TWI648797B - 半導體元件及其製造方法 - Google Patents

半導體元件及其製造方法 Download PDF

Info

Publication number
TWI648797B
TWI648797B TW106126785A TW106126785A TWI648797B TW I648797 B TWI648797 B TW I648797B TW 106126785 A TW106126785 A TW 106126785A TW 106126785 A TW106126785 A TW 106126785A TW I648797 B TWI648797 B TW I648797B
Authority
TW
Taiwan
Prior art keywords
epitaxial
epitaxial layer
fin
layer
structures
Prior art date
Application number
TW106126785A
Other languages
English (en)
Other versions
TW201834078A (zh
Inventor
游佳達
王聖禎
楊正宇
李凱璿
楊世海
楊豐誠
陳燕銘
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201834078A publication Critical patent/TW201834078A/zh
Application granted granted Critical
Publication of TWI648797B publication Critical patent/TWI648797B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41791Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7846Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the lateral device isolation region, e.g. STI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

提供一種鰭式場效電晶體元件,鰭式場效電晶體元件包含從介電隔離結構往外向上突出的多個鰭式結構與部份地環繞包覆鰭式結構的多個閘極結構。鰭式結構之每一者在第一方向上延伸,且閘極結構之每一者在不同於第一水平方向之第二水平方向上延伸。磊晶結構形成於鰭式結構之每一者的至少一側表面上。磊晶結構包含第一磊晶層、第二磊晶層或第三磊晶層。形成於每一鰭式結構上的磊晶結構與其相鄰的多個磊晶結構被間隙所隔開。矽化物層形成於磊晶結構之每一者上。矽化物層至少部份地填充於間隙中。導電接觸形成於矽化物層上。

Description

半導體元件及其製造方法
本揭露實施例是有關於一種半導體元件及其製造方法,且特別是有關於一種提供鰭式場效電晶體(fin-like field effect transistor,FinFET)元件的半導體元件及其製造方法。
半導體產業已進入到奈米科技製程節點以追求較高的裝置密度、較高的效能和較低的成本。隨著如此進展的發生,來自於製造和設計議題的挑戰導致了三維設計的發展,例如鰭式場效電晶體元件。典型的鰭式場效電晶體元件由從基板延伸的薄“鰭片”(或鰭狀結構)所製造而成。鰭片通常包括矽,且形成電晶體元件的基體(body)。電晶體的通道形成在這種垂直的鰭片中。在鰭片的上方提供了閘極(例如:圍繞包覆鰭片)。這種類型的閘極允許更大的通道控制。鰭式場效電晶體元件的其他優點包括降低短通道效應與更高的電流。
然而,傳統的鰭式場效電晶體元件可能仍存在某些缺陷。其中一種缺陷是,傳統的鰭式場效電晶體元件可能會遭遇過高的接觸阻抗。高接觸阻抗降低了元件效能,所以高接觸阻抗是不期望的。
因此,雖然現有的鰭式場效電晶體元件及其製造對於其預期目的而言是普遍足夠的,但是它們在各個方面並無法完全令人滿意。
本揭露提出一種方法,包含提供鰭式場效電晶體元件,鰭式場效電晶體元件包含從介電隔離結構往外向上突出的多個鰭式結構與部份地環繞包覆鰭式結構的多個閘極結構。其中鰭式結構之每一者在第一方向上延伸,且閘極結構之每一者在不同於第一方向之第二方向上延伸。於鰭式場效電晶體元件的源極/汲極區內形成磊晶結構,其中磊晶結構形成於鰭式結構之每一者的至少一側表面上。磊晶結構包含第一磊晶層、第二磊晶層或第三磊晶層,其中形成於鰭式結構之每一者上的磊晶結構與其相鄰的多個磊晶結構被間隙所隔開。於磊晶結構之每一者上形成矽化物層,其中矽化物層至少部份地填充於間隙中。於矽化物層上形成多個導電接觸。
本揭露另提出一種製造半導體元件的方法,包含形成第一鰭片與第二鰭片,其中第一鰭片與第二鰭片之每一者往外向上突出於介電隔離結構;形成閘極,其中閘極部份地環繞包覆第一鰭片與第二鰭片,第一鰭片與第二鰭片之每一者在第一水平方向上延伸,且閘極在垂直於第一水平方 向的第二水平方向上延伸;在沒有被閘極所環繞包覆的第一鰭片與第二鰭片的部份的頂面與側表面上分別形成第一磊晶結構與第二磊晶結構,其中第一磊晶結構與第二磊晶結構之每一者包含第一磊晶層、第二磊晶層或第三磊晶層,第一磊晶結構與第二磊晶結構被間隔開;在第一磊晶層與第二磊晶層上形成矽材料,在第一磊晶結構與第二磊晶結構的側表面上形成部分的矽材料;以及在矽材料上形成導電材料。
本揭露另提出一種半導體元件,包含從介電隔離結構垂直地向上突出多個鰭式結構,鰭式結構之每一者在第一水平方向上延伸;部份地環繞包覆鰭式結構的多個閘極結構,閘極結構之每一者在不同於第一水平方向之第二水平方向上延伸;源極/汲極區,包含於每一鰭式結構上形成的磊晶結構,磊晶結構包含:第一磊晶層、第二磊晶層或第三磊晶層,形成於相鄰的鰭式結構上的磊晶結構不會彼此合併;於磊晶結構上形成矽化物層,於介於相鄰的鰭式結構之間的磊晶結構的側表面上形成矽化物層;以及於矽化物層上形成導電接觸材料。
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
50、100A、100B、100C、100D、100E、100F‧‧‧鰭式場效電晶體元件
60‧‧‧閘極
60A‧‧‧閘極電極元件
60B‧‧‧閘極介電元件
70‧‧‧源極
80‧‧‧汲極
120‧‧‧介電隔離結構
150‧‧‧鰭式結構
200‧‧‧閘極結構
210‧‧‧間隔物
230、420‧‧‧蝕刻製程
260‧‧‧磊晶生長製程
310、320、330‧‧‧磊晶層
340‧‧‧間隙
350‧‧‧層間介電質
400‧‧‧功能性的閘極結構
430‧‧‧開口
450、500‧‧‧沉積製程
470‧‧‧矽化物層
520‧‧‧導電接觸
900‧‧‧方法
910、920、930、940‧‧‧步驟
LG‧‧‧長度
tox‧‧‧厚度
Wfin‧‧‧鰭片寬度
X-Cut‧‧‧X切割
Y-Cut‧‧‧Y切割
X、Y、Z‧‧‧方向
從以下結合所附圖式所做的詳細描述,可對本揭露之態樣有更佳的了解。需注意的是,根據業界的標準實務,各特徵並未依比例繪示。事實上,為了使討論更為清楚, 各特徵的尺寸都可任意地增加或減少。
[圖1]係繪示一例示的鰭式場效電晶體元件的透視圖。
[圖2A]至[圖12A]與[圖2B]至[圖12B]係繪示根據本揭露的一些實施例之鰭式場效電晶體元件於製造的各個階段之不同的剖面側視圖。
[圖2C]係繪示根據本揭露的一實施例之鰭式場效電晶體元件於製造的一個階段之上視圖。
[圖13]係繪示根據本揭露的一些實施例之製造鰭式場效電晶體元件的方法的流程圖。
以下特舉出本揭露之實施例,並配合所附圖式作詳細說明。以下實施例的元件和設計係為了簡化本揭露,並非用以限定本揭露。本揭露於各個實施例中可能使用重複的參考符號及/或用字。這些重複符號或用字係為了簡化與清晰的目的,並非用以限定各個實施例及/或所述結構之間的關係。此外,說明書中提及形成第一結構特徵位於第二結構特徵之上,其包括第一結構特徵與第二結構特徵是直接接觸的實施例,另外也包括於第一結構特徵與第二結構特徵之間另外有其他結構特徵的實施例,亦即,第一結構特徵與第二結構特徵並非直接接觸。此外,本揭露於各個實施例中可能使用重複的參考符號及/或用字。這些重複符號或用字係為了簡化與清晰的目的,並非用以限定各個實施例及/或所述結構之間的關係。
再者,在此可能會使用空間相對用語,例如「底下(beneath)」、「下方(below)」、「較低(lower)」、「上方(above)」、「較高(upper)」等等,以方便說明如圖式所繪示之一元件或一特徵與另一(另一些)元件或特徵之關係。這些空間上相對的用語除了涵蓋在圖式中所繪示的方向,也欲涵蓋裝置在使用或操作中不同的方向。設備可能以不同方式定位(例如旋轉90度或在其他方位上),而在此所使用的空間上相對的描述同樣也可以有相對應的解釋。
本揭露涉及鰭式場效電晶體元件,但並不以其他方式限制於鰭式場效電晶體元件。鰭式場效電晶體元件可以例如是包含P型金屬氧化物半導體(PMOS)鰭式場效電晶體元件和N型金屬氧化物半導體(NMOS)鰭式場效電晶體元件的互補金屬氧化物半導體(CMOS)元件。以下揭露內容將以一個或多個鰭式場效電晶體元件之實例繼續說明本揭露的各個實施例。然而,可理解的是,除非另有明確地聲明,本申請不應受限於特定類型的元件。
鰭式場效電晶體元件的使用已經廣泛流行於半導體產業中。參考圖1,繪示了一例示的鰭式場效電晶體元件50的透視圖。鰭式場效電晶體元件50為在基板(例如塊狀基板)上構建的非平面多閘極電晶體。一個薄且包含矽的“鰭狀”結構形成了鰭式場效電晶體元件50的基體(body)。鰭片具有鰭片寬度Wfin。鰭式場效電晶體元件50的閘極60環繞包覆該鰭片。LG表示閘極60的長度(或寬度,取決於透視圖)。閘極60可包含閘極電極元件60A與閘極介電元件 60B。閘極介電元件60B具有厚度tox。閘極60的一部分位於介電隔離結構,例如淺溝槽隔離(shallow trench isolation,STI)之上。鰭式場效電晶體元件50的源極70和汲極80形成於閘極60的相對側上的鰭片的延伸之中。鰭片本身則作為通道。鰭式場效電晶體元件50的有效通道長度由鰭片的尺寸來決定。
鰭式場效電晶體元件提供了優於傳統金屬氧化物半導體場效應電晶體(MOSFET)元件(也被稱為平面型電晶體元件)的幾個優點。這些優點可包含良好的晶片面積效率、改進的載子遷移率以及與平面型元件的製造製程相容的製造製程。因此,採用鰭式場效電晶體元件來設計積體電路(integrated circuit,IC)晶片來用於部分或整個積體電路晶片是可取的。
然而,傳統鰭式場效電晶體元件的製造方法可能仍存在一些缺陷。舉例來說,傳統鰭式場效電晶體元件通常形成一磊晶層來作為其源極/汲極。鰭片的磊晶層可合併至相鄰鰭片的磊晶層中。因此,隨後形成的矽化物層只形成在磊晶層的頂面上,而不是形成在磊晶層的頂面與多個側表面上。因為矽化物層作為介於磊晶層(即源極/汲極)與形成在矽化物層上的導電接觸之間的電性介面,由於多個磊晶層的合併造成之矽化物層的微小表面接觸面積增加了電性接觸阻抗。過高的電性接觸阻抗導致鰭式場效電晶體元件的低效能,所以過高的電性接觸阻抗是不期望的。
為了改善元件效能,本揭露利用各種製造技術 以非合併磊晶結構來製造鰭式場效電晶體元件。非合併磊晶結構允許磊晶層不只形成在磊晶結構的頂面上,而且也形成在磊晶結構的多個側表面上。因此,所得到的鰭式場效電晶體元件降低了電性接觸阻抗且改善了元件效能。本揭露的各個態樣將在如下參照圖2A至圖12A、圖2B至圖12B與圖13的說明中更詳細地討論。
圖2A至圖7A是根據本揭露的一實施例之鰭式場效電晶體元件100A於製造的各個階段之圖示局部剖面側視圖,其中在此所述之剖視乃是沿著圖1中所示的X方向。圖2B至圖7B是鰭式場效電晶體元件100A於相應於圖2A至圖7A之製造的各個階段之圖示局部剖面側視圖,其中在此所述之剖視乃是沿著圖1中所示的Y方向。因此,圖2A至圖7A可稱之為鰭式場效電晶體元件100A的“X切割(X-Cut)”,且圖2B至圖7B可稱之為鰭式場效電晶體元件100A的“Y切割(Y-Cut)”。圖2C是鰭式場效電晶體元件100A的上視圖,其更清楚的示出了X切割X-Cut與Y切割Y-Cut所沿著的方向。
於基板上製造鰭式場效電晶體元件100A,為了簡單起見,所述之製造並沒有具體地繪示出。在一些實施例中,基板包含介電材料,例如二氧化矽。在替代性的實施例中,其他合適的材料也可用於基板。
鰭式場效電晶體元件100A包含半導體層。在一實施例中,半導體層包含晶體矽材料。在其他實施例中,半導體層可包含矽鍺。可執行佈植製程(例如抗接面擊穿(anti-punch-through)佈植製程)來於半導體層佈植摻雜離子。在一些實施例中,摻雜離子可包含N型材料,例如砷或磷。或者,在一些其他實施例中,摻雜離子可包含P型材料,例如棚。這取決於是需要N型金屬氧化物半導體或是P型金屬氧化物半導體。介電隔離結構120,例如淺溝槽隔離,形成在部分的半導體層上。
鰭式場效電晶體元件100A包含鰭式結構150。鰭式結構150是在Z方向上向上突出於部分的半導體層。如圖2B所示,鰭式結構150向上且向外突出於介電隔離結構120。換言之,每一鰭式結構150的至少一部分沒有被介電隔離結構120所覆蓋。也如同圖2C的上視圖所示,每一鰭式結構150是在X方向上水平地延伸的細長結構。
請回到圖2A,閘極結構200形成於鰭式結構150上。在這個製造階段的閘極結構200是虛擬閘極結構。舉例來說,每一閘極結構200可包含含有多晶矽材料的虛擬閘極電極。閘極結構200也包含含有氧化矽材料的虛擬閘極介電質。虛擬閘極結構將會在之後的製造中被高k值金屬閘極結構所取代,所述之之後的製造將在之後的說明更詳細討論。
應注意,因為圖2B的Y切割Y-Cut已在閘極結構200的外部,因此閘極結構200並未具體地繪示於圖2B中。這部分更清楚的繪示於圖2C的上視圖中。如圖2C所示,每一閘極結構200是沿著Y方向水平延伸的細長結構且與上視圖中的鰭式結構150“相交”。相應於介於閘極結構 200與鰭式結構150之間的每一“相交”,閘極結構200確實部分地環繞包覆鰭式結構150,例如,以類似於閘極60如何環繞包覆圖1中之含有源極/汲極70/80的鰭片的方式。意即,鰭式結構150的上表面和多個側表面的一部分被相應的閘極結構200所覆蓋。請回到圖2C,可看出Y切割Y-Cut取自兩相鄰的閘極結構200之間,而非取自任一閘極結構200上。因此,在圖2B之相應的剖視側視圖中是看不見閘極結構200的。
間隔物210圍繞且形成於閘極結構上。間隔物210可透過沉積介電材料且圖案化該介電材料而形成。在一些實施例中,間隔物210含有二氧化矽。在其他實施例中,間隔物210含有氮化矽或氮氧化矽。
可理解的是,在閘極結構200的形成之後,鰭式場效電晶體元件100A的源極/汲極區可被定義,例如光阻圖案化。源極/汲極區可包含未被閘極結構200所環繞包覆的部份的鰭式結構150,而被閘極結構200所環繞包覆的部份的鰭式結構150則作為鰭式場效電晶體元件100A的通道元件。
請參照圖3A與圖3B,執行蝕刻製程230來部分地移除間隔物210。蝕刻製程230用以在介於間隔物210與鰭式結構150或閘極結構200之間具有蝕刻選擇性。這樣使得間隔物210可被蝕刻掉而實質上不影響鰭式結構150或閘極結構200。間隔物210之部分的移除暴露了鰭式結構150的頂面(以及暴露了閘極結構200的頂面)與鰭式結構150的 側壁的實質之主要部分(例如超過50%或超過75%)。
請參照圖4A與圖4B,執行一個或多個磊晶生長製程260來於鰭式場效電晶體元件100A內形成磊晶生長結構,其中磊晶生長結構包含層310、層320與層330(以下分別稱為磊晶層310、320與330)。磊晶層310、320與330為含矽材料且可作為鰭式場效電晶體元件100A的源極/汲極。
在圖示的實施例中,在磊晶生長製程260執行之前,鰭式場效電晶體元件100A的源極/汲極區內的部分的鰭式結構150被移除。鰭式結構150的移除形成了被間隔物210的剩餘部分所定義的開口。由間隔物210所定義之開口的尺寸相應於磊晶層310的橫向尺寸。磊晶層310接著磊晶生長在由間隔物210所定義之開口所暴露出的鰭式結構150上。換言之,磊晶層310取代了鰭式結構150被移除的部分。在如圖4A所圖式的實施例中,磊晶層310並沒有在閘極間隔物210下方橫向地延伸。然而,可理解的是,在其他實施例中,可形成磊晶層310以在閘極間隔物210下方具有橫向延伸。
如圖4B所示,相同於鰭式結構150,磊晶層310向上(沿Z方向)向外突出於間隔物210所定義之開口。同時,在如圖4A所示的X切割X-Cut之中,可看出磊晶層310被鰭式結構150所包圍(且設置於兩相鄰的閘極結構200之間),除了其頂面/上表面之外。
雖然某些傳統磊晶層可生長成具有類似菱形的 剖面形狀,但磊晶層310被生長成具有更像棒狀的剖面形狀/輪廓(在Y切割Y-Cut中觀察)。當然,可理解的是,在實際的製造中,磊晶層可能無法具有完美的直線或線性邊緣,但其整體形狀相較於菱形仍更類似於矩形(儘管會有凸起/凹陷和/或非平滑邊緣)。磊晶層的棒狀外形允許在尺寸方面有更佳的磊晶層的均勻性或磊晶層的變化。在一些實施例中,磊晶層310的棒狀的剖面形狀/輪廓是透過收縮閘極結構200的間距來實現的。假設形成磊晶層的沉積時間足夠長,隨著間距收縮,會使得在兩相鄰的閘極結構200之間生長的磊晶層310彼此合併。合併後的磊晶層310接著呈現棒狀的剖面形狀/輪廓。
磊晶層320磊晶生長於磊晶層310上,覆蓋了磊晶層310的頂面和側壁面。在一些實施例中,於磊晶層310上的磊晶層320的生長是共形的。舉例來說,磊晶層320是以全部都相對均勻的層厚度來生長的。
因為剩餘的間隔物210的存在,磊晶層320沒有形成在磊晶層310的一些底部的部份上(即沒有形成在被間隔物210所覆蓋的磊晶層310的底部側壁表面上)。磊晶層330接著磊晶生長於磊晶層320上,也覆蓋了磊晶層320的頂面與側面。在一些實施例中,在磊晶層320上的磊晶層330的生長也是共形的。舉例而言,磊晶層330是以全部都相對均勻的層厚度來生長的。磊晶層320與磊晶層330之相對均勻的厚度可能導致較佳的元件效能。
如圖4B所示,磊晶層310、磊晶層320與磊晶 層330的生長被配置(例如:透過配置磊晶生長製程260的製程參數)以使得有間隔340或間隙340用以隔開最外部的磊晶層330與相鄰的磊晶層330。換言之,執行磊晶生長製程260以確保磊晶層330不會合併至相鄰的磊晶層330中。這樣允許矽化物層(之後會在下面所討論的製造製程中形成)以一方式被形成而使得其“環繞包覆”磊晶層330,例如環繞包覆磊晶層330的側壁表面。當磊晶層330已經形成以合併至相鄰的磊晶層330中,矽化物層的環繞包覆結構是不可能的。關於本揭露的此態樣將在下面更詳細地討論。
可理解的是,磊晶層310、磊晶層320與磊晶層330可具有不同的材料組成,例如磊晶層310、磊晶層320與磊晶層330之每一者可為矽鍺層但具有不同的鍺含量或鍺濃度。在一些實施例中,磊晶層320具有相較於磊晶層310與磊晶層330更大的鍺含量/濃度。舉例來說,在一些實施例中,磊晶層310的鍺含量/濃度之範圍介於20%至25%之間,磊晶層320的鍺含量/濃度大於50%,且磊晶層330的鍺含量/濃度小於30%。在一些其他實施例中,磊晶層310/320/330的適合的材料可能包含III-V族化合物。舉例來說,磊晶層310可能包含砷化鉀,磊晶層320可能包含砷化鉀銦且銦含量的範圍介於20%至30%,磊晶層330可能包含砷化鉀銦且銦含量的範圍介於40%至60%。藉由增加銦含量,可實現較低的接觸阻抗(RC)(例如對N型金屬氧化物半導體來說)。然而,這也將有助於晶格常數與矽基板的不匹配。因此,磊晶層310與磊晶層320可作為緩衝層以減少晶 格不匹配。
請參照圖5A至圖5B,形成了層間介電質(interlayer-dielectric,ILD)350。在一些實施例中,層間介電質350含有二氧化矽。層間介電質350可透過合適的沉積製程來形成,並接著進行研磨製程,例如化學機械研磨(chemical-mechanical-polishing,CMP),以平坦化層間介電質350的上表面。閘極結構200接著被功能性的閘極結構400所取代。在一些實施例中,功能性的閘極結構400包含高k值閘極介電質與金屬閘極電極。高k值介電材料是介電常數大於二氧化矽的介電常數(約為4)的材料。在一實施例中,高k值閘極介電質包含二氧化鉿(HfO2),二氧化鉿的介電常數的範圍約在18至40之間。在替代性的實施例中,高k值閘極介電質可包含二氧化鋯(ZrO2)、氧化釔(Y2O3)、氧化鑭(La2O5)、氧化釓(Gd2O5)、二氧化鈦(TiO2)、氧化鉭(Ta2O5)、氧化鉿鉺(HfErO)、氧化鉿鑭(HfLaO)、氧化鉿釔(HfYO)、氧化鉿釓(HfGdO)、氧化鉿鋁(HfAlO)、氧化鉿鋯(HfZrO)、氧化鉿鈦(HfTiO)、氧化鉿鉭(HfTaO)或鈦酸鍶氧化物(SrTiO)。
金屬閘極電極可包含功函數金屬元件和填充金屬元件。功函數金屬元件用以調整其相應鰭式場效電晶體的功函數以實現期望的臨界電壓Vt。在多個實施例中,功函數金屬元件可包含:鈦鋁(TiAl)、氮化鋁鈦(TiAlN)、碳氮化鉭(TaCN)、氮化鈦(TiN)、氮化鎢(WN)或鎢(W)或其組合。填充金屬元件用以作為功能性的閘極結構400的主要導 電部分。在多個實施例中,填充金屬元件可包含鋁(Al)、鎢(W)、銅(Cu)或其組合。
如同圖5A所示,執行蝕刻製程420以在層間介電質350中蝕刻出開口430。開口430垂直地(於Z方向上)對準於,且暴露出部分的磊晶層330。開口430允許稍後在其中形成導電接觸,以便提供電性連接至磊晶層310、磊晶層320與磊晶層330。
請參照圖6A與圖6B,執行沉積製程450以在磊晶層330上形成矽化物層470。在一些實施例中,沉積製程450可在被暴露的磊晶層330的頂面與垂直的側壁表面上沉積金屬材料(例如鈦或氮化鈦),且接著使已沉積的金屬材料與磊晶層330的材料(如含矽材料,例如矽化鍺)反應以形成矽材料,例如矽化鈦。藉由執行退火製程,例如快速熱退火(rapid thermal annealing,RTA),可促進形成矽材料的反應。因為矽化物層470與磊晶層330(即,與源極/汲極)自我對準,矽化物層470也可稱為金屬矽化物(silicide)層。
如同上述參照圖4B所討論的,形成磊晶層330的方式,使得磊晶層330不與相鄰的磊晶層330接觸,以便確保介於相鄰的磊晶層330之間的間隙340。間隙340允許矽化物層470不只形成於磊晶層330的頂面/上表面上,也形成於磊晶層330的垂直側表面上。換言之,間隙340使得矽化物層470環繞包覆磊晶層330(至少在頂面與側表面上),如圖6B所示。可理解的是,在一些實施例中,矽化物層470本身仍可被間隙340所隔開(儘管具有已減少的尺寸),或 者,在其他實施例中,矽化物層470可合併至相鄰的矽化物層470中。換言之,在一些實施例中,矽化物層470可部份地填充至間隙340中,或者,在一些其他實施例中,矽化物層470可完整地填充至間隙340中。
矽化物層470具有低電阻率。因為導電接觸將在稍後的製程中形成以提供電性連接至源極/汲極,矽化物層470降低了導電接觸的電阻。因為矽化物層470環繞包覆磊晶層330的頂面與側壁表面。這與傳統的矽化物層相反,傳統上,矽化物層通常只形成在作為源極/汲級的磊晶層的頂面/上表面上。因此,透過大得多的表面面積(相較於傳統元件),此處的矽化物層470提供相較於傳統元件更低的源極/汲極接觸阻抗。
請參照圖7A與圖7B,執行沉積製程500來形成導電接觸520。沉積製程500可包含在磊晶層330上沉積金屬材料,例如鎢(W)。沉積後的金屬材料可接著進行研磨製程,例如化學機械研磨,以平坦化其上表面。如圖7A所示,導電接觸520填充開口430且與矽化物層470的上表面直接物理接觸。如圖7B所示,形成導電接觸520以與矽化物層470的外表面直接物理接觸,矽化物層470的外表面包含矽化物層470的側表面。如同上述所討論的,因為矽化物層470環繞包覆磊晶層的源極/汲極,增加了介於矽化物層470與導電接觸520之間的表面接觸面積。這減少了接觸電阻,此外也提供更多的可靠接觸。
上述討論涉及鰭式場效電晶體元件100A的一 實施例,其中形成在相鄰的鰭式結構上的磊晶結構沒有彼此合併,從而在磊晶結構的側壁上為矽化物層的形成提供了足夠數量的空間。然而,本揭露並不限於上述所討論的實施例。圖8A至圖12A與圖8B至圖12B與以下的討論描述了鰭式場效電晶體元件的附加實施例。再次地,圖8A至圖12A是根據X切割X-Cut(相似於圖2A至圖7A)的鰭式場效電晶體元件的不同實施例的圖示局部剖面側視圖,且圖8B至圖12B是根據Y切割Y-Cut(相似於圖2B至圖7B)的鰭式場效電晶體元件的不同實施例的圖示局部剖面側視圖。為了一致性與清晰性的原因,在圖7A與圖7B中所出現的相似元件將在圖8A至圖12A與圖8B至圖12B中以相同的符號標示。
請參照圖8A與圖8B,其繪示鰭式場效電晶體元件100B的替代性實施例。相較於如圖7A與圖7B所示的鰭式場效電晶體元件100A的實施例,圖8A與圖8B所示的實施例不具有第一磊晶層310作為磊晶結構的一部分。換言之,在鰭式結構150(上述中參照於圖4A與圖4B的描述)移除之後,鰭式場效電晶體元件100B的形成涉及磊晶生長磊晶層320(而非磊晶層310),以替代掉已移除的鰭式結構150。隨後,磊晶層330生長在磊晶層320上,且在磊晶層330的外表面上形成矽化物層470。相應地,鰭式場效電晶體元件100B的實施例包含磊晶層320與磊晶層330作為其磊晶結構,而非鰭式場效電晶體元件100A的實施例中的磊晶層310、磊晶層320與磊晶層330。如同上述所討論的,磊晶層320相較於磊晶層310與磊晶層330具有較大的鍺含 量。因為鰭式場效電晶體元件100B具有大得多的磊晶層320(因為磊晶層310不存在),如圖8A與圖8B所示的鰭式場效電晶體元件100B的實施例具有改進的元件效能,例如在導通(“on”)電流(Ion)方面。
請參照圖9A與圖9B,其繪示鰭式場效電晶體元件100C的其他實施例。相較於如圖7A與圖7B所示的鰭式場效電晶體元件100A的實施例,圖9A與圖9B所示的實施例沒有取代鰭式結構150且沒有涉及磊晶層310的形成。詳細而言,並非移除鰭式結構150(如鰭式場效電晶體元件100A所實施者,如同上述中參照於圖4A與圖4B的描述),鰭式場效電晶體元件100C的形成使得鰭式結構150在適當的位置。隨後,在鰭式結構150上生長磊晶層320,在磊晶層320上生長磊晶層330,且在磊晶層330的外表面上形成矽化物層470。相應地,鰭式場效電晶體元件100C的實施例也包含磊晶層320與磊晶層330作為其磊晶結構,而非鰭式場效電晶體元件100A的實施例中的磊晶層310、磊晶層320與磊晶層330。當鰭式結構150是由矽鍺而非晶體矽所製成時,如圖9A與圖9B所示的實施例提供了好處。當鰭式結構150是由矽鍺所製成,鰭式結構的移除可能會導致應變/應力的降低,因此不利地影響了鰭式場效電晶體元件的遷移率。在此,由於鰭式結構150保持在鰭式場效電晶體元件100C中,因此其矽化鍺材料之組成仍可保持足夠的應變/應力,且因此鰭式場效電晶體元件的遷移率不會受到不利的影響。
請參照圖10A與圖10B,其繪示鰭式場效電晶體元件100D的其他實施例。相較於如圖7A與圖7B所示的鰭式場效電晶體元件100A的實施例,圖10A與圖10B所示的實施例沒有完全地取代鰭式結構150。相反地,鰭式結構150被部分的移除(舉例來說,鰭式結構150的上部片段被移除)。之後,在鰭式結構150的剩餘片段上生長磊晶層310。相較於對應於圖7A與圖7B的實施例,如圖10A與圖10B所示的實施例具有較小的磊晶層310。舉例來說,圖10A與圖10B中的磊晶層310相較於圖7A與圖7B中的磊晶層310在Z方向上較短。隨後,生長磊晶層320在磊晶層310上,且也生長在鰭式結構150的側表面上。接著在磊晶層320上生長磊晶層330,且在磊晶層330的外表面上形成矽化物層470。在由矽所製成的鰭式結構150的實施例中,磊晶層310的存在仍允許元件的應變。
請參照圖11A與圖11B,其繪示鰭式場效電晶體元件100E的其他實施例。圖11A與圖11B所示的實施例和圖8A與圖8B所示的實施例有相似之處:都沒有形成磊晶層310。然而,不像圖8A與圖8B所示的實施例中延伸出介電隔離結構120的鰭式結構150是被完全地移除,而如圖11A與圖11B所示的實施例中的鰭式結構150則是被部分地移除。鰭式結構150的主要部分在鰭式結構的部分移除後仍存在,且在鰭式結構150的剩餘部分上生長磊晶層320,包含在鰭式結構150的剩餘部分的頂面與側表面上生長磊晶層。隨後,生長磊晶層330在磊晶層320上,在磊晶層330 的外表面上形成矽化物層470。在由矽所製成的鰭式結構150的實施例中,磊晶層320的存在仍允許元件的應變。此外,因為磊晶層320有相對重的鍺含量,如圖11A與圖11B所示的實施例也可提供改進的元件效能,因為在此實施例中磊晶層320佔據了大量的磊晶結構。
請參照圖12A與圖12B,其繪示鰭式場效電晶體元件100F的其他實施例。圖12A與圖12B所示的實施例和圖10A與圖10B所示的實施例有相似之處:鰭式結構150都沒有完全地被移除。相反地,在鰭式結構150的剩餘的部分上生長磊晶層310。然而,相較於圖10A與圖10B所示的實施例的磊晶層310,圖12A與圖12B所示的實施例的磊晶層310較小(例如:在Z方向上的較小尺寸)。隨後,磊晶層320生長在磊晶層310的頂面與側表面上,並且也生長在鰭式結構150的剩餘的部分的側表面上。接著在磊晶層320上生長磊晶層330,且在磊晶層330的外表面上形成矽化物層470。此處磊晶層320的存在仍允許元件的應變。磊晶層310也作為梯度層來減少介於鰭式結構150(例如包含矽)與磊晶層320(重鍺含量的矽鍺層)之間的晶格不匹配。因為可以生長品質較佳的磊晶層,晶格不匹配的減少也協助改善元件效能。
可理解的是,在上述所討論的所有實施例中,磊晶層330可以共形的方法(例如具有均勻或一致的厚度)生長在磊晶層320上。在一些實施例中,矽化物層470和/或磊晶層320的生長也可以透過共形的方法。在此所述之層 的共形生長意味著磊晶結構的尺寸可更準確地且更精確地被控制,這也改善了元件效能。
圖13係繪示根據本揭露的多個態樣之製造鰭式場效電晶體元件的方法900的流程圖。方法900包含步驟910:提供鰭式場效電晶體元件。鰭式場效電晶體元件包含往外向上突出於介電隔離結構的多個鰭式結構。鰭式場效電晶體元件也包含部分地環繞包覆鰭式結構的多個閘極結構。鰭式結構之每一者在第一方向上延伸,且閘極結構之每一者在不同於第一方向的第二方向上延伸。
方法900包含步驟920:在鰭式結構之每一者的至少一側表面上形成磊晶結構。磊晶結構包含:第一磊晶層、第二磊晶層或第三磊晶層。形成在每一鰭式結構上的磊晶結構與相鄰的磊晶結構被間隙所隔開。
方法900包含步驟930:在磊晶結構的每一者上形成矽化物層。矽化物層至少部分地填充於間隙中。
方法900包含步驟940:在矽化物層上形成導電接觸。
在一些實施例中,磊晶結構的形成包含:移除向外突出於介電隔離結構的鰭式結構;生長第一磊晶層來替代被移除的鰭式結構;在第一磊晶層上生長第二磊晶層;以及在第二磊晶層上生長第三磊晶層,其中第三磊晶層與相鄰的第三磊晶層被間隙所隔開。
在一些實施例中,磊晶結構的形成包含:移除向外突出於介電隔離結構的鰭式結構;生長第二磊晶層來替 代被移除的鰭式結構;以及在第二磊晶層上生長第三磊晶層,其中第三磊晶層與相鄰的第三磊晶層被間隙所隔開。
在一些實施例中,磊晶結構的形成包含:在鰭式結構之每一者上形成第二磊晶層;以及在第二磊晶層上生長第三磊晶層,其中第三磊晶層與相鄰的第三磊晶層被間隙所隔開。
在一些實施例中,磊晶結構的形成包含:部份地移除向外突出於介電隔離結構的鰭式結構;在未被移除的鰭式結構的剩餘的部分上生長第一磊晶層;在第一磊晶層與鰭式結構的剩餘的部分上生長第二磊晶層;以及在第二磊晶層上生長第三磊晶層,其中第三磊晶層與相鄰的第三磊晶層被間隙所隔開。
在一些實施例中,磊晶結構的形成包含:部份地移除向外突出於介電隔離結構的鰭式結構;在未被移除的鰭式結構的剩餘的部分上生長第二磊晶層;以及在第二磊晶層與鰭式結構的剩餘的部分上生長第三磊晶層,其中第三磊晶層與相鄰的第三磊晶層被間隙所隔開。
在一些實施例中,第一磊晶層、第二磊晶層與第三磊晶層之每一者含有矽鍺,且第二磊晶層相較於第一磊晶層與第三磊晶層具有較大的鍺含量。
可理解的是,額外的製程步驟可在執行上述所討論的步驟910-940之前、之中或之後被執行以完成半導體元件的製造。
基於上述的討論,可看出本揭露提供了優於傳 統鰭式場效電晶體元件與其製造方法的優點。然而,可理解的是,其他實施例可提供額外的優點,且並非所有的優點都必須在此被揭露,且對所有的實施例而言,並不需要特定的優點。一個優點是透過磊晶結構形成的方法使其不會彼此合併,後續形成的矽化物層可形成在磊晶結構之更大的表面面積上。因此,矽化物層本身也具有較大的表面面積來接收電性接觸。因為較大的矽化物表面面積,所以接觸阻抗顯著地減少。另一優點是,在磊晶結構(例如磊晶層320)中的較大的鍺含量允許了改進的遷移率,因此有較佳的元件效能。又另一優點是,在此的製造製程允許了磊晶結構具有較低的磊晶層變異。舉例來說,相較於傳統的鰭式場效電晶體元件其磊晶層有時是菱形外形,在本文中形成的磊晶結構可被形成為更類似於棒狀或矩形,這可改善元件效能。其他的優點包含維持元件應變、相容於現有的製造製程流程等等。
本揭露的一個態樣涉及製造半導體元件的方法。提供鰭式場效電晶體元件。鰭式場效電晶體元件包含從介電隔離結構往外向上突出的多個鰭式結構。鰭式場效電晶體元件也包含部份地環繞包覆鰭式結構的多個閘極結構。鰭式結構之每一者在第一方向上延伸,且閘極結構之每一者在不同於第一水平方向之第二水平方向上延伸。磊晶結構形成於鰭式結構之每一者的至少一側表面上。磊晶結構包含第一磊晶層、第二磊晶層或第三磊晶層。形成於鰭式結構之每一者上的磊晶結構與其相鄰的多個磊晶結構被間隙所隔開。矽化物層形成於磊晶結構之每一者上。矽化物層至少部份地填 充於間隙中。導電接觸形成於矽化物層上。
本揭露的另一個態樣涉及製造半導體元件的方法。形成第一鰭片與第二鰭片。第一鰭片與第二鰭片之每一者往外向上突出於介電隔離結構。形成閘極。閘極部份地環繞包覆第一鰭片與第二鰭片。第一鰭片與第二鰭片之每一者在第一水平方向上延伸,且閘極在垂直於第一水平方向的第二水平方向上延伸。在沒有被閘極所環繞包覆的第一鰭片與第二鰭片的部份的頂面與側表面上分別形成第一磊晶結構與第二磊晶結構。第一磊晶結構與第二磊晶結構之每一者包含第一磊晶層、第二磊晶層或第三磊晶層。第一磊晶結構與第二磊晶結構被間隔開。在第一磊晶層與第二磊晶層上形成矽材料。在第一磊晶結構與第二磊晶結構的側表面上形成部分的矽材料。在矽材料上形成導電材料。
本揭露的又另一個態樣涉及半導體元件。半導體元件包含從介電隔離結構垂直地向上突出多個鰭式結構。鰭式結構之每一者在第一水平方向上延伸。部份地環繞包覆鰭式結構的多個閘極結構。閘極結構之每一者在不同於第一水平方向之第二水平方向上延伸。於每一鰭式結構上形成磊晶結構。磊晶結構包含:第一磊晶層、第二磊晶層或第三磊晶層。形成於相鄰的鰭式結構上的磊晶結構不會彼此合併。於磊晶結構上形成矽化物層。於介於相鄰的鰭式結構之間的磊晶結構的側表面上形成矽化物層。於矽化物層上形成導電接觸材料。
以上概述了數個實施例的特徵,因此熟習此技 藝者可以更了解本揭露的態樣。熟習此技藝者應了解到,其可輕易地把本揭露當作基礎來設計或修改其他的製程與結構,藉此實現和在此所介紹的這些實施例相同的目標及/或達到相同的優點。熟習此技藝者也應可明白,這些等效的建構並未脫離本揭露的精神與範圍,並且他們可以在不脫離本揭露精神與範圍的前提下做各種的改變、替換與變動。

Claims (10)

  1. 一種製造半導體元件的方法,包含:提供一鰭式場效電晶體(fin-like field effect transistor,FinFET)元件,該鰭式場效電晶體元件包含:複數個鰭式結構,該些鰭式結構係從一介電隔離結構往外向上突出;以及複數個閘極結構,部份地環繞包覆該些鰭式結構,其中該些鰭式結構之每一者在一第一方向上延伸,且該些閘極結構之每一者在不同於該第一方向之一第二方向上延伸;於該鰭式場效電晶體元件的一源極/汲極區內形成一磊晶結構,其中該磊晶結構形成於每一該些鰭式結構的至少一側表面上,該磊晶結構包含:一第一磊晶層、一第二磊晶層或一第三磊晶層,其中形成於每一該些鰭式結構上的該磊晶結構與其相鄰的該些磊晶結構被一間隙所隔開;於每一該些磊晶結構上形成一矽化物層,其中該矽化物層至少部份地填充於該間隙中;以及於該矽化物層上形成複數個導電接觸。
  2. 如申請專利範圍第1項所述之製造半導體元件的方法,其中該磊晶結構之形成包含:於該源極/汲極區中移除往外突出於該介電隔離結構的該些鰭式結構; 生長該第一磊晶層以替代被移除的該些鰭式結構;於該第一磊晶層上生長該第二磊晶層;以及於該第二磊晶層上生長該第三磊晶層,其中該第三磊晶層與其相鄰的該些第三磊晶層被該間隙所隔開。
  3. 如申請專利範圍第1項所述之製造半導體元件的方法,其中該磊晶結構之形成包含:於該源極/汲極區中移除往外突出於該介電隔離結構的該些鰭式結構;生長該第二磊晶層以替代被移除的該些鰭式結構;以及於該第二磊晶層上生長該第三磊晶層,其中該第三磊晶層與其相鄰的該些第三磊晶層被該間隙所隔開。
  4. 如申請專利範圍第1項所述之製造半導體元件的方法,其中該第一磊晶層、該第二磊晶層與該第三磊晶層之每一者含有矽鍺;以及該第二磊晶層相較於該第一磊晶層與該第三磊晶層具有一較大的鍺含量。
  5. 一種製造半導體元件的方法,包含:形成一第一鰭片與一第二鰭片,該第一鰭片與該第二鰭片之每一者係從一介電隔離結構往外向上突出; 形成一閘極,該閘極部份地環繞包覆該第一鰭片與該第二鰭片,其中該第一鰭片與該第二鰭片之每一者在一第一水平方向上延伸,且該閘極在垂直於該第一水平方向之一第二水平方向上延伸;於該第一鰭片與該第二鰭片中未被閘極所環繞包覆的部分的一頂面與複數個側表面上分別形成一第一磊晶結構與一第二磊晶結構,其中該第一磊晶結構與該第二磊晶結構之每一者包含:一第一磊晶層、一第二磊晶層或一第三磊晶層,其中該第一磊晶結構與該第二磊晶結構被隔開;於該第一磊晶結構與該第二磊晶結構上形成一矽材料,其中部分的該矽材料形成於該第一磊晶結構與該第二磊晶結構的該些側表面上;以及於該矽材料上形成一導電材料。
  6. 如申請專利範圍第5項所述之製造半導體元件的方法,其中該第一磊晶結構與該第二磊晶結構之形成皆包含:於該第一鰭片與該第二鰭片之每一者上生長該第二磊晶層;以及於該第二磊晶層上共形地生長該第三磊晶層,其中該第二磊晶層相較於該第三磊晶層具有一較大的鍺含量,且其中該第一磊晶結構的該第三磊晶層與該第二磊晶結構的該第三磊晶層被隔開。
  7. 如申請專利範圍第5項所述之製造半導體元件的方法,其中該第一磊晶結構與該第二磊晶結構之形成皆包含:移除該第一鰭片與該第二鰭片的一片段;於該第一鰭片與該第二鰭片的一剩餘片段上生長該第一磊晶層;於該第一磊晶層及該第一鰭片與該第二鰭片的該剩餘片段上生長該第二磊晶層;以及於該第二磊晶層上共形地生長該第三磊晶層,其中該第二磊晶層相較於該第一磊晶層與該第三磊晶層具有一較大的鍺含量,且其中該第一磊晶結構的該第三磊晶層與該第二磊晶結構的該第三磊晶層被隔開。
  8. 如申請專利範圍第5項所述之製造半導體元件的方法,其中該第一磊晶結構與該第二磊晶結構之形成皆包含:移除該第一鰭片與該第二鰭片的一片段;於該第一鰭片與該第二鰭片的一剩餘片段上生長該第二磊晶層;以及於該第二磊晶層與該第一鰭片與該第二鰭片的該剩餘片段上共形地生長該第三磊晶層,其中該第二磊晶層相較於該第三磊晶層具有一較大的鍺含量,且其中該第一磊晶結構的該第三磊晶層與該第二磊晶結構的該第三磊晶層被隔開。
  9. 一種半導體元件,包含:複數個鰭式結構,該些鰭式結構係從一介電隔離結構垂直地向上突出,其中該些鰭式結構之每一者在一第一水平方向上延伸;複數個閘極結構,部份地環繞包覆該些鰭式結構,其中該些閘極結構之每一者在不同於該第一水平方向之一第二水平方向上延伸;一源極/汲極區,包含形成於每一該些鰭式結構上之一磊晶結構,該磊晶結構包含:一第一磊晶層、一第二磊晶層或一第三磊晶層,其中形成於相鄰的該些鰭式結構上的該磊晶結構不會彼此合併;一矽化物層,形成於該磊晶結構上,該矽化物層形成於介於相鄰的該些鰭式結構之間的該磊晶結構的複數個側表面上;以及一導電接觸材料,形成於該矽化物層上。
  10. 如申請專利範圍第9項所述之半導體元件,其中該第一磊晶層、該第二磊晶層與該第三磊晶層之每一者含有矽鍺;以及該第二磊晶層相較於該第一磊晶層與該第三磊晶層具有一較大的鍺含量。
TW106126785A 2016-12-14 2017-08-08 半導體元件及其製造方法 TWI648797B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662434198P 2016-12-14 2016-12-14
US62/434,198 2016-12-14
US15/490,959 US9865595B1 (en) 2016-12-14 2017-04-19 FinFET device with epitaxial structures that wrap around the fins and the method of fabricating the same
US15/490,959 2017-04-19

Publications (2)

Publication Number Publication Date
TW201834078A TW201834078A (zh) 2018-09-16
TWI648797B true TWI648797B (zh) 2019-01-21

Family

ID=60813533

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106126785A TWI648797B (zh) 2016-12-14 2017-08-08 半導體元件及其製造方法

Country Status (5)

Country Link
US (2) US9865595B1 (zh)
KR (2) KR20180068841A (zh)
CN (1) CN108231683B (zh)
DE (1) DE102017110442A1 (zh)
TW (1) TWI648797B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804368B2 (en) 2018-07-30 2020-10-13 International Business Machines Corporation Semiconductor device having two-part spacer
US10797151B2 (en) * 2018-09-27 2020-10-06 Taiwan Semiconductor Manufacturing Co., Ltd. Metal gate structures for field effect transistors
US10840345B2 (en) 2018-11-13 2020-11-17 International Business Machines Corporation Source and drain contact cut last process to enable wrap-around-contact
US11011426B2 (en) * 2018-11-21 2021-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US11222980B2 (en) 2019-07-18 2022-01-11 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201137942A (en) * 2010-02-26 2011-11-01 Taiwan Semiconductor Mfg Method of forming integrated circuit structure
TW201401508A (zh) * 2012-06-22 2014-01-01 United Microelectronics Corp 多閘極場效電晶體及其製程
TW201607030A (zh) * 2014-08-06 2016-02-16 應用材料股份有限公司 修飾電晶體源極汲極區域上磊晶成長形狀之方法
US20160315119A1 (en) * 2013-04-25 2016-10-27 Kabushiki Kaisha Toshiba Semiconductor memory device

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393733B2 (en) 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
US7425740B2 (en) 2005-10-07 2008-09-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structure for a 1T-RAM bit cell and macro
US7667271B2 (en) 2007-04-27 2010-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field-effect transistors
US8048723B2 (en) 2008-12-05 2011-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Germanium FinFETs having dielectric punch-through stoppers
US8776734B1 (en) 2008-05-19 2014-07-15 Innovative Environmental Solutions, Llc Remedial system: a pollution control device for utilizing and abating volatile organic compounds
US7910453B2 (en) 2008-07-14 2011-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Storage nitride encapsulation for non-planar sonos NAND flash charge retention
US8053299B2 (en) 2009-04-17 2011-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabrication of a FinFET element
US8497528B2 (en) 2010-05-06 2013-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure
US8440517B2 (en) 2010-10-13 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET and method of fabricating the same
US9245805B2 (en) 2009-09-24 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Germanium FinFETs with metal gates and stressors
US8362575B2 (en) 2009-09-29 2013-01-29 Taiwan Semiconductor Manufacturing Company, Ltd. Controlling the shape of source/drain regions in FinFETs
US8610240B2 (en) 2009-10-16 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit with multi recessed shallow trench isolation
US8653608B2 (en) * 2009-10-27 2014-02-18 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET design with reduced current crowding
US8415718B2 (en) 2009-10-30 2013-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming epi film in substrate trench
CN102074582B (zh) * 2009-11-20 2013-06-12 台湾积体电路制造股份有限公司 集成电路结构及其形成方法
US8373238B2 (en) * 2009-12-03 2013-02-12 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with multiple Fin heights
US8395195B2 (en) 2010-02-09 2013-03-12 Taiwan Semiconductor Manufacturing Company, Ltd. Bottom-notched SiGe FinFET formation using condensation
US8310013B2 (en) 2010-02-11 2012-11-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a FinFET device
US8399931B2 (en) 2010-06-30 2013-03-19 Taiwan Semiconductor Manufacturing Company, Ltd. Layout for multiple-fin SRAM cell
US8729627B2 (en) 2010-05-14 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel integrated circuit devices
US8796759B2 (en) 2010-07-15 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US8367498B2 (en) 2010-10-18 2013-02-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US8487378B2 (en) 2011-01-21 2013-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Non-uniform channel junction-less transistor
US8816444B2 (en) 2011-04-29 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. System and methods for converting planar design to FinFET design
US8618556B2 (en) 2011-06-30 2013-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET design and method of fabricating same
US8962400B2 (en) 2011-07-07 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ doping of arsenic for source and drain epitaxy
US8609518B2 (en) 2011-07-22 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Re-growing source/drain regions from un-relaxed silicon layer
US8841701B2 (en) 2011-08-30 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device having a channel defined in a diamond-like shape semiconductor structure
US8466027B2 (en) 2011-09-08 2013-06-18 Taiwan Semiconductor Manufacturing Company, Ltd. Silicide formation and associated devices
CN103000687B (zh) * 2011-09-14 2017-06-23 联华电子股份有限公司 非平面化半导体结构及其工艺
US8723272B2 (en) 2011-10-04 2014-05-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of manufacturing same
US8723236B2 (en) 2011-10-13 2014-05-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of manufacturing same
JP2013115272A (ja) * 2011-11-29 2013-06-10 Toshiba Corp 半導体装置とその製造方法
CN103177963B (zh) * 2011-12-21 2016-02-17 中芯国际集成电路制造(上海)有限公司 一种FinFET器件的制造方法
US8887106B2 (en) 2011-12-28 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method of generating a bias-adjusted layout design of a conductive feature and method of generating a simulation model of a predefined fabrication process
US8815712B2 (en) 2011-12-28 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Method for epitaxial re-growth of semiconductor region
US8377779B1 (en) 2012-01-03 2013-02-19 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of manufacturing semiconductor devices and transistors
US9147765B2 (en) * 2012-01-19 2015-09-29 Globalfoundries Inc. FinFET semiconductor devices with improved source/drain resistance and methods of making same
US8735993B2 (en) 2012-01-31 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET body contact and method of making same
US8742509B2 (en) 2012-03-01 2014-06-03 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for FinFETs
US8847293B2 (en) 2012-03-02 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Gate structure for semiconductor device
US8785285B2 (en) 2012-03-08 2014-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
US8836016B2 (en) 2012-03-08 2014-09-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structures and methods with high mobility and high energy bandgap materials
US8716765B2 (en) 2012-03-23 2014-05-06 Taiwan Semiconductor Manufacturing Company, Ltd. Contact structure of semiconductor device
US8860148B2 (en) 2012-04-11 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for FinFET integrated with capacitor
US9171929B2 (en) 2012-04-25 2015-10-27 Taiwan Semiconductor Manufacturing Company, Ltd. Strained structure of semiconductor device and method of making the strained structure
US8680576B2 (en) 2012-05-16 2014-03-25 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS device and method of forming the same
US8729634B2 (en) 2012-06-15 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with high mobility and strain channel
US8736056B2 (en) 2012-07-31 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Device for reducing contact resistance of a metal
US8823065B2 (en) 2012-11-08 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Contact structure of semiconductor device
US9105490B2 (en) 2012-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Contact structure of semiconductor device
US8633516B1 (en) 2012-09-28 2014-01-21 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain stack stressor for semiconductor device
US8497177B1 (en) 2012-10-04 2013-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a FinFET device
US8772109B2 (en) 2012-10-24 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for forming semiconductor contacts
US8809139B2 (en) 2012-11-29 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-last FinFET and methods of forming same
US9236300B2 (en) 2012-11-30 2016-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Contact plugs in SRAM cells and the method of forming the same
US9093530B2 (en) 2012-12-28 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of FinFET
US8853025B2 (en) 2013-02-08 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET/tri-gate channel doping for multiple threshold voltage tuning
US9093514B2 (en) 2013-03-06 2015-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. Strained and uniform doping technique for FINFETs
US8826213B1 (en) 2013-03-11 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Parasitic capacitance extraction for FinFETs
US9831345B2 (en) 2013-03-11 2017-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with rounded source/drain profile
US9214555B2 (en) 2013-03-12 2015-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Barrier layer for FinFET channels
US8943455B2 (en) 2013-03-12 2015-01-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for layout verification for polysilicon cell edge structures in FinFET standard cells
US8963258B2 (en) 2013-03-13 2015-02-24 Taiwan Semiconductor Manufacturing Company FinFET with bottom SiGe layer in source/drain
US8796666B1 (en) 2013-04-26 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. MOS devices with strain buffer layer and methods of forming the same
CN104183488A (zh) * 2013-05-21 2014-12-03 中芯国际集成电路制造(上海)有限公司 一种FinFET半导体器件及其制备方法
US9548303B2 (en) 2014-03-13 2017-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET devices with unique fin shape and the fabrication thereof
KR102216511B1 (ko) 2014-07-22 2021-02-18 삼성전자주식회사 반도체 소자
KR20160045528A (ko) * 2014-10-17 2016-04-27 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 핀 전계 효과 트랜지스터 (FinFET) 디바이스 및 이의 형성 방법
US9627410B2 (en) 2015-05-21 2017-04-18 International Business Machines Corporation Metallized junction FinFET structures
US9455331B1 (en) * 2015-07-10 2016-09-27 International Business Machines Corporation Method and structure of forming controllable unmerged epitaxial material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201137942A (en) * 2010-02-26 2011-11-01 Taiwan Semiconductor Mfg Method of forming integrated circuit structure
TW201401508A (zh) * 2012-06-22 2014-01-01 United Microelectronics Corp 多閘極場效電晶體及其製程
US20160315119A1 (en) * 2013-04-25 2016-10-27 Kabushiki Kaisha Toshiba Semiconductor memory device
TW201607030A (zh) * 2014-08-06 2016-02-16 應用材料股份有限公司 修飾電晶體源極汲極區域上磊晶成長形狀之方法

Also Published As

Publication number Publication date
US10103146B2 (en) 2018-10-16
US20180166442A1 (en) 2018-06-14
CN108231683A (zh) 2018-06-29
DE102017110442A1 (de) 2018-06-14
KR20180068841A (ko) 2018-06-22
KR101989293B1 (ko) 2019-06-13
US9865595B1 (en) 2018-01-09
TW201834078A (zh) 2018-09-16
CN108231683B (zh) 2020-05-19
KR20190021292A (ko) 2019-03-05

Similar Documents

Publication Publication Date Title
US11121213B2 (en) Fin recess last process for FinFET fabrication
US10431473B2 (en) FINFET with source/drain structure and method of fabrication thereof
TWI648797B (zh) 半導體元件及其製造方法
US9953978B2 (en) Replacement gate structures for transistor devices
US8962413B1 (en) Methods of forming spacers on FinFETs and other semiconductor devices
US8981487B2 (en) Fin-shaped field-effect transistor (FinFET)
US9666715B2 (en) FinFET transistor with epitaxial structures
US9583394B2 (en) Manufacturing method of semiconductor structure
CN107026126B (zh) 半导体元件及其制作方法
US20150255295A1 (en) Methods of forming alternative channel materials on a non-planar semiconductor device and the resulting device
US20120309139A1 (en) Method for manufacturing fin field-effect transistor
TWI687980B (zh) 半導體元件及其製作方法
US9780169B2 (en) Semiconductor structure having epitaxial layers
US9450094B1 (en) Semiconductor process and fin-shaped field effect transistor
TW201624712A (zh) 磊晶結構及其製程用以形成鰭狀場效電晶體
US10388573B2 (en) Fin-FET devices and fabrication methods thereof
TWI571936B (zh) 具有鰭狀結構之場效電晶體的結構及其製作方法
TWI518790B (zh) 半導體裝置及其製作方法
TW202006790A (zh) 半導體元件及其製作方法
US9171922B1 (en) Combination finFET/ultra-thin body transistor structure and methods of making such structures
TWI788487B (zh) 半導體元件
US9508715B1 (en) Semiconductor structure
TW201642324A (zh) 半導體元件及其製作方法
TW201447989A (zh) 半導體結構及其製程