TWI646409B - 位階感測器設備、測量橫跨基板之構形變化的方法、測量關於微影製程的物理參數之變化的方法及微影設備 - Google Patents

位階感測器設備、測量橫跨基板之構形變化的方法、測量關於微影製程的物理參數之變化的方法及微影設備 Download PDF

Info

Publication number
TWI646409B
TWI646409B TW106123141A TW106123141A TWI646409B TW I646409 B TWI646409 B TW I646409B TW 106123141 A TW106123141 A TW 106123141A TW 106123141 A TW106123141 A TW 106123141A TW I646409 B TWI646409 B TW I646409B
Authority
TW
Taiwan
Prior art keywords
measurement
substrate
configuration
resolution
configuration data
Prior art date
Application number
TW106123141A
Other languages
English (en)
Other versions
TW201812486A (zh
Inventor
溫 提波 泰爾
法蘭克 史達爾
尼偉利 馬丁 裘力 瑪里-愛米 戴
添伯爾 哈珊
Original Assignee
Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml荷蘭公司 filed Critical Asml荷蘭公司
Publication of TW201812486A publication Critical patent/TW201812486A/zh
Application granted granted Critical
Publication of TWI646409B publication Critical patent/TWI646409B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7034Leveling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45028Lithography
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本發明揭示一種判定橫跨已施加有一或多個圖案的一基板之構形變化之方法。該方法包括:獲得表示橫跨已藉由一微影製程而施加有一或多個圖案的一基板之一構形變化之經測量構形資料;及組合該經測量構形資料與關於晶粒內拓樸之知識以獲得經導出構形資料,該經導出構形資料具有大於該經測量構形資料之解析度的一解析度。亦揭示一種對應位階感測器設備及包含此類位階感測器設備之微影設備;及一種自橫跨該基板之一物理參數之變化的第一測量資料以及晶粒內測量資料判定該物理參數之變化且組合此等第一測量資料與晶粒內測量資料的更一般方法,該晶粒內測量資料相比於該第一測量資料具有較高解析度。

Description

位階感測器設備、測量橫跨基板之構形變化的方法、測量關於微影製程的物理參數之變化的方法及微影設備
本發明係關於微影設備,且更具體言之係關於使用位階感測器測量經處理基板之構形,且係關於測量關於微影製程的物理參數之變化。
微影設備為將所要圖案施加至基板上(通常施加至基板之目標部分上)之機器。微影設備可用於(例如)積體電路(IC)之製造中。在彼情況下,圖案化器件(其被替代地稱作光罩或倍縮光罩)可用以產生待形成於IC之個別層上的電路圖案。可將此圖案轉印至基板(例如,矽晶圓)上之目標部分(例如,包含晶粒之部分、一個晶粒或若干晶粒)上。通常經由成像至提供於基板上之輻射敏感材料(抗蝕劑)層上來進行圖案之轉印。一般而言,單一基板將含有經順次地圖案化之被稱作「場」之鄰近目標部分之柵格。已知微影設備包括:所謂的步進器,其中藉由一次性將整個場圖案曝光至場上來輻照每一場;及所謂的掃描器,其中藉由在給定方向(「掃描」方向)上經由輻射光束而掃描場圖案同時平行或反平行於此方向而同步地掃描基板來輻照每一場。
為了準確地預測使用微影製程而施加之圖案中之缺陷,使用構形特性化。此尤其為針對後端層及垂直整合式產品(例如,3D-NAND)之狀況,其中可預期較多晶粒內構形。為了預測可能發生缺陷之部位,可使用混合式緻密焦點圖以預測缺陷,從而組合全域焦點指紋及產品上位階測量資料。 為了測量經圖案化基板(例如,在拋光之後)之表面構形達足夠進行準確缺陷預測之準確度,在近似10微米至100微米之空間頻率下對生產基板執行微構形測量。微構形之實際量值可隨產品、層及化學機械拋光(CMP)策略而顯著變化。可使用諸如(干涉測量)光學表面剖面儀之專業度量衡工具來執行測量。然而,此等專業度量衡工具極慢且其測量可為高度製程相依的(亦即,高度取決於經測量之表面之屬性)。為了移除此製程相依性,可在測量之前將金屬層施加至基板;然而,此情形實際上破壞基板,而意謂此等微構形測量係破壞性測量。 舉例而言,將需要提供經圖案化基板之表面構形之較快速的非破壞性測量。 在一態樣中,提供一種判定橫跨已施加有一或多個圖案的一基板之構形變化之方法,該方法包含:獲得表示橫跨已藉由一微影製程而施加有一或多個圖案的一基板之一構形變化之經測量構形資料;及組合該經測量構形資料與關於晶粒內拓樸之知識以獲得經導出構形資料,該經導出構形資料具有大於該經測量構形資料之解析度的一解析度。 在一態樣中,提供一種位階感測器設備,其包含:一第一測量系統,其可操作以測量橫跨已施加有一或多個圖案的一基板之構形變化以獲得經測量構形資料;及一處理器系統,其可操作以組合該經測量構形資料與關於晶粒內拓樸之知識以獲得經導出構形資料,該經導出構形資料具有大於該第一測量系統之解析度的一解析度。 在一態樣中,提供一種判定關於已藉由一微影製程而施加至一基板的圖案之一物理參數之變化的方法,該方法包含:獲得橫跨已藉由一微影製程而施加有一或多個圖案的一基板之一物理參數之該變化的第一測量資料;獲得第二測量資料,其中該第二測量資料包含相比於該第一測量資料具有較高解析度的晶粒內測量資料,且其中該第二測量資料係參考參考測量資料,該參考測量資料具有與該第一測量資料共同的一參考座標系;及組合該第一測量資料與該第二測量資料以獲得經導出測量資料,該經導出測量資料具有大於該第一測量資料之解析度的一解析度。 在態樣中,提供一種包含機器可讀指令之電腦程式產品,該等機器可讀指令用於致使一通用資料處理設備執行如本文中所描述之一方法。該電腦程式產品可包含一非暫時性儲存媒體。 下文中參考隨附圖式來詳細地描述另外特徵及優點以及各種實施例之結構及操作。應注意,本發明不限於本文中所描述之特定實施例。本文中僅出於說明性目的而呈現此等實施例。基於本文中含有之教示,額外實施例對於熟習相關技術者而言將顯而易見。
圖1示意性地描繪微影設備LA。該設備包含: - 照明系統(照明器) IL,其經組態以調節輻射光束B (例如,UV輻射或EUV輻射); - 支撐結構(例如,光罩台) MT,其經建構以支撐圖案化器件(例如,光罩或倍縮光罩) MA,且連接至經組態以根據某些參數來準確地定位該圖案化器件之第一定位器PM; - 基板台(例如,晶圓台) WTa或WTb,其經建構以固持基板(例如,抗蝕劑塗佈晶圓) W,且連接至經組態以根據某些參數來準確地定位該基板之第二定位器PW;及 - 投影系統(例如,折射投影透鏡系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如,包含一或多個晶粒)上。 照明系統可包括用於導向、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。 支撐結構以取決於圖案化器件之定向、微影設備之設計及其他條件(諸如,圖案化器件是否被固持於真空環境中)的方式固持圖案化器件。支撐結構可確保圖案化器件(例如)相對於投影系統處於所要位置。可認為本文中對術語「倍縮光罩」或「光罩」之任何使用皆與更一般之術語「圖案化器件」同義。 本文中所使用之術語「圖案化器件」應被廣泛地解譯為係指可用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的任何器件。應注意,舉例而言,若被賦予至輻射光束之圖案包括相移特徵或所謂的輔助特徵,則該圖案可不確切地對應於基板之目標部分中之所要圖案。通常,被賦予至輻射光束之圖案將對應於目標部分中所產生之一器件(或數個器件) (諸如積體電路)中之特定功能層。圖案化器件可為透射的或反射的。圖案化器件之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。 本文中所使用之術語「投影系統」應被廣泛地解釋為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用皆與更一般之術語「投影系統」同義。 如此處所描繪,設備屬於透射類型(例如,使用透射光罩)。替代地,該設備可屬於反射類型(例如,使用如上文所提及之類型之可程式化鏡面陣列,或使用反射光罩)。 微影設備可屬於具有兩個(雙載物台)或多於兩個基板台(及/或兩個或多於兩個圖案化器件台)之類型。在此等「多載物台」機器中,可並行地使用額外台,或可對一或多個台進行預備步驟,同時將一或多個其他台用於曝光。 微影設備亦可屬於如下類型:其中基板之至少一部分可由具有相對高折射率之液體(例如,水)覆蓋,以便填充投影系統與基板之間的空間。, 亦可將浸潤液體施加至微影設備中之其他空間,例如,光罩與投影系統之間的空間。浸潤技術在此項技術中被熟知用於增加投影系統之數值孔徑。本文中所使用之術語「浸潤」並不意謂諸如基板之結構必須浸沒於液體中,而是僅意謂液體在曝光期間位於投影系統與基板之間。 照明器IL自輻射源SO接收輻射光束。舉例而言,當源為準分子雷射時,源及微影設備可為單獨實體。在此等狀況下,不認為源形成微影設備之部件,且輻射光束係憑藉包含(例如)合適導向鏡面及/或光束擴展器之光束遞送系統BD而自源SO傳遞至照明器IL。在其他狀況下,舉例而言,當源為水銀燈時,源可為微影設備之整體部分。源SO及照明器IL連同光束遞送系統BD 在需要時可被稱作輻射系統。 照明器IL可包含用於調整輻射光束之角度強度分佈之調整器AD。通常,可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如積光器IN及聚光器CO。照明器可用以調節輻射光束,以在其截面中具有所要均一性及強度分佈。 輻射光束B入射於被固持於支撐結構(例如,光罩台) MT上之圖案化器件(例如,光罩) MA上,且係由該圖案化器件而圖案化。在已橫穿圖案化器件MA之情況下,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器IF (例如,干涉測量器件、線性編碼器或電容性感測器),可準確地移動基板台WTa/WTb,例如,以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器(其未在圖1中被明確地描繪)可用以(例如)在自光罩庫之機械擷取之後或在掃描期間相對於輻射光束B之路徑來準確地定位圖案化器件MA。一般而言,可憑藉形成第一定位器PM之部分之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現支撐結構MT之移動。相似地,可使用形成第二定位器PW之部分之長衝程模組及短衝程模組來實現基板台WTa/WTb之移動。在步進器(相對於掃描器)之狀況下,支撐結構MT可僅連接至短衝程致動器,或可固定。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件MA及基板W。儘管如所說明之基板對準標記佔據專用目標部分,但該等標記可位於目標部分(場)之間的空間中,及/或目標部分內之器件區域(晶粒)之間的空間中。此等標記被稱為切割道對準標記,此係因為個別產品晶粒最終將藉由沿著此等線切割而彼此切割。相似地,在多於一個晶粒被提供於圖案化器件MA上之情形中,圖案化器件對準標記可位於該等晶粒之間。 所描繪設備可用於以下模式中之至少一者中: 1. 在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使支撐結構MT及基板台WTa/WTb保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WTa/WTb在X及/或Y方向上移位,使得可曝光不同目標部分C。在步進模式中,曝光場之最大大小限制單次靜態曝光中所成像之目標部分C之大小。 2. 在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描支撐結構MT及基板台WTa/WTb (亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WTa/WTb相對於支撐結構MT之速度及方向。在掃描模式中,曝光場之最大大小限制單次動態曝光中之目標部分之寬度(在非掃描方向上),而掃描運動之長度判定目標部分之高度(在掃描方向上)。 3. 在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WTa/WTb。在此模式中,通常使用脈衝式輻射源,且在基板台WTa/WTb之每一移動之後或在一掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如上文所提及之類型的可程式化鏡面陣列)之無光罩微影。 亦可使用對上文所描述之使用模式之組合及/或變化或完全不同的使用模式。 此實例中之微影設備LA屬於所謂的雙載物台類型,其具有兩個基板台WTa及WTb以及兩個站-曝光站及測量站-在該兩個站之間可交換基板台。在曝光站EXP處曝光一個基板台上之一個基板的同時,可在測量站MEA處將另一基板裝載至另一基板台上,使得可進行各種預備步驟。該等預備步驟可包括使用高度感測器LS來映射基板之表面高度,及/或使用對準感測器AS來測量基板上之對準標記之位置。測量係耗時的且提供兩個基板台會實現設備之產出量之相當大增加。若在基板台處於測量站處以及處於曝光站處時位置感測器IF不能夠測量基板台之位置,則可提供第二位置感測器以使得能夠在兩個站處追蹤基板台之位置。 該設備進一步包括微影設備控制單元LACU,該微影設備控制單元LACU控制所描述之各種致動器及感測器之所有移動及測量。LACU亦包括用以實施與設備之操作相關之所要計算的信號處理及資料處理能力。實務上,控制單元LACU將被實現為許多子單元之系統,每一子單元處置設備內之一子系統或組件之即時資料獲取、處理及控制。舉例而言,一個處理子系統可專用於基板定位器PW之伺服控制。單獨單元可甚至處置粗略致動器及精細致動器,或不同軸線。另一單元可能專用於位置感測器IF之讀出。設備之總體控制可受到中央處理單元控制,中央處理單元與此等子系統處理單元通信、與操作員通信,且與微影製造製程中涉及之其他設備通信。 圖2在200處展示在用於器件(例如半導體產品)之工業生產設施之實施例之內容背景中的微影設備LA。在微影設備(或簡言之「微影工具」200)內,測量站MEA在202處被展示且曝光站EXP在204處被展示。控制單元LACU在206處被展示。在生產設施內,設備200形成「微影製造單元」或「微影叢集」之部分,該微影製造單元或微影叢集包括(例如)塗佈設備208以將感光性抗蝕劑及/或另一塗層施加至基板W以供設備200進行圖案化。在設備200之輸出側處,可提供烘烤設備210及/或可提供顯影設備212以使經曝光圖案顯影成實體抗蝕劑圖案。 一旦已施加並顯影圖案,就將經圖案化基板220轉移至諸如在222、224、226處所說明之一或多個其他處理設備。廣泛範圍之處理步驟可由典型製造設施中之各種設備來實施。出於實例起見,此實施例中之設備222為蝕刻站,且設備224執行蝕刻後退火步驟。將其他物理及/或化學處理步驟應用於另外設備226等等。可使用眾多類型之操作以製造實際器件,諸如,材料沈積、對一或多個表面材料特性改質(氧化、摻雜、離子植入等等)、化學機械拋光(CMP)等等。實務上,設備226可表示在一或多個設備中執行之一系列不同處理步驟。 半導體器件之製造常常涉及此處理之許多重複,以在基板上逐層地建置具有適當材料及圖案之器件結構。因此,到達微影叢集之基板230可為新近製備之基板,或其可為先前已在此叢集中或在另一設備中完全地被處理之基板。相似地,取決於所需處理,離開設備226之基板232可經返回以用於同一微影叢集中之後續圖案化操作,其可經指定以用於不同叢集234中之圖案化操作,或其可為待發送以供切塊及封裝之成品234。 產品結構之每一層通常涉及一組不同製程步驟,且用於每一層處之設備226可在類型方面完全地不同。此外,不同層根據待蝕刻之材料之細節常常涉及不同蝕刻製程,例如,化學蝕刻、電漿蝕刻,且涉及專門要求,諸如各向異性蝕刻。 可在如剛才所提及之其他微影設備中執行先前及/或後續製程,且可甚至在不同類型之微影設備中執行先前及/或後續製程。舉例而言,器件製造製程中之在諸如解析度及疊對之參數上要求極高的一些層相比於要求較不高之其他層可在更進階微影工具中來執行。因此,一些層可曝光於浸潤類型微影工具中,而其他層曝光於「乾式」工具中。一些層可曝光於在DUV波長下工作之工具中,而其他層係使用EUV波長輻射來曝光。 可在監督控制系統238之控制下操作整個設施,該監督控制系統238接收度量衡資料、設計資料、製程配方及其類似者。監督控制系統238將命令發佈至設備中之每一者以對一或多個基板批量實施製造製程。 圖2亦展示度量衡設備240,度量衡設備240經提供以用於在製造製程中之所要階段處對產品進行參數測量。現代微影生產設施中之度量衡設備之常見實例為散射計(例如,角度解析散射計或光譜散射計),且其可應用於(例如)在設備222中之蝕刻之前測量在220處之經顯影基板之一或多個屬性。在使用度量衡設備240的情況下,可判定出(例如)諸如疊對或臨界尺寸(CD)之一或多個重要效能參數並不滿足經顯影抗蝕劑中之指定準確度要求。在蝕刻步驟之前,存在經由微影叢集剝離經顯影抗蝕劑且重新處理基板220的機會。來自度量衡設備240之度量衡結果242可用以藉由控制單元LACU 206隨著時間推移進行小幅度調整而維持微影叢集中之圖案化操作之準確效能,藉此最小化製造不合格產品及需要重工之風險。當然,度量衡設備240及/或其他度量衡設備(圖中未繪示)可經應用以測量經處理基板232、234及傳入基板230之屬性。 當將圖案成像至基板上時,需要確保基板之最上部表面(亦即,使圖案待成像之表面)處於投影系統之焦平面內。圖案應經投影於之基板之表面決不完美地扁平,而是既大尺度地又較小尺度地呈現許多高度偏差。未能調整投影系統之焦點及/或相對於投影系統之焦點定位基板可引起不良的圖案化效能,且因此引起製造製程整體上之不良效能。一或多個效能參數(諸如,臨界尺寸(CD)及/或尤其CD均一性)可由於不良聚焦而降級。 為了測量此等高度偏差,可將一或多個位階感測器(或一或多個高度感測器)整合於微影設備中。位階或高度感測器通常為用以在基板已被裝載至微影設備中之後測量基板之最上部表面在橫跨基板之所有點處之垂直位置的光學感測器。將此測量集合以某合適形式儲存且此測量集合可被稱作「高度圖」。接著在控制圖案至基板上之成像時使用該高度圖,以確保基板之每一部分上之輻射敏感抗蝕劑層處於投影系統之焦平面中。通常將在基板上之順次部分之曝光期間連續地調整承載基板之基板支撐件之高度。美國專利第7,265,364號、美國專利申請公開案第US 2010-0233600號及美國專利申請公開案第US 2013-128247號中揭示位階感測器之實例,該等專利及專利申請公開案中之每一者之全文係以引用方式併入本文中。 提議使用位階感測器(諸如圖1或圖3 (下文所描述)中所說明且通常可安裝於當前微影設備上的位階感測器)以執行在圖案化步驟之後(及(例如)在拋光步驟之後)橫跨基板表面之構形變化的測量。此情形具有使用已經在適當位置之硬體的優點。又,以紫外線為基礎之位階感測器(亦即,其使用紫外線輻射以執行位階感測測量)具有極低製程相依性。然而,此位階感測器之解析度係低的,其中典型位階感測器測量柵格元件為大約1毫米×0.5毫米。此在Y方向上受到在此方向上之位階感測器光點大小進一步限制,從而引起為大約1毫米×2毫米之有效解析度。因此,使用位階感測器之產品測量將傾向於極模糊。 為了補償位階感測器之低解析度,提議使用關於晶粒內拓樸之知識,其在此實施例中可包含一或多個經施加圖案之位置資訊(亦即,經施加圖案之佈局之資訊),以解譯低解析度測量。可使用施加至基板之一或多個圖案之特定區域的部位及大小之知識(例如,來自倍縮光罩資料檔案)以便在比單獨運用位階感測器而可能達成之解析度高的解析度下重新建構每區域之高度。在一實施例中,可使用一或多個解迴旋技術以自已知佈局資訊及低解析度測量資料獲得較高解析度圖。 圖3說明藉由對照X-Y位置測量在Z方向上之表面位置而獲得經測量構形資料的步驟。舉例而言,可在(例如)圖案化及拋光步驟之後在基板已被夾持至基板支撐件WTa及WTb中之一者之後使用圖1之微影設備中之位階感測器LS來獲得此構形資料。圖3(a)展示基板支撐件WT,且攜載基板W。位階感測器LS在此實例中為光學感測器,其包含源側光學件LSS及偵測器光學件LSD。 在操作中,源側光學件LSS提供一或多個輻射(光)光束310,該一或多個輻射光束照射至基板W上。基板W通常具有形成於其上之不同層,且通常具有比此處所說明更多的層。輻射光束310係由基板反射且由偵測器側光學件LSD偵測以獲得一或多個信號S(x,y),自該一或多個信號可導出基板上之位置(x,y)處之表面高度。通常,位階感測器產生複數個輻射光束(介於(例如) 5個與100個之間),該複數個輻射光束同時地照射於位階感測器表面上,從而在基板W上形成測量光點之(例如,一維)陣列。藉由測量橫跨基板之眾多位置處之表面高度,可由控制單元LACU中之合適處理器系統獲得高度圖h(x,y)。 用於高度感測以及關聯信號處理之此等光學件之細節在此項技術中係已知的,且(例如)在引言中所提及之先前公開案中對其加以描述。本文中將不對其進行詳細地描述。用於本實例中之輻射可為單色的、多色的及/或寬頻帶。其可經P偏振或經S偏振、經圓形偏振及/或非偏振。在特定實例中,輻射包含紫外線輻射。高度圖h(x,y)可採取任何合適形式。在簡單實施例中,高度圖包含由橫跨基板之位置之X及Y座標加索引的樣本值之二維陣列。在其他實施例中,高度值可由擬合至經測量樣本值之參數曲線表達。圖3中之h(x,y)之曲線圖314表示(例如)在具有某X值的情況下在Y方向上延伸之單一圖塊中的高度值。 圖3(b)為圖3(a)之區316的細節。其展示已藉由微影製程而形成於基板上的結構之區域或圖案318。該等圖案可具有如所展示之不同相對高度(該等高度相對於基板W被誇示地展示)。亦展示來自源側光學件LSS之單一測量光點320。在一實施例中,由佈局資訊描述之每一特定區域或不同圖案318可經假定為具有均一高度,且因此相對於由佈局資訊描述之另一區域被指派均一高度值。因而,所獲得較高解析度圖可僅包含具有由佈局資訊界定之固定邊界的具有均一高度之區域(平線區)。因此,整個基板表面可依據複數個此類平線區而描述,每一平線區處於藉由將位階感測器測量與已知佈局資訊解迴旋而判定之高度。替代地,每一區域無需被指派均一高度。任何給定高度剖面(用於該給定高度剖面之倍增函數正被搜尋)可起作用。亦有可能判定每區域之偏移或多個形狀,只要(重疊)測量之數目足夠即可。 不同區域可包含在(例如)圖案密度方面不同的區域。已觀測到,在拋光(例如,CMP步驟)之後,具有(近似)均一圖案密度之每一區域將傾向於具有均一高度,高度係取決於圖案密度。然而,來自位階感測器之低解析度測量將傾向於塗污的,特別是在由佈局資訊描述之每一區域之邊界處。 圖4說明位階感測器之低解析度對高度測量之影響。圖4(a)展示基板表面410上之結構或圖案400,其具有小於1毫米(例如,介於100微米與1毫米之間)之寬度W。圖4(b)展示近似在測量圖案400之高度時位階感測器「看到」的剖面420 (為了比較起見,圖案之實際形狀400'被展示為點線)。實際圖案之拓樸的此散佈係因為位階感測器之測量光點大小相比於經測量之局域拓樸之尺寸並不可忽略。圖4(c)及圖4(d)說明當圖案大於1毫米時相似的問題,其中位階感測器不能夠適當地解析圖案430之邊緣,使得該圖案之邊緣在經測量剖面440中散佈或模糊(為了比較起見,圖案之實際形狀430'被展示為點線)。 圖5在概念上說明解迴旋演算法在一實施例中可如何操作。在圖5(a)中,經測量(強度)剖面500被展示為與所展示的實際圖案剖面510 (實際拓樸-點線)疊對。對應於實際圖案剖面510的經測量剖面500之區被標註為A,且在實際圖案剖面510外部之經測量剖面500之區被標註為B。亦展示來自佈局資訊的已知過渡區域520之部位。區B處之剖面表示實際上由區A處之圖案510之高度位階引起的高度測量。因此,位階感測器之低解析度之結果為使遍及比圖案500之(寬度為A的)區域更大的(寬度為A+B之)區域之圖案500之高度達到平均數。在進行此操作時,經測量剖面510採取位階感測器之測量光點之點散佈函數之形式。 因此,在一實施例中,演算法使用描繪區域A的已知過渡區域520向區域A指派在區域B處所測量之高度(如在偵測器光學件LSD處所測量之強度)。圖5(a)在概念上說明此情形,其中在一實施例中,將區域B之經測量高度加至由佈局資訊(例如,區域A)界定的過渡區域520內之經測量高度。在一實施例中,演算法將向此區域(區域A)指派均一高度,該高度係自位階感測器測量與佈局資訊之組合或解迴旋而判定。此由圖5(b)中之所估計剖面530表示。 圖6在概念上指示根據一實施例演算法實際上可如何解迴旋位階感測器測量,其中存在具有不同拓樸之鄰近區域。上部曲線圖為三個鄰近區域之拓樸的曲線圖:第一區域具有由標繪圖A描述之拓樸,第二區域具有由標繪圖B描述之拓樸且第三區域具有由標繪圖C描述之拓樸。下部曲線圖為在三個不同位置中之對應位階感測器測量(光點剖面)L1、L2及L3 (對照xy之強度)的曲線圖,其中該兩個曲線圖在xy中對準。 在此簡化實例中,位階感測器測量L1、L2及L3係與已知過渡區域xy1、xy2、xy3及xy4解迴旋,且已知拓樸如頂部曲線圖中所展示。拓樸被假定為採取曲線圖中所展示之形狀,其各自具有藉由解迴旋而判定之一倍增因數。由於位階感測器佔據面積(回應函數或點散佈函數)係已知的,故可在此實例中發現倍增因數之量值如下: L1 = a+b L2 = ½a+b+½c L3 = b+c 其中a、b及c分別為針對由標繪圖A、B及C描述之已知剖面而判定的倍增因數;且L1、L2及L3為位階感測器測量。如可看到,存在三個未知數及三個方程式,此意謂測量可經解迴旋。 應瞭解,圖6為簡化實例。詳言之,位階感測器測量L1、L2、L3可採取任何形狀,且事實上可各自包含三維回應函數(對照x及y之高度z),其中解迴旋係根據已知佈局資訊以上文所描述之方式將函數之區重新分配至xy中之區域。 圖7(a)展示佈局資訊700之實例,其展示待預期不同拓樸測量之區域710,例如,具有不同圖案密度之區域。圖7(b)展示使用此佈局資訊700之所得所估計位階感測器測量720。如在所估計位階感測器測量720中可看到,對應於佈局資訊700中之區域710的每一不同圖案或區域730已具有遍及彼區域而指派之均一高度(其中不同高度係由不同陰影指示)。 在另一實施例中,可藉由使用拼接方法而改良位階感測器測量之實際解析度(例如,使其實際上加倍)。此拼接方法可包含運用位階感測器測量基板兩次,其中該等測量移位(近似)位階感測器解析度的一半(例如,基板上之測量光點之間的距離的一半)。舉例而言,位階感測器可具有1毫米解析度(例如,包含相隔1毫米之複數個測量光點)。位階感測器可測量基板一次,且接著在諸測量之間再次具有0.5毫米移位。此等測量可接著經拼接在一起,從而實際上使解析度加倍。因此,提議本文中所揭示之方法中使用的實際位階感測器測量包含此等拼接測量。可在垂直方向上執行相似拼接方法,其中在X及Y中執行解迴旋。 所揭示方法描述用於使用位階感測器測量、產品佈局資訊及導引擬合演算法兩者來預測產品基板之構形之方法。此等方法實現焦點相關缺陷之較佳預測能力、實現構形之極快速測量,且可為非破壞性的,而不造成製程相依性。 如已經描述,位階感測器系統係用以判定基板之高度圖。微影設備之曝光隙縫係基於(例如,最小平方或其相似者)最佳化而位階測量,該最佳化係基於許多局域位階感測器光點高度。接著將應用單一高度校正,如由焦點錨定特徵之產品上焦點曝光矩陣(FEM)給出(機器焦點相對於產品焦點偏移)。使用單一偏移可為非最佳的,此係因為: · 所選擇焦點錨定特徵有可能並非最具焦點關鍵性特徵; · 最具焦點關鍵性特徵可能在貫穿晶粒(場)之不同局域拓樸高度下定位; · 在一晶粒內可存在多個焦點關鍵特徵,其中每一者局域地最具焦點關鍵性; · 哪一者為最具焦點關鍵性特徵亦取決於由晶粒曝光經歷之局域散焦(值或圖)。 當前拓樸相關之高度偏移可為大約10奈米至15奈米。此相對於為+/-25奈米之總焦點預算係相當大的。由於位階感測器僅判定「平均」焦點位階,故存在焦點關鍵特徵離焦地定位的風險。因此,高解析度構形測量可改良焦點控制。然而,位階感測器歸因於其光點大小而無法執行高解析度構形測量,如已經解釋。 因此,提議執行高解析度構形測量(且更具體言之,藉由合適高解析度度量衡器件執行之晶粒內構形測量),且合併高解析度構形測量資料與位階感測器測量資料。所得解析度構形測量資料將包含關於晶粒內拓樸的知識。合適高解析度度量衡器件可為(例如)電子束(electron beam/e-beam)度量衡器件。 用以執行高解析度構形測量之高解析度度量衡器件隨著時間推移及在XY平面中移動應極穩定,以便使所得拓樸圖足夠準確。然而,在絕對意義上,實務上此將決不足夠準確的。因此,提議使高解析度構形測量係相對的。此可藉由執行高解析度拓樸測量(使用(例如)電子束度量衡器件)來達成,高解析度拓樸測量參考亦執行(較低解析度)參考拓樸測量之另一感測器。此可包含在高解析度度量衡校準步驟中對基板同時地執行高解析度拓樸測量及參考拓樸測量。在一實施例中,針對單一晶粒執行此高解析度度量衡校準步驟。在一實施例中,每個產品層可僅執行一次高解析度度量衡校準步驟。 高解析度拓樸測量資料可接著經儲存及添加至位階感測器高度圖以便建構高解析度高度圖,該高解析度高度圖可用以改良微影製程中之焦點控制。改良之焦點控制可包含基於高解析度構形資料而判定產品特徵之間的加權(例如,局域權重圖) (例如,每特徵之逆聚焦深度)及應用該加權。 在一實施例中,對相對測量之參考可為微影設備之氣體(例如,空氣)量規(氣壓差動位階感測器)。該氣體量規可用作對位階感測器測量之參考。該氣體量規依賴於偵測參考氣流與經測量之表面上之氣流之間的壓力差。因而,氣體量規測量並不以光學位階感測器測量(基於輻射反射)遭受光學相依性(亦即,與(例如)諸如材料類型及密度之不同產品屬性相關的測量變化)之方式遭受光學相依性。然而,氣體量規測量相比於光學位階感測器測量相對較慢。因此,在位階感測器至氣體量規校準步驟中位階感測器參考氣體量規一次,以獲得每場校正,每場校正接著經應用至所有後續位階感測器測量,例如:(1) 其中為位階感測器測量、為在位階感測器至氣體量規校準步驟中判定之每場校正(作為同時位階感測器測量LS 與氣體量規測量AG 之間的差),且為經校正位階感測器測量。如可看到,經校正位階感測器測量等效於如將使用氣體量規來測量之構形。 在一實施例中,在由電子束度量衡器件提供高解析度拓樸資料的情況下,氣體量規光點中心位於用於高解析度度量衡校準之電子束測量之頂部上。若此情形不可能,則取決於可能之情形,可使用另一參考配置。舉例而言,可使用兩個氣體量規光點位於電子束光點之任一側(在X或Y中)的配置。在此實施例中,高解析度拓樸圖可被稱作重疊氣體量規及電子束位置,其中重疊雙氣體量規測量經匹配以校正「時間」漂移。替代地,可以相似方式使用單一經移位(相對於電子束)氣體量規光點及基準板。 在高解析度拓樸測量參考氣體量規之一實施例中,高解析度位階感測器測量可包含:(2) 其中為在高解析度度量衡校準步驟中判定之每晶粒校正(作為氣體量規測量AG 與高解析度構形測量THR 之間的差)。 在一實施例中,高解析度構形測量可參考位階感測器。在此實施例中,高解析度位階感測器測量可包含:(3) 其中為在高解析度度量衡校準步驟中判定之每晶粒校正(作為位階感測器測量LS 與高解析度構形測量THR 之間的差)。 在一實施例中,組合(例如,解迴旋)經測量(例如,位階感測器)構形資料與一或多個圖案之位置資訊之知識的早先所描述方法可用以在高解析度度量衡校準步驟之前在初始步驟中提供第一粗略焦點圖。在此實施例中,有可能並未橫跨整個晶粒執行高解析度度量衡校準步驟。取而代之,第一粗略焦點圖用以識別晶粒上之應執行相對昂貴的(例如,就時間而言)高解析度拓樸測量之區域(例如,具有顯著拓樸變化及/或包含焦點關鍵結構之區域)。 雖然依據使用位階感測器測量之焦點控制來提供以上實例,但概念具有較大應用。廣泛言之,本文中所描述之方法可用以測量物理參數(例如,圖案移位誤差(例如疊對、邊緣置放誤差)、臨界尺寸(CD)以及構形)之變化。可獲得橫跨基板之物理參數之變化的第一測量資料。又,可獲得第二測量資料,其中該第二測量資料包含相比於第一測量資料具有較高解析度的晶粒內測量資料,且其中該第二測量資料係參考參考測量資料,該參考測量資料具有與第一測量資料共同的參考座標系。如前所述,可組合第一測量資料及第二測量資料以獲得具有大於第一測量資料之解析度的解析度之經導出測量資料。詳言之,基本概念可經延伸至疊對或CD控制。 為了進行疊對控制,遍及完整基板之較低解析度測量(第一測量資料)可包含藉由對準感測器(例如,圖1中之對準感測器AS)對對準目標之測量。對準感測器可在對準校準步驟中參考如由度量衡器件(諸如散射計度量衡器件)測量之疊對或其他度量衡目標。在此實施例中高解析度測量資料(第二測量資料)可包含圖案移位(疊對)之晶粒內高解析度測量。圖案移位之高解析度測量可在高解析度度量衡校準步驟中參考對準目標或疊對/度量衡目標(其之測量提供參考測量資料)。高解析度度量衡校準步驟可包含執行圖案移位之高解析度測量(例如,使用電子束度量衡器件)及對準目標之測量(例如,使用對準感測器)或疊對/度量衡目標之測量(例如,使用以散射計為基礎之度量衡器件)的同時測量。圖案移位之晶粒內高解析度測量可與對準或疊對/度量衡目標之完整基板測量組合且用於疊對製程控制迴路中。 與用於CD控制相似地,橫跨完整基板之較低解析度測量(第一測量資料)可包含藉由度量衡器件(諸如散射計度量衡器件)對CD目標之測量。CD目標之測量可在CD校準步驟中參考CD-掃描電子顯微鏡(scanning electron microscope; SEM)測量。在此實施例中高解析度測量資料(第二測量資料)可包含晶粒內高解析度CD測量。高解析度CD測量可在高解析度度量衡校準步驟中參考CD目標(其之測量提供參考測量資料)。高解析度度量衡校準步驟可包含執行高解析度CD測量(例如,使用電子束度量衡器件)及CD目標之測量(例如,使用以散射計為基礎之度量衡器件)的同時測量。晶粒內高解析度CD測量可與CD目標之完整基板測量組合且用於CD製程控制迴路中。 在所有此等實施例中,高解析度測量資料(第二測量資料)可關於與較低解析度測量資料(第一測量資料)有關的測量部位之全集,或替代地僅關於與較低解析度測量資料有關的測量部位之稀疏子集。舉例而言,可視情況僅在已知為關鍵的或具有偏離高度的特徵之部位處進行高解析度測量。替代地或另外,高解析度測量可包含每區域之僅一個測量,或特徵之較大集合內之一個或僅幾個特徵的測量。 可設想在本發明之範疇內之以上實例的眾多另外變化。 在以下經編號條項中揭示本發明之另外實施例: 1. 一種判定橫跨已施加有一或多個圖案的一基板之構形變化之方法,該方法包含: 獲得表示橫跨已藉由一微影製程而施加有一或多個圖案的該基板之一構形變化之經測量構形資料;及 組合該經測量構形資料與關於晶粒內拓樸之知識以獲得經導出構形資料,該經導出構形資料具有大於該經測量構形資料之解析度的一解析度。 2. 如條項1之方法,其中該關於晶粒內拓樸之知識包含該一或多個圖案之位置資訊。 3. 如條項2之方法,其中該組合包含解迴旋該經測量構形資料與該位置資訊。 4. 如條項3之方法,其中該解迴旋該經測量構形資料與位置資訊包含判定用於由該一或多個圖案中之一者佔據的每一區域之一均一高度值。 5. 如條項4之方法,其中該解迴旋該經測量構形資料與位置資訊包含使用由該一或多個圖案之該位置資訊界定之圖案過渡區來描繪具有均一高度之每一區域。 6. 如條項4或條項5之方法,其中該解迴旋該經測量構形資料與位置資訊包含解迴旋一位階感測器回應函數與該一或多個圖案之該位置資訊。 7. 如條項6之方法,其中該經測量構形資料包含空間地重疊之個別位階感測器回應函數;且 該解迴旋該經測量構形資料與位置資訊包含根據對應於經測量之該基板之一區域的該等重疊位階感測器回應函數而同時地求出該等均一高度值。 8. 如條項3至7中任一項之方法,其中在一個維度中執行該解迴旋該經測量構形資料與位置資訊。 9. 如條項3至7中任一項之方法,其中在兩個維度中執行該解迴旋該經測量構形資料與位置資訊。 10. 如條項2至9中任一項之方法,其中自在對該基板之一拋光步驟之後而執行的該基板之測量獲得該經測量構形資料。 11. 如條項2至10中任一項之方法,其中該一或多個圖案各自根據一圖案密度而區分。 12. 如條項2至11中任一項之方法,其中自用以將一圖案施加至一倍縮光罩之一倍縮光罩資料檔案獲得該一或多個圖案之該位置資訊。 13. 如條項1至12中任一項之方法,其中該關於晶粒內拓樸之知識包含參考參考構形資料的高解析度構形測量資料,其中該參考構形資料具有與該經測量構形資料共同的一參考座標系。 14. 如條項13之方法,其中在一校準步驟中獲得該高解析度構形測量資料,該校準步驟包含同時地執行一高解析度構形測量及一參考構形測量以獲得參考該參考構形資料的該高解析度構形測量資料。 15. 如條項14之方法,其中使用一電子束度量衡器件來執行該高解析度構形測量。 16. 如條項14或條項15之方法,其中使用一光學位階感測器來執行該參考構形測量。 17. 如條項14或條項15之方法,其中使用一氣壓差動位階感測器來執行該參考構形測量。 18. 如條項13至17中任一項之方法,其包含基於該經測量構形資料與該高解析度構形資料之組合而判定產品特徵之間的一加權以用於一焦點控制製程校正。 19. 如條項1至18中任一項之方法,其包含運用一光學位階感測器測量該基板以獲得該經測量構形資料。 20. 如條項19之方法,其中該光學位階感測器在一單一捕捉中在複數個測量光點處測量該基板,且該方法包含在小於鄰近測量光點之間的分離度的一分離度下執行重疊測量。 21. 如條項19或條項20之方法,其中該光學位階感測器為使用紫外線輻射以測量該基板的一紫外線光學位階感測器。 22. 如條項1至18中任一項之方法,其包含運用一氣壓差動位階感測器測量該基板以獲得該經測量構形資料。 23. 一種位階感測器設備,其包含: 一第一測量系統,其可操作以測量橫跨已施加有一或多個圖案的一基板之構形變化以獲得經測量構形資料;及 一處理器系統,其經組態以組合該經測量構形資料與關於晶粒內拓樸之知識以獲得經導出構形資料,該經導出構形資料具有大於該第一測量系統之解析度的一解析度。 24. 如條項23之位階感測設備,其中該關於晶粒內拓樸之知識包含該一或多個圖案之位置資訊。 25. 如條項24之位階感測設備,其中該處理器系統經組態以解迴旋該經測量構形資料與該位置資訊。 26. 如條項25之位階感測設備,其中該處理器系統經組態以判定用於由該一或多個圖案中之一者佔據的每一區域之一均一高度值。 27. 如條項24至26中任一項之位階感測設備,其中該處理器系統經組態以使用由該一或多個圖案之該位置資訊界定之圖案過渡區來描繪具有均一高度之每一區域。 28. 如條項24至27中任一項之位階感測設備,其中該處理器系統經組態以解迴旋一位階感測器回應函數與該一或多個圖案之該位置資訊。 29. 如條項28之位階感測設備,其中該經測量構形資料包含空間地重疊之個別位階感測器回應函數;且 該處理器系統經組態以根據對應於經測量之該基板之一區域的該等重疊位階感測器回應函數而同時地求出該等均一高度值。 30. 如條項24至29中任一項之位階感測設備,其中該處理器系統經組態以根據一圖案密度而區分該一或多個圖案。 31. 如條項24至30中任一項之位階感測設備,其經組態以自用以將一圖案施加至一倍縮光罩之一倍縮光罩資料檔案獲得該一或多個圖案之該位置資訊。 32. 如條項23至31中任一項之位階感測設備,其中該關於晶粒內拓樸之知識包含參考參考構形資料的先前經執行之高解析度構形測量資料,該參考構形資料具有與該第一測量系統共同的一參考座標系。 33. 如條項32之位階感測設備,其包含一第二測量系統,其中該第二測量系統與該第一測量系統可同時地操作以分別執行一高解析度構形測量及一參考拓樸測量,以獲得參考該參考構形資料的該高解析度構形測量資料。 34. 如條項33之位階感測設備,其中該第二測量系統包含一電子束度量衡器件。 35. 如條項32至34中任一項之位階感測設備,其中該處理器系統經組態以基於該經測量構形資料與該高解析度構形資料之組合而判定產品特徵之間的一加權以用於一焦點控制製程校正。 36. 如條項23至35中任一項之位階感測設備,其中該第一測量系統為一光學位階感測器系統。 37. 如條項36之位階感測設備,其中該光學位階感測器系統經組態以在一單一捕捉中在複數個測量光點處測量該基板,且在小於鄰近測量光點之間的分離度的一分離度下執行重疊測量。 38. 如條項36或條項37之位階感測設備,其包含一輻射源,該輻射源可操作以提供紫外線輻射以測量該基板。 39. 如條項23至35中任一項之位階感測設備,其中該第一測量系統為一氣壓差動第一測量系統。 40. 一種微影設備,其包含一如條項23至39中任一項之位階感測器設備。 41. 如條項40之微影設備,其進一步包含: 投影光學件,其經組態以將一圖案轉印至一基板;及 一基板台,其經組態以將一基板固持於相對於該投影光學件而測量之一位置/及或定向中。 42. 一種方法,其包含: 獲得橫跨已藉由一微影製程而施加有一或多個圖案的一基板之一物理參數之變化的第一測量資料; 獲得第二測量資料,其中該第二測量資料包含相比於該第一測量資料具有較高解析度的晶粒內測量資料,且其中該第二測量資料係參考參考測量資料,該參考測量資料具有與該第一測量資料共同的一參考座標系;及 組合該第一測量資料與該第二測量資料以獲得經導出測量資料,該經導出測量資料具有大於該第一測量資料之解析度的一解析度。 43. 如條項42之方法,其中使用一第一度量衡工具來測量該第一測量資料且使用一第二度量衡工具來測量該第二測量資料。 44. 如條項43之方法,其中該第二度量衡工具為一電子束度量衡工具。 45. 如條項43或條項44之方法,其包含執行一校準,該校準包含分別使用該第二度量衡工具及一參考度量衡工具同時地測量一基板之一部分,該參考度量衡工具係與該第一度量衡工具相同及/或具有與該第一度量衡工具共同的一參考座標系。 46. 如條項45之方法,其中該物理參數為構形且該第一度量衡工具包含一位階感測器設備。 47. 如條項46之方法,其中該位階感測器設備為一光學位階感測器設備,且該共同參考座標系將為該光學位階感測器設備所參考的一氣壓差動位階感測器設備之參考座標系。 48. 如條項47之方法,其中該參考度量衡工具包含該氣壓差動位階感測器設備。 49. 如條項45之方法,其中該物理參數為一圖案移位誤差,且該第一度量衡工具包含一對準感測器設備,且該共同參考座標系將為該對準感測器設備所參考的一疊對度量衡設備之參考座標系。 50. 如條項49之方法,其中該參考度量衡工具包含該對準感測器設備或一疊對度量衡設備。 51. 如條項45之方法,其中該物理參數為臨界尺寸或關於一結構之大小之其他參數,且該第一度量衡工具包含一第一CD度量衡設備,且該共同參考座標系將為該第一CD度量衡設備所參考的一第二CD度量衡設備之參考座標系。 52. 如條項51之方法,其中該第一CD度量衡設備包含一以散射計為基礎之度量衡設備,且該第二CD度量衡設備包含一掃描電子顯微鏡。 53. 如條項52之方法,其中該參考度量衡工具包含該以散射計為基礎之度量衡設備。 54. 一種包含機器可讀指令之電腦程式產品,該等機器可讀指令用於致使一通用資料處理設備執行一如條項1至22或條項42至53中任一項之方法。 儘管在本文中可特定地參考微影設備在IC製造中之使用,但應理解,本文中所描述之微影設備可具有其他應用,諸如製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等等。 一實施例可包括電腦程式,該電腦程式含有用以引起本文中之方法之一或多個步驟之效能的機器可讀指令之一或多個序列。該電腦程式可執行於(例如)圖2之設備中之單元SCS及/或圖2及圖3之控制單元LACU內。亦可提供其中經儲存有此電腦程式之資料儲存媒體(例如,半導體記憶體,磁碟或光碟)。在例如屬於圖2及/或圖3中所展示的類型之現有設備已經在生產中及/或在使用中的情況下,一實施例可藉由提供用於致使處理器系統執行本文中之方法之全部或部分的經更新電腦程式產品來實施。程式可視情況經配置以控制關於圖2及/或圖3而呈現的設備及/或製程之一或多個部分。 儘管上文可特定地參考在光學微影之內容背景中對實施例之使用,但應瞭解,實施例可用於其他應用(例如,壓印微影)中,且在內容背景允許時不限於光學微影。在壓印微影中,圖案化器件中之構形界定產生於基板上之圖案。可將圖案化器件之構形壓入至被供應至基板之抗蝕劑層中,在基板上,抗蝕劑係藉由施加電磁輻射、熱、壓力或其組合而固化。在抗蝕劑固化之後,將圖案化器件移出抗蝕劑,從而在其中留下圖案。 本文中所使用之術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外線(UV)輻射(例如,具有為或為約365奈米、248奈米、193奈米、157奈米或126奈米之波長)及極紫外線(EUV)輻射(例如,具有在5奈米至20奈米之範圍內之波長);以及粒子束(諸如,離子束或電子束)。 以上之描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之精神及範疇的情況下對所描述之本發明進行修改。另外,應瞭解,本文中之任一實施例中所展示或描述的結構特徵或方法步驟亦可用於其他實施例中。
200‧‧‧微影設備LA/微影工具
202‧‧‧測量站MEA
204‧‧‧曝光站EXP
206‧‧‧微影設備控制單元LACU
208‧‧‧塗佈設備
210‧‧‧烘烤設備
212‧‧‧顯影設備
220‧‧‧經圖案化基板
222‧‧‧處理設備
224‧‧‧處理設備
226‧‧‧處理設備
230‧‧‧基板
232‧‧‧基板
234‧‧‧叢集/成品/基板
238‧‧‧監督控制系統
240‧‧‧度量衡設備
242‧‧‧度量衡結果
310‧‧‧輻射光束
314‧‧‧曲線圖
316‧‧‧區
318‧‧‧圖案
320‧‧‧測量光點
400‧‧‧圖案
400'‧‧‧圖案之實際形狀
410‧‧‧基板表面
420‧‧‧剖面
430‧‧‧圖案
430'‧‧‧圖案之實際形狀
440‧‧‧經測量剖面
500‧‧‧經測量剖面/圖案
510‧‧‧實際圖案剖面
520‧‧‧過渡區域
530‧‧‧所估計剖面
700‧‧‧佈局資訊
710‧‧‧區域
720‧‧‧位階感測器測量
730‧‧‧區域
A‧‧‧區(圖5(a))/標繪圖(圖6)
AD‧‧‧調整器
AS‧‧‧對準感測器
B‧‧‧輻射光束(圖1)/區(圖5(a))/標繪圖(圖6)
BD‧‧‧光束遞送系統
C‧‧‧目標部分(圖1)/標繪圖(圖6)
CO‧‧‧聚光器
EXP‧‧‧曝光站
IF‧‧‧位置感測器
IL‧‧‧照明系統/照明器
IN‧‧‧積光器
LA‧‧‧微影設備
LACU‧‧‧微影設備控制單元
LS‧‧‧高度感測器/位階感測器
LSD‧‧‧偵測器光學件/偵測器側光學件
LSS‧‧‧源側光學件
L1‧‧‧位階感測器測量
L2‧‧‧位階感測器測量
L3‧‧‧位階感測器測量
M1‧‧‧圖案化器件對準標記
M2‧‧‧圖案化器件對準標記
MA‧‧‧圖案化器件
MEA‧‧‧測量站
MT‧‧‧支撐結構
P1‧‧‧基板對準標記
P2‧‧‧基板對準標記
PM‧‧‧第一定位器
PS‧‧‧投影系統
PW‧‧‧第二定位器
SO‧‧‧輻射源
W‧‧‧基板
WT‧‧‧基板支撐件
WTa‧‧‧基板台/基板支撐件
WTb‧‧‧基板台/基板支撐件
現在將參考隨附示意性圖式而僅作為實例來描述實施例,在該等圖式中: 圖1描繪根據一實施例之微影設備; 圖2示意性地展示圖1之微影設備連同形成用於器件(諸如半導體器件)之生產設施之其他設備的用途; 圖3(a)示意性地說明根據一實施例之位階感測器的操作; 圖3(b)示意性地說明圖3(a)之細節,其展示關於圖1之微影設備中之實例基板的各種構形變化; 圖4(a)、圖4(b)、圖4(c)及圖4(d)說明當使用低解析度位階感測器以用於高解析度表面構形測量時遇到的問題,其中圖4(a)及圖4(c)展示經測量之結構之實例實際剖面,且圖4(b)及圖4(d)展示分別如由位階感測器測量之圖4(a)及圖4(c)之剖面; 圖5(a)為用於估計基板上之區域之實際高度的估計演算法之概念說明,其展示如何在已知過渡區域內部重新分配該已知過渡區域外部之高度測量; 圖5(b)示意性地展示根據圖5(a)之演算法之所得所估計高度剖面; 圖6為用於估計基板上之區域之實際高度的估計演算法之另一概念說明,其展示(頂部)經假定之拓樸及(底部)在XY中移位之三個順次位階感測器測量; 圖7(a)示意性地說明已知佈局資訊; 圖7(b)示意性地說明自位階感測器測量及圖7(a)之已知佈局資訊之估計之高度剖面。

Claims (15)

  1. 一種判定橫跨已施加有一或多個圖案的一基板之構形變化之方法,該方法包含:獲得該一或多個圖案之位置資訊; 獲得表示橫跨已藉由一微影製程而施加有一或多個圖案的該基板之一構形變化之經測量構形資料;及 解迴旋該經測量構形資料與該位置資訊以獲得經導出構形資料,該經導出構形資料具有大於該經測量構形資料之解析度的一解析度。
  2. 如請求項1之方法,其中該解迴旋該經測量構形資料與位置資訊包含:判定用於由該一或多個圖案中之一者佔據的每一區域之一均一高度值。
  3. 如請求項2之方法,其中該解迴旋該經測量構形資料與位置資訊包含:使用由該一或多個圖案之該位置資訊界定之圖案過渡區描繪具有均一高度之每一區域。
  4. 如請求項3之方法,其中該解迴旋該經測量構形資料與位置資訊包含:解迴旋一位階感測器回應函數與該一或多個圖案之該位置資訊。
  5. 如請求項4之方法,其中該經測量構形資料包含空間地重疊之個別位階感測器回應函數;且 該解迴旋該經測量構形資料與位置資訊包含根據對應於經測量之該基板之一區域的該等重疊位階感測器回應函數而同時地求出該等均一高度值。
  6. 如請求項1之方法,其中該一或多個圖案各自根據一圖案密度而區分。
  7. 如請求項1之方法,其中自用以將一圖案施加至一倍縮光罩之一倍縮光罩資料檔案獲得該一或多個圖案之該位置資訊。
  8. 如請求項1之方法,其中該位置資訊包含參考參考構形資料的高解析度構形測量資料,其中該參考構形資料具有與該經測量構形資料共同的一參考座標系。
  9. 如請求項8之方法,其中在一校準步驟中獲得該高解析度構形測量資料,該校準步驟包含同時地執行一高解析度構形測量及一參考構形測量以獲得參考該參考構形資料的該高解析度構形測量資料。
  10. 如請求項9之方法,其中使用一電子束度量衡器件來執行該高解析度構形測量。
  11. 如請求項9之方法,其中使用一光學位階感測器來執行該參考構形測量。
  12. 如請求項9之方法,其中使用一氣壓差動位階感測器來執行該參考構形測量。
  13. 如請求項8之方法,其包含基於該經測量構形資料與該高解析度構形資料之組合而判定產品特徵之間的一加權以用於一焦點控制製程校正。
  14. 一種位階感測器設備,其包含: 一第一測量系統,其可操作以測量橫跨已施加有一或多個圖案的一基板之構形變化以獲得經測量構形資料;及 一處理器系統,其經組態以組合該經測量構形資料與關於晶粒內拓樸之知識以獲得經導出構形資料,該經導出構形資料具有大於該第一測量系統之解析度的一解析度,其中該關於晶粒內拓樸之知識包含該一或多個圖案之位置資訊,且該處理器系統經組態以解迴旋該經測量構形資料與該位置資訊。
  15. 如請求項14之位階感測設備,其包含一第二測量系統,其中該第二測量系統與該第一測量系統可同時地操作以分別執行一高解析度構形測量及一參考拓樸測量,以獲得參考參考構形資料的高解析度構形測量資料。
TW106123141A 2016-07-26 2017-07-11 位階感測器設備、測量橫跨基板之構形變化的方法、測量關於微影製程的物理參數之變化的方法及微影設備 TWI646409B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662367023P 2016-07-26 2016-07-26
US62/367,023 2016-07-26
US201662434254P 2016-12-14 2016-12-14
US62/434,254 2016-12-14

Publications (2)

Publication Number Publication Date
TW201812486A TW201812486A (zh) 2018-04-01
TWI646409B true TWI646409B (zh) 2019-01-01

Family

ID=59101481

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106123141A TWI646409B (zh) 2016-07-26 2017-07-11 位階感測器設備、測量橫跨基板之構形變化的方法、測量關於微影製程的物理參數之變化的方法及微影設備
TW107140119A TWI691813B (zh) 2016-07-26 2017-07-11 一種用於測量經導出資料之方法與電腦程式產品

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107140119A TWI691813B (zh) 2016-07-26 2017-07-11 一種用於測量經導出資料之方法與電腦程式產品

Country Status (4)

Country Link
US (1) US11029614B2 (zh)
KR (1) KR102222149B1 (zh)
TW (2) TWI646409B (zh)
WO (1) WO2018019496A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11126093B2 (en) 2016-05-25 2021-09-21 Asml Netherlands B.V. Focus and overlay improvement by modifying a patterning device
KR102280532B1 (ko) 2016-12-23 2021-07-22 에이에스엠엘 네델란즈 비.브이. 패턴 충실도 제어를 위한 방법 및 장치
NL2021848A (en) * 2018-04-09 2018-11-06 Stichting Vu Holographic metrology apparatus.
WO2021001119A1 (en) * 2019-07-04 2021-01-07 Asml Netherlands B.V. Non-correctable error in metrology
EP3786711A1 (en) * 2019-08-28 2021-03-03 ASML Netherlands B.V. Non-correctable error in metrology
WO2021004724A1 (en) 2019-07-11 2021-01-14 Asml Netherlands B.V. Apparatus and method for measuring substrate height

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200734829A (en) * 2005-12-20 2007-09-16 Asml Netherlands Bv Lithogrpahic apparatus and device manufacturing method using interferometric and maskless exposure units
WO2009060294A2 (en) * 2007-11-08 2009-05-14 Asml Netherlands B.V. Lithographic apparatus and method
US20090262320A1 (en) * 2008-03-25 2009-10-22 Asml Netherlands B.V. Method and Lithographic Apparatus for Acquiring Height Data Relating to a Substrate Surface

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173245B2 (en) * 2001-01-04 2007-02-06 The Regents Of The University Of California Submicron thermal imaging method and enhanced resolution (super-resolved) AC-coupled imaging for thermal inspection of integrated circuits
JP4266082B2 (ja) 2001-04-26 2009-05-20 株式会社東芝 露光用マスクパターンの検査方法
US7355709B1 (en) * 2004-02-23 2008-04-08 Kla-Tencor Technologies Corp. Methods and systems for optical and non-optical measurements of a substrate
US7148496B2 (en) * 2004-04-13 2006-12-12 Massachusetts Institute Of Technology System and method for proximity effect correction in imaging systems
US6975407B1 (en) * 2004-05-19 2005-12-13 Taiwan Semiconductor Manufacturing Co, Ltd. Method of wafer height mapping
US7265364B2 (en) 2004-06-10 2007-09-04 Asml Netherlands B.V. Level sensor for lithographic apparatus
TWI654661B (zh) 2004-11-18 2019-03-21 日商尼康股份有限公司 位置測量方法、位置控制方法、測量方法、裝載方法、曝光方法及曝光裝置、及元件製造方法
CN101268494B (zh) 2005-09-21 2012-01-04 松下电器产业株式会社 视频制作装置以及视频制作方法
EP2228685B1 (en) 2009-03-13 2018-06-27 ASML Netherlands B.V. Level sensor arrangement for lithographic apparatus and device manufacturing method
US20110096309A1 (en) * 2009-10-28 2011-04-28 Imec Method and System for Wafer Inspection
US8334986B2 (en) * 2010-02-25 2012-12-18 Corning Incorporated Methods and apparatus for the measurement of film thickness
NL2009612A (en) 2011-11-21 2013-05-23 Asml Netherlands Bv Level sensor, a method for determining a height map of a substrate, and a lithographic apparatus.
KR101942388B1 (ko) * 2012-02-21 2019-01-25 에이에스엠엘 네델란즈 비.브이. 검사 장치 및 방법
KR20140081193A (ko) * 2012-12-21 2014-07-01 삼성전기주식회사 고밀도 및 저밀도 기판 영역을 구비한 하이브리드 기판 및 그 제조방법
US20140198185A1 (en) * 2013-01-17 2014-07-17 Cyberoptics Corporation Multi-camera sensor for three-dimensional imaging of a circuit board
US9442391B2 (en) 2013-03-12 2016-09-13 Taiwan Semiconductor Manufacturing Co., Ltd. Overlay sampling methodology
NL2013994A (en) * 2014-03-04 2015-11-02 Asml Netherlands Bv Lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product.
CN107111250B (zh) 2014-11-26 2019-10-11 Asml荷兰有限公司 度量方法、计算机产品和系统
US10241418B2 (en) 2014-12-01 2019-03-26 Asml Netherlands B.V. Method and apparatus for obtaining diagnostic information relating to a lithographic manufacturing process, lithographic processing system including diagnostic apparatus
WO2017045871A1 (en) 2015-09-15 2017-03-23 Asml Netherlands B.V. Methods for controlling lithographic apparatus, lithographic apparatus and device manufacturing method
NL2017422A (en) 2015-10-15 2017-04-24 Asml Netherlands Bv Topography Measurement System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200734829A (en) * 2005-12-20 2007-09-16 Asml Netherlands Bv Lithogrpahic apparatus and device manufacturing method using interferometric and maskless exposure units
WO2009060294A2 (en) * 2007-11-08 2009-05-14 Asml Netherlands B.V. Lithographic apparatus and method
US20090262320A1 (en) * 2008-03-25 2009-10-22 Asml Netherlands B.V. Method and Lithographic Apparatus for Acquiring Height Data Relating to a Substrate Surface

Also Published As

Publication number Publication date
KR20190033591A (ko) 2019-03-29
TW201812486A (zh) 2018-04-01
KR102222149B1 (ko) 2021-03-03
TW201907246A (zh) 2019-02-16
WO2018019496A1 (en) 2018-02-01
TWI691813B (zh) 2020-04-21
US11029614B2 (en) 2021-06-08
US20190243259A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
TWI646409B (zh) 位階感測器設備、測量橫跨基板之構形變化的方法、測量關於微影製程的物理參數之變化的方法及微影設備
CN107924140B (zh) 测量光刻工艺参数的方法和设备、衬底以及该方法中使用的图案化装置
US10133191B2 (en) Method for determining a process window for a lithographic process, associated apparatuses and a computer program
TWI470374B (zh) 判定對焦校正之方法、微影處理製造單元及元件製造方法
US10725372B2 (en) Method and apparatus for reticle optimization
KR102219780B1 (ko) 데이터 처리 장치를 갖는 리소그래피 장치
TWI564678B (zh) 估計圖案化器件之變形及/或其位置之改變
TW201719846A (zh) 微影設備及器件製造方法
TW201719299A (zh) 微影設備及器件製造方法
TW201712439A (zh) 用於控制微影裝置之方法、微影裝置及器件製造方法
TWI625610B (zh) 控制微影設備之方法、微影設備及器件製造方法
IL267019B2 (en) A method for measuring a target, a metrological device, the assembly of a polarization device
TWI622860B (zh) 用於控制微影裝置之方法、微影裝置及元件製造方法
TW202013060A (zh) 度量衡設備
US20200159128A1 (en) A device manufacturing method and a computer program product
US11927892B2 (en) Alignment method and associated alignment and lithographic apparatuses