶矽TFT的優點為具有大區域均勻性。然而,它們的場效移動係數(<1cm2/V.s)太低而無法驅動有機發光二極體(Organic Light-Emitting Diode,OLED)。 An advantage of the conventional amorphous silicon TFT, which is regarded as a switching device in an active matrix liquid crystal display, is that it has a large area uniformity. However, their field-effect movement coefficients (<1 cm 2 / Vs) are too low to drive Organic Light-Emitting Diodes (OLEDs).

相反地,目前被當作AMOLED顯示器中的切換裝置的高移動係數(>50cm2/V.s)的結晶p-Si TFT則在大尺寸的AMOLED顯示器中有場效移動係數與臨界電壓不均勻性的缺點。 In contrast, crystalline p-Si TFTs, which are currently used as switching devices in AMOLED displays, have high coefficients of movement (> 50cm 2 / Vs), and have large field-effect movement coefficients and critical voltage inhomogeneities in large-sized AMOLED displays Disadvantages.

已知的底部閘極TFT結構和頂端閘極TFT結構並不適合使用在高解析度顯示器之中,因為它們有高寄生電容及不良的可縮性 (scalability)(大覆蓋範圍)。此些TFT結構中的高寄生電容和源極與閘極之間及/或汲極與閘極之間有重疊存在有關。此重疊係因為使用的電晶體閘極長度大於通道長度的關是,用以避免或限制在該閘極與源極和汲極之間有對齊偏差的負面結果。 The known bottom-gate TFT structure and top-gate TFT structure are not suitable for use in high-resolution displays because of their high parasitic capacitance and poor scalability. (scalability). The high parasitic capacitance in these TFT structures is related to the overlap between the source and the gate and / or between the drain and the gate. This overlap is due to the fact that the gate length of the transistor used is greater than the channel length, in order to avoid or limit the negative result of misalignment between the gate and the source and drain.

所以,目前正在研發用於製造自我對齊頂端閘極氧化物TFT的方法,其中,源極與汲極會對齊閘極,且其中,該些TFT會有良好的電氣效能及很高的穩定性。已經有人記述過數種具有一氧化物半導體主動層的自我對齊頂端閘極結構,其中,該金氧半導體的導電性會在源極區與汲極區中局部地提高。 Therefore, a method for manufacturing a self-aligned top gate oxide TFT is currently being developed, in which a source and a drain align a gate, and among these, the TFTs will have good electrical performance and high stability. Several self-aligned top gate structures having an oxide semiconductor active layer have been described, in which the conductivity of the gold-oxygen semiconductor is locally improved in the source region and the drain region.

已經有數種方法被提出用以(局部地)提高金氧半導體材料的導電性。其中一種方式係藉由雜質(例如,硼、磷、或是砷)的離子植入達成的摻雜所組成。然而,在撓性基板上進行離子植入可能有困難,因為需要實施退火步驟以進行摻雜物活化,其通常係在高於450℃的溫度處進行。 Several methods have been proposed to (locally) improve the conductivity of metal-oxide semiconductor materials. One of the methods consists of doping by ion implantation of impurities (for example, boron, phosphorus, or arsenic). However, ion implantation on a flexible substrate may be difficult because an annealing step is required to perform dopant activation, which is usually performed at a temperature above 450 ° C.

另一種方式係由實施氬電漿處置、氫電漿處置、或是NH3電漿處置所組成。然而,已經觀察到,此些經過電漿處置的源極區與汲極區的穩定性不佳,並且電漿處置的效應可能會因為整合OLED所需要的進一步處理步驟的結果而消失。 The other method consists of performing argon plasma treatment, hydrogen plasma treatment, or NH 3 plasma treatment. However, it has been observed that the source and drain regions undergoing plasma treatment have poor stability, and the effects of plasma treatment may disappear as a result of the further processing steps required to integrate the OLED.

在US 2012/0001167中說明一種用以製作自我對齊金氧半導體薄膜電晶體的方法,其中,使用一種替代方法來局部地提高金氧半導體層的導電性。在沉積一金氧半導體層、一閘極絕緣體與一閘極電極之後會提供一由金屬(例如,Ti、Al、或是In)製成的金屬膜,該金屬膜的厚度為10nm或更小。接著,會在含氧的環境中實施熱處置,舉例來說,在300℃的溫度 處。由於此熱處置的關是,該金屬膜會被氧化。於該金屬膜的氧化反應中,該金氧半導體層的一源極區與一汲極區之中所包含的氧的一部分會被傳輸至該金屬膜。因為該源極區與該汲極區之中的氧濃度下降的關是,其會導致在該金氧半導體層的一上方部分中形成低阻區。該金屬膜的厚度較佳的係10nm或更小,俾使得該金屬膜可以在該熱處置期間於該含氧的環境中被完全氧化。依此方式,可以不需要實施蝕刻步驟來移除未被氧化的金屬。 US 2012/0001167 describes a method for making a self-aligned metal-oxide-semiconductor thin-film transistor, in which an alternative method is used to locally increase the conductivity of the metal-oxide semiconductor layer. After depositing a metal oxide semiconductor layer, a gate insulator, and a gate electrode, a metal film made of metal (for example, Ti, Al, or In) is provided, and the thickness of the metal film is 10 nm or less. . Next, heat treatment is performed in an oxygen-containing environment, for example, at a temperature of 300 ° C. Office. Due to this thermal treatment, the metal film is oxidized. During the oxidation reaction of the metal film, a part of the oxygen contained in a source region and a drain region of the gold-oxygen semiconductor layer is transferred to the metal film. Because the source region and the oxygen concentration in the drain region are reduced, it will cause a low-resistance region to be formed in an upper portion of the gold-oxygen semiconductor layer. The thickness of the metal film is preferably 10 nm or less, so that the metal film can be completely oxidized in the oxygen-containing environment during the thermal treatment. In this way, it is not necessary to perform an etching step to remove non-oxidized metal.

在US 2012/0001167中所述的方法需要至少200℃的溫度, 舉例來說,300℃的大小。所以,此方法不相容於某些低成本的撓性基板,例如,舉例來說,PET(聚乙烯對苯二甲酸酯)、PEN(聚萘二甲酸乙二酯)、以及PC(聚碳酸酯),並且可能需要用到有高熱穩定性及/或化學穩定性之較高價格的塑膠薄片,例如,PI(聚亞醯胺)、PES(聚醚碸)、或是PEEK(聚醚醚酮)。 該方法還需要良好、精確的控制該金屬層的厚度,以便避免需要實施蝕刻步驟來移除未被氧化的金屬。 The method described in US 2012/0001167 requires a temperature of at least 200 ° C, For example, a size of 300 ° C. Therefore, this method is not compatible with some low-cost flexible substrates, such as, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and PC (poly Carbonate), and may require the use of higher price plastic sheets with high thermal and / or chemical stability, such as PI (polyimide), PES (polyether fluorene), or PEEK (polyether Ether ketone). The method also requires good and precise control of the thickness of the metal layer in order to avoid the need to perform an etching step to remove non-oxidized metal.

本揭示內容的目的係提供一種局部地提高金氧半導體層的導電性的方法,其中,該高導電性有良好的溫度穩定性,且其中,該方法能夠在低於200℃的溫度處被實施。 An object of the present disclosure is to provide a method for locally improving the conductivity of a metal-oxide semiconductor layer, wherein the high conductivity has good temperature stability, and wherein the method can be implemented at a temperature lower than 200 ° C. .

