TWI646606B - Grooved power transistor manufacturing method - Google Patents

Grooved power transistor manufacturing method Download PDF

Info

Publication number
TWI646606B
TWI646606B TW107112384A TW107112384A TWI646606B TW I646606 B TWI646606 B TW I646606B TW 107112384 A TW107112384 A TW 107112384A TW 107112384 A TW107112384 A TW 107112384A TW I646606 B TWI646606 B TW I646606B
Authority
TW
Taiwan
Prior art keywords
layer
trench
substrate
insulating layer
conductive
Prior art date
Application number
TW107112384A
Other languages
Chinese (zh)
Other versions
TW201944495A (en
Inventor
林靖璋
唐樹澍
Original Assignee
璟茂科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 璟茂科技股份有限公司 filed Critical 璟茂科技股份有限公司
Priority to TW107112384A priority Critical patent/TWI646606B/en
Application granted granted Critical
Publication of TWI646606B publication Critical patent/TWI646606B/en
Publication of TW201944495A publication Critical patent/TW201944495A/en

Links

Abstract

本發明為一種溝槽式功率電晶體製法,利用一般的光罩製程對形成在基材上的一預留層進行顯影蝕刻後,該預留層的所在位置於係決定了導電柱溝槽(contact)及基材中之閘極溝槽的位置,該等位置不會受到後續製作步驟影響而產生偏移問題,達到精準控制導電柱與閘極之位置;在使用非高端機台的情況下,以低成本的製作流程實現高密度的元件排列,還可確保功率電晶體之良率及穩定性。The invention relates to a trench type power transistor manufacturing method, in which a predetermined layer formed on a substrate is developed and etched by a general mask process, and the position of the reserved layer determines the conductive pillar trench ( Contact) and the position of the gate trenches in the substrate, which are not affected by the subsequent fabrication steps and cause offset problems to achieve precise control of the position of the conductive posts and gates; in the case of non-high-end machines High-density component arrangement with low-cost manufacturing process ensures the yield and stability of power transistors.

Description

溝槽式功率電晶體製法Grooved power transistor manufacturing method

本發明為一種功率電晶體製法,尤指一種具有良好對位精準度的溝槽式功率電晶體製法。 The invention relates to a power transistor manufacturing method, in particular to a groove type power transistor method with good alignment accuracy.

溝槽式功率電晶體(Trench power transistors)主要包含金屬氧化物半導體場效電晶體(MOSFETs)及絕緣柵雙極電晶體(IGBTs)兩類元件,目前為了提升溝槽式功率電晶體的輸出電流,在製程中可試著縮小晶胞間距(cell pitch)的寬度,當晶胞間距越小,代表在單位面積中可製作出更多數目的溝槽(trench),令溝槽式功率電晶體能輸出越高的電流。 Trench power transistors mainly include metal oxide semiconductor field effect transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs). Currently, the output current of trench power transistors is improved. In the process, try to reduce the width of the cell pitch. When the cell pitch is smaller, it means that a larger number of trenches can be produced in a unit area, so that the trench power transistor Can output higher current.

目前多數廠商主要仍是以6吋、8吋晶圓製作溝槽式功率電晶體。但即使是採用DUV技術(Deep UV)的高端黃光機台,可製作出之最小晶胞間距(cell pitch)的能力大約是0.8μm,難以再更進一步縮小。且黃光製程中會涉及多道曝光步驟,容易產生累加的對位偏差,導致內部元件(如電極區域)的位置產生偏移或區域大小不一致,則產品的電性特性將變得不穩定及發生良率偏低的問題,如圖16所示,晶胞間距(cell pitch)以P表示,閘極間距(mesas)以M表示相鄰源極區的寬度分別為A、B,可看出導電柱的位置有偏移,因此電流I無法平均分佈在源極區。 At present, most manufacturers mainly manufacture trench power transistors with 6-inch and 8-inch wafers. But even with the high-end yellow light machine using DUV technology (Deep UV), the ability to make the smallest cell pitch is about 0.8μm, making it difficult to further shrink. Moreover, multiple exposure steps are involved in the yellow light process, which tends to cause accumulated alignment deviations, resulting in offsets in internal components (such as electrode regions) or inconsistent regional sizes, and the electrical characteristics of the product become unstable. The problem of low yield is generated. As shown in FIG. 16, the cell pitch is represented by P, and the gate pitch (mesas) is represented by M, and the widths of adjacent source regions are A and B, respectively. The position of the conductive pillars is offset, so the current I cannot be evenly distributed in the source region.

再者,高端黃光機台亦需搭配精細的光罩使用,故製作成本不可避免的會提高。 In addition, the high-end yellow light machine also needs to be used with a fine mask, so the production cost will inevitably increase.

本創作之主要目的係提供一種「溝槽式功率電晶體製法」,在不需使用DUV高端黃光機台的前提下,可有效降低閘極間距(mesas)而低於0.8μm以下,並保持元件相對之間的對位精準度。 The main purpose of this creation is to provide a "grooved power transistor manufacturing method" that can effectively reduce the gate spacing (mesas) below 0.8μm without using the DUV high-end yellow light machine. The accuracy of the alignment between the components.

本創作之「溝槽式功率電晶體製法」主要包含有下列步驟:a.準備一基材,在該基材的頂面形成一預留層;b.形成一硬遮罩層於該預留層的頂面;c.在該硬遮罩層定義並形成複數個第一開口,該硬遮罩層被該等第一開口區分為複數遮罩區塊;d.蝕刻去除未被該複數遮罩區塊覆蓋之預留層;e.於該等遮罩區塊的各側面形成一隔牆,該等隔牆的寬度彼此相同,相鄰兩個隔牆之間具有一間隔;f.在各該間隔的位置形成一閘極溝槽,各該閘極溝槽是從該基材的頂面向下延伸,相鄰兩個閘極溝槽的間距小於1微米;g.在該閘極溝槽內部及各第一開口內填入一導電層;h.在該導電層定義閘極匯流排區(gate bus region)及源極佈植區(source implanted region),並移除部分導電層以形成複數個閘極排開口及佈植區開口,其中,該佈植區開口的寬度大於該閘極排開口的寬度;i.對露出於佈值區開口的基材內部形成複數個源極區;j.全面覆蓋一絕緣層,並蝕刻移除一部分該絕緣層,以形成複數個導電柱上部溝槽,各導電柱上部溝槽的中心位置係對齊該預留層之中心位置;k.移除各該預留層及其下方之基材,以形成複數個導電柱下部溝槽,各導電柱下部溝槽與對應的導電柱上部溝槽相連通而形成導電柱溝槽; l.在各導電柱溝槽內部填入導電材料而形成複數個導電柱,各導電柱與該絕緣層為共平面。 The "grooved power transistor manufacturing method" of the present invention mainly comprises the following steps: a. preparing a substrate, forming a reserved layer on the top surface of the substrate; b. forming a hard mask layer in the reservation a top surface of the layer; c. defining and forming a plurality of first openings in the hard mask layer, the hard mask layer being divided into a plurality of mask blocks by the first openings; d. etching removal is not covered by the plurality a reserved layer covered by the cover block; e. forming a partition wall on each side of the mask block, the partition walls having the same width, and a space between the adjacent two partition walls; f. Each of the spaced locations forms a gate trench, each of the gate trenches extending downward from a top surface of the substrate, and a spacing between adjacent two gate trenches is less than 1 micrometer; g. in the gate trench Filling a conductive layer in the interior of the trench and each of the first openings; h. defining a gate bus region and a source implanted region in the conductive layer, and removing a portion of the conductive layer Forming a plurality of gate row openings and a planting zone opening, wherein a width of the opening of the implanting zone is greater than a width of the opening of the gate row; i. a plurality of source regions are formed inside the substrate of the opening of the cloth value region; j. comprehensively covering an insulating layer, and etching and removing a part of the insulating layer to form a plurality of upper pillars of the conductive pillars, and the center of the upper trenches of the conductive pillars Positioning is aligned with the center of the reserved layer; k. removing each of the reserved layer and the substrate below it to form a plurality of lower pillars of the conductive pillars, the lower trenches of each of the conductive pillars and the upper trench of the corresponding conductive pillar The slots are connected to form a conductive column trench; l. Filling a conductive material inside each of the conductive pillar trenches to form a plurality of conductive pillars, each conductive pillar and the insulating layer being coplanar.

本創作利用預留層位置在製程的初期即決定了導電柱溝槽及閘極溝槽的位置,確保位置不會受到後續製作步驟影響而產生偏移問題,達到精準控制導電柱與閘極之位置。 The creation of the reserved layer position determines the position of the conductive column trench and the gate trench at the initial stage of the process, ensuring that the position is not affected by the subsequent fabrication steps, and the offset problem is achieved, and the conductive column and the gate are accurately controlled. position.

300‧‧‧預留層 300‧‧‧ Reserved layer

303‧‧‧第一絕緣層 303‧‧‧First insulation

306‧‧‧第二絕緣層 306‧‧‧Second insulation

309‧‧‧第三絕緣層 309‧‧‧ third insulation layer

310‧‧‧導電柱上部溝槽 310‧‧‧The upper groove of the conductive column

313‧‧‧自對準對接區域 313‧‧‧Self-aligned docking area

316‧‧‧導電柱下部溝槽 316‧‧‧The lower groove of the conductive column

319‧‧‧氧化層 319‧‧‧Oxide layer

600‧‧‧導電層 600‧‧‧ Conductive layer

603‧‧‧閘極氧化層 603‧‧‧ gate oxide layer

606‧‧‧第一間隙壁 606‧‧‧First gap

609’‧‧‧氧化層 609'‧‧‧Oxide

609‧‧‧第二間隙壁 609‧‧‧Second gap

610‧‧‧邊角 610‧‧‧ corner

619‧‧‧絕緣層 619‧‧‧Insulation

723‧‧‧第一開口 723‧‧‧ first opening

729‧‧‧遮罩區塊 729‧‧‧Mask block

753‧‧‧間隔 753‧‧‧ interval

726‧‧‧閘極排開口 726‧‧‧gate opening

756‧‧‧佈植區開口 756‧‧‧planting area opening

900‧‧‧基材 900‧‧‧Substrate

903‧‧‧基體區 903‧‧‧Base area

906‧‧‧源極區 906‧‧‧ source area

909‧‧‧接觸區 909‧‧‧Contact area

910‧‧‧閘極溝槽 910‧‧ ‧ gate trench

913‧‧‧導電柱 913‧‧‧conductive column

916‧‧‧表面金屬層 916‧‧‧Surface metal layer

919‧‧‧P型摻雜 919‧‧‧P type doping

M‧‧‧閘極間距 M‧‧‧ gate spacing

P‧‧‧晶胞間距 P‧‧‧cell spacing

圖1:本創作在一矽基材之表面形成一預留層的示意圖。 Figure 1: Schematic representation of the creation of a reserved layer on the surface of a substrate.

圖2:本創作在該預留層上形成一硬遮罩層的示意圖。 Figure 2: Schematic representation of the creation of a hard mask layer on the reserved layer.

圖3:本創作蝕刻該硬遮罩層的示意圖。 Figure 3: Schematic illustration of the etching of the hard mask layer.

圖4:本創作蝕刻該預留層的示意圖。 Figure 4: Schematic diagram of etching the reserved layer by this creation.

圖5:本創作形成第一間隙壁的示意圖。 Figure 5: Schematic representation of the creation of a first spacer.

圖6A~6B:本創作形成第二間隙壁的示意圖。 6A-6B: Schematic diagram of the creation of a second spacer.

圖7:本創作形成閘極溝槽的示意圖。 Figure 7: Schematic diagram of the gate trench formed by this creation.

圖8:本創作形成閘極氧化層的示意圖。 Figure 8: Schematic diagram of the creation of a gate oxide layer.

圖9:本創作在閘極溝槽填入導電層的示意圖。 Figure 9: Schematic diagram of the creation of a conductive layer in the gate trench.

圖10:本創作以第一實施例製作源極區的示意圖。 Fig. 10 is a schematic view showing the creation of a source region in the first embodiment.

圖11:本創作以第二實施例製作源極區的示意圖。 Figure 11 is a schematic view showing the creation of a source region in the second embodiment of the present invention.

圖12:本創作形成導電柱上部溝槽的示意圖。 Figure 12: Schematic representation of the creation of the upper trench of the conductive post.

圖13:本創作形成完整的導電柱溝槽的示意圖。 Figure 13: Schematic representation of the creation of a complete conductive column trench.

圖14:本創作形成完整導電柱的示意圖。 Figure 14: Schematic representation of the creation of a complete conductive column.

圖15:本創作用於製作IGBT的示意圖。 Figure 15: Schematic representation of the creation of an IGBT.

圖16:習用功率電晶體其導電柱位置偏移示意圖。 Figure 16: Schematic diagram of the positional shift of the conductive column of a conventional power transistor.

請參考圖1所示,本創作首先準備一基材900,該基材900在此以N+矽基材為例,為了製作耐高壓的功率元件,在該基材900的表面通常會形成有一磊晶層(N epi);於該基材900的表面首先形成一預留層300,該預留層300為一半導體層,其製作方式包含但不限於:多晶矽沉積(poly deposition)、單晶矽磊晶(epitaxy)、摻雜(implantation)等。 Referring to FIG. 1 , the present invention firstly prepares a substrate 900. Here, the substrate 900 is exemplified by an N+ tantalum substrate. In order to fabricate a high voltage resistant power component, a surface is usually formed on the surface of the substrate 900. A seed layer (N epi) is formed on the surface of the substrate 900. The reserved layer 300 is a semiconductor layer. The preparation layer 300 is formed by a method including, but not limited to, poly deposition, single crystal germanium. Epitaxy, implantation, and the like.

請參考圖2所示,在該預留層300的表面形成一硬遮罩層(hard mask layer),該硬遮層為複合層結構,可提供較高的耐蝕刻能力,在此實施例中,該硬遮罩層包含由下往上依序沉積形成的一第一絕緣層(silicon oxide)303、一第二絕緣層(nitride layer)306及一第三絕緣層(silicon oxide)309。其中,依據欲製作之閘極溝槽(參考圖7所示)的深度,可適當決定前述各層的厚度,舉例而言,閘極溝槽:預留層300:第一絕緣層303:第二絕緣層306:第三絕緣層309相對之厚度比例可以是4.4:1.6:0.1:0.7:1.6。 Referring to FIG. 2, a hard mask layer is formed on the surface of the reserved layer 300, and the hard mask layer is a composite layer structure, which can provide high etching resistance, in this embodiment. The hard mask layer comprises a first silicon oxide layer 303, a second nitride layer 306 and a third silicon oxide layer 309 formed by sequentially depositing from bottom to top. Wherein, depending on the depth of the gate trench to be fabricated (refer to FIG. 7), the thickness of the foregoing layers may be appropriately determined. For example, the gate trench: the reserved layer 300: the first insulating layer 303: the second The insulating layer 306: the third insulating layer 309 may have a thickness ratio of 4.4:1.6:0.1:0.7:1.6.

請參考圖3所示,在該硬遮罩層上進行第一道黃光製程,係利用一第一光罩在該硬遮罩層定義出第一開口723的位置,利用蝕刻的方式去除第一開口723位置的硬遮罩層而露出該預留層300;同時,未蝕刻之硬遮罩層構成為複數遮罩區塊729,各該遮罩區塊729的寬度即決定了與電極電性連接之導電柱(contact)的寬度,同時也間接決定了閘極溝漕(trench)的寬度,這部分會在後續更進一步說明。在此步驟中,遮罩區塊729的寬度可介於0.3μm~0.4μm之間,因為第一開口723的寬度較大,故無須使用專門的高端溝槽光罩及高端的黃光機台,可節省製作成本。 Referring to FIG. 3, a first yellow light process is performed on the hard mask layer, and a first mask is used to define a position of the first opening 723 in the hard mask layer, and the first method is used to remove the first opening 723. An unmasked hard mask layer exposes the reserved layer 300; at the same time, the unetched hard mask layer is formed as a plurality of mask blocks 729, and the width of each of the mask blocks 729 determines the electrical The width of the conductive connection of the connection also indirectly determines the width of the gate trench, which will be further explained later. In this step, the width of the mask block 729 can be between 0.3 μm and 0.4 μm. Because the width of the first opening 723 is large, it is not necessary to use a special high-end groove mask and a high-end yellow light machine. Can save production costs.

請參考圖4,對露出於第一開口723的預留層300進行非等向性蝕刻(anisotropic etching)以顯露出該基材900。保留在基材900上的各預留層300將會在此步驟定義出導電柱下部溝槽(contact silicon trench)的位置,因此在後續製程中已無需使用黃光製程決定該導電柱下部溝槽的位置,即可避免傳統多道黃 光製程產生對位偏移的問題,本創作也因而能更加精確掌握該導電柱下部溝槽的位置。 Referring to FIG. 4, an anisotropic etching of the reserved layer 300 exposed at the first opening 723 is performed to expose the substrate 900. Each of the reserved layers 300 remaining on the substrate 900 will define the position of the contact silicon trench in this step, so that it is no longer necessary to use a yellow light process to determine the lower trench of the conductive pillar in a subsequent process. Location, you can avoid the traditional multi-channel yellow The optical process produces a problem of alignment offset, and the creation thus more accurately grasps the position of the lower trench of the conductive post.

圖5、圖6A、圖6B說明如何在預留層300及遮罩區塊729的側面形成隔牆。如圖5所示,在各區域先全面覆蓋一層絕緣層後進行非等向性蝕刻,該絕緣層與第二絕緣層306是相同材質,附著在第三絕緣層309側壁的該絕緣層在進行非等向性蝕刻時會被去除,而保留之絕緣層將構成一第一間隙壁(nitride spacer)606並只覆蓋在預留層300、第一絕緣層303及該第二絕緣層306的側壁面。當控制該第一間隙壁606的位置最高只覆蓋在與第二絕緣層306等高時,而未覆蓋在第三絕緣層309的側壁,可避免後續製程當移除該第三絕緣層309後,於該第二絕緣層306的表面產生殘餘絕緣層(氮化物)的問題而影響產品品質。該第一間隙壁606的主要功能是為了保護該預留層300與第一絕緣層303,防止在後續製程中產生氧化。 5, 6A, and 6B illustrate how spacers are formed on the sides of the reserved layer 300 and the mask block 729. As shown in FIG. 5, after each layer is completely covered with an insulating layer, an anisotropic etching is performed, and the insulating layer and the second insulating layer 306 are made of the same material, and the insulating layer attached to the sidewall of the third insulating layer 309 is in progress. The non-isotropic etching will be removed, and the remaining insulating layer will constitute a first spacer spacer 606 and cover only the side of the reserved layer 300, the first insulating layer 303 and the second insulating layer 306. Wall. When the position of the first spacer 606 is controlled to cover only the same height as the second insulating layer 306, but not covered by the sidewall of the third insulating layer 309, the subsequent process can be avoided after the third insulating layer 309 is removed. A problem of residual insulating layer (nitride) is generated on the surface of the second insulating layer 306 to affect product quality. The main function of the first spacer 606 is to protect the reserved layer 300 and the first insulating layer 303 from being oxidized in a subsequent process.

如圖6A所示,接著於各區域先沉積覆蓋一氧化層609’,再如圖6B所示進行垂直方向的非等向性蝕刻,向下蝕刻至露出基材900,使該氧化層609’構成一第二間隙壁609,其中,該氧化層609’係為具有高階梯覆蓋率的沉積層,可等厚或等距覆蓋在區域表面。如圖6B所示,蝕刻後所產生的該第二間隙壁609係覆蓋在第三絕緣層309及第一間隙壁606的側壁,使該第一間隙壁606及該第二間隙壁609共同形成一隔牆,各隔牆的寬度為該第一間隙壁606及該第二間隙壁609的寬度總和。在基材900表面於兩相鄰第二間隙壁609之間係露出一間隔753,該間隔753的寬度即為閘極溝槽的寬度,換言之,所需之閘極溝槽的寬度可由第一開口723的寬度以及第二間隙壁609的厚度共同決定,在不需要使用高端黃光製程及DUV光罩的前提下可精準達到0.18μm甚至更小之閘極溝槽寬度。而且當前端製程若有發生偏差時,藉由控制該第二間隙壁609的沉積厚度亦可進行適當矯正而得到所需之閘極溝槽寬度。 As shown in FIG. 6A, an oxide layer 609' is deposited first in each region, and then anisotropic etching in the vertical direction is performed as shown in FIG. 6B, and the substrate 900 is etched down to expose the oxide layer 609'. A second spacer 609 is formed, wherein the oxide layer 609' is a deposited layer having a high step coverage, and can be equally thick or equidistantly covered on the surface of the region. As shown in FIG. 6B, the second spacer 609 is formed on the sidewalls of the third insulating layer 309 and the first spacer 606, so that the first spacer 606 and the second spacer 609 are formed together. A partition wall, the width of each partition wall is the sum of the widths of the first gap wall 606 and the second gap wall 609. A space 753 is exposed between the two adjacent second spacers 609 on the surface of the substrate 900. The width of the spacer 753 is the width of the gate trench. In other words, the width of the required gate trench can be first. The width of the opening 723 and the thickness of the second spacer 609 together determine that the gate trench width of 0.18 μm or less can be accurately achieved without the use of a high-end yellow process and a DUV mask. Moreover, if there is a deviation in the current end process, the thickness of the deposition of the second spacer 609 can be appropriately corrected to obtain the desired gate trench width.

如圖7所示,在間隔753處對基材900向下進行乾式蝕刻而形成一閘極溝槽910,該閘極溝槽910具有一圓弧底部。接著再對該第二間隙壁609進行一道濕式蝕刻,以外露出該閘極溝槽910上緣的邊角610。露出該邊角610之目的係為了在後續製程中修整為圓弧邊緣,以避免尖角形狀產生的應力或放電問題。 As shown in FIG. 7, the substrate 900 is dry etched down at a space 753 to form a gate trench 910 having a circular arc bottom. Then, the second spacer 609 is further wet etched to expose the corner 610 of the upper edge of the gate trench 910. The purpose of exposing the corner 610 is to trim the edge of the arc in a subsequent process to avoid stress or discharge problems caused by the sharp corner shape.

如圖8所示,在各區域表面係成長一犠牲氧化層,再隨即移除該犠牲氧化層,同時也會移除同材質的該第三絕緣層309與第二間隙壁609,並去除閘極溝槽910內部的表面缺陷。在移除犠牲氧化層後,再於該閘極溝槽910的表面及外露的基材900表面以高溫氧化(thermal oxidation)或沉積方式成長一閘極氧化層(gate oxide)603。其中,該第一間隙壁606無論是在製作犠牲氧化層或閘極氧化層的過程中,都對該預留層300提供保護作用而防止其氧化,防止該預留層300的寬度產生變化。因為該第一間隙壁606的位置最高只覆蓋在與第二絕緣層306等高,在移除該第三絕緣層309後,不會在該第二絕緣層306的表面產生殘餘物的問題。 As shown in FIG. 8, an oxide layer is grown on the surface of each region, and then the oxide layer is removed, and the third insulating layer 309 and the second spacer 609 of the same material are removed, and the gate is removed. Surface defects inside the pole trench 910. After removing the sacrificial oxide layer, a gate oxide 603 is grown on the surface of the gate trench 910 and the surface of the exposed substrate 900 by thermal oxidation or deposition. Wherein, the first spacer 606 protects the reserved layer 300 from oxidation during the process of fabricating the sacrificial oxide layer or the gate oxide layer, and prevents the width of the reserved layer 300 from changing. Since the position of the first spacer 606 is only covered at the same height as the second insulating layer 306, after the third insulating layer 309 is removed, no problem of residue is generated on the surface of the second insulating layer 306.

如圖9所示,於閘極溝槽910內部及閘極氧化層603表面係初步覆蓋一導電層600,該導電層600為多晶矽層,初步覆蓋之導電層600的高度會先略高於該第二絕緣層306的頂面。接著利用一光阻輔助蝕刻法(resist-assisted etch back)蝕刻該導電層600,直到導電層600的頂面與該第二絕緣層306的頂面等高為止。在另一實施例中,也可採用化學機械研磨法(CMP)去除導電層600,使其與該第二絕緣層306位於同等高度。如此一來,即可得到一平坦表面而有利於進行後續製程。 As shown in FIG. 9, the surface of the gate trench 910 and the surface of the gate oxide layer 603 are initially covered with a conductive layer 600. The conductive layer 600 is a polysilicon layer, and the height of the initially covered conductive layer 600 is slightly higher than that. The top surface of the second insulating layer 306. The conductive layer 600 is then etched using a resist-assisted etch back until the top surface of the conductive layer 600 is equal to the top surface of the second insulating layer 306. In another embodiment, the conductive layer 600 may also be removed by chemical mechanical polishing (CMP) to be at the same height as the second insulating layer 306. In this way, a flat surface is obtained to facilitate subsequent processes.

如圖10所示,利用第二光罩在導電層600上蝕刻出複數個閘極排開口726及佈植區開口756,以同時定義出閘極匯流排區(gate bus region)及源極佈植區(source implanted region),其中,圖面左方的閘極排開口726介於未蝕刻 之導電層600及預留層300之間,其開口寬度較小,而佈植區開口756介於相鄰預留層300之間,其開口寬度較大。接著再去除該第一間隙壁606,並對露出之基材900進行基體佈植及熱退火而形成基體區903。在本實施例中,可採用斜向的離子佈植方式對基體區903進行源極佈植,以形成源極區906;另一方面,在閘極匯流排區因為閘極排開口726的寬度小,斜向射出之離子(如虛線箭頭表示)會受到導電層600及預留層300阻擋,離子將不會進入基體區903。 As shown in FIG. 10, a plurality of gate row openings 726 and a planting region opening 756 are etched on the conductive layer 600 by using a second mask to simultaneously define a gate bus region and a source cloth. Source implanted region, wherein the gate row opening 726 on the left side of the drawing is unetched Between the conductive layer 600 and the reserved layer 300, the opening width is small, and the implanting area opening 756 is between the adjacent reserved layers 300, and the opening width thereof is large. The first spacer 606 is then removed, and the exposed substrate 900 is subjected to substrate implantation and thermal annealing to form a substrate region 903. In this embodiment, the source region 903 may be source implanted in an oblique ion implantation manner to form the source region 906; on the other hand, in the gate busbar region because of the width of the gate row opening 726 The small, obliquely ejected ions (as indicated by the dashed arrows) are blocked by the conductive layer 600 and the reserved layer 300, and ions will not enter the base region 903.

如圖11所示,在形成源極區906的另一實施例中,也可以先全面覆蓋一層氧化層319,因為閘極排開口726的寬度較小,故閘極排開口726會先填滿該氧化層319,而佈植區開口756因其寬度大,僅會覆蓋同等厚度的一層氧化層319。再對該氧化層319進行等向蝕刻後,只會去除在佈植區開口756的氧化層,但是閘極排開口726的氧化層319僅會表面部分移除,仍大致保留於閘極排開口726內而作為佈植遮罩。在本實施例中,可採用垂直向下的離子佈植方式(如虛線箭頭表示)對佈植區開口756的基體區903進行源極佈植,以形成源極區906;另一方面,在閘極匯流排區因為閘極排開口726具有氧化層319作為佈植遮罩,佈植離子會受到阻擋,將不會進入基體區903。 As shown in FIG. 11, in another embodiment in which the source region 906 is formed, an oxide layer 319 may be completely covered first. Since the width of the gate row opening 726 is small, the gate row opening 726 is filled first. The oxide layer 319, while the implant region opening 756, due to its large width, only covers an oxide layer 319 of equal thickness. After the oxide layer 319 is isotropically etched, only the oxide layer in the implant region opening 756 is removed, but the oxide layer 319 of the gate row opening 726 is only partially removed from the surface, and remains substantially in the gate row opening. 726 is used as an implant mask. In this embodiment, the source region 903 of the implanted region opening 756 may be source implanted by a vertically downward ion implantation method (as indicated by a dashed arrow) to form a source region 906; Because the gate row opening 726 has an oxide layer 319 as an implant mask, the implant ions are blocked and will not enter the substrate region 903.

如圖12所示,首先移除第二絕緣層306,再於所有開口處填滿另一絕緣層619,同樣對該絕緣層619的頂面利用一光阻輔助蝕刻法(resist-assisted etch back)或化學機械研磨法(CMP),而得到具有平坦表面的絕緣層619。接著再利用一第三光罩對該絕緣層619蝕刻,在對應預留層300的上方移除絕緣層619而形成導電柱上部溝槽310,未移除之絕緣層619係作為內部介電層。其中,該導電柱上部溝槽310的開口寬度係大於該預留層300的寬度,以露出該預留層300並確保後續步驟可以完全移除該預留層300。因為該預留層300的材質不同於該絕緣層619,而且其位置早已定義好,故不會在進行第三光罩蝕刻作業時產生對位偏移。 As shown in FIG. 12, the second insulating layer 306 is first removed, and then another insulating layer 619 is filled in all the openings, and the top surface of the insulating layer 619 is also subjected to a resist-assisted etch back. Or chemical mechanical polishing (CMP) to obtain an insulating layer 619 having a flat surface. Then, the insulating layer 619 is etched by using a third mask, and the insulating layer 619 is removed over the corresponding reserved layer 300 to form a conductive pillar upper trench 310. The unremoved insulating layer 619 is used as an internal dielectric layer. . The opening width of the upper pillar 310 of the conductive pillar is larger than the width of the reserved layer 300 to expose the reserved layer 300 and ensure that the subsequent layer 300 can completely remove the reserved layer 300. Since the material of the reserved layer 300 is different from the insulating layer 619 and its position is already defined, the alignment offset is not generated when the third mask etching operation is performed.

如圖13所示,當形成該導電柱上部溝槽310之後,再對該預留層300完全蝕刻,並再持續向下延伸蝕刻進入基材900的基體區903。原預留層300所在位置經蝕刻後形成一自對準對接區域313,而基體區903蝕刻後形成與該自對準對接區域313相連通的導電柱下部溝槽316。對位在該導電柱下部溝槽316下方的基材900內部再以佈植的方式形成相異導電型態的接觸區909,在此以P+材質佈植為例,該接觸區909用以降低金屬與基材900兩種異質材料對接時的接觸阻抗。 As shown in FIG. 13, after the conductive pillar upper trench 310 is formed, the reserved layer 300 is completely etched and continues to etch down into the base region 903 of the substrate 900. The location of the original reserved layer 300 is etched to form a self-aligned docking region 313, and the substrate region 903 is etched to form a conductive pillar lower trench 316 that communicates with the self-aligned docking region 313. A contact region 909 of a different conductivity type is formed in the interior of the substrate 900 below the trench 316 of the lower portion of the conductive pillar. Here, a P+ material implant is taken as an example, and the contact region 909 is used to reduce Contact resistance of metal and substrate 900 when two heterogeneous materials are mated.

如圖14所示,該導電柱上溝槽310、自對準對接區域313及導電柱下部溝槽316係連通共同形成一導電柱溝槽(contact trench),在其內部沉積導電材料(例如鎢)後並進行回蝕刻即形成一導電柱913(contact),該導電柱913的高度與絕緣層619的高度相等,最後再於該導電柱913與絕緣層619的頂面以沉積方式形成一表面金屬層916以電連接該導電柱913,在圖14中該金屬層916供作為源極接點。該導電柱913與表面金屬層916的材料可相同或相異。在圖14所示的範例中,表面金屬層916係電性連接元件的主動區,也就是透過導電柱電性連接源極區906、基體區903及接觸區909。相鄰閘極溝槽之間的閘極間距(mesas)以M表示,本創作可以小於0.8微米以下,達到次微米(sub-micrometer)等級。 As shown in FIG. 14, the conductive pillar upper trench 310, the self-aligned butted region 313, and the conductive pillar lower trench 316 are connected to form a conductive contact trench, and a conductive material (such as tungsten) is deposited therein. After the etchback is performed, a conductive pillar 913 is formed, the height of the conductive pillar 913 is equal to the height of the insulating layer 619, and finally a surface metal is deposited on the top surface of the conductive pillar 913 and the insulating layer 619 by deposition. Layer 916 electrically connects the conductive post 913, which is used as a source contact in FIG. The conductive pillars 913 and the surface metal layer 916 may be the same or different in material. In the example shown in FIG. 14, the surface metal layer 916 is electrically connected to the active region of the component, that is, electrically connected to the source region 906, the substrate region 903, and the contact region 909 through the conductive pillars. The gate spacing (mesas) between adjacent gate trenches is denoted by M, which may be less than 0.8 microns below the sub-micrometer level.

若是在閘極匯流排區,則會形成有對應連接導電層600的其它導電柱,透過該其它導電柱電性連接其對應的表面金屬層916,該對應的表面金屬層916係作為閘極接點。 If it is in the gate busbar region, other conductive pillars corresponding to the conductive layer 600 are formed, and the corresponding surface metal layer 916 is electrically connected through the other conductive pillars, and the corresponding surface metal layer 916 is used as a gate. point.

根據圖14所示的架構,如果再對該基材900的底面進行表面研磨、背部金屬層而形成汲極,即可完成MOSFET的製作,此部分非本創作特徵故不予贅述。 According to the structure shown in FIG. 14, if the bottom surface of the substrate 900 is surface-polished and the back metal layer is formed to form a drain, the fabrication of the MOSFET can be completed. This part is not a feature of the present invention and will not be described again.

同理,如圖15所示,如果先對該基材900的底面先進行表面研磨以及P型摻雜919,最後沉積背部金屬層而形成集極,即可完成IGBT的製作。 Similarly, as shown in FIG. 15, if the bottom surface of the substrate 900 is first surface-polished and P-doped 919, and finally the back metal layer is deposited to form a collector, the fabrication of the IGBT can be completed.

Claims (11)

一種溝槽式功率電晶體製法, a. 準備一基材,在該基材的頂面形成一預留層; b. 形成一硬遮罩層於該預留層的頂面; c. 在該硬遮罩層定義並形成複數個第一開口,該硬遮罩層被該等第一開口區分為複數遮罩區塊; d. 蝕刻去除未被該複數遮罩區塊覆蓋之預留層; e. 於該等遮罩區塊的各側面形成一隔牆,該等隔牆的寬度彼此相同,相鄰兩個隔牆之間具有一間隔; f. 在各該間隔的位置形成一閘極溝槽,各該閘極溝槽是從該基材的頂面向下延伸,相鄰兩個閘極溝槽的間距小於1微米; g. 在該閘極溝槽內部及各第一開口內填入一導電層; h. 在該導電層定義閘極匯流排區及源極佈植區,並移除部分的該導電層以形成複數個閘極排開口及佈植區開口,其中,該佈植區開口的寬度大於該閘極排開口的寬度; i. 對露出於佈值區開口的基材內部形成複數個源極區; j. 全面覆蓋一絕緣層,並蝕刻去除部分該絕緣層,以形成複數個導電柱上部溝槽,各導電柱上部溝槽的中心位置係對齊該預留層之中心位置; k. 移除各該預留層及其下方之基材,以形成複數個導電柱下部溝槽,各導電柱下部溝槽與對應的導電柱上部溝槽相連通而形成導電柱溝槽; l. 在各導電柱溝槽內部填入導電材料而形成複數個導電柱,各導電柱與該絕緣層為共平面。A trench type power transistor method, a. preparing a substrate to form a reserved layer on a top surface of the substrate; b. forming a hard mask layer on a top surface of the reserved layer; c. The hard mask layer defines and forms a plurality of first openings, the hard mask layer being divided into the plurality of mask blocks by the first openings; d. etching to remove the reserved layer not covered by the plurality of mask blocks; e. forming a partition wall on each side of the mask block, the partition walls having the same width and a spacing between adjacent partition walls; f. forming a gate at each of the intervals a trench, each of the gate trenches extending downward from a top surface of the substrate, and a spacing between adjacent two gate trenches is less than 1 micrometer; g. filling the interior of the gate trench and each of the first openings Entering a conductive layer; h. defining a gate busbar region and a source implant region in the conductive layer, and removing part of the conductive layer to form a plurality of gate row openings and a planting region opening, wherein the cloth The width of the opening of the planting area is greater than the width of the opening of the gate row; i. forming a plurality of source regions inside the substrate exposed to the opening of the cloth value region; j. comprehensively covering an insulating layer, and etching and removing part of the insulating layer to form a plurality of conductive pillar upper trenches, wherein a center position of the upper trench of each conductive pillar is aligned with a center position of the reserved layer; k. The reserved layer and the substrate underneath thereof form a plurality of lower pillars of the conductive pillars, and the lower trenches of the conductive pillars communicate with the upper trenches of the corresponding conductive pillars to form conductive pillar trenches; l. A conductive material is filled inside the trench to form a plurality of conductive pillars, and each conductive pillar is coplanar with the insulating layer. 如請求項1所述的溝槽式功率電晶體製法,在步驟b中,包含: 於該預留層的頂面由下往上依序形成一第一絕緣層、一第二絕緣層及一第三絕緣層,其中,該硬遮罩層包含該第一絕緣層、該第二絕緣層及該第三絕緣層。The method for manufacturing a trench power transistor according to claim 1, wherein in the step b, the method comprises: forming a first insulating layer, a second insulating layer and a second surface from the bottom to the top of the reserved layer. a third insulating layer, wherein the hard mask layer comprises the first insulating layer, the second insulating layer, and the third insulating layer. 如請求項2所述的溝槽式功率電晶體製法,於步驟e中,包含有: 於該預留層、該第一絕緣層及該第二絕緣層的側壁面形成一第一間隙壁 其中該第一間隙壁與第二絕緣層為相同材料 及 於各該第三絕緣層及該第一間隙壁的側面形成一第二間隙壁,使該第一間隙壁及該第二間隙壁形成該隔牆,該隔牆的寬度為該第一間隙壁及該第二間隙壁的總寬度。 The trench power transistor manufacturing method of claim 2, wherein in the step e, the method includes: forming a first spacer on the sidewalls of the reserved layer, the first insulating layer and the second insulating layer , The first spacer and the second spacer are the same material ; and a second spacer is formed on each of the third insulating layer and the side of the first spacer, so that the first spacer and the second spacer The partition wall is formed, and the partition wall has a width that is a total width of the first partition wall and the second partition wall. 如請求項3所述的溝槽式功率電晶體製法,於步驟f中,進一步包含: 在形成該閘極溝槽後,進行一濕式蝕刻,以外露出該閘極溝槽上緣的邊角; 移除該第二間隙壁及該第三絕緣層; 在該閘極溝槽內部表面形成一閘極氧化層。The trench power transistor manufacturing method according to claim 3, in the step f, further comprising: after forming the gate trench, performing a wet etching to expose a corner of the upper edge of the gate trench Removing the second spacer and the third insulating layer; forming a gate oxide layer on the inner surface of the gate trench. 如請求項4所述的溝槽式功率電晶體製法,在步驟g中,該導電層係與該第二絕緣層為共平面。In the trench power transistor manufacturing method of claim 4, in step g, the conductive layer is coplanar with the second insulating layer. 如請求項5所述的溝槽式功率電晶體製法,在步驟i中,包含有: 移除該第一間隙壁; 對基材進行基體佈植及熱退火而形成基體區; 對露出在佈值區開口的基材進行斜向離子佈植,以形成該複數個源極區。The trench power transistor manufacturing method according to claim 5, in the step i, comprising: removing the first spacer; performing substrate implantation and thermal annealing on the substrate to form a base region; The substrate of the open area is subjected to oblique ion implantation to form the plurality of source regions. 如請求項5所述的溝槽式功率電晶體製法,在步驟i中,包含有: 移除該第一間隙壁; 對基材進行基體佈植及熱退火而形成基體區; 沉積一氧化層在各該閘極排開口及佈植區開口; 對該氧化層進行一等向性蝕刻以移除佈植區開口內的氧化層; 對佈植區開口內的基材進行垂直方向的佈植以形成該複數個源極區。The trench power transistor manufacturing method according to claim 5, in the step i, comprising: removing the first spacer; performing substrate implantation and thermal annealing on the substrate to form a base region; depositing an oxide layer Opening each of the gate opening and the implanting region; performing an isotropic etching on the oxide layer to remove the oxide layer in the opening of the implanting region; and vertically implanting the substrate in the opening of the implanted region To form the plurality of source regions. 如請求項6或7所述的溝槽式功率電晶體製法,其中,在步驟j中,各導電柱上部溝槽的寬度係大於預留層的寬度。The trench power transistor manufacturing method according to claim 6 or 7, wherein in step j, the width of the upper trench of each of the conductive pillars is greater than the width of the reserved layer. 如請求項8所述的溝槽式功率電晶體製法,其中,在步驟k中,各導電柱下部溝槽的寬度與該預留層等寬度;在該導電柱下部溝槽下方的基材內部形成一接觸區。The trench power transistor manufacturing method of claim 8, wherein in step k, the width of the lower trench of each conductive pillar is equal to the width of the reserved layer; and the inside of the substrate below the lower trench of the conductive pillar A contact zone is formed. 如請求項9所述的溝槽式功率電晶體製法,其中,在步驟l中,包含:在該導電柱及絕緣層的表面上形成一正面金屬層。The trench power transistor manufacturing method according to claim 9, wherein in the step 1, the method comprises: forming a front metal layer on the surface of the conductive pillar and the insulating layer. 如請求項10所述的溝槽式功率電晶體製法,其中,在步驟l之後,進一步包含:在該基材的底面形成一摻雜表面。The trench power transistor method of claim 10, wherein after step 1, further comprising: forming a doped surface on a bottom surface of the substrate.
TW107112384A 2018-04-11 2018-04-11 Grooved power transistor manufacturing method TWI646606B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107112384A TWI646606B (en) 2018-04-11 2018-04-11 Grooved power transistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107112384A TWI646606B (en) 2018-04-11 2018-04-11 Grooved power transistor manufacturing method

Publications (2)

Publication Number Publication Date
TWI646606B true TWI646606B (en) 2019-01-01
TW201944495A TW201944495A (en) 2019-11-16

Family

ID=65804038

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107112384A TWI646606B (en) 2018-04-11 2018-04-11 Grooved power transistor manufacturing method

Country Status (1)

Country Link
TW (1) TWI646606B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272982A1 (en) * 2008-03-03 2009-11-05 Fuji Electric Device Technology Co., Ltd. Trench gate type semiconductor device and method of producing the same
US20150171201A1 (en) * 2010-12-14 2015-06-18 Alpha And Omega Semiconductor Incorporated Self aligned trench mosfet with integrated diode
US9281368B1 (en) * 2014-12-12 2016-03-08 Alpha And Omega Semiconductor Incorporated Split-gate trench power MOSFET with protected shield oxide
US20160211364A1 (en) * 2011-06-20 2016-07-21 Maxpower Semiconductor, Inc. Trench Gated Power Device With Multiple Trench Width and its Fabrication Process
US20160260814A1 (en) * 2010-06-01 2016-09-08 Alpha And Omega Semiconductor Incorporated Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272982A1 (en) * 2008-03-03 2009-11-05 Fuji Electric Device Technology Co., Ltd. Trench gate type semiconductor device and method of producing the same
US20160260814A1 (en) * 2010-06-01 2016-09-08 Alpha And Omega Semiconductor Incorporated Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts
US20150171201A1 (en) * 2010-12-14 2015-06-18 Alpha And Omega Semiconductor Incorporated Self aligned trench mosfet with integrated diode
US20160211364A1 (en) * 2011-06-20 2016-07-21 Maxpower Semiconductor, Inc. Trench Gated Power Device With Multiple Trench Width and its Fabrication Process
US9281368B1 (en) * 2014-12-12 2016-03-08 Alpha And Omega Semiconductor Incorporated Split-gate trench power MOSFET with protected shield oxide

Also Published As

Publication number Publication date
TW201944495A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
JP5505407B2 (en) Gate etching method for high voltage FET
TWI408752B (en) Devices including fin transistors robust to gate shorts and methods of making the same
TWI481030B (en) Systems and devices including fin transistors and methods of using, making and operating the same
KR100739658B1 (en) Method for manufacturing semiconductor device
US8207566B2 (en) Vertical channel transistor and method of fabricating the same
KR100896631B1 (en) Manufacturing method of vertical cylinder type transistor and vertical cylinder type transistor manufactured by the same
CN102074481B (en) Method of fabricating vertical channel semiconductor device
KR102424370B1 (en) Vertical type semiconductor devices and methods of manufacturing the same
KR20100088836A (en) Method of manufacturing a semiconductor device
JP6463338B2 (en) Semiconductor device
WO2021135265A1 (en) Ldmos device and manufacturing method therefor
JPH0823092A (en) Semiconductor device and production process thereof
US9786766B2 (en) Methods of fabricating transistors with a protection layer to improve the insulation between a gate electrode and a junction region
US20120080747A1 (en) Semiconductor Device
JP2009032967A (en) Semiconductor apparatus and method of manufacturing the same
TWI646606B (en) Grooved power transistor manufacturing method
JP2000349289A (en) Semiconductor device and manufacture thereof
TWI479608B (en) Semiconductor element and method for manufacturing semiconductor element
ITTO20000319A1 (en) PROCEDURE FOR THE MANUFACTURE OF DEEP BAG JUNCTION STRUCTURES.
WO2018049339A1 (en) High performance super-beta npn (sbnpn)
CN110379850B (en) Method for manufacturing trench type power transistor
JP4379013B2 (en) Manufacturing method of semiconductor device
KR101025739B1 (en) Method of manufacturing semiconductor device with neck free vertical gate
JP4561114B2 (en) Manufacturing method of semiconductor device
JP2005093773A (en) Trench gate type semiconductor device and its manufacturing method