TWI651440B - Single crystal furnace - Google Patents

Single crystal furnace Download PDF

Info

Publication number
TWI651440B
TWI651440B TW106104270A TW106104270A TWI651440B TW I651440 B TWI651440 B TW I651440B TW 106104270 A TW106104270 A TW 106104270A TW 106104270 A TW106104270 A TW 106104270A TW I651440 B TWI651440 B TW I651440B
Authority
TW
Taiwan
Prior art keywords
single crystal
data
crystal
furnace
module
Prior art date
Application number
TW106104270A
Other languages
Chinese (zh)
Other versions
TW201821655A (en
Inventor
鄧先亮
Original Assignee
上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半導體科技有限公司 filed Critical 上海新昇半導體科技有限公司
Publication of TW201821655A publication Critical patent/TW201821655A/en
Application granted granted Critical
Publication of TWI651440B publication Critical patent/TWI651440B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明提供一種單晶爐,所述單晶爐包括一長晶爐腔和一控制系統,所述控制系統包括一資料獲取模組和一資料處理模組,所述資料獲取模組採集所述長晶爐腔中的即時資料,所述資料處理模組中包括一模擬結果資料庫,所述模擬結果資料庫是通過模擬構建出的一個完整的長晶資料庫,通過對單晶體生長進行全面模擬,得到不同製程條件下的模擬資料,可以即時監測和分析單晶爐的溫度分佈和流場分佈,並且,將控制系統探測到的資料與長晶資料庫中的模擬結果進行智慧交互比對,以即時資料為基礎,適時線上調整製程,改變傳統的單一化的控制方式,提高單晶爐的控制精準度,提高單晶體的晶體品質。 The invention provides a single crystal furnace, the single crystal furnace includes a long crystal furnace cavity and a control system, the control system includes a data acquisition module and a data processing module, and the data acquisition module collects the Real-time data in the crystal growth furnace cavity, the data processing module includes a simulation result database, the simulation result database is a complete crystal growth database constructed through simulation, and the single crystal growth is fully simulated , To obtain simulation data under different process conditions, you can immediately monitor and analyze the temperature distribution and flow field distribution of the single crystal furnace, and intelligently compare the data detected by the control system with the simulation results in the crystal database, Based on real-time data, the process is adjusted online in a timely manner, changing the traditional single control method, improving the control accuracy of the single crystal furnace, and improving the crystal quality of the single crystal.

Description

一種單晶爐Single crystal furnace

本發明涉及晶體生長領域,具體涉及一種單晶爐。 The invention relates to the field of crystal growth, in particular to a single crystal furnace.

人工晶體在科學技術和工業生產領域中起到越來越重要的作用,特別是單晶矽作為一種半導體材料,在積體電路和其他電子元件應用越來越廣泛。現有的大部分的單晶矽都採用直拉法製造,在傳統的直拉法製造中,通常是在單晶矽生長之前,操作人員在單晶爐的控制系統裡邊設定好相應的程式,然後單晶爐的控制系統按照程式的設定一步一步的完成單晶矽的生長過程。這種控制系統為單向控制方式、功能單一,單晶矽生長的好與壞基本完全依靠操作人員的專業經驗和操作技能,其產品品質相對不高。然而,市場對大尺寸的單晶矽的晶體品質要求越來越高,於是對單晶爐的控制系統的精準度也越來越嚴苛。 Artificial crystals are playing an increasingly important role in the fields of science and technology and industrial production. Especially single-crystal silicon, as a semiconductor material, is becoming more and more widely used in integrated circuits and other electronic components. Most of the existing single-crystal silicon is manufactured by the direct-draw method. In the traditional direct-draw method, usually before the single-crystal silicon grows, the operator sets the corresponding program in the control system of the single-crystal furnace, and then The control system of the single crystal furnace completes the growth process of the single crystal silicon step by step according to the program setting. This control system is a unidirectional control method with a single function. The growth of single crystal silicon depends basically on the professional experience and operating skills of the operator, and its product quality is relatively low. However, the market has higher and higher requirements for the crystal quality of large-size single-crystal silicon, so the accuracy of the control system for single-crystal furnaces has become increasingly stringent.

目前,因在直拉法單晶矽生長過程中投料量大,使得單晶爐內的熱場分佈十分複雜,單晶爐的控制系統難以精確的呈現單晶爐內的實際熱場分佈;而且,整個生長過程從引晶階段到最後收尾階段持續時間長,單晶爐的控制系統對每個階段製程的穩定性和空間尺寸的精確控制面臨很大的挑戰。 At present, due to the large amount of input during the growth of the single crystal silicon in the direct-draw method, the thermal field distribution in the single crystal furnace is very complicated, and the control system of the single crystal furnace is difficult to accurately present the actual thermal field distribution in the single crystal furnace; The entire growth process lasts from the seeding stage to the final finishing stage, and the control system of the single crystal furnace faces great challenges in the process stability and precise control of the space size in each stage.

因此,針對上述技術問題,有必要提供一種新的單晶爐。 Therefore, in view of the above technical problems, it is necessary to provide a new single crystal furnace.

本發明所要解決的技術問題是提供一種單晶爐,實現單晶爐的控制系統智慧自動化控制,提高單晶爐的控制精準度,提高單晶體的晶體品質。 The technical problem to be solved by the invention is to provide a single crystal furnace, which realizes the intelligent automatic control of the control system of the single crystal furnace, improves the control accuracy of the single crystal furnace, and improves the crystal quality of the single crystal.

為解決上述技術問題,本發明提供一種單晶爐,所述單晶爐用於一單晶體的生長,所述單晶爐包括一長晶爐腔和一控制系統;所述控制系統包括一用於採集所述長晶爐腔中的資料的資料獲取模組、一用於將所述資料進行資料分析處理並且回饋一控制信號的資料處理模組以及一用於對所述長晶爐腔回饋所述控制信號的輸出模組;所述資料處理模組包括一模擬結果資料庫和一資料記憶模組,所述模擬結果資料庫為通過模擬構建出的一長晶資料庫;所述資料記憶模組用於記憶所述長晶資料庫和所述資料獲取模組採集的即時資料。 In order to solve the above technical problems, the present invention provides a single crystal furnace for growing a single crystal. The single crystal furnace includes a long crystal furnace cavity and a control system. The control system includes a A data acquisition module for collecting data in the crystal growth furnace cavity, a data processing module for performing data analysis processing on the data and feedback a control signal, and a data acquisition module for feedback to the crystal growth furnace cavity An output module of the control signal; the data processing module includes a simulation result database and a data memory module, the simulation result database is a crystal growth database constructed by simulation; the data memory module The group is used to memorize real-time data collected by the crystal growth database and the data acquisition module.

進一步的,所述單晶爐還包括一爐體、設於所述爐體內且用於裝熔融多晶矽料的坩堝、用於提拉和旋轉所述單晶體的提拉杆。 Further, the single crystal furnace further includes a furnace body, a crucible provided in the furnace body and used for containing molten polycrystalline silicon material, and a pulling rod for pulling and rotating the single crystal.

可選的,在所述單晶爐中,以所述爐體的幾何結構為基礎,依據所述單晶體生長中各個階段定義的製程參數進行建立模型,利用一長晶模擬軟體進行計算,利用計算結果建立所述長晶資料庫。 Optionally, in the single crystal furnace, based on the geometric structure of the furnace body, a model is established according to the process parameters defined at each stage of the single crystal growth, and calculation is performed using a crystal growth simulation software. As a result, the crystal growth database is established.

進一步的,在所述單晶爐中,所述長晶資料庫中包括以所述爐體的幾何結構為基礎,不同的單晶體生長各個階段定義的製程參數、不同的所述單晶體生長各個階段中所述爐體內的溫度分佈圖或者溫度分佈曲線、以及相對應的不同的所述單晶體生長各個階段中所述爐體內的流場分 佈圖或者流場分佈曲線。 Further, in the single crystal furnace, the crystal growth database includes process parameters defined at different stages of single crystal growth based on the geometry of the furnace body, and different stages of the single crystal growth. The temperature distribution map or temperature distribution curve in the furnace body, and the corresponding flow field analysis in the furnace during each stage of the single crystal growth. Layout or flow field distribution curve.

進一步的,在所述單晶爐中,所述資料處理模組將所述即時資料在所述長晶資料庫中進行查找、對比和分析,回饋出一控制信號,所述控制信號為所述單晶體生長下一時刻的定義的製程參數。 Further, in the single crystal furnace, the data processing module searches, compares, and analyzes the real-time data in the crystal growth database, and returns a control signal, where the control signal is the Defined process parameters for the next moment of single crystal growth.

可選的,在所述單晶爐中,所述資料記憶模組分為第一資料記憶模組和第二資料記憶模組,所述第一資料記憶模組記憶所述長晶資料庫,所述第二資料記憶模組記憶所述即時資料。 Optionally, in the single crystal furnace, the data memory module is divided into a first data memory module and a second data memory module, and the first data memory module stores the crystal growth database, The second data memory module stores the real-time data.

進一步的,在所述單晶爐中,所述第二資料記憶模組的即時資料更新和優化所述第一資料記憶模組的長晶資料庫。 Further, in the single crystal furnace, real-time data update of the second data memory module and optimization of the crystal growth database of the first data memory module.

進一步的,在所述單晶爐中,所述長晶爐腔包括一晶控模組和一堝控模組,所述晶控模組用於調節所述單晶體的提拉速度和單晶體轉速,所述堝控模組用於調節所述坩堝內溫度、所述坩堝的升降速度和坩堝轉速。 Further, in the single crystal furnace, the long crystal furnace cavity includes a crystal control module and a pot control module, and the crystal control module is used to adjust the pulling speed and the rotation speed of the single crystal. The pot control module is used to adjust the temperature in the crucible, the lifting speed of the crucible, and the speed of the crucible.

可選的,在所述單晶爐中,所述資料獲取模組包括一用於監測所述單晶體位置的晶位感測器、一用於監測所述坩堝位置的堝位感測器、一即時測量所述坩堝內溫度的溫度感測器,所述資料獲取模組採集所述單晶體的提拉速度資料和單晶體轉速資料、所述坩堝的升降速度資料和坩堝轉速資料以及所述坩堝內的溫度資料。 Optionally, in the single crystal furnace, the data acquisition module includes a crystal position sensor for monitoring the position of the single crystal, a pot position sensor for monitoring the position of the crucible, a A temperature sensor that measures the temperature in the crucible in real time, the data acquisition module collects the pulling speed data and single crystal speed data of the single crystal, the lifting speed data and crucible speed data of the crucible, and the data in the crucible. Temperature data.

進一步的,在所述單晶爐中,所述晶控模組包括一控制所述提拉杆提拉所述單晶體的晶升馬達和一控制所述單晶體旋轉的晶轉馬達。 Further, in the single crystal furnace, the crystal control module includes a crystal raising motor that controls the pulling rod to pull the single crystal and a crystal rotating motor that controls the rotation of the single crystal.

進一步的,在所述單晶爐中,所述堝控模組包括一控制所述坩堝旋轉的堝轉馬達、一控制所述坩堝升降的堝升馬達、對所述坩堝進行 加熱的加熱模組以及根據所述坩堝內的溫度控制所述加熱模組的溫控模組。 Further, in the single crystal furnace, the pot control module includes a pot rotating motor that controls the crucible rotation, a pot lifting motor that controls the crucible lifting, and the crucible A heated heating module and a temperature control module for controlling the heating module according to the temperature in the crucible.

進一步的,在所述單晶爐中,所述長晶爐腔還包括一控制所述爐體內的氣壓的氣壓控制模組。 Further, in the single crystal furnace, the long crystal furnace cavity further includes a gas pressure control module that controls the gas pressure in the furnace.

進一步的,在所述單晶爐中,所述資料獲取單元還包括一用於採集所述爐體的氣壓值的氣壓檢測器。 Further, in the single crystal furnace, the data acquisition unit further includes a pressure detector for collecting a pressure value of the furnace body.

可選的,在所述單晶爐中,所述控制系統還包括一警報模組,用於提示和記錄所述單晶體生長過程中的故障資訊。 Optionally, in the single crystal furnace, the control system further includes an alarm module for prompting and recording fault information during the growth of the single crystal.

可選的,在所述單晶爐中,所述控制系統還包括一顯示模組,用於顯示所述即時資料和所述控制信號。 Optionally, in the single crystal furnace, the control system further includes a display module for displaying the real-time data and the control signal.

與現有技術相比,本發明具有以下有益效果:本發明通過所述單晶爐中的模擬結果資料庫對所述單晶體生長進行全面模擬,得到不同製程條件下的模擬資料,可以即時監測和分析所述單晶爐的溫度分佈和流場分佈,克服現有技術中對所述單晶爐內的實際熱場分佈難以掌控的缺陷,提高所述單晶爐的控制精準度,提高單晶體的晶體品質。 Compared with the prior art, the present invention has the following beneficial effects: the present invention comprehensively simulates the growth of the single crystal through the simulation result database in the single crystal furnace, obtains simulation data under different process conditions, and can be monitored and analyzed in real time The temperature distribution and flow field distribution of the single crystal furnace overcome the defect that it is difficult to control the actual thermal field distribution in the single crystal furnace in the prior art, improve the control accuracy of the single crystal furnace, and improve the crystal quality of the single crystal. .

進一步的,以所述爐體的幾何結構為基礎,依據所述單晶體生長中各個階段定義的製程參數進行建立模型,利用一長晶模擬軟體進行計算,利用計算結果建立所述長晶資料庫,使得所述長晶資料庫中的理論模擬資料更加準確,更具有參考價值;同時,將所述控制系統探測到的資料(即所述資料獲取模組採集的即時資料)與所述長晶資料庫中的模擬結果進行智慧交互比對,以所述即時資料為基礎,適時線上調整製程,改變 傳統的單一化的控制方式,實現所述單晶體生長過程的分析和優化控制,提高所述單晶爐的控制精準度,進一步提高單晶體的晶體品質。 Further, based on the geometric structure of the furnace body, a model is established according to process parameters defined in each stage of the single crystal growth, calculation is performed using a crystal growth simulation software, and the crystal growth database is established using the calculation results, The theoretical simulation data in the crystal growth database is more accurate and more valuable; meanwhile, the data detected by the control system (that is, real-time data collected by the data acquisition module) and the crystal growth data The simulation results in the library are compared intelligently and interactively. Based on the real-time data, the process can be adjusted online and changed in a timely manner. The traditional single control method realizes the analysis and optimization control of the single crystal growth process, improves the control accuracy of the single crystal furnace, and further improves the crystal quality of the single crystal.

另外,將所述即時資料記憶在第二資料記憶模組中,所述單晶體生長過程中,根據分析和判斷可以使所述第二資料記憶模組的資料不斷優化更新所述第一資料記憶模組的長晶資料庫,以形成良好的交互反覆運算使得長晶資料庫和單晶體生長製程都日趨成熟完善,達到一定程度之後,可以實現基於所述長晶資料庫的單晶爐的智慧自動化控制,自行調節單晶體生長過程中的溫度和流場等問題,使得每次單晶體的生長都處於高度自動化狀態,節約成本,提高單晶體的晶體品質。 In addition, the real-time data is stored in a second data memory module. During the growth of the single crystal, the data of the second data memory module can be continuously optimized and updated according to analysis and judgment. The crystal growth database of the group is formed to form a good interactive iterative operation, which makes the crystal growth database and the single crystal growth process mature and perfect. After reaching a certain level, the intelligent automatic control of the single crystal furnace based on the crystal growth database can be realized By self-adjusting the temperature and flow field during the growth of the single crystal, the growth of each single crystal is in a highly automated state, saving costs and improving the crystal quality of the single crystal.

1‧‧‧長晶爐腔 1‧‧‧Crystal Furnace

2‧‧‧控制系統 2‧‧‧Control System

11‧‧‧晶控模組 11‧‧‧ Crystal Control Module

12‧‧‧堝控模組 12‧‧‧ pot control module

13‧‧‧氣壓控制模組 13‧‧‧Air pressure control module

111‧‧‧晶升馬達 111‧‧‧Jingsheng Motor

112‧‧‧晶轉馬達 112‧‧‧ Crystal Turn Motor

121‧‧‧堝升馬達 121‧‧‧ Cauldron Motor

122‧‧‧堝轉馬達 122‧‧‧ Pot Rotary Motor

123‧‧‧加熱模組 123‧‧‧Heating Module

124‧‧‧溫控模組 124‧‧‧Temperature Control Module

21‧‧‧資料獲取模組 21‧‧‧Data Acquisition Module

22‧‧‧資料處理模組 22‧‧‧Data Processing Module

23‧‧‧輸出模組 23‧‧‧Output Module

211‧‧‧晶位元感測器 211‧‧‧ Epitaxial sensor

212‧‧‧堝位元感測器 212‧‧‧ Pot Sensor

213‧‧‧溫度感測器 213‧‧‧Temperature sensor

214‧‧‧氣壓檢測器 214‧‧‧Air Pressure Detector

221‧‧‧模擬結果資料庫一 221‧‧‧ Simulation Results Database 1

222‧‧‧資料記憶模組 222‧‧‧Data Memory Module

2221‧‧‧第一資料記憶模組 2221‧‧‧First Data Memory Module

2222‧‧‧第二資料記憶模組 2222‧‧‧Second data memory module

24‧‧‧顯示模組 24‧‧‧Display Module

25‧‧‧警報模組 25‧‧‧Alarm module

第1圖為本發明實施例中所述單晶爐的結構示意圖;第2圖為本發明實施例中的所述單晶爐的控制系統的框架結構圖。 FIG. 1 is a schematic structural diagram of a single crystal furnace according to an embodiment of the present invention; and FIG. 2 is a frame structural diagram of a control system of the single crystal furnace according to an embodiment of the present invention.

發明人發現在現有技術的單晶體生長的過程中,操作人員沒法知曉所述單晶爐的實際溫度梯度分佈情況、氣流流場分佈情況等,而單晶爐的溫度梯度分佈和流場分佈對單晶體的晶體品質起決定性的影響。同時,發明人又瞭解到模擬技術在研發和生產中應用越來越廣泛,隨著電腦性能的提高和各種優化演算法的提出,使得模擬速度更快、結果更準確。於是,發明人通過研究相應的類比軟體進行準穩態和動態模擬,可以準確的獲得單晶爐內的溫度分佈、氣體流場分佈、以及可以反映出單晶體氧雜 質分佈、單晶體自身缺陷分佈等資訊,可以獲得對單晶體生長過程的精確資訊,發明人認為將其應用於單晶矽的實際生長中,具有很重大的意義,有利於提高所述單晶爐的控制精準度,實現高晶體品質的單晶體生長。 The inventor found that during the growth of the single crystal in the prior art, the operator could not know the actual temperature gradient distribution of the single crystal furnace, the distribution of the air flow field, etc. The crystal quality of a single crystal has a decisive influence. At the same time, the inventor also learned that simulation technology is becoming more and more widely used in research and development and production. With the improvement of computer performance and the introduction of various optimization algorithms, the simulation speed is faster and the results more accurate. Therefore, the inventors studied the corresponding analog software to perform quasi-steady-state and dynamic simulation, which can accurately obtain the temperature distribution, gas flow field distribution in the single crystal furnace, and reflect the single crystal oxygen species. Information such as the mass distribution and the defect distribution of the single crystal can be used to obtain accurate information about the growth process of the single crystal. The inventor believes that it is of great significance to apply it to the actual growth of the single crystal silicon, which is beneficial to improving the single crystal furnace. Control precision to achieve single crystal growth with high crystal quality.

因此,基於上述研究和發現,本發明提供一種單晶爐,所述單晶爐用於一單晶體的生長,所述單晶爐包括一長晶爐腔和一控制系統;所述控制系統包括一用於採集所述長晶爐腔中的資料的資料獲取模組、一用於將所述資料進行資料分析處理並且回饋一控制信號的資料處理模組以及一用於對所述長晶爐腔回饋所述控制信號的輸出模組;所述資料處理模組包括一模擬結果資料庫和一資料記憶模組,所述模擬結果資料庫為通過模擬構建出的一長晶資料庫;所述資料記憶模組用於記憶所述長晶資料庫和所述資料獲取模組採集的即時資料。 Therefore, based on the above research and discovery, the present invention provides a single crystal furnace for growing a single crystal. The single crystal furnace includes a long crystal cavity and a control system. The control system includes a A data acquisition module for collecting data in the crystal growth furnace cavity, a data processing module for data analysis and processing of the data and feedback of a control signal, and a data processing module for the growth of the crystal growth furnace cavity An output module for feedbacking the control signal; the data processing module includes a simulation result database and a data memory module, and the simulation result database is a crystal growth database constructed by simulation; the data The memory module is configured to memorize real-time data collected by the crystal growth database and the data acquisition module.

本發明通過所述單晶爐中的模擬結果資料庫對所述單晶體的生長進行全面模擬,得到不同製程條件下的模擬資料,可以即時監測和分析所述單晶爐的溫度分佈和流場分佈,克服現有技術中對所述單晶爐內的實際熱場分佈難以掌控的缺陷,提高所述單晶爐的控制精準度,提高單晶體的晶體品質。 The invention comprehensively simulates the growth of the single crystal through the simulation result database in the single crystal furnace, obtains simulation data under different process conditions, and can instantly monitor and analyze the temperature distribution and flow field distribution of the single crystal furnace. In order to overcome the defect that it is difficult to control the actual thermal field distribution in the single crystal furnace in the prior art, the control accuracy of the single crystal furnace is improved, and the crystal quality of the single crystal is improved.

下面將結合結構圖和流程圖對本發明的單晶爐進行更詳細的描述,其中表示了本發明的優選實施例,應該理解本領域技術人員可以修改在此描述的本發明,而仍然實現本發明的有利效果。因此,下列描述應當被理解為對於本領域技術人員的廣泛知道,而並不作為對本發明的限制。 The single crystal furnace of the present invention will be described in more detail with reference to the structure diagram and the flowchart, which shows the preferred embodiment of the present invention. It should be understood that those skilled in the art can modify the invention described herein while still realizing the invention. Beneficial effects. Therefore, the following description should be understood as widely known to those skilled in the art, and not as a limitation on the present invention.

在下列段落中參照附圖以舉例方式更具體地描述本發明。根 據下面說明和請求項書,本發明的優點和特徵將更清楚。需說明的是,附圖均採用非常簡化的形式且均使用非精準的比例,僅用以方便、明晰地輔助說明本發明實施例的目的。 The invention is described in more detail by way of example in the following paragraphs with reference to the drawings. root The advantages and features of the present invention will become clearer from the following description and claims. It should be noted that the drawings are in a very simplified form and all use inaccurate proportions, which are only used to facilitate and clearly assist the description of the embodiments of the present invention.

以下列舉以直拉法單晶矽生長的所述單晶爐為實施例,以清楚說明本發明的內容,應當明確的是,本發明的內容並不限制於以下實施例,其他通過本領域普通技術人員的常規技術手段的改進亦在本發明的思想範圍之內。 The following is an example of the single crystal furnace that uses the single crystal silicon grown by the direct pulling method as an example to clearly explain the content of the present invention. It should be clear that the content of the present invention is not limited to the following examples. The improvement of the conventional technical means of the skilled person is also within the scope of the present invention.

首先,請參閱第1圖1,第1圖為本發明實施例中所述單晶爐的結構示意圖,所述單晶爐用於一單晶矽的生長,所述單晶爐包括一爐體、設於所述爐體內且用於裝熔融多晶矽料的坩堝、以及用於提拉和旋轉所述單晶矽的提拉杆,所述單晶爐還包括一長晶爐腔1和一控制系統2。所述長晶爐腔1包括一晶控模組11、一堝控模組12和一氣壓控制模組13,所述晶控模組11包括一控制所述提拉杆提拉所述單晶矽的晶升馬達111和一控制所述單晶矽旋轉的晶轉馬達112;所述堝控模組12包括一控制所述坩堝升降的堝升馬達121、一控制所述坩堝旋轉的堝轉馬達122、對所述坩堝進行加熱的加熱模組123、以及根據所述坩堝內的溫度控制所述加熱模組123的溫控模組124;所述氣壓控制模組13用於調節所述爐體內的氣壓,在直拉法製備單晶矽的過程中採用惰性氣體如氬氣作為保護氣體,形成一個減壓氣氛下的氬氣流動,氬氣流動一方面能夠帶走高溫熔融多晶矽揮發的氧化物,以防止氧化物顆粒掉進矽熔體,進而運動到固液介面,破壞單晶矽原子排列的一致性;另一方面,能夠帶走生長過程中的溫度,促使單晶矽的散熱和冷卻。 First, please refer to FIG. 1, which is a schematic diagram of a single crystal furnace according to an embodiment of the present invention. The single crystal furnace is used for the growth of a single crystal silicon. The single crystal furnace includes a furnace body. A crucible provided in the furnace body for containing molten polycrystalline silicon material, and a pull rod for pulling and rotating the single crystal silicon, the single crystal furnace further comprising a long crystal furnace cavity 1 and a control system 2. The crystal growth chamber 1 includes a crystal control module 11, a pot control module 12, and a gas pressure control module 13. The crystal control module 11 includes a control lever for pulling the monocrystalline silicon. A crystal-lifting motor 111 and a crystal-rotating motor 112 that controls the rotation of the single crystal silicon; the pot control module 12 includes a pot-lifting motor 121 that controls the lifting of the crucible, and a pot-rotating motor that controls the rotation of the crucible 122. A heating module 123 for heating the crucible, and a temperature control module 124 for controlling the heating module 123 according to the temperature in the crucible; the air pressure control module 13 is used to adjust the furnace body. Pressure, the inert gas such as argon is used as the protective gas in the process of preparing the single crystal silicon by the direct-drawing method to form an argon flow under a reduced pressure atmosphere. In order to prevent oxide particles from falling into the silicon melt and then moving to the solid-liquid interface, the uniformity of the single crystal silicon atom arrangement is destroyed; on the other hand, it can take away the temperature during the growth process and promote the heat dissipation and cooling of the single crystal silicon. .

如第2圖所示,第2圖為本發明實施例中的所述單晶爐的控制系統的框架結構圖,在本實施例中所述單晶爐的控制系統2包括一用於採集所述長晶爐腔1中的資料的資料獲取模組21、一用於將所述資料進行資料分析處理而輸出一控制信號的資料處理模組22以及一用於對所述長晶爐腔1回饋所述控制信號的輸出模組23。所述資料獲取模組21包括一晶位元感測器211、一堝位元感測器212、一溫度感測器213和一氣壓檢測器214,通過所述晶位感測器211可以採集到所述單晶矽的提拉速度資料(所述提拉速度資料是通過所述晶位感測器211檢測所述單晶矽的位置和生長時間得到的),同樣,通過所述堝位感測器212可以得到所述坩堝升降的速度資料,通過所述溫度感測器213可以即時測量所述坩堝內的溫度值,通過所述氣壓檢測器214即時檢測所述爐體內的氣壓值。當然,所述資料獲取模組21還可以採集到所述晶轉馬達112控制所述單晶矽旋轉的單晶體轉速資料以及所述堝轉馬達122控制所述坩堝旋轉的坩堝轉速資料。 As shown in FIG. 2, FIG. 2 is a frame structure diagram of the control system of the single crystal furnace in the embodiment of the present invention. In the present embodiment, the control system 2 of the single crystal furnace includes a A data acquisition module 21 for data in the crystal growth chamber 1, a data processing module 22 for data analysis and processing of the data to output a control signal, and a data processing module 22 for the growth of the crystal growth chamber 1 The output module 23 returns the control signal. The data acquisition module 21 includes a crystal bit sensor 211, a pot bit sensor 212, a temperature sensor 213, and a pressure detector 214. The data acquisition module 21 can collect data through the crystal position sensor 211. To the pulling speed data of the single crystal silicon (the pulling speed data is obtained by detecting the position and growth time of the single crystal silicon by the crystal position sensor 211), similarly, by the pot position The sensor 212 can obtain the speed data of the crucible lifting, the temperature value in the crucible can be measured in real time by the temperature sensor 213, and the air pressure value in the furnace can be detected in real time by the air pressure detector 214. Of course, the data acquisition module 21 may also collect single crystal speed data of the crystal rotation motor 112 controlling the single crystal silicon rotation and crucible speed data of the crucible rotation motor 122 controlling the crucible rotation.

所述資料處理模組22根據所述資料獲取模組21採集的即時資料進行資料分析處理並且回饋出一控制信號,所述資料處理模組22包括一模擬結果資料庫221和一資料記憶模組222,較佳的,所述模擬結果資料庫221為通過模擬構建出的一長晶資料庫,以所述爐體的幾何結構為基礎,依據所述單晶矽生長中各個階段定義的製程參數(如所述爐體的氣壓值、所述單晶體的提拉速度和單晶體轉速、所述坩堝內的溫度值、所述坩堝的升降速度和坩堝轉速、以及所述單晶矽生長各個階段的時間等)進行建立模型,利用一長晶模擬軟體進行計算,利用計算結果建立所述長晶資料庫。比如,所述長晶資料庫中可以包括不同的所述單晶矽生長各個階段定義的 製程參數、不同的所述單晶矽生長各個階段中所述爐體內的溫度分佈圖或者溫度分佈曲線、以及相應的流場分佈圖或者流場分佈曲線,因為通過所述爐體內的溫度分佈情況和流場分佈情況便可知曉所述單晶矽氧雜質分佈情況、單晶矽自身缺陷分佈情況以及單晶矽的熱應力情況等資訊。所述資料記憶模組222可以分為第一資料記憶模組2221和第二資料記憶模組2222,所述第一資料記憶模組2221記憶所述長晶資料庫,所述第二資料記憶模組2222記憶所述即時資料。 The data processing module 22 performs data analysis and processing based on the real-time data collected by the data acquisition module 21 and returns a control signal. The data processing module 22 includes a simulation result database 221 and a data memory module. 222, Preferably, the simulation result database 221 is a crystal growth database constructed by simulation, based on the geometric structure of the furnace body, and according to the process parameters defined in each stage of the growth of the single crystal silicon (Such as the pressure of the furnace body, the pulling speed of the single crystal and the speed of the single crystal, the temperature value in the crucible, the speed of the crucible, the speed of the crucible, and the speed of the crucible, and the time of each stage of the growth of the single crystal silicon Etc.) A model is established, calculation is performed using a crystal growth simulation software, and the crystal growth database is established using the calculation results. For example, the crystal growth database may include different definitions of each stage of the single crystal silicon growth. Process parameters, different temperature distribution maps or temperature distribution curves in the furnace body at different stages of the single crystal silicon growth, and corresponding flow field distribution maps or flow field distribution curves, because the temperature distribution in the furnace body The information about the distribution of oxygen impurities in the single crystal silicon, the distribution of the defects of the single crystal silicon itself, and the thermal stress of the single crystal silicon can be known with the distribution of the flow field. The data memory module 222 can be divided into a first data memory module 2221 and a second data memory module 2222. The first data memory module 2221 stores the crystal growth database and the second data memory module. Group 2222 memorizes the instant data.

所述資料處理模組22將所述即時資料在所述長晶資料庫中進行查找、對比和分析,智慧的從所述長晶資料庫中調出所述單晶矽生長下一時刻的定義的製程參數(即下一時刻所需的所述爐體的氣壓值、所述單晶體的提拉速度和單晶體轉速、所述坩堝內的溫度值、所述坩堝的升降速度和坩堝轉速、以及所述單晶矽生長各個階段的時間等),並且回饋出相應的定義的製程參數(即控制信號)。所述資料處理模組22完成了所述即時資料和所述長晶資料庫中的模擬結果的智慧交互比對,以所述即時資料為基礎,適時線上調整製程。 The data processing module 22 searches, compares and analyzes the real-time data in the crystal growth database, and intelligently retrieves the definition of the next moment of growth of the single crystal silicon from the crystal growth database. Process parameters (i.e. the pressure of the furnace body required at the next moment, the pulling speed of the single crystal and the speed of the single crystal, the temperature in the crucible, the speed of the crucible, the speed of the crucible, and the speed of the crucible. The time of each stage of single crystal silicon growth is described), and the corresponding defined process parameters (ie, control signals) are fed back. The data processing module 22 completes the intelligent interactive comparison between the real-time data and the simulation results in the crystal growth database, and based on the real-time data, adjusts the process online in a timely manner.

所述輸出模組23將所述資料處理模組22回饋的控制信號再回饋給所述長晶爐腔1中相應模組,所述長晶爐腔1中的相應模組根據接收到的所述控制信號執行所述單晶矽下一時刻的生長工作。 The output module 23 feeds back the control signal fed back by the data processing module 22 to the corresponding module in the crystal growth chamber 1, and the corresponding module in the crystal growth chamber 1 is based on the received information. The control signal performs a growth operation of the single crystal silicon at the next moment.

如此,所述單晶爐重複所述資料獲取模組21採集所述長晶爐腔1的資料、所述資料處理模組22分析處理所述資料並且回饋一控制信號、以及所述輸出模組23對所述長晶爐腔1回饋所述控制信號的過程,直至所述單晶矽的生長結束。 In this way, the single crystal furnace repeats the data acquisition module 21 to collect the data of the long crystal furnace cavity 1, the data processing module 22 analyzes and processes the data and returns a control signal, and the output module 23 The process of feeding back the control signal to the growth chamber 1 until the growth of the single crystal silicon ends.

同時,每一次所述單晶矽的生長的也會驗證或優化所述長晶資料庫的內容,通過判斷和分析所述控制系統探測到的資料結果(即所述即時資料),不斷優化更新所述長晶資料庫,以形成良好的交互反覆運算使得長晶資料庫和單晶體生長製程都日趨成熟完善。 At the same time, each time the single crystal silicon is grown, the content of the crystal growth database is verified or optimized, and the results of the data detected by the control system (that is, the real-time data) are continuously optimized and updated by judging and analyzing the data results detected by the control system. The crystal growth database is used to form a good interactive iterative operation, so that both the crystal growth database and the single crystal growth process become mature and perfect.

當然,為了便於清楚地知曉所述單晶矽不同生長階段中的各個製程參數,所述控制系統2還包括一顯示模組24,所述顯示模組24同步顯示所述即時資料和所述控制信號。同時,在所述單晶矽生長的過程中,所述控制系統2還包括一警報模組25,所述警報模組25提示和記錄所述單晶矽生長過程中的故障資訊,所述單晶爐也會配有手動開關,用於故障時緊急停機。這些都是本領域普通技術人員知曉的和可以理解的,在此不做贅述。 Of course, in order to clearly understand the various process parameters in different growth stages of the single crystal silicon, the control system 2 further includes a display module 24, which simultaneously displays the real-time data and the control. signal. At the same time, during the growth of the single crystal silicon, the control system 2 further includes an alarm module 25, and the alarm module 25 prompts and records fault information during the growth of the single crystal silicon. The crystal furnace will also be equipped with a manual switch for emergency shutdown in the event of a failure. These are all known and understandable by those of ordinary skill in the art, and will not be repeated here.

因此,採用本發明實施例中的所述單晶爐生長單晶矽時,通過所述單晶爐中的模擬結果資料庫221對所述單晶矽的生長進行全面模擬,得到不同製程條件下的模擬資料,可以即時監測和分析所述單晶爐的溫度分佈和流場分佈,克服現有技術中對所述單晶爐內的實際熱場分佈難以掌控的缺陷;並且,將所述控制系統2探測到的資料與所述長晶資料庫中的模擬結果進行智慧交互比對,以所述即時資料為基礎,適時線上調整製程,改變傳統的單一化的控制方式,實現所述單晶矽生長過程的分析和優化控制,提高所述單晶爐的控制精準度,提高單晶矽的晶體品質。 Therefore, when the single crystal silicon is grown using the single crystal furnace in the embodiment of the present invention, the growth of the single crystal silicon is comprehensively simulated through the simulation result database 221 in the single crystal furnace to obtain different process conditions. The simulation data can be used to monitor and analyze the temperature distribution and flow field distribution of the single crystal furnace in real time, to overcome the defect that the actual thermal field distribution in the single crystal furnace is difficult to control in the prior art; and, the control system 2 The detected data is intelligently compared with the simulation results in the crystal growth database. Based on the real-time data, the process is adjusted online in a timely manner to change the traditional singular control method to achieve the single crystal silicon. The analysis and optimization control of the growth process improves the control accuracy of the single crystal furnace and the crystal quality of the single crystal silicon.

綜上,本發明通過所述單晶爐中的模擬結果資料庫對所述單晶體的生長進行全面模擬,得到不同製程條件下的模擬資料,可以即時監測和分析所述單晶爐的溫度分佈和流場分佈,克服現有技術中對所述單晶爐內的實際熱場分佈難以掌控的缺陷,提高所述單晶爐的控制精準度,提 高單晶體的晶體品質。 In summary, the present invention comprehensively simulates the growth of the single crystal through the simulation result database in the single crystal furnace, obtains simulation data under different process conditions, and can monitor and analyze the temperature distribution and temperature of the single crystal furnace in real time. The flow field distribution overcomes the defect that it is difficult to control the actual thermal field distribution in the single crystal furnace in the prior art, improves the control accuracy of the single crystal furnace, and improves High crystal quality of single crystal.

進一步的,以所述爐體的幾何結構為基礎,依據所述單晶體生長中各個階段定義的製程參數進行建模,利用一長晶模擬軟體進行計算,利用計算結果建立所述長晶資料庫,使得所述長晶資料庫中的理論模擬資料更加準確,更具有參考價值;同時,將所述控制系統探測到的資料(即所述資料獲取模組採集的即時資料)與所述長晶資料庫中的模擬結果進行智慧交互比對,以所述即時資料為基礎,適時線上調整製程,改變傳統的單一化的控制方式,實現所述單晶體生長過程的分析和優化控制,提高所述單晶爐的控制精準度,進一步提高單晶體的晶體品質。 Further, based on the geometric structure of the furnace body, modeling according to the process parameters defined in each stage of the single crystal growth, using a crystal growth simulation software for calculation, and using the calculation results to establish the crystal growth database, The theoretical simulation data in the crystal growth database is more accurate and more valuable; meanwhile, the data detected by the control system (that is, real-time data collected by the data acquisition module) and the crystal growth data The simulation results in the library are compared intelligently, based on the real-time data, the process is adjusted online in a timely manner, the traditional single control method is changed, the analysis and optimization control of the single crystal growth process is realized, and the single crystal is improved Furnace control accuracy further improves the crystal quality of single crystal.

另外,將所述即時資料記憶在第二資料記憶模組中,所述單晶體生長過程中,根據分析和判斷可以使所述第二資料記憶模組的資料不斷優化更新所述第一資料記憶模組的長晶資料庫,以形成良好的交互反覆運算使得長晶資料庫和單晶體生長製程都日趨成熟完善,達到一定程度之後,可以實現基於所述長晶資料庫的單晶爐的智慧自動化控制,自行調節單晶體生長過程中的溫度和流場等問題,使得每次單晶體的生長都處於高度自動化狀態,節約成本,提高單晶體的晶體品質。 In addition, the real-time data is stored in a second data memory module. During the growth of the single crystal, the data of the second data memory module can be continuously optimized and updated according to analysis and judgment. The crystal growth database of the group is formed to form a good interactive iterative operation, which makes the crystal growth database and the single crystal growth process mature and perfect. After reaching a certain level, the intelligent automatic control of the crystal growth furnace based on the crystal growth database can be realized. By self-adjusting the temperature and flow field during the growth of the single crystal, the growth of each single crystal is in a highly automated state, saving costs and improving the crystal quality of the single crystal.

顯然,本領域的技術人員可以對本發明進行各種改動和變型而不脫離本發明的精神和範圍。這樣,倘若本發明的這些修改和變型屬於本發明請求項及其等同技術的範圍之內,則本發明也意圖包含這些改動和變型在內。 Obviously, those skilled in the art can make various modifications and variations to the present invention without departing from the spirit and scope of the present invention. In this way, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.

Claims (13)

一種單晶爐,所述單晶爐用於一單晶體的生長,其中所述單晶爐包括一長晶爐腔和一控制系統;所述控制系統包括一用於採集所述長晶爐腔中的資料的資料獲取模組、一用於將所述資料進行資料分析處理並且回饋一控制信號的資料處理模組以及一用於對所述長晶爐腔回饋所述控制信號的輸出模組;所述資料處理模組包括一模擬結果資料庫和一資料記憶模組,所述模擬結果資料庫為通過模擬構建出的一長晶資料庫;所述資料記憶模組用於記憶所述長晶資料庫和所述資料獲取模組採集的即時資料,其中所述單晶爐還包括一爐體、設於所述爐體內且用於裝熔融多晶矽料的坩堝、用於提拉和旋轉所述單晶體的提拉杆,以及所述長晶爐腔包括一晶控模組和一堝控模組,所述晶控模組用於調節所述單晶體的提拉速度和單晶體轉速,所述堝控模組用於調節所述坩堝內溫度、所述坩堝的升降速度和坩堝轉速。A single crystal furnace is used for the growth of a single crystal, wherein the single crystal furnace includes a crystal growth chamber and a control system; the control system includes a method for collecting A data acquisition module for data, a data processing module for analyzing the data and returning a control signal, and an output module for returning the control signal to the growth chamber; The data processing module includes a simulation result database and a data memory module. The simulation result database is a crystal growth database constructed by simulation. The data storage module is used to memorize the growth crystal. The database and the real-time data collected by the data acquisition module, wherein the single crystal furnace further includes a furnace body, a crucible set in the furnace body for holding molten polycrystalline silicon material, and used for pulling and rotating the A single crystal lifting rod and the crystal growth cavity include a crystal control module and a pot control module, the crystal control module is used to adjust the pull speed of the single crystal and the rotation speed of the single crystal, and the pot control mold Set for adjusting the crucible The temperature, the speed of the crucible and the crucible lifting speed. 如請求項1所述的單晶爐,其中以所述爐體的幾何結構為基礎,依據所述單晶體生長中各個階段定義的製程參數進行建模,利用一長晶模擬軟體進行計算,利用計算結果建立所述長晶資料庫。The single crystal furnace according to claim 1, wherein the geometric structure of the furnace body is used as a basis for modeling according to the process parameters defined in each stage of the single crystal growth, and calculation is performed using a crystal growth simulation software. As a result, the crystal growth database is established. 如請求項2所述的單晶爐,其中所述長晶資料庫中包括以所述爐體的幾何結構為基礎,不同的所述單晶體生長各個階段定義的製程參數、不同的所述單晶體生長各個階段中所述爐體內的溫度分佈圖或者溫度分佈曲線、以及相對應的不同的所述單晶體生長各個階段中所述爐體內的流場分佈圖或者流場分佈曲線。The single crystal furnace according to claim 2, wherein the crystal growth database includes process parameters defined at different stages of the single crystal growth based on the geometry of the furnace body, and different single crystal growth The temperature distribution diagram or temperature distribution curve in the furnace body in each stage, and the corresponding flow field distribution diagram or flow field distribution curve in the furnace body in the different stages of the single crystal growth. 如請求項3所述的單晶爐,其中所述資料處理模組將所述即時資料在所述長晶資料庫中進行查找、對比和分析,回饋出一控制信號,所述控制信號為所述單晶體生長下一時刻的定義的製程參數。The single crystal furnace according to claim 3, wherein the data processing module searches, compares, and analyzes the real-time data in the crystal growth database, and returns a control signal, and the control signal is The defined process parameters for the next moment of single crystal growth are described. 如請求項1至4中任意一項所述的單晶爐,其中所述資料記憶模組分為第一資料記憶模組和第二資料記憶模組,所述第一資料記憶模組記憶所述長晶資料庫,所述第二資料記憶模組記憶所述即時資料。The single crystal furnace according to any one of claims 1 to 4, wherein the data memory module is divided into a first data memory module and a second data memory module, and the first data memory module stores The crystal growth database, and the second data memory module stores the real-time data. 如請求項5所述的單晶爐,其中所述第二資料記憶模組的即時資料更新和優化所述第一資料記憶模組的長晶資料庫。The single crystal furnace according to claim 5, wherein the real-time data update of the second data memory module and optimization of the crystal growth database of the first data memory module. 如請求項1所述的單晶爐,其中所述資料獲取模組包括一用於監測所述單晶體位置的晶位感測器、一用於監測所述坩堝位置的堝位感測器、一即時測量所述坩堝內溫度的溫度感測器,所述資料獲取模組採集所述單晶體的提拉速度資料和單晶體轉速資料、所述坩堝的升降速度資料和坩堝轉速資料以及所述坩堝內的溫度資料。The single crystal furnace according to claim 1, wherein the data acquisition module includes a crystal position sensor for monitoring the position of the single crystal, a pot position sensor for monitoring the position of the crucible, a A temperature sensor that measures the temperature in the crucible in real time, the data acquisition module collects the pulling speed data and single crystal speed data of the single crystal, the lifting speed data and crucible speed data of the crucible, and the data in the crucible. Temperature data. 如請求項1所述的單晶爐,其中所述晶控模組包括一控制所述提拉杆提拉所述單晶體的晶升馬達和一控制所述單晶體旋轉的晶轉馬達。The single crystal furnace according to claim 1, wherein the crystal control module includes a crystal lifting motor that controls the pull rod to pull the single crystal and a crystal rotation motor that controls the rotation of the single crystal. 如請求項1所述的單晶爐,其中所述堝控模組包括一控制所述坩堝旋轉的堝轉馬達、一控制所述坩堝升降的堝升馬達、對所述坩堝進行加熱的加熱模組以及根據所述坩堝內的溫度控制所述加熱模組的溫控模組。The single crystal furnace according to claim 1, wherein the pot control module includes a pot rotating motor that controls the crucible rotation, a pot lifting motor that controls the crucible lifting, and a heating mold for heating the crucible. And a temperature control module that controls the heating module according to the temperature in the crucible. 如請求項1所述的單晶爐,其中所述長晶爐腔還包括一控制所述爐體內的氣壓的氣壓控制模組。The single crystal furnace according to claim 1, wherein the long crystal furnace cavity further includes a gas pressure control module that controls the gas pressure in the furnace. 如請求項10所述的單晶爐,其中所述資料獲取單元還包括一用於採集所述爐體的氣壓值的氣壓檢測器。The single crystal furnace according to claim 10, wherein the data acquisition unit further includes a pressure detector for collecting a pressure value of the furnace body. 如請求項1所述的單晶爐,其中所述控制系統還包括一警報模組,用於提示和記錄所述單晶體生長過程中的故障資訊。The single crystal furnace according to claim 1, wherein the control system further includes an alarm module for prompting and recording fault information during the growth of the single crystal. 如請求項1所述的單晶爐,其中所述控制系統還包括一顯示模組,用於顯示所述即時資料和所述控制信號。The single crystal furnace according to claim 1, wherein the control system further includes a display module for displaying the real-time data and the control signal.
TW106104270A 2016-09-12 2017-02-09 Single crystal furnace TWI651440B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201610818921.8 2016-09-12
CN201610818921.8A CN107815729A (en) 2016-09-12 2016-09-12 A kind of single crystal growing furnace

Publications (2)

Publication Number Publication Date
TW201821655A TW201821655A (en) 2018-06-16
TWI651440B true TWI651440B (en) 2019-02-21

Family

ID=61600568

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106104270A TWI651440B (en) 2016-09-12 2017-02-09 Single crystal furnace

Country Status (2)

Country Link
CN (1) CN107815729A (en)
TW (1) TWI651440B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338456A (en) * 2018-12-03 2019-02-15 上海交通大学 Single crystal articles production of intelligent control technology based on numerical simulation and neural network judgement
CN110004492B (en) * 2019-04-25 2020-06-09 苏州新美光纳米科技有限公司 Crystal growth furnace and monitoring method thereof
CN109978287B (en) * 2019-05-17 2020-04-21 亚洲硅业(青海)股份有限公司 Intelligent polycrystalline silicon production method and system
CN110552062A (en) * 2019-08-21 2019-12-10 山东天岳先进材料科技有限公司 Control method and control system of silicon carbide crystal growth furnace production equipment
CN111254484B (en) * 2020-01-17 2022-05-13 曲靖师范学院 High-flux single crystal growth device
CN112442736A (en) * 2020-11-11 2021-03-05 银川隆基光伏科技有限公司 Silicon rod drawing system
CN113703411B (en) * 2021-08-31 2022-08-30 亚洲硅业(青海)股份有限公司 Polycrystalline silicon growth process monitoring system and method and polycrystalline silicon production system
CN114318533A (en) * 2021-12-28 2022-04-12 安徽科瑞思创晶体材料有限责任公司 Intelligent control system for crystal growth
CN116200813B (en) * 2023-03-03 2023-10-31 扬州合晶科技有限公司 Crystal growth equipment control method and system
CN118028966A (en) * 2024-02-22 2024-05-14 山东大学 Intelligent crystal growth equipment for growing crystals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1425808A (en) * 2001-12-12 2003-06-25 中国科学院物理研究所 Remote control crystal growing device and its control method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2034176U (en) * 1988-05-27 1989-03-15 浙江大学 Double temp. heating furnace for semi-conductor crystal growth
CN1233886C (en) * 2002-12-20 2005-12-28 北京有色金属研究总院 Single crystal growing furnace three-dimensional thermal field distributing automatic testing system and method thereof
CN100371507C (en) * 2005-03-28 2008-02-27 荀建华 Control system and method for crystal isodiametric growth
CN100339513C (en) * 2006-04-19 2007-09-26 天津市环欧半导体材料技术有限公司 Electric control system of zone-melted silicon single crystal furnace
CN201390800Y (en) * 2009-05-06 2010-01-27 西安恒新自动控制有限公司 DAC signal given plate of single crystal furnace
CN202072794U (en) * 2011-05-17 2011-12-14 江苏清能电源有限公司 Full-digital energy-saving single crystal growth power supply for solar energy and control device
CN102534757A (en) * 2012-01-06 2012-07-04 南京师范大学 Intelligent crystal growth control system based on industrial bus
DE102013210687B4 (en) * 2013-06-07 2018-12-06 Siltronic Ag Method for controlling the diameter of a single crystal to a nominal diameter
CN103710745B (en) * 2013-12-26 2016-01-20 南京晶升能源设备有限公司 85kg to 120kg sapphire crystal growth automation control method
CN105589429A (en) * 2014-10-24 2016-05-18 西安优信机电工程有限公司 Network-based mono-crystal furnace monitoring system
CN104657560A (en) * 2015-03-05 2015-05-27 常州奥施特信息科技有限公司 IC (integrated circuit) virtual manufacturing system and implementing method thereof
CN105887188A (en) * 2016-05-30 2016-08-24 上海超硅半导体有限公司 Monocrystal silicon growing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1425808A (en) * 2001-12-12 2003-06-25 中国科学院物理研究所 Remote control crystal growing device and its control method

Also Published As

Publication number Publication date
CN107815729A (en) 2018-03-20
TW201821655A (en) 2018-06-16

Similar Documents

Publication Publication Date Title
TWI651440B (en) Single crystal furnace
CN103710745B (en) 85kg to 120kg sapphire crystal growth automation control method
JP6325691B2 (en) PLC closed loop control method for sapphire single crystal growth
WO2010048790A1 (en) A method for controlling czochralski crystal growth
JP2020500822A (en) Ingot growth control device and control method therefor
CN102877120B (en) Automatic seeding technique for growing sapphire crystal by Kyropoulos method
CN105445321A (en) Detection device for thermal performance of combustible material in program temperature control condition
CN104911698A (en) Automatic control system for Kyropoulos-process sapphire crystal growth
CN104503510A (en) Temperature synchronizing system and method used for metallurgic performance measuring device
CN205893452U (en) Automatic growing device of crystal based on resistance furnace
CN116377585A (en) Control method, system, device and storage medium for crystal growth apparatus
CN106544733A (en) A kind of crystal growth intelligent machine system based on open network
CN106029958A (en) Silicon single crystal production device
CN108411361B (en) Storage medium, crystal growth method and system thereof
CN116219549A (en) Control method, system and device of crystal growth equipment
CN114595613B (en) Preparation method of bismuth telluride crystal based on numerical simulation
CN107551597A (en) A kind of cerium sulphate crystal method
JP4039055B2 (en) Single crystal growth method and growth apparatus
CN105648521B (en) A kind of growing method and equipment
CN203999801U (en) The temperature regulating device of physical vapor deposition substrate
CN214572356U (en) CZ single crystal growing furnace static thermal field measuring device
CN114574948B (en) Method for controlling growth of perfect silicon crystal and silicon crystal
CN112981521B (en) Seeding power determination method, device and computer readable medium
JP2919532B2 (en) Analysis condition setting method for thermal fluid analysis in furnace
CN113461761A (en) Control method and detection method for crystal particle size distribution of nucleotide product