本揭示內容的進一步目的係提供一種製作具有良好源極接點與汲極接點、良好場效移動係數(舉例來說,高於10cm2/Vs)、良好熱穩定性、以及良好偏壓穩定性的自我對齊頂端閘極金氧半導體薄膜電晶體的方法,其中,該些電晶體能夠在低於200℃的溫度處被製作。 A further object of this disclosure is to provide a method for making a source with good source and drain contacts, a good field effect shift coefficient (for example, higher than 10 cm 2 / Vs), good thermal stability, and good bias stability. A method of self-aligning the top gate metal-oxide semiconductor thin film transistor, wherein the transistors can be fabricated at a temperature lower than 200 ° C.

本揭示內容關於一種在預設位置處改善金氧半導體層的導 電性的方法。該方法包括:在一基板上提供一金氧半導體層;以及藉由原子層沉積(Atomic Layer Deposition,ALD)在該金氧半導體層的頂端提供一金氧層,其中,該金氧層在該些預設位置處物理性接觸(也就是,藉由一直接物理性介面來介接)該金氧半導體層。 This disclosure relates to a method for improving the conductivity of a metal-oxide-semiconductor layer at a predetermined position. Electrical method. The method includes: providing a metal oxide semiconductor layer on a substrate; and providing an metal oxide layer on top of the metal oxide semiconductor layer by atomic layer deposition (ALD), wherein the metal oxide layer is on the substrate. The gold-oxide semiconductor layer is physically contacted (ie, interfaced by a direct physical interface) at the predetermined locations.

驚人的發現是,藉由ALD來沉積此金氧層會導致該金氧半導體層在該金氧層直接物理性接觸該金氧半導體層的位置處有高導電性。 It was surprisingly found that depositing the gold-oxide layer by ALD would cause the gold-oxide semiconductor layer to have high conductivity at the location where the gold-oxide layer directly physically contacts the gold-oxide semiconductor layer.

於本揭示內容的實施例中,舉例來說,該金氧半導體層的厚度可以在10nm與100nm之間的範圍中,或者在11nm與99nm之間的範圍中,本揭示內容並不受限於此。 In the embodiments of the present disclosure, for example, the thickness of the gold-oxide semiconductor layer may be in a range between 10 nm and 100 nm, or in a range between 11 nm and 99 nm. The present disclosure is not limited to this.

於本揭示內容的實施例中,藉由原子層沉積來提供(舉例來說,沉積)金氧層可以在150℃與200℃之間的範圍中的某一溫度處進行。 In the embodiments of the present disclosure, providing (for example, depositing) the gold oxide layer by atomic layer deposition may be performed at a temperature in a range between 150 ° C and 200 ° C.

於本揭示內容的實施例中,該方法可以在該金氧半導體層的頂端提供該金氧層之前進一步包括:提供一包括鹼金屬(舉例來說,Li、Na、K、Rb、Cs、或是Fr之中的任一者或任何組合)或鹼土金屬(舉例來說,Be、Mg、Ca、Sr、Ba、或是Ra之中的任一者或任何組合)的還原層在該些預設位置處物理性接觸該金氧半導體層;在該還原層與該金氧半導體層之間誘發化學還原反應,舉例來說,藉由在20℃與200℃之間的範圍中的某一溫度處實施退火步驟;以及移除該還原層與該還原反應中的反應副產物,舉例來說,藉由在水或是酒精之中沖洗。 In an embodiment of the present disclosure, the method may further include: providing an alkali metal (for example, Li, Na, K, Rb, Cs, or Is any one or any combination of Fr) or an alkaline earth metal (for example, any one or any combination of Be, Mg, Ca, Sr, Ba, or Ra) Suppose that the metal-oxide semiconductor layer is physically contacted at a position; a chemical reduction reaction is induced between the reduction layer and the metal-oxide semiconductor layer, for example, by a temperature in a range between 20 ° C and 200 ° C Performing an annealing step; and removing reaction byproducts of the reducing layer and the reduction reaction, for example, by rinsing in water or alcohol.

於本揭示內容的實施例中,舉例來說,該金氧半導體層可以包括氧化鎵銦鋅(GIZO或IGZO);以及舉例來說,該金氧層可以包括Al2O3。然而,本揭示內容並不受限於此。亦可以使用其它金氧半導體,例如,舉 例來說,ZnO、ZnSnO、InO、InZnSnO、LaInZnO、GaInO、HfInZnO、MgZnO、LaInZnO、TiO、TiInSnO、ScInZnO、以及SiInZnO與ZrInZnO、或是ZrZnSnO。亦可以使用其它金氧層,例如,舉例來說,HfO2、Ta2O5、ZrO2、或是Ga2O3In the embodiment of the present disclosure, for example, the metal oxide semiconductor layer may include gallium indium zinc oxide (GIZO or IGZO); and, for example, the metal oxide layer may include Al 2 O 3 . However, the present disclosure is not limited to this. Other metal oxide semiconductors can also be used, for example, ZnO, ZnSnO, InO, InZnSnO, LaInZnO, GaInO, HfInZnO, MgZnO, LaInZnO, TiO, TiInSnO, ScInZnO, and SiInZnO and ZrInZnO, or ZrZnSnO. Other metal oxide layers can also be used, for example, HfO 2 , Ta 2 O 5 , ZrO 2 , or Ga 2 O 3 .

於該金氧層係一Al2O3層的本揭示內容的實施例中,該金氧層可以三甲基鋁和水(H2O)當作前軀體來沉積,或者,舉例來說,以三乙基鋁和水當作前軀體或是以三異丁基鋁和水當作前軀體來沉積。 In the embodiment of the present disclosure in which the metal oxide layer is an Al 2 O 3 layer, the metal oxide layer may be deposited using trimethyl aluminum and water (H 2 O) as precursors, or, for example, Triethyl aluminum and water were used as precursors or triisobutyl aluminum and water were used as precursors to deposit.

於本揭示內容的實施例中,當形成該金氧層時,不同的前軀體可以被混合或者可以交替使用不同的前軀體。 In the embodiment of the present disclosure, when forming the metal oxide layer, different precursor bodies may be mixed or different precursor bodies may be used alternately.

本揭示內容還進一步關於一種製作自我對齊(其意義為源極與汲極會自我對齊閘極)頂端閘極(該閘極被提供在該金氧半導體層的頂端)金氧半導體薄膜電晶體的方法。該方法包括:提供一金氧半導體層於一基板上;沉積一閘極介電層於該金氧半導體層的頂端;沉積一閘極電極層於該閘極介電層上;圖樣化該閘極電極層與該閘極絕緣層,用以形成一閘極電極與一閘極絕緣體,從而在該金氧半導體層之中定義一通道區;圖樣化該金氧半導體層,從而在該金氧半導體層之中定義一源極區與一汲極區;以及藉由原子層沉積來沉積一金氧層,舉例來說,至少在該源極區與該汲極區之中,從而在該源極區之中與該汲極區之中該金氧層直接物理性接觸(也就是,藉由一直接物理性介面來介接)該金氧半導體層的地方提高該金氧半導體層的導電性。 The present disclosure further relates to a method for fabricating a self-aligned (meaning that the source and the drain will self-align the gate) the top gate (the gate is provided on the top of the metal-oxide semiconductor layer) of the metal-oxide semiconductor thin film transistor. method. The method includes: providing a metal oxide semiconductor layer on a substrate; depositing a gate dielectric layer on top of the metal oxide semiconductor layer; depositing a gate electrode layer on the gate dielectric layer; patterning the gate The electrode electrode layer and the gate insulating layer are used to form a gate electrode and a gate insulator, thereby defining a channel region in the gold-oxide semiconductor layer; patterning the gold-oxide semiconductor layer, thereby forming a gold-oxide semiconductor layer A semiconductor region defines a source region and a drain region; and a metal oxide layer is deposited by atomic layer deposition, for example, at least in the source region and the drain region, and thus in the source region. Where the metal oxide layer is in direct physical contact with the metal oxide layer in the drain region (that is, interfaced by a direct physical interface), the metal oxide semiconductor layer improves the conductivity of the metal oxide layer .

該方法可以進一步包括:提供一介電層於該金氧層的頂端;形成通孔貫穿該介電層與該金氧層;以及以一金屬來填充該些通孔,用以形成一源極接點與一汲極接點。 The method may further include: providing a dielectric layer on top of the metal oxide layer; forming a through hole penetrating the dielectric layer and the metal oxide layer; and filling the through holes with a metal to form a source electrode The contact is connected to a drain contact.

於本揭示內容的實施例中,該方法可以在該金氧半導體層的 頂端提供該金氧層之前進一步包括:提供一包括鹼金屬(舉例來說,Li、Na、K、Rb、Cs、或是Fr之中的任一者或任何組合)或鹼土金屬(舉例來說,Be、Mg、Ca、Sr、Ba、或是Ra之中的任一者或任何組合)的還原層在該些預設位置處物理性接觸該金氧半導體層;在該還原層與該金氧半導體層之間誘發化學還原反應,舉例來說,藉由在20℃與200℃之間的範圍中的某一溫度處實施退火步驟;以及移除該還原層與該還原反應中的反應副產物,舉例來說,藉由在水或是酒精之中沖洗。 In the embodiment of the present disclosure, the method can be applied to the metal-oxide semiconductor layer. The step of providing the metal oxide layer further includes: providing an alkali metal (for example, any one or any combination of Li, Na, K, Rb, Cs, or Fr) or an alkaline earth metal (for example , Any one or any combination of Be, Mg, Ca, Sr, Ba, or Ra)) physically contact the gold-oxygen semiconductor layer at the predetermined positions; the reduction layer and the gold A chemical reduction reaction is induced between the oxygen semiconductor layers, for example, by performing an annealing step at a temperature in a range between 20 ° C and 200 ° C; and removing the reaction side of the reduction layer and the reduction reaction Product, for example, by rinsing in water or alcohol.

本揭示內容的方法的優點是,能夠在低於200℃、或是低於 199℃、或是低於190℃、或是低於180℃、或是低於170℃、或是低於160℃的溫度處被實施。所以,該些方法相容於低成本的撓性基板,例如,舉例來說,PET(聚乙烯對苯二甲酸酯)、PEN(聚萘二甲酸乙二酯)、以及PC(聚碳酸酯)。 An advantage of the method of the present disclosure is that it can be used at temperatures below 200 ° C, or below It is carried out at a temperature of 199 ° C, or lower than 190 ° C, or lower than 180 ° C, or lower than 170 ° C, or lower than 160 ° C. Therefore, these methods are compatible with low-cost flexible substrates such as, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and PC (polycarbonate ).

本揭示內容的方法的優點是,比較不需要或是完全不需要如同在某些先前技術方式的情況般精確地控制層厚度。 An advantage of the method of the present disclosure is that it is less or not necessary to precisely control the layer thickness as is the case in some prior art approaches.

本揭示內容的方法的優點是,沉積該金氧層不僅造成下方的金氧半導體層有改善的導電性;此外,沉積該金氧層還會導致下方的金氧半導體層的鈍化與囊封(舉例來說,該金氧半導體層會完全被覆蓋或囊封,也就是,不再曝露於環境中)。 An advantage of the method of the present disclosure is that the deposition of the metal oxide layer not only results in improved conductivity of the underlying metal oxide semiconductor layer; in addition, the deposition of the metal oxide layer also causes passivation and encapsulation of the metal oxide semiconductor layer below ( For example, the gold-oxide semiconductor layer would be completely covered or encapsulated, that is, no longer exposed to the environment).

本揭示內容的方法的優點是,它們會導致該金氧半導體層的高導電性的良好穩定性;該高導電性不會隨著時間經過而改變。 An advantage of the methods of the present disclosure is that they result in good stability of the high conductivity of the gold-oxide semiconductor layer; the high conductivity does not change over time.

本揭示內容的方法的優點是,它們允許製作具有良好偏壓穩 定性且具有良好熱穩定性的自我對齊頂端閘極金氧半導體薄膜電晶體。 The advantage of the methods of this disclosure is that they allow fabrication with good bias stability Qualitative and self-aligned top-gate metal-oxide semiconductor thin film transistor with good thermal stability.

本文中已於上面說明本發明的各種創新觀點的特定目的與 優點。當然,應該瞭解的是,未必所有此些目的或優點皆可根據本揭示內容的任何特殊實施例來達成。因此,舉例來說,熟習本技術的人士便會明瞭,本揭示內容可以達成或最佳化如本文中所教示之其中一項優點或一群優點但未必達成可能如本文中所教示或建議之其它目的或優點的方式來具現或實現。進一步言之,應該瞭解的是,【發明內容】僅為範例而沒有限制本揭示內容之範疇的用意。參考下面的詳細說明,在閱讀時配合隨附的圖式,可以最佳瞭解本揭示內容(組織及其運作方法)及其特點與優點。 The specific objects and advantages of the various innovative ideas of the invention have been described above herein. Of course, it should be understood that not all of these objects or advantages may be achieved according to any particular embodiment of the present disclosure. Thus, for example, those skilled in the art will understand that this disclosure may achieve or optimize one of the advantages or a group of advantages as taught herein but may not achieve other advantages that may be taught or suggested herein. A way to achieve or achieve a purpose or advantage. Further, it should be understood that the [Summary] is merely an example and is not intended to limit the scope of the present disclosure. With reference to the detailed description below, and accompanying drawings when reading, you can best understand this disclosure (organization and its operation method) and its characteristics and advantages.

10‧‧‧基板 10‧‧‧ substrate

11‧‧‧主動層 11‧‧‧Active Level

12‧‧‧金氧半導體層 12‧‧‧ Metal Oxide Semiconductor Layer

13‧‧‧閘極介電層 13‧‧‧Gate dielectric layer

14‧‧‧閘極電極層 14‧‧‧Gate electrode layer

15‧‧‧金氧層 15‧‧‧metal oxide layer

16‧‧‧介電層 16‧‧‧ Dielectric layer

21‧‧‧源極電極 21‧‧‧Source electrode

22‧‧‧汲極電極 22‧‧‧ Drain electrode

101‧‧‧矽基板 101‧‧‧ silicon substrate

102‧‧‧介電層 102‧‧‧ Dielectric layer

110‧‧‧通道區 110‧‧‧passage zone

111‧‧‧源極區 111‧‧‧Source area

112‧‧‧汲極區 112‧‧‧ Drain

131‧‧‧閘極絕緣體 131‧‧‧Gate insulator

141‧‧‧閘極電極 141‧‧‧Gate electrode

圖1(a)至圖1(f)所示的係根據本揭示內容的一種方法來製作金氧半導體薄膜電晶體的方法。 1 (a) to 1 (f) are a method for fabricating a gold-oxide semiconductor thin film transistor according to a method of the present disclosure.

圖2所示的係根據本揭示內容的一種方法所製作的a-IGZO薄膜電晶體的轉換特徵曲線(IDS-VGS)。 The conversion characteristic curve (I DS -V GS ) of an a-IGZO thin film transistor manufactured according to a method of the present disclosure is shown in FIG. 2.

圖3所示的係根據本揭示內容的一種方法所製作的a-IGZO薄膜電晶體的輸出特徵曲線(IDS-VDS)。 The output characteristic curve (I DS -V DS ) of an a-IGZO thin film transistor manufactured according to a method of the present disclosure is shown in FIG. 3.

圖4所示的係根據本揭示內容的一種方法所製作的a-IGZO TFT(W/L=30/10μm/μm)在不同的偏壓應力(bias stress)時間中的轉換特徵曲線(IDS-VGS):圖4(a)為-1MV/cm(VGS=-12V且VDS=0V)的負偏壓應力;圖4(b)為+1MV/cm(VGS=+12V且VDS=+12V)的正偏壓應力。 Figure 4 shows the conversion characteristic curves (I DS ) of a-IGZO TFT (W / L = 30 / 10μm / μm) fabricated according to a method of the present disclosure at different bias stress times. -V GS ): Figure 4 (a) is the negative bias stress of -1MV / cm (V GS = -12V and V DS = 0V); Figure 4 (b) is + 1MV / cm (V GS = + 12V and V DS = + 12V).

圖5所示的係根據本揭示內容的一種方法所製作的a-IGZO TFT的VTH 偏移在正向與負向中以應力時間為函數的關係圖。 The relationship between the V TH offset of the a-IGZO TFT fabricated in accordance with one method of the present disclosure as a function of the stress time in the positive and negative directions is shown in FIG. 5.

圖6所示的係一a-IGZO TFT(W/L=30/10μm/μm)的初始轉換特徵曲線(空心圓)以及在150℃處於氮氣中進行2小時退火之後的轉換特徵曲線(實心方形)。 The initial conversion characteristic curve (open circle) of the system a-IGZO TFT (W / L = 30 / 10μm / μm) shown in FIG. 6 and the conversion characteristic curve (solid square) after annealing at 150 ° C in nitrogen for 2 hours ).

申請專利範圍中的任何元件符號皆不被視為限至本揭示內容的範疇。 Any element symbol in the scope of patent application shall not be considered as being limited to the scope of the present disclosure.

在不同的圖式中,相同的元件符號表示相同或類似的元件。 In different drawings, the same element symbol indicates the same or similar element.

在下面的詳細說明中會提出許多明確的細節,以便透澈理解本揭示內容以及如何在特殊實施例中實行本揭示內容。然而,應該瞭解的是,即使沒有此些特定細節仍可實行本揭示內容。於其它實例中不會詳細說明眾所熟知的方法、程序、以及技術,以免混淆本揭示內容。 Numerous specific details are set forth in the following detailed description in order to provide a clear understanding of the disclosure and how to implement the disclosure in particular embodiments. It should be understood, however, that the present disclosure can be practiced without these specific details. In other instances, well-known methods, procedures, and techniques will not be described in detail to avoid confusing the present disclosure.

雖然本揭示內容配合特殊實施例並且參考特定圖式來作說明;但是,本揭示內容並不受限於此。本文中所包含及說明的圖式為略圖並且沒有限制本揭示內容的範疇。還應該注意的是,在圖式中,為達解釋之目的,某些元件的大小可能會被放大,且所以並未依照比例繪製。 Although the present disclosure is described with reference to specific embodiments and with reference to specific drawings, the present disclosure is not limited thereto. The drawings included and described herein are sketches and do not limit the scope of the disclosure. It should also be noted that in the drawings, for the purpose of explanation, the size of some elements may be enlarged, and therefore not drawn to scale.

再者,說明中的第一、第二、第三、以及類似詞係用來區分雷同的元件而未必依照等級或任何其它方式來說明時間或空間的順序。應該瞭解的是,所使用的該些術語可在適當的情況下交換使用而且本文中所述之揭示內容的實施例能夠以本文中所述或所示以外的其它順序來運作。 Furthermore, the first, second, third, and similar words in the description are used to distinguish similar elements and do not necessarily describe the order of time or space in terms of rank or any other way. It should be understood that the terms used are interchangeable under appropriate circumstances and that the embodiments of the disclosure described herein can operate in other orders than described or shown herein.

又,說明中的頂端、底部、之上、之下、以及類似詞係作為說明的用途而未必說明相對的位置。應該瞭解的是,所使用的該些術語可在適當的情況下交換使用而且本文中所述之揭示內容的實施例能夠以本文 中所述或所示以外的其它方位來運作。 In addition, the top, bottom, top, bottom, and the like in the description are for the purpose of description and do not necessarily describe relative positions. It should be understood that these terms are used interchangeably under appropriate circumstances and that the embodiments of the disclosure described herein can be used herein Work in directions other than those described or shown.

本揭示內容提供一種改善(提高)金氧半導體層之導電性的方法,舉例來說,在一金氧半導體薄膜電晶體的源極接點與汲極接點的位置處局部改善此些層的導電性。導電性的提高可以很明顯,舉例來說,至少提高1個大小等級,舉例來說,高達3個大小等級。 The present disclosure provides a method for improving (increasing) the conductivity of metal oxide semiconductor layers. For example, the location of the source and drain contacts of a metal oxide semiconductor thin film transistor can be improved locally. Conductivity. The increase in conductivity can be significant, for example, by at least 1 size level, for example, up to 3 size levels.

根據本揭示內容的一項觀點,提供一種在預設位置處提高金氧半導體層的導電性的方法,其中,該方法包括:藉由原子層沉積在該些預設位置處沉積一金氧層於該金氧半導體層的頂端並且物理性接觸(因而介接)該金氧半導體層。 According to an aspect of the present disclosure, a method for improving the conductivity of a metal oxide semiconductor layer at a predetermined position is provided. The method includes: depositing a metal oxide layer at the predetermined positions by atomic layer deposition. On top of the metal oxide semiconductor layer and physically contacting (and thus interfacing) the metal oxide semiconductor layer.

驚人的發現是,藉由ALD來沉積此金氧層會導致該金氧半導體層在該金氧層直接物理性接觸該金氧半導體層的位置處有高導電性。 It was surprisingly found that depositing the gold-oxide layer by ALD would cause the gold-oxide semiconductor layer to have high conductivity at the location where the gold-oxide layer directly physically contacts the gold-oxide semiconductor layer.

舉例來說,該金氧層會包括Al2O3、HfO2、Ta2O5、ZrO2、或是Ga2O3,但是本發明並不受限於此。 For example, the gold-oxygen layer may include Al 2 O 3 , HfO 2 , Ta 2 O 5 , ZrO 2 , or Ga 2 O 3 , but the present invention is not limited thereto.

於本揭示內容的實施例中,舉例來說,該金氧層可以為一Al2O3層。舉例來說,其可以三甲基鋁(TMA,Al(CH3)3)和水(H2O)當作前軀體來沉積。然而,亦可以使用其它前軀體,例如,舉例來說,以三乙基鋁和水當作前軀體或是以三異丁基鋁和水當作前軀體來形成一Al2O3層。 In the embodiment of the present disclosure, for example, the gold-oxygen layer may be an Al 2 O 3 layer. For example, it may be trimethylaluminum (TMA, Al (CH 3) 3) and water (H 2 O) as a precursor to deposit. However, other precursors can also be used, for example, using triethylaluminum and water as the precursor or triisobutylaluminum and water as the precursor to form an Al 2 O 3 layer.

於本揭示內容的實施例中,舉例來說,該金氧層可以為一Ga2O3層。舉例來說,可用於此層的前軀體包括三乙基鎵和水、三甲基鎵和水、三異丙基鎵和水、或是三-第三丁基鎵和水,但是本發明並不受限於此。 In the embodiment of the present disclosure, for example, the gold-oxygen layer may be a Ga 2 O 3 layer. For example, precursors that can be used in this layer include triethylgallium and water, trimethylgallium and water, triisopropylgallium and water, or tri-tert-butylgallium and water, but the invention does not Not limited to this.

於本揭示內容的實施例中,當形成該金氧層時,不同的前軀體可以被混合或者可以交替使用不同的前軀體。 In the embodiment of the present disclosure, when forming the metal oxide layer, different precursor bodies may be mixed or different precursor bodies may be used alternately.

舉例來說,該金氧層的厚度可以在10nm與100nm之間的範圍中,而且舉例來說,其可以在150℃與200℃之間的範圍中的某一溫度處被沉積,舉例來說,在150℃與170℃之間,但是本發明並不受限於此。 For example, the thickness of the metal oxide layer can be in a range between 10 nm and 100 nm, and for example, it can be deposited at a temperature in a range between 150 ° C. and 200 ° C., for example Between 150 ° C and 170 ° C, but the invention is not limited to this.

本揭示內容的方法能夠有利地使用在具有一金氧半導體主動層的薄膜電晶體的製作過程中,用以局部地提高對應於源極區與汲極區的預設位置處的導電性,從而改善來自該些源極接點與汲極接點的電荷射出。該方法能夠有利地使用在自我對齊頂端閘極薄膜電晶體的製作過程中。 The method of the present disclosure can be advantageously used in the manufacturing process of a thin film transistor having an active metal oxide layer to locally improve the conductivity at a predetermined position corresponding to the source region and the drain region, thereby Improve the charge emission from these source and drain contacts. This method can be advantageously used in the fabrication of self-aligned top gate thin film transistors.

該方法亦可以使用在其它以金氧半導體為基礎的裝置(舉例來說,二極體或電晶體-二極體)的製作過程中,用以改善來自接點處的電荷射出。 This method can also be used in the fabrication of other metal-oxide-semiconductor-based devices (for example, diodes or transistors-diodes) to improve charge emission from the contacts.

舉例來說,該金氧半導體層能夠包括氧化鎵銦鋅(GIZO或者亦稱為IGZO),或是以其它金屬氧化物為基礎的半導體,舉例來說,下面的組合物(其並沒有理想配比指示):ZnO、ZnSnO、InO、InZnSnO、LaInZnO、GaInO、HfInZnO、MgZnO、LaInZnO、TiO、TiInSnO、ScInZnO、SiInZnO、以及ZrInZnO、ZrZnSnO。然而,本揭示內容並不受限於此,而且該方法能夠用於熟習本技術的人士已知的其它合宜金氧半導體。具有介於5nm與50nm之間,或是介於6nm與49nm之間,的典型厚度的半導體層能夠藉由許多方法來提供,例如,舉例來說,濺鍍、熱蒸發、脈衝式雷射沉積、以及旋鑄(spin casting)、噴墨印刷、或是滴鑄(drop casting)前軀體溶液。 For example, the gold-oxide semiconductor layer can include gallium indium zinc oxide (GIZO or IGZO), or a semiconductor based on other metal oxides. For example, the following composition (which is not ideally formulated) Ratio indication): ZnO, ZnSnO, InO, InZnSnO, LaInZnO, GaInO, HfInZnO, MgZnO, LaInZnO, TiO, TiInSnO, ScInZnO, SiInZnO, and ZrInZnO, ZrZnSnO. However, the present disclosure is not limited to this, and the method can be applied to other suitable metal-oxide semiconductors known to those skilled in the art. Semiconductor layers with a typical thickness between 5nm and 50nm, or between 6nm and 49nm, can be provided by many methods, such as, for example, sputtering, thermal evaporation, pulsed laser deposition And spin casting, inkjet printing, or drop casting precursor solution.

本文進一步說明一種用於製作自我對齊頂端閘極金氧半導體薄膜電晶體的方法,其中,本揭示內容的方法被用來局部改善源極區與汲極區之中的金氧半導體層的導電性。於此裝置結構中,該ALD金氧層會 改變下方源極區與汲極區的導電性,並且其還具有一鈍化與囊封層的功能。 This article further illustrates a method for fabricating a self-aligned top gate metal-oxide-semiconductor thin film transistor, wherein the method of the present disclosure is used to locally improve the conductivity of the metal-oxide semiconductor layer in the source and drain regions. . In this device structure, the ALD metal oxide layer will The conductivity of the underlying source and drain regions is changed, and it also has a function of passivation and encapsulation.

在圖1(a)至圖1(f)中概略圖解根據本揭示內容的一種用於製作金氧半導體薄膜電晶體的示範性製程流程。 An exemplary process flow for fabricating a metal-oxide-semiconductor thin film transistor according to the present disclosure is schematically illustrated in FIGS. 1 (a) to 1 (f).

在圖1(a)中所示的第一步驟中,一金氧半導體層12(例如,一GIZO層)被提供在一基板10上,舉例來說,藉由從一前軀體溶液中進行濺鍍、雷射燒蝕、或是旋塗。於圖1(a)中所示的範例中,基板10雖然包括一矽基板101與一介電層102(舉例來說,氧化矽層);然而,亦可以使用其它合宜的基板。舉例來說,GIZO層12的厚度大小為約10nm或約15nm至20nm,舉例來說,介於10nm與20nm之間,或是介於11nm與19nm之間;但是,亦能夠使用其它合宜的厚度。 In the first step shown in FIG. 1 (a), a gold-oxide semiconductor layer 12 (for example, a GIZO layer) is provided on a substrate 10, for example, by sputtering from a precursor solution Plating, laser ablation, or spin coating. In the example shown in FIG. 1 (a), the substrate 10 includes a silicon substrate 101 and a dielectric layer 102 (for example, a silicon oxide layer); however, other suitable substrates may be used. For example, the thickness of the GIZO layer 12 is about 10 nm or about 15 nm to 20 nm, for example, between 10 nm and 20 nm, or between 11 nm and 19 nm; however, other suitable thicknesses can be used. .

接著,如圖1(b)中所示,一閘極介電層13(例如,舉例來說,二氧化矽層)被沉積在該金氧半導體層12的頂端,舉例來說,藉由電漿增強化學氣相沉積。其後會沉積一閘極電極層14(例如,舉例來說,Mo層)於該閘極介電層13的頂端(圖1(b))。 Next, as shown in FIG. 1 (b), a gate dielectric layer 13 (for example, a silicon dioxide layer) is deposited on top of the gold-oxide semiconductor layer 12, for example, by electricity Slurry enhanced chemical vapor deposition. Thereafter, a gate electrode layer 14 (for example, a Mo layer) is deposited on top of the gate dielectric layer 13 (FIG. 1 (b)).

閘極電極層14與閘極絕緣層13接著會被圖樣化,舉例來說,藉由乾式蝕刻,用以形成一閘極電極141與一閘極絕緣體131,如圖1(c)中所示。 The gate electrode layer 14 and the gate insulating layer 13 are then patterned. For example, by dry etching, a gate electrode 141 and a gate insulator 131 are formed, as shown in FIG. 1 (c). .

接著,該金氧半導體層12會被圖樣化,從而定義該薄膜電晶體的主動層11(圖1(d))。舉例來說,該金氧半導體層能夠藉由濕式蝕刻被圖樣化,舉例來說,利用緩衝式HF或草酸。在主動層圖樣化中使用草酸的優點係其對下方的層有良好的選擇性。經圖樣化的閘極電極141會在主動層11之中定義一通道區110、一源極區111、以及一汲極區112,如圖1(d) 中概略顯示。該些源極區與汲極區直接相鄰於該通道區並且自我對齊。 Then, the gold-oxygen semiconductor layer 12 is patterned to define the active layer 11 of the thin film transistor (FIG. 1 (d)). For example, the gold-oxide semiconductor layer can be patterned by wet etching, for example, using buffered HF or oxalic acid. The advantage of using oxalic acid in active layer patterning is its good selectivity to the underlying layers. The patterned gate electrode 141 defines a channel region 110, a source region 111, and a drain region 112 in the active layer 11, as shown in FIG. 1 (d). Medium outline display. The source and drain regions are directly adjacent to the channel region and are self-aligned.

於圖1中所示的範例中,該金氧半導體層雖然係在該閘極電極層與該閘極介電層圖樣化之後才被圖樣化;然而,本揭示內容並不受限於此。舉例來說,該金氧半導體層亦能夠在該閘極製作過程之前先被圖樣化,或是在該閘極製作過程之後的某一較晚階段中才被圖樣化。 In the example shown in FIG. 1, the metal-oxide semiconductor layer is patterned only after the gate electrode layer and the gate dielectric layer are patterned; however, the present disclosure is not limited thereto. For example, the gold-oxide semiconductor layer can also be patterned before the gate fabrication process, or it can be patterned at a later stage after the gate fabrication process.

接著,一金氧層15(例如,舉例來說,Al2O3層)會藉由ALD(舉例來說,利用三甲基鋁(TMA,Al(CH3)3)和水(H2O)當作前軀體)被沉積(如圖1(e)中所示)。驚人的發現是,沉積此層會導致該金氧半導體層在該Al2O3層15直接物理性接觸該金氧半導體層11的位置處有高導電性。所以,在該金氧半導體層11的源極區111與汲極區112中會達成強化的導電性,至少在該金氧半導體層的一上方部分中。相信,因為該些ALD前軀體與該金氧半導體層表面之間的相互作用的關係會有一種摻雜效應或還原反應。舉例來說,在Al2O3中作為ALD前軀體的TMA和H2O可以和IGZO表面反應。舉例來說,倘若在該反應中有H2O、O2、O3的話,摻雜效應便會發生。該上方部分較佳的係具有數nm上至10或約10nm的深度/厚度。倘若該ALD金氧沉積結合額外的摻雜的話(舉例來說,利用Ca,參見上文),那麼,該增強的導電性預期會更深入延伸至該金氧半導體層之中,舉例來說,上至數十nm,舉例來說,上至20nm或是上至30nm。 Next, a metal oxide layer 15 (for example, an Al 2 O 3 layer) is processed by ALD (for example, trimethyl aluminum (TMA, Al (CH 3 ) 3 ) and water (H 2 O ) As a precursor (as shown in Figure 1 (e)). It was surprisingly found that depositing this layer would cause the gold oxide semiconductor layer to have high electrical conductivity at the location where the Al 2 O 3 layer 15 directly contacts the gold oxide semiconductor layer 11. Therefore, enhanced conductivity is achieved in the source region 111 and the drain region 112 of the gold-oxide semiconductor layer 11, at least in an upper portion of the gold-oxide semiconductor layer. It is believed that because of the interaction between the ALD precursors and the surface of the metal oxide semiconductor layer, there will be a doping effect or a reduction reaction. For example, TMA and H 2 O, which are precursors to ALD in Al 2 O 3 , can react with the surface of IGZO. For example, if H 2 O, O 2 , and O 3 are present in the reaction, the doping effect will occur. The upper part preferably has a depth / thickness of a few nm to 10 or about 10 nm. If the ALD metal-oxide deposition is combined with additional doping (for example, using Ca, see above), then the enhanced conductivity is expected to extend deeper into the metal-oxide semiconductor layer, for example, Up to tens of nm, for example, up to 20 nm or up to 30 nm.

接著,一介電層16(例如,舉例來說,氮化矽層)會被提供在該金氧層15的頂端,接著會在要形成源極接點與汲極接點的位置處形成通孔貫穿此介電層16與下方的金氧層15。接著會以一合宜的金屬(例如,舉例來說,Mo)來填充該些通孔,用以形成一源極電極21與一汲極電極22。 所生成的結構概略地顯示在圖1(f)中。 Next, a dielectric layer 16 (for example, a silicon nitride layer) is provided on top of the metal-oxide layer 15, and then a via is formed at a position where a source contact and a drain contact are to be formed. Holes penetrate through the dielectric layer 16 and the metal-oxide layer 15 below. The through holes are then filled with a suitable metal (for example, Mo) to form a source electrode 21 and a drain electrode 22. The generated structure is schematically shown in Fig. 1 (f).

圖2所示的係根據如上面所述的本揭示內容的一種方法所製作的a-IGZO薄膜電晶體的轉換特徵曲線(IDS-VGS),其具有一ALD Al2O3金氧層15。圖3所示的係此電晶體的輸出特徵曲線(IDS-VDS)。 The conversion characteristic curve (I DS -V GS ) of an a-IGZO thin film transistor manufactured according to a method of the present disclosure as described above is shown in FIG. 2, which has an ALD Al 2 O 3 metal oxide layer. 15. The output characteristic curve (I DS -V DS ) of this transistor is shown in FIG. 3.

該a-IGZO TFT呈現高熱穩定性及良好的電氣效能。從圖中會觀察到14.82cm2/V.S的場效移動係數,3.6V的臨界電壓,0.42V/dec的次臨界擺動,以及約108的導通/不導通電流比。 The a-IGZO TFT exhibits high thermal stability and good electrical performance. From the figure, a field-effect movement coefficient of 14.82 cm 2 / VS, a critical voltage of 3.6 V, a subcritical swing of 0.42 V / dec, and an on / off current ratio of about 10 8 are observed.

本發明已研究過偏壓應力對TFT電氣效能的影響。一對應於正向與負向中+/-1.0MV/cm的閘極電場在黑暗的室溫中被施加長達104秒的應力時間。倘若為正閘極偏壓應力的話,其對應於完全導通條件(VDS=12V且VGS=12V),會觀察到0.8V的臨界電壓偏移。倘若為負偏壓應力的話(VDS=0V且VGS=-12V),會觀察到1.0V的臨界電壓偏移。圖4(a)與圖4(b)顯示負閘極偏壓應力(圖4(a))與正閘極偏壓應力(圖4(b))兩者在下面不同的偏壓應力時間中的轉換特徵曲線:0s(也就是,沒有偏壓應力)、100s、300s、1000s、3000s、以及10000s。圖5所示的係在正向與負向中以應力時間為函數的VTH偏移。從此些結果中得到的結論為,在各種應力條件下的穩定性非常好。 The present invention has studied the effect of bias stress on the electrical performance of a TFT. Corresponding to a positive and negative / cm gate electric field is applied for up to 104 seconds of stress at the time in a dark room temperature to +/- 1.0MV. If it is a positive gate bias stress, which corresponds to a fully conducting condition (V DS = 12V and V GS = 12V), a threshold voltage shift of 0.8V will be observed. If it is a negative bias stress (V DS = 0V and V GS = -12V), a critical voltage offset of 1.0V will be observed. Figures 4 (a) and 4 (b) show that the negative gate bias stress (Figure 4 (a)) and the positive gate bias stress (Figure 4 (b)) are in different bias stress times below. The conversion characteristic curve: 0s (that is, no bias stress), 100s, 300s, 1000s, 3000s, and 10000s. The system shown in Figure 5 shifts V TH as a function of stress time in the positive and negative directions. From these results, it is concluded that the stability under various stress conditions is very good.

圖6所示的係一a-IGZO TFT(W/L=30/10μm/μm)的初始轉換特徵曲線(空心圓)以及在150℃處於氮氣中進行2小時退火之後的轉換特徵曲線(實心方形)。從此些結果中可以得到的結論為,退火步驟對裝置特徵曲線的效應可以忽略,其表示有良好的熱穩定性。 The initial conversion characteristic curve (open circle) of the system a-IGZO TFT (W / L = 30 / 10μm / μm) shown in FIG. 6 and the conversion characteristic curve (solid square) after annealing at 150 ° C in nitrogen for 2 hours ). It can be concluded from these results that the effect of the annealing step on the device characteristic curve is negligible, which indicates that it has good thermal stability.

前面的說明雖然詳述本揭示內容的特定實施例;然而,應該明白的是,不論前面的文字敘述如何詳細,本揭示內容皆可以許多方式來 實行。應該注意的是,當說明本揭示內容的特定特點與觀點時使用特殊的術語不應被視為隱喻該術語於本文中被重新定義為僅限包含本揭示內容中和該術語相關聯的特點或觀點的特定特徵。 Although the foregoing description details specific embodiments of the disclosure; however, it should be understood that no matter how detailed the foregoing text is, the disclosure can be made in many ways Implemented. It should be noted that the use of special terms when describing particular features and perspectives of this disclosure should not be considered as metaphors. This term is redefined herein to include only features that are associated with this term in this disclosure or The specific characteristics of a viewpoint.

雖然上面的詳細說明已經顯示、說明、並且指出套用於各種實施例中之本發明的觀點的新穎特點;但是,應該瞭解的是,熟習本技術的人士便可以對文中所示的裝置或製程的形式與細節進行各種省略、替換、以及改變,其並沒有脫離本發明的觀點的上位概念。 Although the above detailed description has shown, explained, and pointed out the novel features of the present invention applied to various embodiments; it should be understood that those skilled in the art can understand the device or process shown in the text. Various omissions, substitutions, and changes are made to the form and details without departing from the general concept of the point of view of the present invention.

Claims (11)

一種製作自我對齊頂端閘極金氧半導體薄膜電晶體的方法,其包括:提供一金氧半導體層(12)於一基板(10)上;沉積一閘極介電層(13)於該金氧半導體層(12)的頂端;沉積一閘極電極層(14)於該閘極介電層(13)上;圖樣化該閘極電極層(14)與該閘極絕緣層(13),用以形成一閘極電極(141)與一閘極絕緣體(131);圖樣化該金氧半導體層(12),從而定義該薄膜電晶體的一源極區(111)、一通道區(110)、以及一汲極區(112);以及藉由原子層沉積來沉積一金氧層(15),從而在該源極區(111)之中與該汲極區(112)之中該金氧層直接物理性接觸該金氧半導體層的地方提高該金氧半導體層的導電性。A method for fabricating a self-aligned top gate metal oxide semiconductor thin film transistor, comprising: providing a metal oxide semiconductor layer (12) on a substrate (10); and depositing a gate dielectric layer (13) on the metal oxide Top of the semiconductor layer (12); depositing a gate electrode layer (14) on the gate dielectric layer (13); patterning the gate electrode layer (14) and the gate insulation layer (13), Forming a gate electrode (141) and a gate insulator (131); patterning the gold-oxide semiconductor layer (12), thereby defining a source region (111) and a channel region (110) of the thin film transistor And a drain region (112); and a gold-oxygen layer (15) is deposited by atomic layer deposition so that the gold-oxygen is in the source region (111) and the drain region (112) Where the layer directly contacts the gold-oxide semiconductor layer, the conductivity of the gold-oxide semiconductor layer is improved. 根據申請專利範圍第1項的方法,其中,該金氧層(15)的厚度在10nm與100nm之間的範圍中。The method according to item 1 of the patent application range, wherein the thickness of the gold oxide layer (15) is in a range between 10 nm and 100 nm. 根據申請專利範圍第1項的方法,其中,沉積該金氧層(15)係在150℃與200℃之間的範圍中的某一溫度進行。The method according to item 1 of the scope of patent application, wherein the metal oxide layer (15) is deposited at a temperature in a range between 150 ° C and 200 ° C. 根據申請專利範圍第1項的方法,其中,該金氧半導體層(12)係一氧化鎵銦鋅層。The method according to item 1 of the patent application scope, wherein the gold-oxygen semiconductor layer (12) is a gallium indium zinc oxide layer. 根據申請專利範圍第1項的方法,其中,該金氧層(15)係一Al2O3層。The method according to item 1 of the patent application scope, wherein the metal oxide layer (15) is an Al 2 O 3 layer. 根據申請專利範圍第5項的方法,其中,該Al2O3層係以三甲基鋁和水(H2O)當作試劑所沉積。The method according to item 5 of the application, wherein the Al 2 O 3 layer is deposited using trimethylaluminum and water (H 2 O) as reagents. 根據申請專利範圍第1項的方法,其中在沉積該金氧層之前進一步包括:提供一包括鹼金屬或鹼土金屬的還原層(reducing layer)在該些預設位置處物理性接觸該金氧半導體層;在該還原層與該金氧半導體層之間誘發化學還原反應;以及移除該還原層與該還原反應中的反應副產物。The method according to item 1 of the patent application scope, wherein before depositing the metal oxide layer, further comprising: providing a reducing layer including an alkali metal or an alkaline earth metal to physically contact the metal oxide semiconductor at the predetermined positions A layer; inducing a chemical reduction reaction between the reducing layer and the gold-oxygen semiconductor layer; and removing reaction byproducts of the reducing layer and the reduction reaction. 根據申請專利範圍第1項的方法,其進一步包括:提供一介電層(16)於該金氧層(15)的頂端;形成通孔貫穿該介電層(16)與該金氧層(15);以及以一金屬來填充該些通孔,用以形成一源極電極(21)與一汲極電極(22)。The method according to item 1 of the patent application scope, further comprising: providing a dielectric layer (16) on the top of the metal oxide layer (15); forming a through hole penetrating the dielectric layer (16) and the metal oxide layer ( 15); and filling the through holes with a metal to form a source electrode (21) and a drain electrode (22). 根據申請專利範圍第1項的方法,其中,該方法在低於200℃的溫度處被實施。The method according to item 1 of the patent application scope, wherein the method is carried out at a temperature below 200 ° C. 根據申請專利範圍第1項的方法,其中,該基板係一低成本的撓性基板。The method according to item 1 of the patent application scope, wherein the substrate is a low-cost flexible substrate. 根據申請專利範圍第1項的方法,其中,該基板包括PET(聚乙烯對苯二甲酸酯)、PEN(聚萘二甲酸乙二酯)、或是PC(聚碳酸酯)。The method according to item 1 of the patent application scope, wherein the substrate comprises PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or PC (polycarbonate).
TW103120479A 2013-07-24 2014-06-13 Method for improving the electrical conductivity of metal oxide semiconductor layers TWI660432B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13177735 2013-07-24
??13177735.1 2013-07-24

Publications (2)

Publication Number Publication Date
TW201508841A TW201508841A (en) 2015-03-01
TWI660432B true TWI660432B (en) 2019-05-21

Family

ID=48856533

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103120479A TWI660432B (en) 2013-07-24 2014-06-13 Method for improving the electrical conductivity of metal oxide semiconductor layers

Country Status (5)

Country Link
JP (1) JP6426177B2 (en)
KR (1) KR20160034262A (en)
CN (1) CN105409003B (en)
TW (1) TWI660432B (en)
WO (1) WO2015010825A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613706B (en) * 2015-07-03 2018-02-01 友達光電股份有限公司 Oxide semiconductor thin film transistor and manufacturing method thereof
EP3136446A1 (en) 2015-08-28 2017-03-01 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Tft device and manufacturing method
US20200035717A1 (en) * 2018-07-26 2020-01-30 Sharp Kabushiki Kaisha Thin film transistor substrate and method of producing thin film transistor substrate
JP2021128978A (en) * 2020-02-12 2021-09-02 株式会社ジャパンディスプレイ Semiconductor device and manufacturing method for the same
KR20230061713A (en) 2021-10-29 2023-05-09 (주) 예스티 High pressure annealing process for metal oxides

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080277658A1 (en) * 2007-05-11 2008-11-13 Hun-Jung Lee Thin film transistor, method of manufacturing the same, organic light emitting display apparatus comprising the thin film transistor, and method of manufacturing the same
US20090230389A1 (en) * 2008-03-17 2009-09-17 Zhizhang Chen Atomic Layer Deposition of Gate Dielectric Layer with High Dielectric Constant for Thin Film Transisitor
US20110095288A1 (en) * 2008-07-03 2011-04-28 Sony Corporation Thin film transistor and display device
TW201232786A (en) * 2010-12-30 2012-08-01 Jusung Eng Co Ltd Thin film transistor and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708910B2 (en) * 2010-03-30 2015-04-30 ソニー株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
JP5604938B2 (en) * 2010-03-31 2014-10-15 凸版印刷株式会社 Thin film transistor and manufacturing method thereof
JP2012015436A (en) * 2010-07-05 2012-01-19 Sony Corp Thin film transistor and display device
US8716073B2 (en) * 2011-07-22 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Method for processing oxide semiconductor film and method for manufacturing semiconductor device
CN102969362B (en) * 2011-09-01 2016-03-30 中国科学院微电子研究所 high stability amorphous metal oxide TFT device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080277658A1 (en) * 2007-05-11 2008-11-13 Hun-Jung Lee Thin film transistor, method of manufacturing the same, organic light emitting display apparatus comprising the thin film transistor, and method of manufacturing the same
US20090230389A1 (en) * 2008-03-17 2009-09-17 Zhizhang Chen Atomic Layer Deposition of Gate Dielectric Layer with High Dielectric Constant for Thin Film Transisitor
US20110095288A1 (en) * 2008-07-03 2011-04-28 Sony Corporation Thin film transistor and display device
TW201232786A (en) * 2010-12-30 2012-08-01 Jusung Eng Co Ltd Thin film transistor and method of manufacturing the same

Also Published As

Publication number Publication date
CN105409003B (en) 2019-03-08
TW201508841A (en) 2015-03-01
JP6426177B2 (en) 2018-11-21
KR20160034262A (en) 2016-03-29
CN105409003A (en) 2016-03-16
WO2015010825A1 (en) 2015-01-29
JP2016527719A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP5274327B2 (en) Organic electroluminescent display device and manufacturing method thereof
Seok et al. A full-swing a-IGZO TFT-based inverter with a top-gate-bias-induced depletion load
TWI660432B (en) Method for improving the electrical conductivity of metal oxide semiconductor layers
TWI555200B (en) Offset electrode tft structure
US20140239291A1 (en) Metal-oxide semiconductor thin film transistors and methods of manufacturing the same
US20070069209A1 (en) Transparent thin film transistor (TFT) and its method of manufacture
KR102402547B1 (en) Graphene electronic device having channel including graphene islands and methods of fabricating the same
CN102136499A (en) Thin film transistor and method of manufacturing the same
CN102347368A (en) Transistor, method of manufacturing transistor, and electronic device including transistor
KR20140003893A (en) Transistor having oxynitride channel layer and method of manufacturing the same
KR100976459B1 (en) Thin Film Transistor, Fabricating Method Of Thin Film Transistor and Plat Panel Display Device
US9252284B2 (en) Display substrate and method of manufacturing a display substrate
TWI664734B (en) A method for fabricating a thin film transistor
CN105552035B (en) The production method and its structure of low temperature polycrystalline silicon tft array substrate
Jin et al. Simple fabrication of a three-dimensional CMOS inverter using p-type poly-Si and n-type amorphous Ga–In–Zn–O thin-film transistors
KR20110080118A (en) Thin film transistor having etch stop multi-layers and method of manufacturing the same
JP5814712B2 (en) Thin film device manufacturing method
US11881515B2 (en) Vertical thin film transistor with single gate electrode with micro-perforations
Xiao et al. a-IGZO TFTs With Inductively Coupled Plasma Chemical Vapor Deposited ${\rm SiO} _ {x} $ Gate Dielectric
CN104362098B (en) Oxide thin film transistor and preparation method thereof
Li et al. Back-channel etched double layer in-WO/In-W-Zn-O thin-film transistors
CN113611752B (en) Manufacturing method of low-temperature polysilicon TFT (thin film transistor) and low-temperature polysilicon TFT
KR102571072B1 (en) Thin Film Transistor and Preparation Method Thereof
KR20160103898A (en) Silicon Series Thin-film Semiconductor Device and Method for Manufacturing the Same
Hosono Transparent Amorphous Oxide Semiconductors for Display Applications: Materials, Features, Progress, and Prospects

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees