TWI655774B - 半導體元件及其製作方法 - Google Patents

半導體元件及其製作方法 Download PDF

Info

Publication number
TWI655774B
TWI655774B TW104126243A TW104126243A TWI655774B TW I655774 B TWI655774 B TW I655774B TW 104126243 A TW104126243 A TW 104126243A TW 104126243 A TW104126243 A TW 104126243A TW I655774 B TWI655774 B TW I655774B
Authority
TW
Taiwan
Prior art keywords
fin structure
layer
germanium
forming
semiconductor device
Prior art date
Application number
TW104126243A
Other languages
English (en)
Other versions
TW201707207A (zh
Inventor
邱崇益
洪世芳
林昭宏
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW104126243A priority Critical patent/TWI655774B/zh
Priority to CN201510550947.4A priority patent/CN106449749B/zh
Priority to US14/855,390 priority patent/US9722078B2/en
Publication of TW201707207A publication Critical patent/TW201707207A/zh
Priority to US15/458,035 priority patent/US9954108B2/en
Priority to US15/465,606 priority patent/US9881831B2/en
Application granted granted Critical
Publication of TWI655774B publication Critical patent/TWI655774B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7855Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with at least two independent gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7849Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being provided under the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一種半導體元件及其形成方法,該半導體元件包含一矽基底,一鰭狀結構以及一淺溝隔離。該鰭狀結構是設置於該矽基底上且包含一矽鍺層,該矽鍺層自該鰭狀結構的一頂端朝下延伸且至少約佔該鰭狀結構80%至90%。該淺溝隔離部分覆蓋該鰭狀結構。

Description

半導體元件及其製作方法
本發明是關於一種半導體元件及其形成方法,尤指一種形成有矽鍺磊晶結構的半導體元件及其形成方法。
近年來,隨著場效電晶體(field effect transistors,FETs)元件尺寸持續地縮小,習知平面式(planar)場效電晶體元件之發展已面臨製程上之極限。為了克服製程限制,以非平面(non-planar)之場效電晶體元件,例如鰭狀場效電晶體(fin field effect transistor,Fin FET)元件來取代平面電晶體元件已成為目前之主流發展趨勢。由於鰭狀場效電晶體元件的立體結構可增加閘極與鰭狀結構的接觸面積,因此,可進一步增加閘極對於載子通道區域的控制,從而降低小尺寸元件面臨的汲極引發能帶降低(drain induced barrier lowering,DIBL)效應,並可以抑制短通道效應(short channel effect,SCE)。再者,由於鰭狀場效電晶體元件在同樣的閘極長度下會具有更寬的通道寬度,因而可獲得加倍的汲極驅動電流。
然而,在現行的鰭狀場效電晶體元件製程中,鰭狀結構的設 計仍存在許多瓶頸,進而影響整個元件的漏電流及整體電性表現。因此如何改良現有鰭狀場效電晶體製程即為現今一重要課題。
本發明之一目的在於提供一種半導體元件,其具有均勻分布於鰭狀結構內的一矽鍺層,因而可有效地提升通道區的載子遷移率以及整體的元件效能。
本發明之另一目的在於提供一種形成半導體元件的方法,其可形成可均勻地分布在鰭狀結構內至少80%至90%的一矽鍺層,因而可有效地提升通道區的載子遷移率以及整體的元件效能。
為達上述目的,本發明之一實施例提供一種半導體元件,其包含一矽基底,一鰭狀結構以及一淺溝隔離。該鰭狀結構是設置於該矽基底上且包含一矽鍺層,該矽鍺層自該鰭狀結構的一頂端朝下延伸且至少約佔該鰭狀結構80%至90%。該淺溝隔離部分覆蓋該鰭狀結構。
為達上述目的,本發明之一實施例提供一種形成半導體元件的方法,包含以下步驟。首先,在一矽基底上形成一鰭狀結構,該鰭狀結構由矽組成。接著,在該鰭狀結構的側壁上選擇性地形成一磊晶層。然後,進行一鍺濃縮製程,以在該鰭狀結構形成一矽鍺層並使該磊晶層轉變成一氧化層,該矽鍺層自該鰭狀結構的一頂端朝向一底端延伸且至少約佔該鰭狀結構80%至90%。最後,在該鍺濃縮製程後形成一淺溝隔離,覆蓋該鰭狀結構的一底部。
本發明的半導體元件及其形成方法,主要是在含矽的基底及鰭狀結構表面形成磊晶層,再進行鍺濃縮製程。使得該磊晶層與氧反應而轉變為一氧化層,同時使磊晶層發生緻密化效應而將其內的鍺元素向內推擠。因此,源自於的磊晶層鍺元素會大量累積在該鰭狀結構及基底內,進而在該鰭狀結構及基底內形成一矽鍺層。利用該矽鍺層的晶格常數(lattice constant)大於該矽基底晶格之特點,其可對後續形成之半導體電晶體的通道區產生應力,藉此達到增加通道區的載子遷移率(carrier mobility),以及提升元件效能等目的。
100‧‧‧基底
101‧‧‧鰭狀結構
103、107‧‧‧矽鍺層
105‧‧‧襯墊層
110‧‧‧圖案化遮罩
111‧‧‧氧化矽層
113‧‧‧氮化矽層
130、135‧‧‧磊晶層
131、136‧‧‧氧化矽層
150、151、153‧‧‧絕緣層
170、171‧‧‧閘極介電層
190、191‧‧‧閘極層
第1圖至第5圖繪示本發明第一實施例中形成半導體元件之方法的步驟剖面示意圖。
第6圖至第10圖繪示本發明第二實施例中形成半導體元件之方法的步驟剖面示意圖。
為使熟習本發明所屬技術領域的一般技藝者能更進一步了解本發明,下文特列舉本發明的數個較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成的功效。
請參照第1圖至第5圖,所繪示者為本發明第一實施例中半導體元件之形成方法的步驟示意圖。首先,提供一基底100,例如是一矽 基底、一含矽基底或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。基底100形成有至少一鰭狀結構101,在矽製程(bulk silicon)的實施態樣中,鰭狀結構101的形成方式較佳是利用一間隙壁自對準雙圖案法(spacer self-aligned double-patterning,SADP),也就是側壁圖案轉移(sidewall image transfer,SIT)技術,包含透過一微影暨蝕刻製程在基底100上形成複數個圖案化犧牲層(未繪示),依序進行沉積及蝕刻製程,以於各該圖案化犧牲層的側壁形成一側壁子(未繪示),後續,去除該圖案化犧牲層,並透過該側壁子的覆蓋再進行一蝕刻製程,使得該側壁子的圖案被轉移至單層或多層結構的一圖案化遮罩110,例如包含由一氮化矽(silicon nitride)層111以及一氧化矽層113所組成的複合結構。之後,再經過一蝕刻製程,將圖案化遮罩110的圖案轉移至下方的基底100中,形成複數個淺溝渠(shallow trench,未繪示),同時定義出各鰭狀結構101。
然而,本領域者應可輕易了解,本發明的鰭狀結構亦可能以其他方式形成,並不限於前述的製程。例如,在另一實施例中,鰭狀結構101的形成方式也可選擇先於基底100上形成一圖案化硬遮罩層(未繪示),再利用一磊晶製程於暴露於該圖案化硬遮罩層外的基底100上長出包含矽的半導體層(未繪示),以作為相對應的鰭狀結構。或者,在其他例如包含矽覆絕緣基底的實施態樣(未繪示)中,則可利用圖案化遮罩110來蝕刻基底100的一半導體層(未繪示),並停止於該半導體層下方的一底氧化層(未繪示)以形成該等鰭狀結構。此外,在本發明的另一實施例中,還可另進行一鰭狀結構切割(fin-cut)製程,去除一部分的鰭狀結構,形成後續製程中所需的鰭狀結構佈局(未 繪示),但並不以此為限。
接著,進行一選擇性磊晶成長(selective epitaxial growth,SEG)製程,以在基底100及鰭狀結構101的表面上形成一磊晶層130。磊晶層130可以包含一矽鍺(silicon germanium,SiGe)層、矽化鍺硼(SiGeB)層或矽化鍺錫(SiGeSn)層,例如是約包含20%至50%的鍺,但不以此為限。在本實施例中,磊晶層130可以是共形地形成在基底100及鰭狀結構101所暴露的所有矽表面上,且較佳是使一部分的磊晶層130自鰭狀結構101的表面進一步向上延伸至高於圖案化遮罩110與鰭狀結構101的交界。也就是說,磊晶層130的頂面高於圖案化遮罩110與鰭狀結構101的交界,如第2圖所示,但不以此為限。在另一實施例中,也可選擇形成頂面與該交界齊平的一磊晶層(未繪示)。
隨後,進行一鍺濃縮(germanium condensation)製程,以在鰭狀結構101內形成一矽鍺層103。具體來說,該鍺濃縮製程例如是在約為800℃至1100℃的含氧環境下進行。藉此,至少部分的磊晶層130可與氧反應而形成一氧化層,較佳為全部的磊晶層130完全與氧反應成氧化層,例如是一氧化矽層131,同時,在該氧化反應下,磊晶層130內的鍺元素可發生緻密化效應(condensation)而逐漸往其內側的鰭狀結構101及基底100聚集。在此情況下,大量的鍺元素累積在鰭狀結構101及基底100內,而可在原本為純矽材質的鰭狀結構101及基底100內形成含有大量鍺元素的矽鍺層103。
值得特別說明的是,在一較佳實施例中,磊晶層130相對於 後續形成的矽鍺層103可具有較大的一厚度或體積,因而可使矽鍺層103佈滿整個鰭狀結構101,並約包含30%至80%的鍺,如第3圖所示。然而,本發明形成矽鍺層的方法並不限於前述製程,舉例來說,在其它實施例中,也可依據元件需求而形成僅部分覆蓋鰭狀結構101的一磊晶層(未繪示),或是在該鍺濃縮製程後選擇性地移除氧化矽層131,並再次進行磊晶層的製程與鍺濃縮製程,以形成具有更高鍺比例的一磊晶層(未繪示)。
而後,即可全面性地於基底100上形成一絕緣材料層(未繪示),覆蓋鰭狀結構101、圖案化遮罩110與氧化矽層131。其中,形成絕緣材料層的方法,較佳是利用一流動式化學氣相沈積(flowable chemical vapor deposition,FCVD)製程,之後再搭配化學機械研磨(chemical mechanical polishing,CMP)與回蝕刻製程,例如可先以圖案化遮罩110當作停止層來移除一部分的該絕緣材料層,來平坦化該絕緣材料層,再利用圖案化遮罩110當作遮罩,回蝕刻部分的該絕緣材料層,以在基底100上形成一絕緣層150,最後再去除圖案化遮罩110。由此,鰭狀結構101的一部分可突出於絕緣層150,而使得絕緣層150可作為一淺溝隔離(shallow trench isolation,STI)。在一實施例中,絕緣層150是覆蓋鰭狀結構的一底部,並大體上約覆蓋鰭狀結構101高度的20%至50%,如第4圖所示。
需注意的是,本實施例中,在進行該化學機械研磨與回蝕刻製程時,選擇因應後續形成三閘極電晶體元件的結構特性,而一併去除圖案化遮罩110(包含氮化矽層113以及氧化矽層111),如第4圖所 示,但不以此為限。在其他實施態樣中,也可選擇保留或僅部分移除圖案化遮罩110。此外,另需注意的是,絕緣層150較佳是包含與氧化矽層131具相同蝕刻選擇比的材質,如氧化矽,藉此,即可在進行該化學機械研磨與回蝕刻製程時,同時移除覆蓋在鰭狀結構101上半部的氧化矽層131。並且,使得位在鰭狀結構101下半部的氧化矽層131同為淺溝隔離的一部分,如第4圖所示,但不以此為限。在另一實施態樣中,也可選擇先完全移除氧化矽層131,接著形成一襯墊層(未繪示),再進行絕緣層150的製程。
後續,則可依序形成一絕緣層及一導電層,作為閘極介電層170以及一閘極層190。其中,閘極介電層170可具有一單層或多層結構,較佳是包含氧化矽或適用的高介電常數材料等介電材質。閘極介電層170的形成方式例如包含利用一原子層沉積(atomic layer deposition,ALD)製程,以在絕緣層150及凸伸於絕緣層150外的鰭狀結構101上形成閘極介電層170,如第5圖所示,但不以此為限。在其他實施例中,也可選擇利用一臨場蒸氣產生技術(in situ steam generation,ISSG),而可僅在鰭狀結構101被暴露的表面形成均勻分布的一絕緣層(未繪示)。
由此即完成本發明第一實施例的半導體元件。後續,則可與普遍應用的閘極製程整合,圖案化閘極介電層170及閘極層190,形成橫跨鰭狀結構101的一閘極結構(未繪示),或者,還可繼續進行源極/汲極選擇性磊晶成長製程、金屬矽化物製程、接觸洞停止蝕刻層(contact etch stop layer,CESL)製程或是金屬閘極置換(replacement metal gate,RMG)等製程,上述相關步驟與習用製作電晶體的步驟類似,在此不多加贅述。
本實施例中形成半導體元件的方法主要是先在含矽的基底及鰭狀結構表面形成磊晶層,再進行鍺濃縮製程。使得該磊晶層與氧反應而轉變為一氧化層,同時使該磊晶層發生緻密化效應而將其內的鍺元素向內推擠至基底及鰭狀結構。因此,源自於該磊晶層的鍺元素會大量累積在該鰭狀結構及該基底內,進而在該鰭狀結構及該基底內形成一矽鍺層。據此,本發明的半導體元件可利用該矽鍺層的晶格常數大於該矽基底晶格之特點,而對後續形成之半導體電晶體的通道區產生應力,藉此達到增加通道區的載子遷移率以及提升元件效能等目的。
此外,本領域者應可輕易了解,本發明的半導體元件亦可能以其他方式形成,並不限於前述的製作步驟。因此,下文將進一步針對本發明半導體元件及其形成方法的其他實施例或變化型進行說明。且為簡化說明,以下說明主要針對各實施例不同之處進行詳述,而不再對相同之處作重覆贅述。此外,本發明之各實施例中相同之元件係以相同之標號進行標示,以利於各實施例間互相對照。
請參照第6圖至第10圖所示,所繪示者為本發明第二實施例中形成半導體元件之方法的步驟剖面示意圖。本實施例的形成方法大體上和前述第一實施例的第1圖相同,其同樣形成有基底100及鰭狀結構101。本實施例與前述實施例之主要差異在於形成一磊晶層135之 前,即先形成一部分的淺溝隔離。
也就是說,本實施例是在形成鰭狀結構101後,隨即形成一絕緣層151,其僅部分覆蓋鰭狀結構101的下半部。絕緣層151較佳是約僅覆蓋鰭狀結構101高度的10%至20%,使得鰭狀結構101的一部分(約佔鰭狀結構101高度的80%至90%)可突出於絕緣層151,而使絕緣層151可作為一第一淺溝隔離,如第6圖所示。本領域者應可清楚理解,在本實施例中,絕緣層151的具體形成方式及詳細材質大體上與前述第一實施例的絕緣層150相同,或者應為本領域者所熟知,於此不再贅述。此外,在一實施例中,還可選擇在形成絕緣層151之前,先在鰭狀結構101側壁及基底100表面形成一襯墊層(liner)105,使襯墊層105可位在鰭狀結構101與絕緣層151(即第一淺溝隔離)之間,如第6圖所示,但不以此為限。在其他實施例中,也可省略襯墊層105,形成直接接觸且覆蓋鰭狀結構101的下半部以及基底100的一絕緣層(未繪示)
然後,進行一選擇性磊晶成長製程,以在鰭狀結構101暴露於絕緣層151外的表面上形成磊晶層135。在本實施例中,鰭狀結構101的下半部已被絕緣層151部分覆蓋,因此,磊晶層135僅會形成在鰭狀結構101未被絕緣層151覆蓋的部分,大體上約佔鰭狀結構101高度的80%至90%,如第7圖所示。並且,相同於前述第一實施例的磊晶層130,在本實施例中,磊晶層135較佳是使其一部份自鰭狀結構101的表面進一步向上延伸至高於圖案化遮罩110與鰭狀結構101的交界,形成高於圖案化遮罩110與鰭狀結構101交界的一頂面,如第7圖所示,但不以此為限。除此之外,該選擇性磊晶成長製程以及磊晶層135的具體形成方 式、詳細材質與鍺含量等大體上皆與前述第一實施例相同,或者應為本領域者所熟知,於此不再贅述。
接著,即進行一鍺濃縮製程,使磊晶層135與氧反應而形成一氧化矽層136,同時使磊晶層135內的鍺元素發生緻密化效應而逐漸往內側的鰭狀結構101聚集,而可在鰭狀結構101表面形成含有大量鍺元素的矽鍺層107。需特別說的是,在本實施例中,磊晶層135僅會形成在鰭狀結構101未被絕緣層151覆蓋的部分(約佔鰭狀結構101的80%至90%),因此,矽鍺層107僅會對應形成在鰭狀結構101被磊晶層135覆蓋的部分。也就是說,矽鍺層107可至鰭狀結構101的頂端往下延伸且至少約佔該鰭狀結構80%至90%,但不以此為限。在另一實施例中,也可透過調整該鍺濃縮製程的溫度或操作時間等條件,而使磊晶層135內的鍺元素進而略擴散至鰭狀結構101被磊晶層135覆蓋的部分之外,如第8圖所示。也就是說,矽鍺層107在鰭狀結構101內的延伸範圍可自鰭狀結構101的頂端朝下直至佔據鰭狀結構101高度的80%至90%以上,使襯墊層105可覆蓋一部分的矽鍺層107。在另一實施例中,矽鍺層107還可延伸至氧化矽層136(或磊晶層135)與絕緣層151的交界面以下,使矽鍺層107的一底面低於絕緣層151的一頂面,如第8圖所示。
而後,則可繼續形成一絕緣層153,作為一第二淺溝隔離。絕緣層153的製程包含先利用一流動式化學氣相沈積製程於基底100上形成一絕緣材料層(未繪示),再搭配化學機械研磨與回蝕刻製程,移除一部分的該絕緣材料層,以形成絕緣層153。在此情況下,鰭狀結構101的一部分可突出於絕緣層153、151之外,因而使絕緣層153可作為 一第二淺溝隔離,如第9圖所示。
需特別說明的是,絕緣層153較佳是包含與氧化矽層136及絕緣層151具相同蝕刻選擇比的材質,如氧化矽,藉此,即可在進行該化學機械研磨與回蝕刻製程時,同時移除覆蓋在鰭狀結構101上半部的氧化矽層136,並且,使得前述製程中所形成的第一淺溝隔離(即絕緣層151)、位在鰭狀結構101下半部的氧化矽層136以及絕緣層153共同構成環繞鰭狀結構101下半部的淺溝隔離,如第9圖所示。其中,該淺溝隔離(包含第一淺溝隔離及第二淺溝隔離)約覆蓋鰭狀結構101的20%至50%。後續,則去除圖案化遮罩110(包含氮化矽層113以及氧化矽層111),如第9圖所示,但不以此為限。
之後,依序形成一閘極介電層171以及一閘極層191。其中,閘極介電層171以及閘極層191的詳細材質與形成方式等大體上皆與前述第一實施例相同,或者應為本領域者所熟知,於此不再贅述。具體來說,本實施例的閘極介電層171是形成在該第二淺溝隔離(即絕緣層153)及剩餘的氧化矽層136上,並同時覆蓋在鰭狀結構101位在該淺溝絕緣外的部分上,如第10圖所示,但不以此為限。在其他實施例中,也可選擇利用一臨場蒸氣產生技術,而形成僅位在鰭狀結構101表面的一閘極介電層(未繪示)。
由此即完成本發明第二實施例的半導體元件。後續,則可與普遍應用的閘極製程整合,圖案化閘極介電層170及閘極層190,形成橫跨鰭狀結構101的一閘極結構(未繪示),或者,還可再進行源極/ 汲極選擇性磊晶成長製程、金屬矽化物製程、接觸洞停止蝕刻層製程或是金屬閘極置換等製程,上述相關步驟與習用製作電晶體的步驟類似,在此不多加贅述。本實施例中形成半導體元件的方法主要是分別在磊晶層形成前後分別形成一部份的淺溝隔離,藉此來形成僅位在鰭狀結構表面的磊晶層。因此,當後續進行鍺濃縮製程時,僅會在鰭狀結構內形成矽鍺層。該矽鍺層至少約佔該鰭狀結構高度的80%至90%。
承前所述,利用本發明的形成方法所形成的半導體元件,可利用該矽鍺層的晶格常數大於該矽基底晶格之特點,使該矽鍺層對後續形成之半導體電晶體的通道區產生應力,藉此達到增加通道區的載子遷移率以及提升元件效能等目的。同時,本發明所形成的矽鍺層至少可佔該鰭狀結構高度的80%至90%,或者是可佈滿整個鰭狀結構,因此,可更有效且更均勻地提升後續形成元件的載子遷移率。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。

Claims (11)

  1. 一種半導體元件,包含:一矽基底;一鰭狀結構,設置於該矽基底上,該鰭狀結構包含一矽鍺層,該矽鍺層自該鰭狀結構的一頂端朝下延伸且佈滿於該鰭狀結構;以及一淺溝隔離,部分覆蓋該鰭狀結構。
  2. 如申請專利範圍第1項所述之半導體元件,其中,該淺溝隔離覆蓋該鰭狀結構的一底部。
  3. 如申請專利範圍第2項所述之半導體元件,其中,該淺溝隔離約覆蓋該鰭狀結構的20%至50%。
  4. 如申請專利範圍第1項所述之半導體元件,其中,該矽鍺層更延伸至該矽基底內。
  5. 如申請專利範圍第1項所述之半導體元件,其中,該矽鍺層約包含30%至80%的鍺。
  6. 如申請專利範圍第1項所述之半導體元件,更包含:一閘極結構,橫跨該鰭狀結構,其中該閘極結構包含一閘極介電層以及一閘極層。
  7. 一種形成半導體元件的方法,包含:在一矽基底上形成一鰭狀結構,該鰭狀結構由矽組成;在該鰭狀結構的側壁上選擇性地形成一磊晶層,其中該磊晶層另形成在該矽基底上,且該磊晶層接觸該矽基底;進行一鍺濃縮製程,以在該鰭狀結構內形成一矽鍺層並使該磊晶層轉變成一氧化層,該矽鍺層自該鰭狀結構的一頂端向下延伸且至少約佔該鰭狀結構的80%;以及在該鍺濃縮製程後形成一淺溝隔離,覆蓋該鰭狀結構的一底部。
  8. 如申請專利範圍第7項所述之形成半導體元件的方法,其該鍺濃縮製程是於800℃至1100℃下進行。
  9. 如申請專利範圍第7項所述之形成半導體元件的方法,其中,該淺溝隔離的形成包含:在該鍺濃縮製程後於該矽基底上形成一絕緣材料層,以覆蓋該鰭狀結構;以及移除一部分的該絕緣材料層,以形成該淺溝隔離,其中該淺溝隔離約覆蓋該鰭狀結構的20%至50%。
  10. 如申請專利範圍第7項所述之形成半導體元件的方法,其中,該磊晶層約包含20%至50%的鍺。
  11. 如申請專利範圍第7項所述之形成半導體元件的方法,其中,該矽鍺層約包含30%至80%的鍺。
TW104126243A 2015-08-12 2015-08-12 半導體元件及其製作方法 TWI655774B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW104126243A TWI655774B (zh) 2015-08-12 2015-08-12 半導體元件及其製作方法
CN201510550947.4A CN106449749B (zh) 2015-08-12 2015-09-01 半导体元件及其制作方法
US14/855,390 US9722078B2 (en) 2015-08-12 2015-09-16 Semiconductor device including fin shaped structure and method for fabricating the same
US15/458,035 US9954108B2 (en) 2015-08-12 2017-03-14 Semiconductor device including fin shaped structure including silicon germanium layer
US15/465,606 US9881831B2 (en) 2015-08-12 2017-03-22 Method for fabricating semiconductor device including fin shaped structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104126243A TWI655774B (zh) 2015-08-12 2015-08-12 半導體元件及其製作方法

Publications (2)

Publication Number Publication Date
TW201707207A TW201707207A (zh) 2017-02-16
TWI655774B true TWI655774B (zh) 2019-04-01

Family

ID=57995970

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104126243A TWI655774B (zh) 2015-08-12 2015-08-12 半導體元件及其製作方法

Country Status (3)

Country Link
US (3) US9722078B2 (zh)
CN (1) CN106449749B (zh)
TW (1) TWI655774B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882051B1 (en) * 2016-09-15 2018-01-30 Qualcomm Incorporated Fin field effect transistors (FETs) (FinFETs) employing dielectric material layers to apply stress to channel regions
US10297597B2 (en) * 2016-10-03 2019-05-21 Globalfoundries Inc. Composite isolation structures for a fin-type field effect transistor
US11152362B2 (en) * 2016-11-10 2021-10-19 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field effect transistor (FinFET) device structure
US10522417B2 (en) * 2017-04-27 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET device with different liners for PFET and NFET and method of fabricating thereof
US10147787B1 (en) 2017-05-31 2018-12-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure and manufacturing method thereof
KR102453022B1 (ko) * 2018-09-04 2022-10-07 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR20210047688A (ko) 2019-10-22 2021-04-30 삼성전자주식회사 집적회로 장치 및 그 제조 방법
CN112038290B (zh) * 2020-07-24 2024-03-26 中国科学院微电子研究所 一种半导体器件的制造方法
CN117712165A (zh) * 2021-05-28 2024-03-15 福建省晋华集成电路有限公司 半导体器件及其形成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703565B2 (en) * 2010-02-09 2014-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Bottom-notched SiGe FinFET formation using condensation
US20140374838A1 (en) * 2013-06-21 2014-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with Nitride Liners and Methods of Forming the Same
US20150194525A1 (en) * 2014-01-03 2015-07-09 Qualcomm Incorporated Silicon germanium finfet formation by ge condensation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728360B2 (en) * 2002-12-06 2010-06-01 Taiwan Semiconductor Manufacturing Co., Ltd. Multiple-gate transistor structure
US7176092B2 (en) * 2004-04-16 2007-02-13 Taiwan Semiconductor Manufacturing Company Gate electrode for a semiconductor fin device
US7767560B2 (en) * 2007-09-29 2010-08-03 Intel Corporation Three dimensional strained quantum wells and three dimensional strained surface channels by Ge confinement method
US8048723B2 (en) * 2008-12-05 2011-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Germanium FinFETs having dielectric punch-through stoppers
US8053299B2 (en) * 2009-04-17 2011-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabrication of a FinFET element
US8623728B2 (en) * 2009-07-28 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming high germanium concentration SiGe stressor
US7993999B2 (en) * 2009-11-09 2011-08-09 International Business Machines Corporation High-K/metal gate CMOS finFET with improved pFET threshold voltage
US9166022B2 (en) * 2010-10-18 2015-10-20 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US8367498B2 (en) * 2010-10-18 2013-02-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
CN103107192B (zh) * 2011-11-10 2016-05-18 中芯国际集成电路制造(北京)有限公司 半导体装置及其制造方法
US9299809B2 (en) * 2012-12-17 2016-03-29 Globalfoundries Inc. Methods of forming fins for a FinFET device wherein the fins have a high germanium content
US9070710B2 (en) * 2013-06-07 2015-06-30 United Microelectronics Corp. Semiconductor process
CN105448989B (zh) * 2014-08-26 2018-12-25 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
US9922880B2 (en) * 2014-09-26 2018-03-20 Qualcomm Incorporated Method and apparatus of multi threshold voltage CMOS
US9478663B2 (en) * 2014-10-29 2016-10-25 Globalfoundries Inc. FinFET device including a uniform silicon alloy fin
US9472575B2 (en) * 2015-02-06 2016-10-18 International Business Machines Corporation Formation of strained fins in a finFET device
US9524969B1 (en) * 2015-07-29 2016-12-20 International Business Machines Corporation Integrated circuit having strained fins on bulk substrate
US9484266B1 (en) * 2015-08-04 2016-11-01 International Business Machines Corporation Complementary heterogeneous MOSFET using global SiGe substrate and hard-mask memorized germanium dilution for nFET

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703565B2 (en) * 2010-02-09 2014-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Bottom-notched SiGe FinFET formation using condensation
US20140374838A1 (en) * 2013-06-21 2014-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with Nitride Liners and Methods of Forming the Same
US20150194525A1 (en) * 2014-01-03 2015-07-09 Qualcomm Incorporated Silicon germanium finfet formation by ge condensation

Also Published As

Publication number Publication date
US20170194193A1 (en) 2017-07-06
US20170186872A1 (en) 2017-06-29
US9881831B2 (en) 2018-01-30
CN106449749B (zh) 2021-05-18
TW201707207A (zh) 2017-02-16
US9722078B2 (en) 2017-08-01
US9954108B2 (en) 2018-04-24
CN106449749A (zh) 2017-02-22
US20170047447A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
TWI655774B (zh) 半導體元件及其製作方法
US11205594B2 (en) Fin spacer protected source and drain regions in FinFETs
US12033898B2 (en) Method of fabricating a FinFET device
US10170623B2 (en) Method of fabricating semiconductor device
US9806076B2 (en) FinFET device and method of manufacturing same
US9627379B1 (en) FinFET devices and methods of forming the same
US8786019B2 (en) CMOS FinFET device
KR101333897B1 (ko) 핀 디바이스를 제조하는 방법 및 구조
US8236658B2 (en) Methods for forming a transistor with a strained channel
KR101799636B1 (ko) 핀 구조 전계 효과 트랜지스터 소자용 구조체 및 방법
TWI642185B (zh) 半導體元件及其製作方法
US20150311337A1 (en) Finfet device comprising a thermal oxide region positioned between a portion of the fin and a layer of insulating material
CN107230638B (zh) 两步伪栅极形成
US9887136B2 (en) Semiconductor devices, FinFET devices, and methods of forming the same
US10157997B2 (en) FinFETs and methods of forming the same
TWI713679B (zh) 互補式金氧半導體元件及其製作方法
US20170141111A1 (en) Finfet devices and methods of forming the same
TW201909282A (zh) 半導體裝置及其製程
TW201735131A (zh) 一種形成半導體鰭狀結構的方法
TW201628193A (zh) 半導體元件及其製作方法
TW201806158A (zh) 位在矽覆絕緣層上的鰭狀場效電晶體及其形成方法
TWI744333B (zh) 半導體裝置及其製程
US10199501B2 (en) Method for forming semiconductor structure
TW201727891A (zh) 半導體裝置
CN117410234A (zh) 半导体结构及其形成方法