TWI657169B - 半極性iii氮化物膜及製造該膜之材料及方法 - Google Patents

半極性iii氮化物膜及製造該膜之材料及方法 Download PDF

Info

Publication number
TWI657169B
TWI657169B TW103114556A TW103114556A TWI657169B TW I657169 B TWI657169 B TW I657169B TW 103114556 A TW103114556 A TW 103114556A TW 103114556 A TW103114556 A TW 103114556A TW I657169 B TWI657169 B TW I657169B
Authority
TW
Taiwan
Prior art keywords
layer
semi
composition
periodic
grown
Prior art date
Application number
TW103114556A
Other languages
English (en)
Other versions
TW201500604A (zh
Inventor
維特利 蘇克維夫
維拉迪姆 伊凡索夫
班傑明A 哈斯寇
葛洛力 哈森S 艾爾
亞歷山大 瑟金
Original Assignee
傲思丹度科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 傲思丹度科技公司 filed Critical 傲思丹度科技公司
Publication of TW201500604A publication Critical patent/TW201500604A/zh
Application granted granted Critical
Publication of TWI657169B publication Critical patent/TWI657169B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Abstract

本發明已研發克服先前技術中在半極性III族氮化物模板、膜及材料之性質及製造方面之缺陷之方法。本發明已研發提供奈米規模週期性結構之受控生長之氫化物氣相磊晶之新穎變化形式。該生長方法已用於生長不同組成之交替AlGaN層之多週期堆疊。將該等週期性結構施加至半極性III氮化物產生該材料之優良結構及形態性質,包括降低之貫穿式差排密度及在所生長材料之自由表面處之表面粗糙度。該等增強使得能夠製造優良品質之半極性III氮化物電子及光電子裝置,包括(但不限於)電晶體、發光二極體及雷射二極體。

Description

半極性III氮化物膜及製造該膜之材料及方法 相關申請案之交叉參考
本申請案主張於2013年4月22日申請之美國臨時專利申請案第61/814,653號之權益。
本發明係關於半極性III氮化物膜之領域及製造其之材料及方法。
包括(但不限於)Al x In y Ga1-x-y N組合物(其中0 xy 1)之III族氮化物在許多領域中令人感興趣,例如製造高亮度發光二極體(LED)、雷射二極體及電力電子設備。實際上,產生現今所生長之所有III族氮化物,以使得裝置製造可用之最大表面積位於(00.1)c平面,其中符號(hk.l)係鑑別六方晶體中之晶體平面之密勒-布拉維(Miller-Bravais)結晶符號之速記形式。「.」代表(hkil)四指數符號中之i指數,其係多餘的,此乃因h+k+i=0。熟習此項技術者進一步瞭解,使用小括弧之(hkil)符號係指具體晶體平面,而使用波形括號之符號(例如{hkil})係指一族相關結晶平面。出於本發明之目的,應理解{}及()符號係可互換,此乃因本發明通常適用於屬任何一族之平面之所有具體平面。
習用c平面定向之氮化物可稱為「極性」氮化物由於平行於c軸且因此垂直於c平面存在之實質之壓電性及自發性極化場。該等極化場 藉由造成色位移、限制輻射複合效率及減小高電流密度效率來限制極性III族氮化物裝置之性能。
替代組之III族氮化物晶體定向稱為「半極性」。半極性氮化物係在密勒-布拉維符號中具有至少兩個非0 hki指數及非0 l指數之氮化物晶體平面。一些常見半極性平面包括(但不限於){10.1}、{10.2}、{10.3}、{20.1}、{30.1}及{11.2}平面。
III族氮化物通常係藉由若干技術來製造,包括(但不限於)金屬有機化學氣相沈積(MOCVD或OMVPE)、分子束磊晶(MBE)及氫化物氣相磊晶(HVPE)。壓倒多數之III族氮化物研發已集中於極性c平面定向材料。然而,歷史上已證明半極性III族氮化物平面難以藉由任何技術使用與極性氮化物相當之參數來生長。的確,熟習此項技術者應認識到半極性III族氮化物膜、模板或獨立層使用針對極性氮化物所最佳化之產生參數之生長通常產生實際上不能用於製造光電子及電子裝置之低品質、粗糙且有缺陷之材料。
100‧‧‧模板結構
101‧‧‧區塊
102‧‧‧區塊
110‧‧‧基材
120‧‧‧可選成核層
130‧‧‧梯度式AlGaN區域
140‧‧‧奈米規模週期性磊晶結構
150‧‧‧末端III族氮化物層
圖1圖解說明具有兩對在梯度或階梯式AlGaN層上生長之週期性磊晶結構層之本發明簡單實施例。
圖2圖解說明其中已排除梯度AlxGa1-xN層且藉助使用週期性磊晶結構內含物達成缺陷減少之本發明實施例。
圖3圖解說明其中已排除週期性磊晶結構且藉助使用梯度式AlGaN層達成缺陷減少之本發明實施例。
圖4係諾馬斯基(Nomarski)光學對比顯微照片,其顯示在不利用本發明之情況下在m平面藍寶石基材上之AlN成核層上生長之Al0.35Ga0.65N中間層上生長之大約15μm(11.2)GaN。
圖5係諾馬斯基光學對比顯微照片,其顯示在由(a)由Al0.35Ga0.65N組成之層及(b)由GaN組成之層組成之10個週期之週期性磊晶結構上生 長之GaN膜。週期性磊晶結構係於根據本發明實施例在5個階梯中自AlN過渡至GaN之梯度AlxGa1-xN層上生長。
圖6係諾馬斯基光學對比顯微照片,其顯示在由(a)由Al0.85Ga0.15N組成之層及(b)由GaN組成之層組成之10個週期之週期性磊晶結構上生長之GaN膜。週期性磊晶結構係於根據本發明實施例在5個階梯中自AlN過渡至GaN之梯度AlxGa1-xN層上生長。
圖7係諾馬斯基光學對比顯微照片,其顯示根據本發明實施例在由Al0.85Ga0.15N及(b)由GaN組成之層組成之10個週期之週期性磊晶結構上生長之GaN膜。週期性磊晶結構係於在5個階梯中自AlN過渡至GaN之梯度AlxGa1-xN層上生長。末端GaN層以降低之生長速率生長。
本發明提供顯著降低缺陷密度、降低表面粗糙度並改良半極性III族氮化物之官能性之方式。本發明利用HVPE之新穎變化形式在半極性III氮化物平面上生長奈米規模之週期性磊晶結構。本發明進一步包括使用階梯式及/或梯度式AlGaN層來改良相純度並降低宏觀缺陷密度。
本發明之關鍵新穎元素包括以下中之一或多種:
1.利用HVPE(即已知生長速率高得多之技術)對半極性AlGaN及GaN生長速率之奈米規模控制
2.納入階梯式或梯度式AlGaN層作為自m平面Al2O3基材上之可選AlN成核層至自由表面處之GaN之過渡。在一實施例中,膜層係在5個組成階梯中自AlN過渡至GaN
3.以不同組成之AlGaN及GaN之交替薄層為特徵之奈米規模週期性結構之生長
4.將本發明明確施加至高品質半極性III族氮化物膜、模板、獨立基材及塊狀材料之生長
5.在同一輪生長中生長奈米規模梯度式AlGaN層及週期性磊晶結構作為薄及厚之AlGaN及GaN膜之能力,從而使與依賴於MBE或MOCVD用於III族氮化物生長之方法比較低成本之模板產生成為可能
6.達成與先前技術中所闡述之半極性III族氮化物比較降低之表面粗糙度、降低之宏觀缺陷密度及/或降低之微觀結構缺陷密度
藉由實例之方式而非限制之方式在附圖的圖中圖解說明本發明,且在附圖中相同的參考編號指代相同的元件。在本發明之以下詳細闡述中提及「一個實施例」或「一實施例」意指結合實施例所闡述之特定特徵、結構或特性係包括於本發明之至少一個實施例中。片語「在一個實施例中」在此詳細闡述中之各種地方之出現不必全部指代相同實施例。以下圖圖解說明本發明之若干實施例。
圖1圖解說明包括本發明之模板結構100。可選成核層120係沈積於適宜基材110上。梯度式AlGaN區域130係於成核層上沈積,奈米規模週期性磊晶結構140係在該成核層上生長。末端III族氮化物層(例如GaN)係在週期性磊晶結構上生長,由區塊150代表。
參照圖1,基材110可為能夠以異質磊晶方式或以同質磊晶方式支撐III族氮化物生長之任何基材。適宜基材材料之實例包括(但不限於)藍寶石、矽、鋁酸鋰、尖晶石、碳化矽、氮化鎵、氮化鋁及二氧化矽玻璃。基材定向可為支撐III族氮化物磊晶生長之任何定向,包括(但不限於)藍寶石c平面、m平面、r平面或n平面;矽{100}、{110}或{111}平面;鋁酸鋰{100}平面;碳化矽{00.1}、{10.0}、{11.0}、{11.1}、{11.2}、{10.1}、{10.2}、{10.3}及{20.1}平面。熟習此項技術者應認識到在本發明之實踐中可利用此處未列示之其他基材材料及定向。
成核層120可為任何III族氮化物組合物,可在在400℃至1300℃之範圍內之任何溫度下沈積,且可具有0.1nm至1000μm之任何厚 度。成核層可進一步為沈積製程之結果,例如AlN沈積於藍寶石基材上;或可為基材頂部表面之改質之結果,例如可藉由在高溫下退火期間使氨流經藍寶石使藍寶石頂部表面氮化、從而將一或多個Al2O3之單層轉化成AlN來達成。若期望,則成核層可進一步自該結構完全省略。
梯度式AlGaN區域130係沈積於成核層上。梯度AlxGa1-xN區域涉及在大約5nm至大約10μm之範圍內之總厚度內自初始III族氮化物組合物(例如Al1.0Ga0.0N)過渡至末端III族氮化物組合物(例如Al0.0Ga1.0N)。過渡可連續進行,隨生長時間來改變組成且無不同層結構。例如,在一實施例中,梯度式AlGaN區域涉及在200nm之區域厚度內以隨厚度而變之線性組成變化自AlN過渡至GaN。
在替代實施例中,梯度AlxGa1-xN區域可在一系列階梯中自初始組合物至末端組合物執行。例如,在此替代實施例中,梯度AlxGa1-xN區域係由包括6個分別具有Al1.00Ga0.00N、Al0.80Ga0.20N、Al0.60Ga0.40N、Al0.40Ga0.60N、Al0.20Ga0.80N及Al0.00Ga1.00N之組合物之不同層之自AlN至GaN之過渡組成。
在另一實施例中,梯度AlxGa1-xN區域之一部分在組成上連續改變,而另一部分係逐步改變。每一梯度之厚度在整個梯度AlxGa1-xN層中無需恆定。熟習此項技術者應認識到梯度AlxGa1-xN區域中之具體梯度數及梯度AlxGa1-xN區域之總厚度可在不背離本發明範疇之情況下改變。
週期性磊晶結構140係由多對在彼此上生長之具有不同組成之III族氮化物層組成。參照圖1,在區塊140中一個層已指示為層(a)且另一個層指示為層(b)。(a)及(b)層必須係由與彼此不同之III族氮化物組合物組成。例如,在一實施例中,層(a)係Al0.80Ga0.20N,而層(b)係Al0.00Ga1.00N。在本發明之最簡單實施方案中,週期性磊晶結構中之 所有(a)層將係由與所有其他(a)層類似之組合物組成,而週期性磊晶結構中之所有(b)層將係由與所有其他(b)層類似之組合物組成。然而,在一些實施例中,期望穿過週期性磊晶結構之厚度改變(a)層或(b)層(或二者)之組合物。該變化與本發明相容,前提條件係每一層均係由組合物上與直接毗鄰層不同之III族氮化物組成。
在圖1中所圖解說明之簡單實施例中,圖解說明兩對週期性磊晶結構層140。實踐中所使用之週期性磊晶結構層之對數將自大約2對變至大約200對。
週期性磊晶結構中之(a)及(b)層之厚度各自通常將在大約1nm至大約100nm之範圍內。沒有要求所有(a)層及所有(b)層分別使用相同厚度。在一實施例中,(a)層之厚度為大約5nm且(b)層之厚度為大約20nm。層之厚度亦可遍及週期性磊晶結構之厚度而變。例如,可期望利用其中5對各自層厚度為大約5nm、接著為5對各自10nm之厚度之結構。熟習此項技術者應認識到層厚度之許多變化可成功用於本發明之實踐中。
由區塊150代表之頂層代表利用本發明生長之薄膜或模板之末端組合物。通常,此頂層將由GaN組成,但在實踐中其可係由任何III族氮化物合金組合物組成。此層可以不同生長速率生長且亦可摻雜有改質原子或離子,包括(但不限於)Si、C、O、Mg及Zn。
頂層之厚度可在之範圍內薄模板情形下之1nm至生長用作獨立基材之塊狀氮化物材料情形下之50mm。通常,對於III族氮化物模板製造頂層厚度將為大約5微米至10微米。類似地,通常獨立膜產生之厚度為大約250μm至1000μm。熟習此項技術者應認識到厚度之許多範圍與本發明之實踐相容。
亦可在不包括梯度AlxGa1-xN層之情況下實踐本發明,如圖2中所圖解說明。在由區塊101所圖解說明之實施例中,週期性磊晶結構140 係在成核層120上生長。
亦可在不包括週期性磊晶結構140之情況下實踐本發明,如圖3中所圖解說明。在由區塊102所圖解說明之實施例中,末端GaN層150係在梯度AlxGa1-xN層130上生長。
熟習此項技術者將進一步認識到可在不根本上背離本發明範疇之情況下重排圖1至3中所圖解說明之區塊順序。例如,梯度AlxGa1-xN層可在週期性磊晶結構上生長而非以圖1中所闡述之順序生長。亦應強調可將本文中未闡述之額外層插入至該結構中。例如,在一實施例中,GaN層係在成核層上生長,梯度AlxGa1-xN層係在該成核層上生長。補充層之該等添加符合本發明之範疇及實踐。
圖4至7提供圖解說明納入本發明之{11.2}GaN及AlxGa1-xN膜之經改良表面形態之諾馬斯基光學對比顯微照片。在圖4中,顯示在不利用本發明之情況下生長之AlxGa1-xN表面。此膜係由在m平面藍寶石基材上之AlN成核層上生長之Al0.35Ga0.65N中間層上生長之大約15μm(11.2)GaN組成。
圖5顯示GaN膜之諾馬斯基光學對比顯微照片,該GaN膜在由(a)由Al0.35Ga0.65N組成之層及(b)由GaN組成之層組成之10個週期之週期性磊晶結構上生長。週期性磊晶結構係於在5個階梯中自AlN過渡至GaN之梯度AlxGa1-xN層上生長。圖5與圖4之間之表面粗糙度之比較明確顯示圖5中之表面之優良品質。
圖6顯示GaN膜之諾馬斯基光學對比顯微照片,該GaN膜在由(a)由Al0.85Ga0.15N組成之層及(b)由GaN組成之層組成之10個週期之週期性磊晶結構上生長。週期性磊晶結構係於在5個階梯中自AlN過渡至GaN之梯度AlxGa1-xN層上生長。圖6與圖4之間之表面粗糙度之比較明確顯示圖6中之表面之優良品質。
圖7顯示GaN膜之諾馬斯基光學對比顯微照片,該GaN膜在由(a) 由Al0.85Ga0.15N組成之層及(b)由GaN組成之層組成之10個週期之週期性磊晶結構上生長。週期性磊晶結構係於在5個階梯中自AlN過渡至GaN之梯度AlxGa1-xN層上生長。在此磊晶生長實例中,末端GaN層係以降低之生長速率生長,從而導致表面粗糙度之進一步降低。圖7與圖4之間之表面粗糙度之比較明確顯示圖7中之表面之優良品質。
將本發明納入半極性III族氮化物之生長與不利用本發明之半極性III族氮化物膜生長比較可使末端層表面粗糙度降低75%或更多。本發明進一步藉由阻斷微結構缺陷之傳播並緩解與晶格失配及熱膨脹失配相關之應變來改良末端III族氮化物層之微結構品質。

Claims (16)

  1. 一種在不同基材上產生末端半極性III族氮化物層之方法,該方法包含:a)自由藍寶石、碳化矽、鋁酸鎂尖晶石、鋁酸鋰、矽、二氧化矽玻璃、氮化鎵、氮化鋁或其合金組成之群選擇適宜基材;b)在400℃至1300℃範圍之任何溫度下,在該基材上生長具有0.1nm至1000μm之任何厚度之氮化鋁成核層;c)生長階梯式氮化鋁鎵層,其中該階梯式氮化鋁鎵層係由包括Al1.00Ga0.00N、Al0.80Ga0.20N、Al0.60Ga0.40N、Al0.40Ga0.60N、Al0.20Ga0.80N及Al0.00Ga1.00N之AlxGa1-xN組合物之6個階梯組成;d)生長週期性磊晶結構(epi-structure),其係由在交替前驅物流及交替溫度下之不同組成之III族氮化物之交替層組成;及e)在下方的階梯式氮化鋁鎵層或該週期性磊晶結構上生長該末端半極性III族氮化物層。
  2. 如請求項1之方法,其中該半極性III族氮化物係關於選自由{10.1}、{10.2}、{10.3}、{20.1}、{30.1}及{11.2}平面或其混合組成之定向之群之平面定向。
  3. 如請求項1之方法,其中該基材係{10.0}m平面藍寶石,其在400℃至1300℃範圍之任何溫度下經處理。
  4. 如請求項3之方法,其中該氮化鋁成核層係藉由使該基材表面與氨反應來形成。
  5. 如請求項1之方法,其中該末端半極性III族氮化物層係利用金屬有機化學氣相沈積、氫化物氣相磊晶或分子束磊晶來生長。
  6. 如請求項1之方法,其中在c)及e)中,c)之該階梯式氮化鋁鎵層係由自起始AlGaN組合物至e)之該末端半極性III族氮化物層之 AlGaN之連續變化組合物組成,該末端半極性III族氮化物層具有AlGaN組合物。
  7. 如請求項6之方法,其中x為1之起始AlxGa1-xN組合物係在400℃至1300℃範圍之任何溫度下被沈積。
  8. 如請求項6之方法,其中該末端半極性III族氮化物層具有GaN組合物,其以降低的生長速率被沈積,產生降低之表面粗糙度、宏觀缺陷密度或微觀結構缺陷密度。
  9. 如請求項1之方法,其中AlGaN之不同組合物係在完全不同溫度及完全不同氨流下各別生長。
  10. 如請求項1之方法,其中該週期性磊晶結構係由AlGaN及GaN之交替層組成,其在對應週期氨流與溫度之對應週期變化下被沈積。
  11. 如請求項10之方法,其中該週期性磊晶結構係由2對至200對AlGaN及GaN之交替層組成,其在氨流之2與200間對應週期變化與溫度之2與200間對應週期變化下被沈積。
  12. 如請求項1之方法,其中先進行c)再d),以使得該週期性磊晶結構係於氨流之週期變化與生長溫度之週期變化下生長在該階梯式氮化鋁鎵層上。
  13. 如請求項1之方法,其中先進行d)再c),以使得該階梯式氮化鋁鎵層係於氨流之梯度變化與溫度之梯度變化下生長在該週期性磊晶結構上。
  14. 如請求項1之方法,其中該末端半極性III族氮化物層含有選自由矽、鎂、鋅、氧、碳及其混合物組成之群之摻雜劑。
  15. 一種半極性氮化鎵模板,其係經由如請求項1之方法在藍寶石基材上生長,其中自AlN至GaN之過渡涉及在200nm之區域厚度內以隨厚度而變之線性組成變化。
  16. 一種氮化鋁鎵模板,其係經由如請求項1之方法以降低的生長速率在藍寶石基材上生長,以另產生降低的表面粗糙度。
TW103114556A 2013-04-22 2014-04-22 半極性iii氮化物膜及製造該膜之材料及方法 TWI657169B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361814653P 2013-04-22 2013-04-22
US61/814,653 2013-04-22

Publications (2)

Publication Number Publication Date
TW201500604A TW201500604A (zh) 2015-01-01
TWI657169B true TWI657169B (zh) 2019-04-21

Family

ID=50792588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103114556A TWI657169B (zh) 2013-04-22 2014-04-22 半極性iii氮化物膜及製造該膜之材料及方法

Country Status (3)

Country Link
US (1) US9443727B2 (zh)
TW (1) TWI657169B (zh)
WO (1) WO2014176283A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679650B (zh) * 2016-01-15 2018-06-08 东莞市中镓半导体科技有限公司 一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法
US11287563B2 (en) 2016-12-01 2022-03-29 Ostendo Technologies, Inc. Polarized light emission from micro-pixel displays and methods of fabrication thereof
WO2018195702A1 (zh) * 2017-04-24 2018-11-01 苏州晶湛半导体有限公司 一种半导体结构和制备半导体结构的方法
WO2020149730A1 (en) * 2019-01-17 2020-07-23 Collaborative Research In Engineering, Science And Technology Center A method for growing a semi-polar gallium nitride epitaxial layer using aluminum nitride / gallium nitride superlattices
CN110504301A (zh) * 2019-09-09 2019-11-26 南方科技大学 一种iii族氮化物晶体管外延结构和晶体管器件
CN111948235B (zh) * 2020-08-07 2022-09-20 广西大学 测量半极性面ⅲ族氮化物薄膜缺陷密度的方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195562A1 (en) * 2002-11-25 2004-10-07 Apa Optics, Inc. Super lattice modification of overlying transistor
TW201036145A (en) * 2009-02-03 2010-10-01 Freescale Semiconductor Inc Semiconductor structure, an integrated circuit including a semiconductor structure and a method for manufacturing a semiconductor structure
CN102119243A (zh) * 2008-07-16 2011-07-06 奥斯坦多科技公司 利用氢化物气相外延(HVPE)生长平面非极性的{1-100}m面和半极性的{11-22}氮化镓
US20120223365A1 (en) * 2011-03-03 2012-09-06 International Rectifier Corporation III-Nitride Semiconductor Structures with Strain Absorbing Interlayer Transition Modules
US20120313077A1 (en) * 2011-06-10 2012-12-13 The Regents Of The University Of California High emission power and low efficiency droop semipolar blue light emitting diodes

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741724A (en) * 1996-12-27 1998-04-21 Motorola Method of growing gallium nitride on a spinel substrate
US7208393B2 (en) 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US7846757B2 (en) * 2005-06-01 2010-12-07 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,A1,In,B)N thin films, heterostructures, and devices
US20060160345A1 (en) * 2005-01-14 2006-07-20 Xing-Quan Liu Innovative growth method to achieve high quality III-nitride layers for wide band gap optoelectronic and electronic devices
US7687293B2 (en) * 2006-01-20 2010-03-30 The Regents Of The University Of California Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
US20120161287A1 (en) * 2006-01-20 2012-06-28 Japan Science And Technology Agency METHOD FOR ENHANCING GROWTH OF SEMI-POLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION
EP2087507A4 (en) * 2006-11-15 2010-07-07 Univ California METHOD FOR THE HETEROEPITAXIAL GROWTH OF QUALITATIVELY HIGH-QUALITY N-SIDE-GAN, INN AND AIN AND THEIR ALLOYS THROUGH METALLORGANIC CHEMICAL IMMUNE
JP2011042542A (ja) * 2009-08-24 2011-03-03 Furukawa Co Ltd Iii族窒化物基板の製造方法およびiii族窒化物基板
US8629065B2 (en) 2009-11-06 2014-01-14 Ostendo Technologies, Inc. Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
KR20130112868A (ko) 2010-09-10 2013-10-14 엔지케이 인슐레이터 엘티디 반도체 소자용 에피택셜 기판, 반도체 소자용 에피택셜 기판의 제조방법, 및 반도체 소자
US8729559B2 (en) * 2010-10-13 2014-05-20 Soraa, Inc. Method of making bulk InGaN substrates and devices thereon
US8791504B2 (en) * 2011-10-20 2014-07-29 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate breakdown voltage improvement for group III-nitride on a silicon substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195562A1 (en) * 2002-11-25 2004-10-07 Apa Optics, Inc. Super lattice modification of overlying transistor
CN102119243A (zh) * 2008-07-16 2011-07-06 奥斯坦多科技公司 利用氢化物气相外延(HVPE)生长平面非极性的{1-100}m面和半极性的{11-22}氮化镓
TW201036145A (en) * 2009-02-03 2010-10-01 Freescale Semiconductor Inc Semiconductor structure, an integrated circuit including a semiconductor structure and a method for manufacturing a semiconductor structure
US20120223365A1 (en) * 2011-03-03 2012-09-06 International Rectifier Corporation III-Nitride Semiconductor Structures with Strain Absorbing Interlayer Transition Modules
US20120313077A1 (en) * 2011-06-10 2012-12-13 The Regents Of The University Of California High emission power and low efficiency droop semipolar blue light emitting diodes

Also Published As

Publication number Publication date
US9443727B2 (en) 2016-09-13
US20140353685A1 (en) 2014-12-04
TW201500604A (zh) 2015-01-01
WO2014176283A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5451280B2 (ja) ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
TWI657169B (zh) 半極性iii氮化物膜及製造該膜之材料及方法
US8455885B2 (en) Method for heteroepitaxial growth of high-quality N-face gallium nitride, indium nitride, and aluminum nitride and their alloys by metal organic chemical vapor deposition
JP5706601B2 (ja) 平坦な半極性窒化ガリウムの成長技術
JP5838523B2 (ja) 半極性(Al,In,Ga,B)NまたはIII族窒化物の結晶
TWI489668B (zh) 利用金屬有機化學汽相沉積之高品質氮面GaN、InN及AlN及其合金之異質磊晶生長的方法
JP5180189B2 (ja) エピタキシャル横方向異常成長窒化ガリウムテンプレート上での酸化亜鉛膜成長の方法
JP5060875B2 (ja) Iii族窒化物半導体とその製造方法
JP5645887B2 (ja) 半極性窒化物を備え、窒化物核生成層又はバッファ層に特徴を有するデバイス構造
JP2009524251A (ja) 有機金属化学気相成長を介して半極性(Al,In,Ga,B)Nの成長を促進させるための方法
CN1960014A (zh) 氮化物系半导体衬底及其制造方法
TW201314948A (zh) 用於成長矽上氮化鎵之含硼緩衝層
JP2008034834A (ja) シリコン基板上の窒化物単結晶成長方法、これを用いた窒化物半導体発光素子及びその製造方法
US20110003420A1 (en) Fabrication method of gallium nitride-based compound semiconductor
WO2012043885A1 (ja) Iii族窒化物半導体素子製造用基板の製造方法、iii族窒化物半導体自立基板またはiii族窒化物半導体素子の製造方法、およびiii族窒化物成長用基板
EP2362412A1 (en) Method of growing nitride semiconductor and nitride semiconductor substrate formed using the same
JP5814131B2 (ja) 構造体、及び半導体基板の製造方法
JP4884157B2 (ja) 窒化物半導体の製造方法
KR20120073045A (ko) 반도체 박막 성장 방법 및 이에 의해 성장된 반도체의 박막
KR20130084905A (ko) 질화물 반도체층 성장 방법
JP2011102213A (ja) 単結晶基板、その製造方法、当該単結晶基板上に形成してなる半導体薄膜、および半導体構造

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees