TWI648947B - Apparatus and method for inspecting solar cell - Google Patents

Apparatus and method for inspecting solar cell Download PDF

Info

Publication number
TWI648947B
TWI648947B TW106129989A TW106129989A TWI648947B TW I648947 B TWI648947 B TW I648947B TW 106129989 A TW106129989 A TW 106129989A TW 106129989 A TW106129989 A TW 106129989A TW I648947 B TWI648947 B TW I648947B
Authority
TW
Taiwan
Prior art keywords
solar cell
tested
regions
cell sheet
probe
Prior art date
Application number
TW106129989A
Other languages
Chinese (zh)
Other versions
TW201914206A (en
Inventor
簡榮吾
Original Assignee
英穩達科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英穩達科技股份有限公司 filed Critical 英穩達科技股份有限公司
Priority to TW106129989A priority Critical patent/TWI648947B/en
Application granted granted Critical
Publication of TWI648947B publication Critical patent/TWI648947B/en
Publication of TW201914206A publication Critical patent/TW201914206A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本發明公開一種太陽能電池片的檢測設備及方法。太陽能電池片的缺陷檢測方法包括提供一太陽能電池片,其具有一收光面以及設置於所述收光面上的多條主電極線。將太陽能電池片的收光面劃分為多個待測區,其中,每一條主電極線通過至少一所述待測區。同時對收光面的多個待測區照射一檢測光。接著,量測出太陽能電池片的多組實際光電流值,且多組所述實際光電流值分別對應多個所述待測區。根據太陽能電池片的每一組實際光電流值,以判定相對應的待測區是否有缺陷。另外,太陽能電池片的檢測設備可用以執行上述檢測方法。 The invention discloses a detecting device and a method for a solar cell sheet. The method for detecting defects of a solar cell sheet includes providing a solar cell sheet having a light collecting surface and a plurality of main electrode lines disposed on the light collecting surface. Dividing the light collecting surface of the solar cell into a plurality of regions to be tested, wherein each of the main electrode lines passes through at least one of the regions to be tested. At the same time, a plurality of detection areas of the light-receiving surface are irradiated with a detection light. Then, the plurality of sets of actual photocurrent values of the solar cell sheets are measured, and the plurality of sets of the actual photocurrent values respectively correspond to the plurality of the regions to be tested. According to each set of actual photocurrent values of the solar cell, it is determined whether the corresponding test area is defective. In addition, a detection device for a solar cell sheet can be used to perform the above detection method.

Description

太陽能電池片的檢測設備及方法 Solar cell chip detecting device and method

本發明涉及一種太陽能電池的檢測設備及方法,特別是涉及一種可對太陽能電池片的內部缺陷進行檢測的設備及方法。 The present invention relates to a solar cell detection apparatus and method, and more particularly to an apparatus and method for detecting internal defects of a solar cell sheet.

在太陽能電池片的生產端,通常只能通過量測太陽能電池片的電池轉換效率,以初步篩出不良品。然而,電池轉換效率的優劣無法實際反映出太陽能電池片是否有微裂(micro crack)或線路斷路(finger interruption)等內部缺陷。這些內部缺陷對太陽能電池片的電池轉換效率影響並不顯著,但卻會對太陽能電池片的穩定性、信賴性及壽命有極大影響。 At the production end of the solar cell sheet, it is usually only possible to measure the cell conversion efficiency of the solar cell sheet to initially screen out the defective product. However, the merits of battery conversion efficiency cannot actually reflect whether the solar cell has internal defects such as micro cracks or finger interruptions. These internal defects have no significant effect on the cell conversion efficiency of the solar cell sheet, but have a great influence on the stability, reliability and lifetime of the solar cell sheet.

在現有技術中,是在將多個太陽能電池片串焊而形成太陽能模組之後,再利用電致發光檢測系統,一次對多片太陽能電池片進行內部缺陷檢測。具體而言,對太陽能電池模組施以外加電流,以激發太陽能電池片內部的電子至高能階,而被激發的電子會再和電洞複合(recombination)而發光。與此同時,使用近紅外線攝影機捕捉矽基材所發出之微弱近紅外光即可獲得電致發光影像。通過分析電致發光影像,可得知太陽能電池模組內的太陽能電池片是否有缺陷。 In the prior art, after a plurality of solar cells are serially welded to form a solar module, an electroluminescence detection system is used to perform internal defect detection on a plurality of solar cells at a time. Specifically, a current is applied to the solar cell module to excite electrons inside the solar cell sheet to a high energy level, and the excited electrons recombine with the holes to emit light. At the same time, an electroluminescence image can be obtained by using a near-infrared camera to capture the weak near-infrared light emitted from the substrate. By analyzing the electroluminescence image, it can be known whether the solar cell in the solar cell module is defective.

然而,電致發光檢測系統目前並未被廣泛應用於太陽能電池片生產端,來檢測太陽能電池片。主要是因為太陽能電池片在生產端並未被串焊,所以每次只能檢測一片太陽能電池片,過於耗時。另外,額外設置電致發光檢測系統以及影像處理技術的限制, 也會大幅提高設備的成本。 However, electroluminescence detection systems are not currently widely used in solar cell production to detect solar cells. The main reason is that the solar cell is not soldered at the production end, so only one solar cell can be detected at a time, which is too time consuming. In addition, additional restrictions on electroluminescence detection systems and image processing techniques are provided. It will also greatly increase the cost of equipment.

另外,在生產端,在檢測太陽能電池片以進行分級判定時,要求在每小時至少完成3000片太陽能電池片的檢測。換言之,每片太陽能電池片的檢測需在1至2秒內完成。因此,雖然現有的雷射光引發電流(laser beam induced current)圖像化檢測技術也可用於檢測太陽能電池片是否有內部缺陷,但是每次量測一片太陽能電池片的時間至少要數分鐘,無法符合生產端所要求的檢測速度。 In addition, at the production end, when the solar cell sheet is detected for classification determination, it is required to complete at least 3,000 solar cell sheets per hour. In other words, the detection of each solar cell piece needs to be completed in 1 to 2 seconds. Therefore, although the existing laser beam induced current image detection technology can also be used to detect whether the solar cell has internal defects, it takes at least several minutes to measure a solar cell each time, which cannot be met. The detection speed required at the production end.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種太陽能電池片的檢測設備及方法,其通過將太陽能電池片分成多個待測區,並在不同的待測區量測太陽能電池片的光電流值,可在短時間內檢測太陽能電池片是否有缺陷以及缺陷所在的位置。 The technical problem to be solved by the present invention is to provide a solar cell sheet detecting apparatus and method for dividing the solar cell sheet into a plurality of regions to be tested and measuring solar cell sheets in different regions to be tested. The photocurrent value can detect whether the solar cell has defects and the location of the defect in a short time.

為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種太陽能電池片的檢測設備。太陽能電池片包括一收光面以及設置於收光面上的多條主電極線,收光面被劃分為多個待測區,每一條主電極線經過至少一待測區。太陽能電池片的檢測設備包括光模擬單元、多個探針模組、多個輔助量測模組以及一處理單元。光模擬單元用以提供一照射於收光面的檢測光。多個探針模組分別對應於多條主電極線,每一個探針模組包括一對應於至少一待測區的探針單元。多個輔助量測模組分別電性連接於多個探針模組。多個輔助量測模組並聯連接,且多個輔助量測模組分別配合多個探針模組,以分別量測出太陽能電池片的多組實際光電流值,且多組實際光電流值分別對應多個待測區。處理模組電性連接於多個輔助量測模組。處理模組根據太陽能電池片的每一組實際光電流值,以判定相對應的待測區是否有缺陷。 In order to solve the above technical problem, one of the technical solutions adopted by the present invention is to provide a detecting device for a solar cell sheet. The solar cell panel comprises a light-receiving surface and a plurality of main electrode lines disposed on the light-receiving surface, the light-receiving surface is divided into a plurality of regions to be tested, and each of the main electrode lines passes through at least one of the regions to be tested. The solar cell detection device includes a light simulation unit, a plurality of probe modules, a plurality of auxiliary measurement modules, and a processing unit. The light simulation unit is configured to provide a detection light that is incident on the light collecting surface. The plurality of probe modules respectively correspond to the plurality of main electrode lines, and each of the probe modules includes a probe unit corresponding to at least one of the regions to be tested. The plurality of auxiliary measurement modules are electrically connected to the plurality of probe modules. A plurality of auxiliary measuring modules are connected in parallel, and a plurality of auxiliary measuring modules are respectively matched with a plurality of probe modules to respectively measure multiple sets of actual photocurrent values of the solar cell sheets, and multiple sets of actual photocurrent values Corresponding to multiple areas to be tested. The processing module is electrically connected to the plurality of auxiliary measuring modules. The processing module determines whether the corresponding area to be tested is defective according to each set of actual photocurrent values of the solar cell.

為了解決上述的技術問題,本發明所採用的另外一技術方案 是,提供一種太陽能電池片的缺陷檢測方法,其包括:提供一太陽能電池片,太陽能電池片具有一收光面以及設置於收光面上的多條主電極線;將太陽能電池片的收光面劃分為多個待測區,其中,每一條主電極線通過至少一待測區;同時對收光面的多個待測區照射一檢測光;量測出太陽能電池片的多組實際光電流值,其中,多組實際光電流值分別對應多個待測區;以及根據太陽能電池片的每一組實際光電流值,以判定相對應的所述待測區是否有缺陷。 In order to solve the above technical problem, another technical solution adopted by the present invention A method for detecting a defect of a solar cell, comprising: providing a solar cell sheet, the solar cell sheet having a light collecting surface and a plurality of main electrode lines disposed on the light collecting surface; and collecting the solar cell sheet The surface is divided into a plurality of regions to be tested, wherein each of the main electrode lines passes through at least one of the regions to be tested; and at the same time, a plurality of detection regions of the light-receiving surface are irradiated with a detection light; and the plurality of actual light beams of the solar cell sheet are measured. a current value, wherein the plurality of sets of actual photocurrent values respectively correspond to the plurality of regions to be tested; and determining, according to each set of actual photocurrent values of the solar cell, whether the corresponding region to be tested is defective.

本發明的有益效果在於,本發明技術方案所提供的太陽能電池片的檢測設備及方法,其能通過“以多個並聯連接的輔助量測模組,同時測得太陽能電池片的多組實際光電流值”,由於多組實際光電流值會分別對應多個待測區,並且每組實際光電流值可以反映出所對應的待測區的載子複合情況,從而可根據實際光電流值判定對應的待測區是否有缺陷。 The invention has the beneficial effects of the solar cell sheet detecting device and method provided by the technical solution of the present invention, which can simultaneously measure multiple sets of actual light of the solar cell sheet by using a plurality of auxiliary measuring modules connected in parallel. The current value", because multiple sets of actual photocurrent values will correspond to multiple areas to be tested, and the actual photocurrent value of each group can reflect the carrier composite condition of the corresponding test area, so that the corresponding photocurrent value can be determined according to the actual photocurrent value. Whether the area to be tested is defective.

對於生產端而言,本發明實施例所提供的太陽能電池片的檢測設備及方法可以和原本的發光度-電流-電壓(Lumination-Current-Voltage)檢測系統整合,因而不需要設置電致發光檢測系統以及圖像判讀裝置,可大幅減少設備建置的成本。此外,本發明所提供的太陽能電池片的缺陷檢測方法是同時針對不同待測區進行檢測,因此可縮短檢測時間。 For the production end, the detection device and method for the solar cell sheet provided by the embodiments of the present invention can be integrated with the original Lumination-Current-Voltage detection system, so that no electroluminescence detection is required. The system and image interpretation device can greatly reduce the cost of equipment construction. In addition, the defect detecting method of the solar cell sheet provided by the present invention simultaneously detects the different areas to be tested, thereby shortening the detecting time.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所提供的附圖僅用於提供參考與說明,並非用來對本發明加以限制。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

1‧‧‧太陽能電池片的檢測設備 1‧‧‧Solar cell test equipment

10‧‧‧光模擬單元 10‧‧‧Light simulation unit

L‧‧‧檢測光 L‧‧‧Detecting light

11a、11b‧‧‧探針模組 11a, 11b‧‧‧ probe module

111a~114a、111b~114b‧‧‧探針單元 111a~114a, 111b~114b‧‧‧ probe unit

G1~G4‧‧‧次群組 G1~G4‧‧‧Subgroup

12a、12b‧‧‧輔助量測模組 12a, 12b‧‧‧Auxiliary measurement module

121a~124a、121b~124b‧‧‧輔助量測單元 121a~124a, 121b~124b‧‧‧Auxiliary measurement unit

13‧‧‧主要量測模組 13‧‧‧Main measurement module

14‧‧‧處理模組 14‧‧‧Processing module

140‧‧‧資料庫 140‧‧‧Database

15‧‧‧承載台 15‧‧‧Loading station

150‧‧‧電極接觸部 150‧‧‧Electrode contact

2‧‧‧太陽能電池片 2‧‧‧Solar cell

2a‧‧‧收光面 2a‧‧‧ Receiving surface

20‧‧‧正面電極結構 20‧‧‧ front electrode structure

20a、20b‧‧‧主電極線 20a, 20b‧‧‧ main electrode line

R11~R24‧‧‧待測區 R11~R24‧‧‧Down area

2b‧‧‧背面 2b‧‧‧back

21‧‧‧背面電極 21‧‧‧Back electrode

S100~S104、S200‧‧‧流程步驟 S100~S104, S200‧‧‧ process steps

圖1為本發明其中一實施例的太陽能電池片的檢測設備的側視示意圖。 1 is a side elevational view of a detecting device for a solar cell sheet according to an embodiment of the present invention.

圖2為利用本發明其中一實施例的太陽能電池片的檢測設備對太陽能電池片檢測時的俯視示意圖。 2 is a top plan view showing a solar cell sheet detecting apparatus using a solar cell sheet according to an embodiment of the present invention.

圖3為利用本發明另一實施例的太陽能電池片的檢測設備對太陽能電池片檢測時的俯視示意圖。 3 is a top plan view showing a solar cell sheet detecting apparatus using a solar cell sheet according to another embodiment of the present invention.

圖4為利用本發明另一實施例的太陽能電池片的檢測設備對太陽能電池片檢測時的俯視示意圖。 4 is a top plan view showing a solar cell sheet detecting apparatus using a solar cell sheet according to another embodiment of the present invention.

圖5為本發明實施例的太陽能電池片的檢測方法的流程圖。 FIG. 5 is a flow chart of a method for detecting a solar cell sheet according to an embodiment of the present invention.

以下是通過特定的具體實施例來說明本發明所公開有關“太陽能電池片的檢測設備及方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的精神下進行各種修飾與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。 The following is a description of an embodiment of the present invention relating to a "detecting device and method for a solar cell sheet" by a specific embodiment, and those skilled in the art can understand the advantages and effects of the present invention from the contents disclosed in the specification. The present invention may be carried out or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention. In addition, the drawings of the present invention are merely illustrative and are not intended to be stated in the actual size. The following embodiments will further explain the related technical content of the present invention, but the disclosure is not intended to limit the scope of the present invention.

請參閱圖1至圖2所示。圖1本發明其中一實施例的太陽能電池片的檢測設備的側視示意圖,圖2為利用本發明其中一實施例的太陽能電池片的檢測設備對太陽能電池片檢測時的俯視示意圖。 Please refer to Figure 1 to Figure 2. 1 is a side elevational view of a solar cell sheet detecting apparatus according to an embodiment of the present invention, and FIG. 2 is a top plan view showing a solar cell sheet detecting apparatus according to an embodiment of the present invention.

如圖1所示,本發明實施例的太陽能電池片的檢測設備1可以用來檢測太陽能電池片是否有無法以肉眼觀察的缺陷,例如:微裂或是斷線等等。除此之外,本發明實施例的太陽能電池片的檢測設備1也可檢測缺陷所在的區域,並進一步根據太陽能電池片2的各個測試結果,來對太陽能電池片進行分級。 As shown in FIG. 1, the detecting device 1 for a solar cell sheet according to an embodiment of the present invention can be used to detect whether a solar cell sheet has defects that cannot be observed by the naked eye, such as microcracking or disconnection. In addition, the detecting device 1 of the solar cell sheet of the embodiment of the present invention can also detect the region where the defect is located, and further classify the solar cell sheet according to the respective test results of the solar cell sheet 2.

本發明實施例的太陽能電池片的檢測設備1包括光模擬單元10、多個探針模組11a、11b、多個輔助量測模組12a、12b、主要量測模組13以及一處理模組14。 The detecting device 1 of the solar cell sheet of the embodiment of the invention comprises a light simulating unit 10, a plurality of probe modules 11a and 11b, a plurality of auxiliary measuring modules 12a and 12b, a main measuring module 13 and a processing module. 14.

太陽能電池片2可以是矽基太陽能電池片,如:單晶矽太陽能電池片、非晶矽太陽能電池片或多晶矽太陽能電池片。在本實施例中,在太陽能電池片2完成大部分的製程之後,可利用本發明實施例的檢測設備1繼續對太陽能電池片2進行檢測,以得到太陽能電池片2的電性表現、光電轉換效率以及缺陷分布狀態,從而可對太陽能電池片2進行分級或篩選。 The solar cell sheet 2 may be a germanium-based solar cell sheet such as a single crystal germanium solar cell sheet, an amorphous germanium solar cell sheet or a polycrystalline germanium solar cell sheet. In this embodiment, after the solar cell 2 completes most of the process, the solar cell 2 can be continuously detected by the detecting device 1 of the embodiment of the present invention to obtain electrical performance and photoelectric conversion of the solar cell 2. The efficiency and the state of the defect distribution allow the solar cell sheet 2 to be classified or screened.

待檢測的太陽能電池片2通常具有一收光面2a以及一和所述收光面2a相反的背面2b。太陽能電池片2包括設置在收光面2a上的正面電極結構20以及設置在背面2b的背面電極21。 The solar cell sheet 2 to be detected generally has a light-receiving surface 2a and a back surface 2b opposite to the light-receiving surface 2a. The solar cell sheet 2 includes a front electrode structure 20 provided on the light receiving surface 2a and a back surface electrode 21 provided on the back surface 2b.

請先參照圖2,正面電極結構20包括多條主電極線20a、20b,也就是匯流排(bus bar),以及和多條主電極線20a、20b交錯的指狀電極(未圖示)。另外,太陽能電池片2的收光面2a會被劃分為多個待測區R11~R24,且每一條主電極線20a、20b會通過至少一待測區R11~R24,且每一條主電極線20a、20b上會設有至少一個位於待測區R11~R24內的待測點(未標號)。 Referring first to FIG. 2, the front electrode structure 20 includes a plurality of main electrode lines 20a, 20b, that is, a bus bar, and finger electrodes (not shown) interleaved with the plurality of main electrode lines 20a, 20b. In addition, the light-receiving surface 2a of the solar cell 2 is divided into a plurality of regions R11 to R24, and each of the main electrode lines 20a and 20b passes through at least one of the regions R11 to R24, and each of the main electrodes 20a, 20b will be provided with at least one point to be tested (not labeled) located in the area to be tested R11~R24.

在圖2的實施例中,是以具有兩條主電極線20a、20b的太陽能電池片2為例來進行說明。兩條主電極線20a、20b在第一方向D1上相互並排,且兩條主電極線20a、20b都朝著第二方向D2延伸。 In the embodiment of Fig. 2, the solar cell sheet 2 having the two main electrode lines 20a, 20b will be described as an example. The two main electrode lines 20a, 20b are juxtaposed to each other in the first direction D1, and both of the main electrode lines 20a, 20b extend toward the second direction D2.

如圖2所示,本實施例的太陽能電池片2的收光面2a被劃分為m×n個待測區R11~R24,其中m是每列(即沿著第一方向D1排列)待測區的數量,n是每行(即沿著第二方向D2排列)待測區的數量。 As shown in FIG. 2, the light-receiving surface 2a of the solar cell sheet 2 of the present embodiment is divided into m×n regions R11 to R24, where m is each column (ie, arranged along the first direction D1) to be tested. The number of zones, n is the number of zones to be tested per row (ie, arranged along the second direction D2).

待測區R11~R24的數量會影響檢測結果的精準度。因此,當希望檢測結果的精準度越高,可將收光面2a劃分為數量更多、區域更小的待測區R11~R24。在本實施例中,收光面2a被劃分為2×4個待測區R11~R24。 The number of R11~R24 in the test area will affect the accuracy of the test results. Therefore, when the accuracy of the detection result is desired, the light-receiving surface 2a can be divided into a larger number of regions R11 to R24 with smaller regions. In the present embodiment, the light-receiving surface 2a is divided into 2 × 4 areas to be tested R11 to R24.

在同一列(沿第一方向D1排列)的待測區,如:待測區R11、 R21的數量m,會根據主電極線20a、20b的數量來決定。在本實施例中,每一條主電極線20a(或主電極線20b)會通過位於同一行的待測區R11~R14(或待測區R21~R24)。另外,多條主電極線20a、20b所經過的待測區R11~R24不會重疊。換句話說,每一個待測區R11~R24只會有一條主電極線20a、20b通過,而不會有兩條主電極線20a、20b在同一個待測區R11~R24內。然而,在其他實施例中,也可以根據實際需求改變待測區R11~R24的範圍,從而使每個待測區R11~R24涵蓋兩條或兩條以上的主電極線20a、20b,本發明並不限制。 The area to be tested in the same column (arranged along the first direction D1), such as: the area to be tested R11, The number m of R21 is determined according to the number of main electrode lines 20a, 20b. In the present embodiment, each of the main electrode lines 20a (or the main electrode lines 20b) passes through the areas to be tested R11 to R14 (or the areas to be tested R21 to R24) located in the same row. In addition, the areas to be tested R11 to R24 through which the plurality of main electrode lines 20a and 20b pass do not overlap. In other words, only one main electrode line 20a, 20b passes through each of the regions R11 to R24 to be tested, and there is no two main electrode lines 20a, 20b in the same region to be tested R11 to R24. However, in other embodiments, the range of the regions R11 to R24 to be tested may be changed according to actual needs, so that each of the regions R11 to R24 covers two or more main electrode lines 20a and 20b, and the present invention Not limited.

請再參照圖1。光模擬單元10用以提供一照射於收光面2a的檢測光L。光模擬單元10所產生的檢測光L的光強度與波長光譜可根據實際需求調整。在檢測過程中,檢測光L會照射太陽能電池片2的整個收光面2a,以促使太陽能電池片2產生光電流。 Please refer to Figure 1 again. The light simulation unit 10 is configured to provide a detection light L that is incident on the light-receiving surface 2a. The light intensity and wavelength spectrum of the detection light L generated by the light simulation unit 10 can be adjusted according to actual needs. During the detection process, the detection light L illuminates the entire light-receiving surface 2a of the solar cell sheet 2 to cause the solar cell sheet 2 to generate a photocurrent.

承上述,多個探針模組11a、11b分別對應於多條主電極線20a、20b而設置。因此,探針模組的數量為M,且會和主電極線20a、20b的數量相同。另外,每一個探針模組11a(或11b)包括一對應於至少一待測區R11~R14(或R21~R24)的探針單元111a~114a(或111b~114b)。 In the above, the plurality of probe modules 11a and 11b are provided corresponding to the plurality of main electrode lines 20a and 20b, respectively. Therefore, the number of probe modules is M and will be the same as the number of main electrode lines 20a, 20b. In addition, each of the probe modules 11a (or 11b) includes a probe unit 111a-114a (or 111b-114b) corresponding to at least one of the regions R11 to R14 (or R21 to R24).

請參照圖2。本實施例中,每一個探針模組11a(或11b)是包括多個對應於同一條主電極線20a(或20b)的探針單元111a~114a(或111b~114b),以分別接觸同一條主電極線20a(或20b)上的多個待測點。若每一個探針模組11a(或11b)上的探針單元111a~114a(或111b~114b)的數量為N,則N會和每行待測區R11~R14(或R21~R24)的數量n相同。 Please refer to Figure 2. In this embodiment, each of the probe modules 11a (or 11b) includes a plurality of probe units 111a-114a (or 111b-114b) corresponding to the same main electrode line 20a (or 20b) to respectively contact the same A plurality of points to be measured on one main electrode line 20a (or 20b). If the number of probe units 111a-114a (or 111b-114b) on each probe module 11a (or 11b) is N, then N and each row of the test area R11~R14 (or R21~R24) The number n is the same.

探針單元111a~114a、111b~114b的總數會和待測區R11~R24的數量相同。在一實施例中,待測區R11~R24的數量為R,探針模組的數量M以及每一個探針模組11a(或11b)上的多個探針單元111a~114a(或111b~114b)的數量N滿足下列關係式:R=M×N。 The total number of the probe units 111a to 114a, 111b to 114b is the same as the number of the regions R11 to R24 to be tested. In one embodiment, the number of the regions R11 to R24 to be tested is R, the number M of probe modules, and the plurality of probe units 111a to 114a (or 111b~) on each probe module 11a (or 11b). The number N of 114b) satisfies the following relationship: R = M × N.

請再參照圖1。要說明的是,本發明實施例的太陽能電池片的檢測設備1包括一用以承載太陽能電池片2的承載台15。承載台15上設有一用以電性接觸背面電極21的電極接觸部150。 Please refer to Figure 1 again. It is to be noted that the detecting device 1 for a solar cell sheet according to an embodiment of the present invention includes a carrying platform 15 for carrying the solar cell sheet 2. An electrode contact portion 150 for electrically contacting the back surface electrode 21 is disposed on the carrier 15.

當太陽能電池片2設置在承載台15上時,背面電極21可通過接觸電極接觸部150而電性連接於主要量測模組13。據此,當探針模組11a、11b上的探針單元111a~114a、111b~114b接觸到主電極線20a、20b時,即可形成檢測迴路。 When the solar cell 2 is disposed on the carrier 15 , the back electrode 21 can be electrically connected to the main measurement module 13 by contacting the electrode contact portion 150 . Accordingly, when the probe units 111a to 114a, 111b to 114b on the probe modules 11a and 11b are in contact with the main electrode lines 20a and 20b, a detection circuit can be formed.

請再參照圖1,多個輔助量測模組12a、12b分別電性連接於多個探針模組11a、11b。本實施例中的多個輔助量測模組12a、12b是並聯連接,且多個輔助量測模組12a、12b分別配合多個探針模組11a、11b,以分別量測出太陽能電池片2的多組實際光電流值,且多組實際光電流值分別對應多個待測區R11~R24。 Referring to FIG. 1 again, the plurality of auxiliary measurement modules 12a and 12b are electrically connected to the plurality of probe modules 11a and 11b, respectively. The plurality of auxiliary measurement modules 12a and 12b in the embodiment are connected in parallel, and the plurality of auxiliary measurement modules 12a and 12b are respectively matched with the plurality of probe modules 11a and 11b to respectively measure the solar cell sheets. The plurality of sets of actual photocurrent values of 2, and the plurality of sets of actual photocurrent values respectively correspond to the plurality of regions R11 to R24 to be tested.

請參照圖2,本實施例的每一個輔助量測模組12a(或12b)會包括多個輔助量測單元121a~124a(或121b~124b),且多個輔助量測單元121a~124a、121b~124b會分別串聯連接多個探針單元111a~114a、111b~114b。當檢測光L照射到太陽能電池片2的收光面2a時,每一個輔助量測單元121a~124a、121b~124b都可偵測到一個實際光電流值。 Referring to FIG. 2, each of the auxiliary measurement modules 12a (or 12b) of the embodiment includes a plurality of auxiliary measurement units 121a-124a (or 121b-124b), and a plurality of auxiliary measurement units 121a-124a, 121b to 124b are connected in series to the plurality of probe units 111a to 114a and 111b to 114b, respectively. When the detection light L is incident on the light-receiving surface 2a of the solar cell sheet 2, each of the auxiliary measuring units 121a to 124a, 121b to 124b can detect an actual photocurrent value.

須說明的是,由於檢測光L是照射整個收光面2a,因此每一個輔助量測單元121a~124a、121b~124b所量測到的實際光電流值並不只是由太陽能電池片2的局部區域所產生的光電流,而是整個太陽能電池片2所產生的光電流。 It should be noted that since the detection light L is irradiated to the entire light receiving surface 2a, the actual photocurrent value measured by each of the auxiliary measuring units 121a to 124a, 121b to 124b is not only a part of the solar cell sheet 2 The photocurrent generated by the region is the photocurrent generated by the entire solar cell 2.

然而,若是太陽能電池片2的待測區R11~R24內存在缺陷,在有缺陷的地方會產生載子(電洞或電子)的複合中心(recombination centers),從而使量測到的實際光電流值較低。因此,各個輔助量測單元121a~124a、121b~124b所量到的實際光電流值會反映出所對應的待測區R11~R24的缺陷情況。通過分析這些實際光電流值,即可判斷太陽能電池片2是否具有缺陷,以及 缺陷所分布的區域。 However, if there is a defect in the area to be tested R11 to R24 of the solar cell 2, a recombination center of a carrier (hole or electron) is generated in a defective place, so that the measured actual photocurrent is generated. The value is lower. Therefore, the actual photocurrent values measured by the respective auxiliary measuring units 121a-124a, 121b-124b reflect the defects of the corresponding areas R11 to R24. By analyzing these actual photocurrent values, it can be determined whether the solar cell sheet 2 has defects, and The area in which the defect is distributed.

請再參照圖1,處理模組14電性連接於光模擬單元10以及多個輔助量測模組12a、12b。處理模組14控制光模擬單元10發出檢測光L照射在太陽能電池片2上,以及控制多個輔助量測模組12a、12b量測太陽能電池片2的多組實際光電流值。 Referring to FIG. 1 again, the processing module 14 is electrically connected to the optical simulation unit 10 and the plurality of auxiliary measurement modules 12a and 12b. The processing module 14 controls the light simulation unit 10 to emit the detection light L on the solar cell 2, and controls the plurality of auxiliary measurement modules 12a, 12b to measure the plurality of actual photocurrent values of the solar cell 2.

另外,處理模組14接收並分析多個輔助量測模組12a、12b所量測到的多組實際光電流值。具體而言,處理模組14根據太陽能電池片2的每一組實際光電流值,以判定相對應的待測區R11~R24是否有缺陷。 In addition, the processing module 14 receives and analyzes the plurality of sets of actual photocurrent values measured by the plurality of auxiliary measurement modules 12a, 12b. Specifically, the processing module 14 determines whether the corresponding test areas R11 R R24 are defective according to each set of actual photocurrent values of the solar cell sheet 2 .

在本實施例中,處理模組14還包括一資料庫140。資料庫140儲存分別對應於多個待測區R11~R24的多個參考光電流值。處理模組14可通過比對對應於同一個待測區R11~R24的參考光電流值以及實際光電流值,以判斷相對應的待測區R11~R24內是否有缺陷。 In this embodiment, the processing module 14 further includes a database 140. The database 140 stores a plurality of reference photocurrent values respectively corresponding to the plurality of regions R11 to R24 to be tested. The processing module 14 can determine whether there is a defect in the corresponding test area R11 R R24 by comparing the reference photocurrent value corresponding to the same test area R11 R R24 and the actual photo current value.

舉例而言,在本實施例中,太陽能電池片2的收光面2a被劃分為8個待測區R11~R24,因此,處理模組14會由輔助量測模組12a、12b接收到8組在太陽能電池片2的不同位置所量到的實際光電流值。假設太陽能電池片2在待測區R11具有缺陷,則處理模組14可比對出,在待測區R11所量到的實際光電流值,會低於對應待測區R11的參考光電流值,從而判斷缺陷位於待測區R11。 For example, in the embodiment, the light-receiving surface 2a of the solar cell 2 is divided into eight regions R11 to R24, so that the processing module 14 is received by the auxiliary measurement modules 12a and 12b. The actual photocurrent values measured at different locations of the solar cell 2 are grouped. Assuming that the solar cell 2 has a defect in the region to be tested R11, the processing module 14 can compare, and the actual photocurrent value measured in the region to be tested R11 is lower than the reference photocurrent value corresponding to the region R11 to be tested. Therefore, it is judged that the defect is located in the area to be tested R11.

另外,處理模組14還可以根據缺陷所分佈的區域多寡,來對太陽能電池片2進行分級與篩選。詳細而言,資料庫140內可儲存太陽能電池片2的分級標準與篩選條件。處理模組14在判斷出具有缺陷的待測區R11~R24之後,可進一步得知具有缺陷的待測區R11~R24的數量,並得到具有缺陷的待測區R11~R24的總面積和收光面2a的總面積的比值。 In addition, the processing module 14 can classify and screen the solar cell sheets 2 according to the number of regions in which the defects are distributed. In detail, the grading standard and screening conditions of the solar cell sheet 2 can be stored in the database 140. After the processing module 14 determines the defective areas R11 to R24, the number of the to-be-tested areas R11 to R24 having defects is further known, and the total area of the defective areas R11 to R24 is obtained. The ratio of the total area of the smooth surface 2a.

前述的分級標準例如是設定具有缺陷的待測區R11~R24的總面積和收光面2a的總面積的比值落在第一預定範圍內,則判定為 最佳;若具有缺陷的待測區R11~R24的總面積和收光面2a的總面積的比值落在第二預定範圍內為次佳,依此類推。前述的篩選條件例如是設定具有缺陷的待測區R11~R24的總面積和收光面2a的總面積的比值需小於一預設值,若超過前述預設值則判定為不良品。 The foregoing grading standard is determined, for example, by setting the ratio of the total area of the areas to be tested R11 to R24 having defects to the total area of the light-receiving surface 2a to fall within the first predetermined range, and then determining that Preferably; if the ratio of the total area of the defective areas R11 to R24 to the total area of the light-receiving surface 2a falls within the second predetermined range, it is suboptimal, and so on. The foregoing screening condition is, for example, that the ratio of the total area of the areas to be tested R11 to R24 having defects to the total area of the light-receiving surface 2a is less than a predetermined value, and if it exceeds the preset value, it is determined to be a defective product.

在另一實施例中,處理模組14可根據多個待測區R11~R24的位置,以及分別對應這些待測區R11~R24的實際光電流值,產生一光電流圖像,以便於操作人員判讀太陽能電池片2的缺陷分布狀況。 In another embodiment, the processing module 14 can generate a photocurrent image according to the positions of the plurality of regions R11 to R24 and the actual photocurrent values of the regions R11 to R24, respectively, to facilitate operation. The person interprets the defect distribution of the solar cell sheet 2.

另外,本發明實施例的太陽能電池片的檢測設備1還可量測太陽能電池片2的其他電性表現。請參照圖1。具體而言,本發明實施例的太陽能電池片的檢測設備1還包括一和處理模組14電性連接的主要量測模組13。另外,主要量測模組13和相互並聯連接的多個輔助量測模組12a、12b串聯連接。 In addition, the detecting device 1 of the solar cell sheet of the embodiment of the present invention can also measure other electrical performances of the solar cell sheet 2. Please refer to Figure 1. Specifically, the detecting device 1 of the solar cell sheet of the embodiment of the present invention further includes a main measuring module 13 electrically connected to the processing module 14. In addition, the main measurement module 13 and the plurality of auxiliary measurement modules 12a and 12b connected in parallel with each other are connected in series.

主要量測模組13接受處理模組14的控制,以檢測太陽能電池片2的電性表現,如:開路電壓、短路電流以及光電轉換效率等等。在本實施例中,主要量測模組13可用以量測太陽能電池片2的總光電流值,也就是多個輔助量測模組12a、12b所分別量到的多個實際光電流值的總和。 The main measurement module 13 is controlled by the processing module 14 to detect electrical performance of the solar cell 2, such as open circuit voltage, short circuit current, and photoelectric conversion efficiency. In this embodiment, the main measurement module 13 can be used to measure the total photocurrent value of the solar cell 2, that is, the plurality of actual photocurrent values respectively measured by the plurality of auxiliary measurement modules 12a, 12b. sum.

詳細而言,假設多個輔助量測單元121a~124a在待測區R11~R14所分別量測到的實際光電流值為I11、I12、I13、I14,而多個輔助量測單元121b~124b在待測區R21~R24分別量測到的實際光電流值為I21、I22、I23、I24。主要量測模組13所量測到的總光電流值(I)與各個實際光電流值I11~I24之間的關係式為:I=n11×I11+n12×I12+n13×I13+...+n24×I24。前述的n11~n24分別是對應於多個待測區R11~R24的係數值,且可通過適當的電性模擬或者是通過校正量測得到。 More specifically, assuming that a plurality of auxiliary measuring units 121a ~ 124a at the actual measuring region photocurrent R11 ~ R14 respectively to the measured value of I 11, I 12, I 13 , I 14, and a plurality of auxiliary measuring The actual photocurrent values measured by the cells 121b to 124b in the areas to be tested R21 to R24 are I 21 , I 22 , I 23 , and I 24 , respectively . The relationship between the total photocurrent value (I) measured by the main measurement module 13 and each actual photocurrent value I 11 ~I 24 is: I = n 11 × I 11 + n 12 × I 12 + n 13 ×I 13 +...+n 24 ×I 24 . The aforementioned n 11 ~ n 24 are coefficient values corresponding to the plurality of test areas R11 to R24, respectively, and can be obtained by appropriate electrical simulation or by correction measurement.

據此,當利用本發明實施例所提供的太陽能電池片的檢測設 備1對太陽能電池片2進行缺陷檢測時,先將太陽能電池片2設置在承載台15上,再利用光模擬單元10產生檢測光L照射在太陽能電池片2的整個收光面2a。隨後,可控制多個探針模組11a、11b下降,以在同時間內使多個探針單元111a~114a、111b~114b接觸太陽能電池片2,以量測多個太陽能電池片2的實際光電流值。處理模組14再根據所接收的太陽能電池片2的每一組實際光電流值,以判定相對應的待測區R11~R24是否有缺陷。詳細的檢測步驟將於後文中描述。 Accordingly, when the solar cell sheet provided by the embodiment of the present invention is used, the detection device is provided. When the solar cell sheet 2 is subjected to defect detection, the solar cell sheet 2 is first placed on the stage 15 and the detection light L is generated by the light simulation unit 10 to be irradiated onto the entire light-receiving surface 2a of the solar cell sheet 2. Subsequently, the plurality of probe modules 11a, 11b can be controlled to descend to contact the plurality of probe units 111a-114a, 111b-114b in contact with the solar cell sheet 2 at the same time to measure the actual number of the plurality of solar cells 2 Photocurrent value. The processing module 14 further determines whether the corresponding test areas R11 R R24 are defective according to the actual photocurrent values of each group of the received solar cells 2 . Detailed detection steps will be described later.

據此,本發明實施例所提供的太陽能電池片的檢測設備1可以在短時間內,同時針對太陽能電池片2的各個待測區R11~R24,量測到對應的實際光電流值,並根據實際光電流值來檢測太陽能電池片2是否有缺陷以及缺陷分布狀況。除此之外,本發明實施例所提供的太陽能電池片的檢測設備1還可根據缺陷分布狀況對太陽能電池片2進行篩選與分級。 Accordingly, the detecting device 1 for the solar cell panel provided by the embodiment of the present invention can measure the corresponding actual photocurrent value for each of the to-be-tested regions R11 to R24 of the solar cell panel 2 in a short time, and according to The actual photocurrent value is used to detect whether the solar cell sheet 2 has defects and defect distribution conditions. In addition, the detecting device 1 for the solar cell sheet provided by the embodiment of the present invention can also screen and classify the solar cell sheet 2 according to the defect distribution condition.

請參照圖3。圖3為利用本發明另一實施例的太陽能電池片的檢測設備對太陽能電池片檢測時的俯視示意圖。 Please refer to Figure 3. 3 is a top plan view showing a solar cell sheet detecting apparatus using a solar cell sheet according to another embodiment of the present invention.

和圖2的實施例不同的是,圖3的實施例中的太陽能電池片2的待測區R11~R21的數量是和主電極線20a、20b的數量相同。相較於前一實施例而言,待測區R11~R21的數量減少,但面積較大。 The difference from the embodiment of FIG. 2 is that the number of the regions R11 to R21 of the solar cell sheet 2 in the embodiment of FIG. 3 is the same as the number of the main electrode lines 20a, 20b. Compared with the previous embodiment, the number of the regions R11 to R21 to be tested is reduced, but the area is large.

另外,在本實施例中,每一個探針模組11a(或11b)中對應於同一條主電極線20a(或20b)的多個探針單元111a~114a(或111b~114b)是串聯連接。每一個輔助量測模組12a(或12b)包括至少一輔助量測單元121a、121b(圖3中繪示一個),且多個探針單元111a~114a(或111b~114b)的其中之一個,會串聯連接輔助量測單元121a(或121b)。 In addition, in the present embodiment, the plurality of probe units 111a to 114a (or 111b to 114b) corresponding to the same main electrode line 20a (or 20b) in each probe module 11a (or 11b) are connected in series. . Each of the auxiliary measurement modules 12a (or 12b) includes at least one auxiliary measurement unit 121a, 121b (one is shown in FIG. 3), and one of the plurality of probe units 111a to 114a (or 111b to 114b) The auxiliary measuring unit 121a (or 121b) is connected in series.

和前一實施例相似,處理模組14接收並分析多個輔助量測模組12a、12b所量測到的多組實際光電流值,並根據太陽能電池片2的每一組實際光電流值,以判定相對應的待測區R11~R21是否 有缺陷。 Similar to the previous embodiment, the processing module 14 receives and analyzes the plurality of sets of actual photocurrent values measured by the plurality of auxiliary measurement modules 12a, 12b, and according to each group of actual photocurrent values of the solar cell 2 To determine whether the corresponding test area R11~R21 is defective.

請參照圖4,圖4為利用本發明另一實施例的太陽能電池片的檢測設備對太陽能電池片檢測時的俯視示意圖。在圖4的實施例中,收光面2a被劃分為4個待測區R11~R22。同一探針模組11a(或11b)中的多個探針單元111a~114a(或111b~114b)分成多個次群組G1、G2(或G3、G4)。以其中一個次群組G1為例,每個次群組G1中的探針單元111a~112a相互串聯連接。 Please refer to FIG. 4. FIG. 4 is a top plan view showing the detection of the solar cell by the detecting device of the solar cell sheet according to another embodiment of the present invention. In the embodiment of FIG. 4, the light-receiving surface 2a is divided into four areas to be tested R11 to R22. The plurality of probe units 111a to 114a (or 111b to 114b) in the same probe module 11a (or 11b) are divided into a plurality of subgroups G1, G2 (or G3, G4). Taking one of the subgroups G1 as an example, the probe units 111a to 112a in each subgroup G1 are connected in series to each other.

另外,以探針模組11a為例,同一個探針模組11a中的每個次群組G1、G2會相互並聯連接。在這個情況下,每個輔助量測模組12a(或12b)會包括和次群組G1、G2(或G3、G4)的數量相同的輔助量測單元121a~122a(或121b~122b)。輔助量測單元121a會串連次群組G1,輔助量測單元122a會串連次群組G2,但輔助量測單元121a與輔助量測單元122a會並聯連接。據此,輔助量測模組12a、12b可量測出太陽能電池片2的多組實際光電流值。 In addition, taking the probe module 11a as an example, each of the subgroups G1 and G2 in the same probe module 11a is connected in parallel with each other. In this case, each of the auxiliary measurement modules 12a (or 12b) includes the auxiliary measurement units 121a to 122a (or 121b to 122b) having the same number as the subgroups G1, G2 (or G3, G4). The auxiliary measuring unit 121a will connect the secondary group G1 in series, and the auxiliary measuring unit 122a will connect the secondary group G2 in series, but the auxiliary measuring unit 121a and the auxiliary measuring unit 122a will be connected in parallel. Accordingly, the auxiliary measurement modules 12a, 12b can measure the plurality of sets of actual photocurrent values of the solar cell sheet 2.

承上述,待測區的數量越少,面積越大。因此,處理模組14處理數據的速度也較快。但是待測區的數量越少,處理模組14在判定缺陷是否存在時的準確度較低。因此,本領域技術人員可根據實際應用的需求來設計電路,使同一探針模組11a、11b中的多個探針單元111a~114a、111b~114b在不同的模式下有不同的連接方式,例如:可切換為全部並聯、部分並聯或者是全部串聯。據此,使用者可根據需求,切換不同的量測模式。 In view of the above, the smaller the number of areas to be tested, the larger the area. Therefore, the processing module 14 processes the data faster. However, the smaller the number of regions to be tested, the lower the accuracy of the processing module 14 in determining whether a defect exists. Therefore, those skilled in the art can design the circuit according to the requirements of the actual application, so that the plurality of probe units 111a-114a, 111b-114b in the same probe module 11a, 11b have different connection modes in different modes. For example: switch to all parallel, partial parallel or all series. According to this, the user can switch different measurement modes according to the requirements.

請參照圖5。圖5為本發明實施例的太陽能電池片的檢測方法的流程圖。本實施例的太陽能電池片的檢測方法可以通過圖1至圖4中的太陽能電池片的檢測設備1來執行。 Please refer to Figure 5. FIG. 5 is a flow chart of a method for detecting a solar cell sheet according to an embodiment of the present invention. The method of detecting the solar cell sheet of the present embodiment can be performed by the detecting device 1 of the solar cell sheet of FIGS. 1 to 4.

在步驟S100中,提供一太陽能電池片,太陽能電池片具有一收光面以及設置於收光面上的多條主電極線。在步驟S101中,將太陽能電池片的收光面劃分為多個待測區,其中,每一條主電極線通過至少一所述待測區。 In step S100, a solar cell sheet is provided. The solar cell sheet has a light collecting surface and a plurality of main electrode lines disposed on the light collecting surface. In step S101, the light collecting surface of the solar cell sheet is divided into a plurality of regions to be tested, wherein each of the main electrode lines passes through at least one of the regions to be tested.

劃分太陽能電池片2的收光面2a的方式可以參照前述圖2至圖4的實施例。如前所述,待測區R11~R24的數量可以根據實際需求決定。 The manner in which the light-receiving surface 2a of the solar cell sheet 2 is divided can be referred to the embodiment of FIGS. 2 to 4 described above. As mentioned above, the number of R11~R24 to be tested can be determined according to actual needs.

在步驟S102中,同時對收光面的多個待測區照射一檢測光。本實施例中,可以利用圖1所示的光模擬單元10來產生檢測光L,且在進行檢測時,檢測光L會照射在太陽能電池片2的整個收光面。 In step S102, a plurality of detection areas of the light-receiving surface are simultaneously irradiated with a detection light. In the present embodiment, the detection light L can be generated by the light simulation unit 10 shown in FIG. 1, and the detection light L is irradiated onto the entire light-receiving surface of the solar cell sheet 2 when the detection is performed.

在步驟S103中,量測出太陽能電池片的多組實際光電流值,其中,多組實際光電流值分別對應多個待測區。如前所述,可以通過圖1至圖4的輔助量測模組12a、12b中的輔助量測單元121a~124a、121b~124b,來量測太陽能電池片2的多組實際光電流值。 In step S103, a plurality of sets of actual photocurrent values of the solar cell sheet are measured, wherein the plurality of sets of actual photocurrent values respectively correspond to the plurality of regions to be tested. As described above, the plurality of sets of actual photocurrent values of the solar cell sheet 2 can be measured by the auxiliary measuring units 121a to 124a, 121b to 124b of the auxiliary measuring modules 12a and 12b of FIGS. 1 to 4.

接著,在步驟S104中,根據太陽能電池片的每一組實際光電流值,以判定相對應的待測區是否有缺陷。 Next, in step S104, according to each set of actual photocurrent values of the solar cell sheets, it is determined whether the corresponding area to be tested is defective.

須說明的是,在進行步驟S104之前,可進行步驟S200,建立一資料庫,所述資料庫儲存分別對應於多個所述待測區的多個參考光電流值。 It should be noted that, before step S104 is performed, step S200 may be performed to establish a database, and the database stores a plurality of reference photocurrent values respectively corresponding to the plurality of the regions to be tested.

在一實施例中,建立資料庫的方式可以是提供一標準太陽能電池片,且標準太陽能電池片被區分為多個標準待測區。多個標準待測區分別對應於待測的太陽能電池片的多個待測區。接著,照射檢測光於標準太陽能電池片的多個標準待測區,並量測標準太陽能電池片的多組參考光電流值,其中,多組參考光電流值可以分別對應於多個標準待測區。 In one embodiment, the database may be created by providing a standard solar cell, and the standard solar cell is divided into a plurality of standard test areas. The plurality of standard test areas respectively correspond to the plurality of test areas of the solar cell to be tested. Then, the illumination detection light is applied to a plurality of standard test areas of the standard solar cell, and the plurality of sets of reference photocurrent values of the standard solar cell are measured, wherein the plurality of sets of reference photocurrent values respectively correspond to the plurality of standards to be tested Area.

在對標準太陽能電池片進行量測,以建立資料庫時,也可利用如圖1至圖4所示的太陽能電池片的檢測設備來執行。另外,資料庫中也可儲存太陽能電池片的分級標準與篩選條件,以進行後續的分級與篩選。 When the standard solar cell is measured to establish a database, it can also be performed by using a solar cell detecting device as shown in FIGS. 1 to 4. In addition, the grading standards and screening conditions of solar cells can be stored in the database for subsequent grading and screening.

接著,根據所述太陽能電池片的每一組實際光電流值,以判 定相對應的待測區是否有缺陷的步驟可以包括:分別比對對應於同一個待測區的參考光電流值以及實際光電流值;以及當實際光電流值與參考光電流值的誤差值超過一預定範圍時,判定實際光電流值所對應的待測區具有缺陷。 Then, according to the actual photocurrent value of each group of the solar cell sheets, The step of determining whether the corresponding area to be tested is defective may include: respectively comparing the reference photocurrent value corresponding to the same area to be tested and the actual photocurrent value; and the error value between the actual photocurrent value and the reference photocurrent value When the predetermined range is exceeded, it is determined that the area to be tested corresponding to the actual photocurrent value has a defect.

[實施例的有益效果] [Advantageous Effects of Embodiments]

本發明的有益效果在於,本發明實施例所提供的太陽能電池片的檢測設備及方法可以和原本的發光度-電流-電壓(Luminance-Current-Voltage)檢測系統整合,因而不需要設置電致發光檢測系統以及圖像判讀裝置,可大幅減少設備建置的成本。 The invention has the beneficial effects that the detection device and method for the solar cell sheet provided by the embodiments of the present invention can be integrated with the original Luminance-Current-Voltage detection system, so that no electroluminescence is required. The detection system and the image interpretation device can greatly reduce the cost of equipment construction.

本發明實施例所提供的太陽能電池片的檢測設備可分析太陽能電池片是否有缺陷、缺陷所在位置以及缺陷分布情況,有利於進一步對太陽能電池片進行分級以及篩選。除此之外,了解缺陷所在位置以及缺陷分布情況,也有助於追溯在生產太陽能電池片的過程中造成缺陷的原因,從而可進一步優化製程參數及條件。 The detecting device of the solar cell sheet provided by the embodiment of the invention can analyze whether the solar cell sheet has defects, the location of the defect and the defect distribution, and is beneficial to further classifying and screening the solar cell sheet. In addition, understanding the location of defects and the distribution of defects can also help to trace the causes of defects in the production of solar cells, which can further optimize process parameters and conditions.

此外,在本發明所提供的太陽能電池片的檢測方法中,是同時針對所有待測區照射檢測光,以同時間針對不同待測區進行檢測,因此縮短檢測時間。具體而言,每片太陽能電池片的檢測時間預期可在1~2秒內達成,而可符合生產端所要求的檢測速度。 In addition, in the method for detecting a solar cell panel provided by the present invention, the detection light is irradiated to all the regions to be tested at the same time to simultaneously detect the different regions to be tested, thereby shortening the detection time. Specifically, the detection time of each solar cell sheet is expected to be achieved within 1 to 2 seconds, and can meet the detection speed required by the production end.

本發明實施例所提供的太陽能電池片的檢測設備除了可以檢測出缺陷所在的位置,也可以檢測太陽能電池片的電性表現,如:開路電壓、短路電流以及光電轉換效率等等。 The detecting device of the solar cell sheet provided by the embodiment of the present invention can detect the electrical performance of the solar cell sheet, such as an open circuit voltage, a short circuit current, and a photoelectric conversion efficiency, in addition to detecting the position of the defect.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及附圖內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The above disclosure is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, any equivalent technical changes made by using the present specification and the contents of the drawings are included in the application of the present invention. Within the scope of the patent.

Claims (14)

一種太陽能電池片的檢測設備,所述太陽能電池片包括一收光面以及設置於所述收光面上的多條主電極線,所述收光面被劃分為多個待測區,每一條所述主電極線經過至少一所述待測區,所述太陽能電池片的檢測設備包括:一光模擬單元,用以提供一照射於所述收光面的檢測光;多個探針模組,分別對應於多條所述主電極線,每一個所述探針模組包括一對應於至少一所述待測區的探針單元;多個輔助量測模組,分別電性連接於多個所述探針模組,其中,多個所述輔助量測模組並聯連接,多個所述輔助量測模組分別配合多個所述探針模組,以分別量測出所述太陽能電池片的多組實際光電流值,且多組所述實際光電流值分別對應多個所述待測區;以及一處理模組,電性連接於多個所述輔助量測模組,其中,所述處理模組根據所述太陽能電池片的每一組所述實際光電流值,以判定相對應的所述待測區是否有缺陷。 A solar cell sheet detecting device, the solar cell sheet includes a light collecting surface and a plurality of main electrode lines disposed on the light collecting surface, and the light collecting surface is divided into a plurality of areas to be tested, each of which The detecting device of the solar cell sheet includes: a light simulating unit for providing a detecting light that is irradiated on the light receiving surface; and a plurality of probe modules Corresponding to a plurality of the main electrode lines, each of the probe modules includes a probe unit corresponding to at least one of the to-be-measured regions; and a plurality of auxiliary measurement modules electrically connected to each other The probe module, wherein the plurality of auxiliary measurement modules are connected in parallel, and the plurality of auxiliary measurement modules respectively cooperate with the plurality of probe modules to respectively measure the solar energy a plurality of sets of actual photocurrent values of the battery, and a plurality of the actual photocurrent values respectively corresponding to the plurality of the test areas; and a processing module electrically connected to the plurality of the auxiliary measurement modules, wherein The processing module is based on each group of the solar cell sheets The actual current value of said light, to determine if the corresponding test zone is defective. 如請求項1所述的太陽能電池片的檢測設備,其中,每一條所述主電極線經過多個所述待測區,每一條所述主電極線具有分別對應於多個所述待測區的多個待測點,每一個所述探針模組包括多個對應於同一條所述主電極線的探針單元,以分別接觸同一條所述主電極線上的多個所述待測點。 The apparatus for detecting a solar cell of claim 1, wherein each of the main electrode lines passes through a plurality of the regions to be tested, and each of the main electrode lines has a plurality of the regions to be tested. a plurality of to-be-measured points, each of the probe modules includes a plurality of probe units corresponding to the same main electrode line to respectively contact a plurality of the to-be-measured points on the same main electrode line . 如請求項2所述的太陽能電池片的檢測設備,其中,每一個所述輔助量測模組包括多個並聯連接的輔助量測單元,且多個所述輔助量測單元分別串聯多個所述探針單元。 The detecting device of the solar cell of claim 2, wherein each of the auxiliary measuring modules comprises a plurality of auxiliary measuring units connected in parallel, and the plurality of auxiliary measuring units are respectively connected in series Probe unit. 如請求項2所述的太陽能電池片的檢測設備,其中,所述探針 模組的數量、每一個所述探針模組上的多個所述探針單元的數量以及所述待測區的數量滿足下列關係式:R=M×N,其中,所述M為所述探針模組的數量,所述N為每一個所述探針模組上的多個所述探針單元的數量,且所述R為所述待測區的數量。 A detecting device for a solar cell sheet according to claim 2, wherein the probe The number of modules, the number of the plurality of probe units on each of the probe modules, and the number of the regions to be tested satisfy the following relationship: R=M×N, where the M is The number of probe modules, the N is the number of the plurality of probe units on each of the probe modules, and the R is the number of the regions to be tested. 如請求項2所述的太陽能電池片的檢測設備,其中,每一個所述探針模組中對應於同一條所述主電極線的多個所述探針單元串聯連接,每一個所述輔助量測模組包括至少一輔助量測單元,且多個所述探針單元的其中之一個串聯連接至少一所述輔助量測單元。 The detecting device of the solar cell sheet according to claim 2, wherein a plurality of the probe units corresponding to the same main electrode line in each of the probe modules are connected in series, each of the auxiliary The measurement module includes at least one auxiliary measurement unit, and one of the plurality of probe units is connected in series to at least one of the auxiliary measurement units. 如請求項5所述的太陽能電池片的檢測設備,其中,所述待測區的數量與所述探針模組的數量相同。 The detecting device of the solar cell sheet according to claim 5, wherein the number of the regions to be tested is the same as the number of the probe modules. 如請求項1所述的太陽能電池片的檢測設備,還進一步包括:一主要量測模組,電性連接所述處理模組,以量測所述太陽能電池片的總光電流值並傳送所述總光電流值至所述處理模組,其中,相互並聯連接的多個所述輔助量測模組與所述主要量測模組串聯連接。 The apparatus for detecting a solar cell of claim 1, further comprising: a main measurement module electrically connected to the processing module to measure a total photocurrent value of the solar cell and transmit the same The total photocurrent value is applied to the processing module, wherein a plurality of the auxiliary measurement modules connected in parallel with each other are connected in series with the main measurement module. 如請求項7所述的太陽能電池片的檢測設備,其中,所述太陽能電池片包括一背面電極,所述檢測設備包括一用以承載所述太陽能電池片的承載台,所述承載台上設有一用以電性接觸所述背面電極的電極接觸部,且所述背面電極通過所述電極接觸部電性連接所述主要量測模組。 The detecting device of the solar cell sheet according to claim 7, wherein the solar cell sheet comprises a back electrode, and the detecting device comprises a carrying platform for carrying the solar cell sheet, and the carrying platform is provided An electrode contact portion for electrically contacting the back surface electrode is electrically connected to the main measurement module through the electrode contact portion. 如請求項1所述的太陽能電池片的檢測設備,其中,所述處理模組根據多個所述待測區的位置以產生一光電流圖像。 The detecting device of the solar cell sheet according to claim 1, wherein the processing module generates a photocurrent image according to the positions of the plurality of the regions to be tested. 如請求項1所述的太陽能電池片的檢測設備,其中,所述處理模組包括一資料庫,所述資料庫儲存分別對應於多個所述待測區的多個參考光電流值,所述處理模組比對對應於同一個所述待測區的所述參考光電流值以及所述實際光電流值,以判斷相對應的所述待測區是否有缺陷。 The detecting device of the solar cell of claim 1, wherein the processing module includes a database, and the database stores a plurality of reference photocurrent values respectively corresponding to the plurality of the regions to be tested. The processing module compares the reference photocurrent value corresponding to the same one of the to-be-measured regions and the actual photocurrent value to determine whether the corresponding region to be tested is defective. 一種太陽能電池片的檢測方法,其包括:提供一太陽能電池片,所述太陽能電池片具有一收光面以及設置於所述收光面上的多條主電極線;將所述太陽能電池片的所述收光面劃分為多個待測區,其中,每一條所述主電極線通過至少一所述待測區;同時對所述收光面的多個所述待測區照射一檢測光;量測出所述太陽能電池片的多組實際光電流值,其中,多組所述實際光電流值分別對應多個所述待測區;以及根據所述太陽能電池片的每一組所述實際光電流值,以判定相對應的所述待測區是否有缺陷。 A method for detecting a solar cell, comprising: providing a solar cell sheet, the solar cell sheet having a light-receiving surface and a plurality of main electrode lines disposed on the light-receiving surface; The light-receiving surface is divided into a plurality of regions to be tested, wherein each of the main electrode lines passes through at least one of the regions to be tested; and a plurality of the regions to be tested on the light-receiving surface are irradiated with a detection light. Measure a plurality of sets of actual photocurrent values of the solar cell sheet, wherein the plurality of sets of the actual photocurrent values respectively correspond to the plurality of the regions to be tested; and according to each group of the solar cell sheets The actual photocurrent value is used to determine whether the corresponding area to be tested is defective. 如請求項11所述的太陽能電池片的檢測方法,還包括:建立一資料庫,所述資料庫儲存分別對應於多個所述待測區的多個參考光電流值。 The method for detecting a solar cell of claim 11, further comprising: establishing a database, wherein the database stores a plurality of reference photocurrent values respectively corresponding to the plurality of the regions to be tested. 如請求項12所述的太陽能電池片的檢測方法,其中,建立所述資料庫的步驟包括:提供一標準太陽能電池片,所述標準太陽能電池片被區分為多個標準待測區,其中,多個所述標準待測區分別對應多個所述待測區;照射所述檢測光於所述標準太陽能電池片的多個所述標準待 測區;以及量測所述標準太陽能電池片的多個參考光電流值,其中,多組所述參考光電流值分別對應於多組所述標準待測區。 The method for detecting a solar cell of claim 12, wherein the step of establishing the database comprises: providing a standard solar cell, wherein the standard solar cell is divided into a plurality of standard test areas, wherein A plurality of the standard test areas respectively correspond to a plurality of the test areas; and the plurality of the standard cells to be irradiated with the detection light on the standard solar cell sheet And measuring a plurality of reference photocurrent values of the standard solar cell, wherein the plurality of sets of the reference photocurrent values respectively correspond to the plurality of sets of the standard test zones. 如請求項12所述的太陽能電池片的檢測方法,其中,根據所述太陽能電池片的每一組所述實際光電流值,以判定相對應的所述待測區是否有缺陷的步驟包括:分別比對對應於同一個所述待測區的所述參考光電流值以及所述實際光電流值;以及當所述實際光電流值與所述參考光電流值的誤差值超過一預定範圍時,判定所述實際光電流值所對應的所述待測區具有缺陷。 The method for detecting a solar cell according to claim 12, wherein the step of determining whether the corresponding area to be tested is defective according to the actual photocurrent value of each group of the solar cell sheets comprises: Comparing the reference photocurrent value corresponding to the same one of the to-be-measured regions and the actual photocurrent value respectively; and when the error value of the actual photocurrent value and the reference photocurrent value exceeds a predetermined range And determining that the area to be tested corresponding to the actual photocurrent value has a defect.
TW106129989A 2017-09-01 2017-09-01 Apparatus and method for inspecting solar cell TWI648947B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106129989A TWI648947B (en) 2017-09-01 2017-09-01 Apparatus and method for inspecting solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106129989A TWI648947B (en) 2017-09-01 2017-09-01 Apparatus and method for inspecting solar cell

Publications (2)

Publication Number Publication Date
TWI648947B true TWI648947B (en) 2019-01-21
TW201914206A TW201914206A (en) 2019-04-01

Family

ID=65804218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129989A TWI648947B (en) 2017-09-01 2017-09-01 Apparatus and method for inspecting solar cell

Country Status (1)

Country Link
TW (1) TWI648947B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200900708A (en) * 2007-04-19 2009-01-01 Oc Oerlikon Balzers Ag Test equipment for automated quality control of thin film solar modules
TW201312132A (en) * 2011-06-27 2013-03-16 Jx Nippon Oil & Energy Corp Photovoltaic cell measuring jig
US20140327445A1 (en) * 2011-09-05 2014-11-06 Kabushiki Kaisha Nihon Micronics Evaluation apparatus and evaluation method of sheet type cell
TW201448449A (en) * 2013-06-03 2014-12-16 Nat Inst Of Advanced Ind Scien I-V characteristic measuring apparatus and I-V characteristic measuring method for solar cell, and recording medium recorded with program for I-V characteristic measuring apparatus for solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200900708A (en) * 2007-04-19 2009-01-01 Oc Oerlikon Balzers Ag Test equipment for automated quality control of thin film solar modules
TW201312132A (en) * 2011-06-27 2013-03-16 Jx Nippon Oil & Energy Corp Photovoltaic cell measuring jig
US20140327445A1 (en) * 2011-09-05 2014-11-06 Kabushiki Kaisha Nihon Micronics Evaluation apparatus and evaluation method of sheet type cell
TW201448449A (en) * 2013-06-03 2014-12-16 Nat Inst Of Advanced Ind Scien I-V characteristic measuring apparatus and I-V characteristic measuring method for solar cell, and recording medium recorded with program for I-V characteristic measuring apparatus for solar cell

Also Published As

Publication number Publication date
TW201914206A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
CN103339736B (en) Solar cell inspection method and testing fixture
US20050252545A1 (en) Infrared detection of solar cell defects under forward bias
KR20120113019A (en) Method and apparatus for inspecting solar cell
US20070296447A1 (en) Monitoring pattern for detecting a defect in a semiconductor device and method for detecting a defect
WO2010088120A2 (en) Methods and apparatus for detection and classification of solar cell defects using bright field and electroluminescence imaging
JP3203781U (en) Solar simulator
CN110261755A (en) A kind of probe card, detection device and wafer detection method
TWI648947B (en) Apparatus and method for inspecting solar cell
KR20130114617A (en) Device for inspecting graphene board and method thereof
JP2010238906A (en) Device and method of measuring output characteristics of solar cell
CN107179177B (en) Optical detection device of light-emitting diode
CN116934732A (en) Photovoltaic module detection method and device and electronic equipment
TWI360854B (en) Carrier wafer position device and examination meth
JP2011049474A (en) Solar battery evaluation apparatus
CN102788769A (en) Wafer detection device and wafer detection method therefor
KR19990026444A (en) Defect Monitoring Method of Semiconductor Devices
CN109427926A (en) The detection device and method of solar battery sheet
US7271890B2 (en) Method and apparatus for inspecting defects
CN201060169Y (en) Optical visible sensation testing apparatus
JP5922429B2 (en) Solar simulator and solar cell defect determination method
WO2018119680A1 (en) Method and system for monitoring laser scribing process for forming isolation trenches in solar module
RU2565331C2 (en) Method of investigation spatial distribution of receptivity of characteristics of photoelectric converters in solar panels to optical radiation
JP2012043870A (en) Method for manufacturing photovoltaic module
TWI407094B (en) Solar wafer speed photoelectric detection system, detection methods and testing machine
CN219980782U (en) Battery detection device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees