TWI644378B - 晶圓缺陷發現 - Google Patents

晶圓缺陷發現 Download PDF

Info

Publication number
TWI644378B
TWI644378B TW104136373A TW104136373A TWI644378B TW I644378 B TWI644378 B TW I644378B TW 104136373 A TW104136373 A TW 104136373A TW 104136373 A TW104136373 A TW 104136373A TW I644378 B TWI644378 B TW I644378B
Authority
TW
Taiwan
Prior art keywords
defects
wafer
defect
features
parameters
Prior art date
Application number
TW104136373A
Other languages
English (en)
Other versions
TW201626478A (zh
Inventor
弘 陳
肯翁 吳
馬丁 普莉霍爾
維朵 潘迪塔
拉維庫瑪 珊娜帕拉
維沃克 巴葛特
拉赫 拉卡瓦特
歐克森 巴里司
拉傑許 拉瑪強卓恩
諾歐辛 哈克
Original Assignee
美商克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商克萊譚克公司 filed Critical 美商克萊譚克公司
Publication of TW201626478A publication Critical patent/TW201626478A/zh
Application granted granted Critical
Publication of TWI644378B publication Critical patent/TWI644378B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8883Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明提供一種用於發現一晶圓上之缺陷之系統及方法。一方法包含藉由在一晶圓之一第一掃描中將一臨限值應用於由一偵測器產生的輸出來偵測該晶圓上的缺陷,且判定經偵測之缺陷之特徵的值。該方法亦包含自動對該等特徵排名、識別特徵裁切行,以將該缺陷分組成筐,且對於該等筐之各者,如果一或多個參數被應用於該等筐之各者中之缺陷之特徵的值將導致該等筐之各者中之一預定數量的缺陷,則判定該或該等參數。該方法亦包含在該晶圓之一第二掃描中將該一或多個經判定之參數應用於由該偵測器產生的輸出以產生一缺陷族群,其具有一預定缺陷計數,且以該等特徵的值多樣化。

Description

晶圓缺陷發現
本發明係大體上關於用於發現一晶圓上之缺陷之系統及方法,其對於設置一晶圓檢驗程序係尤其有用。
以下描述及實例不憑藉其包含在此節中而認為係先前技術。
在一半導體製造程序期間,在各種步驟中使用檢驗程序以偵測晶圓上之缺陷以促進該製造程序中之更高良率且因此促進更高利潤。檢驗總是製造半導體裝置(諸如IC)之一重要部分。然而,當半導體裝置之尺寸減少時,因為更小的缺陷可引起該等裝置發生故障,所以對於成功製造可接受的半導體裝置,檢驗甚至變得更重要。
許多不同類型之檢驗系統具有可調整的輸出獲取(例如,資料、信號及/或影像獲取)及靈敏度(或缺陷偵測)參數使得不同參數可用以偵測不同缺陷或避免不需要的(公害)事件之源。儘管一具有可調整的輸出獲取及靈敏度參數之檢驗系統提供顯著的優點至一半導體裝置製造商,但如果不正確的輸出獲取及靈敏度參數用於一檢驗程序,則此等檢驗系統係本質上無用。此外,由於晶圓上之缺陷、程序條件及雜訊可急劇地變化(且由於該等晶圓自身之特性可急劇地變化),因此可難以(如果不是不可能)預測用於偵測一特定晶圓上之缺陷之最佳輸出獲取及靈敏度參數。因此,儘管使用正確的輸出獲取及靈敏度參數將對檢驗之結果產生一急劇影響,但可想到的是當前許多檢驗程序使用 不正確的或非最佳化的輸出獲取及靈敏度參數執行。
一用於一半導體層之最佳檢驗方案應該偵測儘可能多的所關注缺陷(DOI),同時維持一實質上低之公害率。最佳化一檢驗方案大體上涉及調諧在該方案中使用之參數直至實現最佳結果。欲調諧之參數之設定因此取決於所使用之偵測演算法。
一種用於方案最佳化之最佳已知方法係運行一實質上「熱」檢驗,由此增加偵測DOI之可能性但以實質上高公害率為代價。接著,使用者將此熱批及該晶圓帶至一用於檢查之掃描電子顯微鏡(SEM)。使用者使用該SEM檢查該等缺陷且將該等缺陷分類為真實、公害或DOI。一旦分類了足夠的每個類型之缺陷,使用者即嘗試設定正確的缺陷偵測參數值以建立一將偵測足夠的DOI且偵測儘可能少的公害缺陷的方案。分類之缺陷愈多,該方案可愈佳。接著,使用者可使用新的方案重新檢驗該晶圓且使用該SEM檢查使用該新方案在該晶圓上偵測之缺陷。依此方式,可依一迭代方式執行重新檢驗及缺陷檢查直至使用者判定可基於缺陷檢查結果藉由該方案實現令人滿意的缺陷偵測。
關於此等方法之一問題係其耗費大量時間SEM檢查一單一缺陷。此外,該檢驗系統與該SEM之間的多個跳脫之需要添加大量時間至方案設置。使用者理想上想要檢查仍將產生一精確方案且能夠在至該SEM之一個跳脫中完成此之可能的最小數量之缺陷。
相應地,發展不具有上文所描述之該等缺點之一或多者之用於發現一晶圓上之缺陷之系統及方法將係有利的。
不依任何方式將各種實施例之以下描述視為限制隨附技術方案之標的。
一實施例係關於一經組態以發現一晶圓上之缺陷之系統。該系 統包含一檢驗子系統,其包括至少一能源及一偵測器。該能源經組態以產生引導至一晶圓且在一晶圓上掃描之能量。該偵測器經組態以自該晶圓偵測能量且回應於經偵測之能量產生輸出。該系統亦包含一電腦子系統,其經組態用於藉由在該晶圓之一第一掃描中將一臨限值應用於藉由該偵測器產生之輸出而偵測該晶圓上之缺陷。該電腦子系統亦經組態用於判定經偵測之缺陷之特徵之值。此外,該電腦子系統經組態用於基於該等特徵之值,自動對該等特徵排名且識別特徵裁切行以將該等缺陷分組成筐。該電腦子系統進一步組態用於對於該等筐之各者,判定一或多個參數,如果應用於該等筐之各者中之該等缺陷之該等特徵之值,則該等參數將導致該等筐之各者中之一預定數量之缺陷。該電腦子系統亦經組態用於在該晶圓之一第二掃描中將該一或多個經判定之參數應用於藉由該偵測器產生之輸出以產生一缺陷族群。該缺陷族群具有一預定缺陷計數且以該等特徵之值多樣化。該系統可如本文所描述而進一步組態。
另一實施例係關於一種用於發現一晶圓上之缺陷之電腦實施方法。該方法包含藉由上文所描述之電腦子系統執行之偵測、判定值、自動排名、識別、判定一或多個參數及應用。該方法之步驟之各者可如本文所描述而進一步執行。此外,該方法可包含在本文所描述之任何其他方法之任何其他步驟。此外,該方法可藉由本文所描述之該等系統之任一者執行。
另一實施例關於一種非暫態電腦可讀媒體,其儲存可在一電腦系統上執行之用於執行一用於發現一晶圓上之缺陷之電腦實施方法之程式指令。該電腦實施方法包含上文所描述之方法之步驟。該電腦可讀媒體可如本文所描述而進一步組態。該電腦實施方法之步驟可如本文所進一步描述而執行。此外,該電腦實施方法(可針對該方法執行該等程式指令)可包含在本文所描述之任何其他方法之任何其他步 驟。
10‧‧‧檢驗子系統
14‧‧‧晶圓
16‧‧‧光源
18‧‧‧光學元件
20‧‧‧透鏡
22‧‧‧台
24‧‧‧收集器
26‧‧‧元件
28‧‧‧偵測器
30‧‧‧收集器
32‧‧‧元件
34‧‧‧偵測器
36‧‧‧電腦子系統
122‧‧‧電子柱
124‧‧‧電腦子系統
126‧‧‧電子束源
128‧‧‧晶圓
130‧‧‧元件
132‧‧‧元件
134‧‧‧偵測器
200‧‧‧筐
202‧‧‧筐
204‧‧‧筐
206‧‧‧筐
208‧‧‧筐
300‧‧‧步驟
302‧‧‧檢驗結果
302a‧‧‧檢驗結果
302b‧‧‧檢驗結果
304‧‧‧步驟
306‧‧‧檢驗結果
308‧‧‧檢驗結果
310‧‧‧檢驗結果
312a‧‧‧缺陷
312b‧‧‧缺陷
314a‧‧‧缺陷
314b‧‧‧缺陷
316a‧‧‧缺陷
316b‧‧‧缺陷
318a‧‧‧缺陷
318b‧‧‧缺陷
318c‧‧‧缺陷
320‧‧‧步驟
322‧‧‧步驟
324‧‧‧步驟
400‧‧‧步驟
402‧‧‧檢驗結果
402a‧‧‧檢驗結果
402b‧‧‧檢驗結果
402c‧‧‧檢驗結果
404‧‧‧步驟
406‧‧‧主列表
408‧‧‧步驟
410‧‧‧表
412‧‧‧步驟
500‧‧‧步驟
502‧‧‧步驟
504‧‧‧步驟
506‧‧‧步驟
508‧‧‧步驟
510‧‧‧步驟
512‧‧‧步驟
514‧‧‧步驟
600‧‧‧非暫態電腦可讀媒體
602‧‧‧程式指令
604‧‧‧電腦系統
F1‧‧‧行/缺陷特徵之值
F2‧‧‧行/缺陷特徵之值
F3‧‧‧行/缺陷特徵之值
熟習技術者將藉由較佳實施例之以下詳細描述之優點且在參考附圖後明白本發明之進一步優點,其中:圖1至圖1a係繪示一經組態以發現一晶圓上之缺陷之系統之實施例之側視圖之示意圖;圖2係繪示自動排名經偵測之缺陷之特徵之結果之一實施例之一示意圖;圖3係繪示用於發現一晶圓上之缺陷之一當前使用之方法之一流程圖;圖4至圖5係繪示可藉由本文所描述之用於使用一檢驗系統之多個光學模式發現一晶圓上之缺陷之一電腦子系統執行之各種步驟之實施例之流程圖;且圖6係繪示儲存用於引起一電腦系統執行本文所描述之一電腦實施之方法之程式指令之一非暫態電腦可讀媒體之一實施例之一方塊圖。
儘管本發明易受各種修改及替代形式影響,但其特定實施例以實例方式在圖式中展示且在本文中詳細描述。圖式可不按比例繪製。然而,應瞭解圖式及其詳細描述不意欲將本發明限於所揭示之特定形式,但相反,本發明覆蓋落入如藉由隨附申請專利範圍所界定之本發明之精神及範疇內之所有修改、等效物及替代方式。
現在轉至圖式,應注意圖不按比例繪製。特定言之,圖之一些元件之比例非常誇大以強調元件之特性。亦應注意圖未按相同比例繪製。可相似地組態之一個以上圖中展示之元件已使用相同元件符號指示。除非本文中另有規定,否則所描述及展示之元件之任一者可包含 任何適合的可購得之元件。
本文所描述之該等實施例經組態以執行一步調諧掃描(OSTS)用於晶圓缺陷發現。一實施例係關於一經組態以發現一晶圓上之缺陷之系統,且一種此系統在圖1中展示。該系統包含一檢驗子系統(其包括至少一能源及一偵測器)。該能源經組態以產生引導至一晶圓且在一晶圓上掃描之能量。該偵測器經組態以自該晶圓偵測能量且回應於經偵測之能量產生輸出。
在一實施例中,該能源包含一光源,引導至該晶圓且在該晶圓上掃描之能量包含光,且經偵測之能量包含經偵測之光。例如,在圖1中展示之系統之實施例中,檢驗子系統10包含一經組態以將光引導至晶圓14之照明子系統。該照明子系統包含至少一光源。例如,如圖1中所示,該照明子系統包含光源16。在一實施例中,該照明子系統經組態以一或多個入射角度(其可包含一或多個斜角及/或一或多個法線角)將光引導至該晶圓。例如,如圖1中所示,來自光源16之光以一入射斜角通過光學元件18且接著通過透鏡20引導至晶圓14。該入射斜角可包含任何適合入射斜角,其可取決於(例如)該晶圓及欲在該晶圓上偵測之缺陷之特性而變化。
該照明子系統可經組態以在不同時間以不同入射角度將光引導至該晶圓。例如,該檢驗子系統可經組態以修改該照明子系統之一或多個元件之一或多個特性使得光可以一不同於圖1中所示之入射角度之入射角度引導至該晶圓。在一種此類實例中,該檢驗子系統可經組態以移動光源16、光學元件18及透鏡20使得光以一不同入射斜角或一入射法線(或接近法線)角引導至該晶圓。
在一些示例中,該照明子系統可經組態以同時以一個以上入射角將光引導至該晶圓。例如,該照明子系統可包含一個以上照明通道,該等通道之一者可包含如圖1中所示之光源16、光學元件18及透 鏡20且該等照明通道之另一者(未展示)可包含類似元件,其可經不同或相同組態,或可包含至少一光源且可包含一或多個組件(諸如本文所進一步描述之該等組件)。如果此光與另一光同時引導至該晶圓,則以不同入射角度引導至該晶圓之光之一或多個特性(例如,波長、偏光等等)可係不同的使得以該等不同入射角自該晶圓之照明產生之光可在(若干)偵測器處彼此區別。
在另一示例中,該照明子系統可僅包含一光源(例如,圖1中所示之源16)且來自該光源之光可藉由該照明子系統之一或多個光學元件(未展示)分離成不同光學路徑(例如,基於波長、偏光等等)。接著,該等不同光學路徑之各者中之光可引導至該晶圓。多個照明通道可經組態以同時或在不同時間(例如,當不同照明通道用以依序照明該晶圓時)將光引導至該晶圓。在另一示例中,相同照明通道可經組態以在不同時間使用不同特性將光引導至該晶圓。例如,在一些示例中,光學元件18可組態為一光譜過濾器且該光譜過濾器之性質可以多種不同方式(例如,藉由改變該光譜過濾器)改變使得光之不同波長可在不同時間引導至該晶圓。該照明子系統可具有技術中已知之用於依序或同時將具有不同或相同特性之光以不同或相同入射角引導至該晶圓之任何其他適合組態。
在一實施例中,光源16可包含一寬頻帶電漿(BBP)光源。依此方式,藉由該光源產生且引導至該晶圓之光可包含寬頻帶光。然而,該光源可包含任何其他適合光源(諸如一雷射)。該雷射可包含技術中已知之任何適合雷射且可經組態以任何適合波長或技術中已知之波長產生光。此外,該雷射可經組態以產生單色或幾乎單色之光。依此方式,該雷射可係一窄頻帶雷射。該光源亦可包含一以波帶之多個離散波長產生光之多色光源。
來自光學元件18之光可藉由透鏡20聚焦至晶圓14上。儘管透鏡 20在圖1中展示為一單一折射光學元件,但應瞭解實際上透鏡20可包含若干進行組合將光自該光學元件聚焦至該晶圓之折射及/或反射光學元件。圖1中展示及本文所描述之該照明子系統可包含任何其他適合光學元件(未展示)。此等光學元件之實例包含但不限於(若干)偏光組件、(若干)光譜過濾器、(若干)空間過濾器、(若干)反射光學元件、(若干)變跡器、(若干)分束器、(若干)孔隙及其類似者,其可包含技術中已知之任何此等適合光學元件。此外,該檢驗子系統可經組態以基於欲用於檢驗之照明之類型修改該照明子系統之元件之一或多者。
該檢驗子系統亦可包含一經組態以引起光在該晶圓上掃描之掃描子系統。例如,該檢驗子系統可包含台22,在檢驗期間於其上安置晶圓14。該掃描子系統可包含可經組態以移動該晶圓使得光可在該晶圓上掃描之任何適合機械及/或機器人總成(其包含台22)。此外或替代地,該檢驗子系統可經組態使得該檢驗子系統之一或多個光學元件在該晶圓上執行光之某種掃描。可以任何適合方式(諸如在一蛇形狀路徑或在一螺旋路徑中)在該晶圓上掃描光。
該檢驗子系統進一步包含一或多個偵測通道。該一或多個偵測通道之至少一者包含一偵測器,其經組態以歸因於藉由該檢驗子系統照明該晶圓自該晶圓偵測光且回應於經偵測之光產生輸出。例如,圖1中展示之該檢驗子系統包含兩個偵測通道,一個偵測通道藉由收集器24、元件26及偵測器28形成且另一個偵測通道藉由收集器30、元件32及偵測器34形成。如圖1中所示,該等兩個偵測通道經組態以不同收集角度收集且偵測光。在一些示例中,兩個偵測通道均經組態以偵測散射光,且該等偵測通道經組態以偵測自該晶圓以不同角度散射之光。然而,該等偵測通道之一或多者可經組態以自該晶圓偵測另一類型之光(例如,反射光)。
如圖1中進一步所示,兩個偵測通道均展示成定位於紙之平面中且該照明子系統亦展示成定位於紙之平面中。因此,在此實施例中,兩個偵測通道均定位於(例如,居中於)入射之平面。然而,該等偵測通道之一或多者可定位於入射之平面外。例如,藉由收集器30、元件32及偵測器34形成之偵測通道可經組態以收集且偵測散射在入射之平面外之光。因此,此一偵測通道通常可稱為一「側」通道,且此一側通道可居中於一實質上垂直於入射平面之平面中。
儘管圖1展示包含兩個偵測通道之該檢驗子系統之一實施例,但該檢驗子系統可包含一不同數量之偵測通道(例如,僅一偵測通道或兩個或兩個以上偵測通道)。在一此示例中,藉由收集器30、元件32及偵測器34形成之偵測通道可形成如上文所描述之一側通道,且該檢驗子系統可包含一形成為定位於入射之平面之相對側上之另一側通道之額外偵測通道(未展示)。因此,該檢驗子系統可包含偵測通道,該偵測通道包含收集器24、元件26及偵測器28且居中於入射之平面中且經組態以處於或接近於晶圓表面之法線之(若干)散射角收集且偵測光。因此,此偵測通道通常可稱為一「頂部」通道,且該檢驗子系統亦可包含兩個或兩個以上如上文所描述而組態之側通道。如此一來,該檢驗子系統可包含至少三個通道(即,一頂部通道及兩個側通道),且該等至少三個通道之各者具有其自身的收集器,每個收集器經組態以不同於另兩個收集器之各者之散射角度收集光。
如上文所進一步描述,包含在該檢驗子系統中之該等偵測通道之各者可經組態以偵測散射光。因此,圖1中展示之該檢驗子系統可經組態用於晶圓之暗場(DF)檢驗。然而,該檢驗子系統亦可或替代地包含經組態用於晶圓之明場(BF)檢驗之(若干)偵測通道。換言之,該檢驗子系統可包含經組態以偵測自該晶圓鏡子般地反射之光的至少一偵測通道。因此,本文所描述之該等檢驗子系統可經組態僅用於 DF、僅用於BF或DF與BF兩者之檢驗。儘管該等收集器之各者在圖1中展示為單一折射光學元件,但應瞭解該等收集器之各者可包含一或多個折射光學元件及/或一或多個反射光學元件。
該一或多個偵測通道可包含技術中已知之任何適合偵測器。例如,該等偵測器可包含光電倍增管(PMT)、電荷耦合裝置(CCD)及延時積分(TDI)攝像機。該等偵測器亦可包含技術中已知之任何其他適合偵測器。該等偵測器亦可包含非成像偵測器或成像偵測器。依此方式,如果該等偵測器係非成像偵測器,則該等偵測器之各者可經組態以偵測散射光之特定特性(諸如強度),但可不經組態以偵測依據成像平面內之位置之此等特性。如此一來,由包含在該檢驗子系統之該等偵測通道之各者中之該等偵測器之各者產生的輸出可係信號或資料,但不係影像信號或影像資料。在此等示例中,一電腦子系統(諸如該系統之電腦子系統36)可經組態以自該等偵測器之非成像輸出產生該晶圓之影像。然而,在其他示例中,該等偵測器可組態為經組態以產生成像信號或影像資料之成像偵測器。因此,該系統可經組態以依若干方式產生影像。
應注意本文中提供圖1以大體上繪示一可包含於本文所描述之系統實施例中之檢驗子系統之一組態。明顯地,本文所描述之該檢驗子系統組態可經修改以如當設計一商用檢驗系統時所通常執行般來最佳化該檢驗子系統之性能。此外,本文所描述之該等系統可使用一現有檢驗子系統(例如,藉由添加本文所描述之功能性至一現有檢驗系統)(諸如可自加利福尼亞州(Calif)苗必達市(Milpitas)之KLA-Tencor購得之29xx/28xx系列工具)來實施。對於一些此等系統,本文所描述之方法可提供為該檢驗系統之選用功能性(例如,除該檢驗系統之其他功能性外)。或者,本文所描述之該檢驗子系統可係「從頭開始」設計以提供一全新檢驗系統。
該系統之電腦子系統36可依任何適合方式(例如,經由一或多個傳輸媒體,其可包含「有線」及/或「無線」傳輸媒體)耦合至該檢驗子系統之該等偵測器,使得在該晶圓之掃描期間,該電腦子系統可接收由該等偵測器產生之輸出。電腦子系統36可經組態以使用該等偵測器之輸出來執行若干功能。例如,該電腦子系統經組態以藉由在該晶圓之一第一掃描中將一臨限值應用於由該偵測器產生之輸出來偵測該晶圓上之缺陷。該臨限值可包含在任何適合缺陷偵測演算法及/或技術中已知之方法。任何具有高於該臨限值之值的輸出可被識別為一缺陷,而任何具有低於該臨限值之值的輸出可不被識別為一缺陷。
在一實施例中,該臨限值位於該輸出之一雜訊底處。基於一差異影像之一分布圖中之使用者指定的像素密度來界定該雜訊底。臨限值偏移指示一臨限值離該雜訊底多遠。例如,位於該雜訊底處之該臨限值意謂0之一臨限值偏移。在另一實施例中,該臨限值係自動地由該電腦子系統選擇。依此方式,該臨限值可係一自動選擇臨限值。該系統之該電腦子系統可係如本文所描述而進一步組態。
該系統之該電腦子系統(與本文所描述之其他電腦子系統)在本文中亦可稱為「(若干)電腦系統」。本文所描述之該等(若干)電腦子系統或(若干)系統之各者可採用各種形式,包含一個人電腦系統、影像電腦、主機電腦系統、工作站、網路器具、網際網路器具或其他裝置。一般而言,術語「電腦系統」可係概括地界定以涵蓋任何具有一或多個處理器之裝置,其執行來自一記憶體媒體之指令。該等(若干)電腦子系統或(若干)系統亦可包含技術中已知之任何適合處理器(諸如一平行處理器)。此外,該等(若干)電腦子系統或(若干)系統可包含一具有高速處理及軟體之電腦平台,作為一分立或一網路工具。
儘管該系統在上文中描述為一光學或基於光之檢驗系統,但該檢驗系統可係一基於電子束之系統,例如,在一實施例中,該能源包 含一電子束源,經引導至該晶圓且在該晶圓上掃描的能量包含電子,且經偵測的能量包含經偵測的電子。在圖1a中展示之一種此類實施例中,該系統包含一組態為經耦合至電腦子系統124之電子柱122的檢驗子系統。
亦如圖1a中所示,該電子柱包含經組態以產生藉由一或多個元件130聚焦於晶圓128之電子之電子束源126。該電子束源可包含(例如)一陰極源或射極尖端,且一或多個元件130可包含(例如)一電子槍透鏡、一陽極、一光束限制孔隙、一閘閥、一束流選擇孔隙、一物鏡及一掃描子系統,其等所有可包含技術中已知之任何此等適合元件。
自該晶圓返回之電子(例如,次級電子)可藉由一或多個元件132聚焦至偵測器134。一或多個元件132可包含(例如)一掃描子系統,其可係包含在(若干)元件130中之相同掃描子系統。
該電子柱可包含技術中已知之任何其他適合元件。此外,該電子柱可如Jiang等人於2014年4月4日頒予之美國專利第8,664,594號、Kojima等人於2014年4月8日頒予之美國專利第8,692,204號、Gubbens等人於2014年4月15日頒予之美國專利第8,698,093號及MacDonald等人於2014年5月6日頒予之美國專利第8,716,662號中所描述而進一步組態,其等如在本文中充分地闡述以引用方式併入。
儘管該電子柱在圖1a中展示為經組態使得該等電子以一入射斜角引導至該晶圓且以另一斜角自該晶圓散射,但應瞭解該電子束可以任何適合角度引導至該晶圓且自該晶圓散射。此外,如本文所進一步描述,該基於電子束之檢驗系統可經組態以使用多個模式產生該晶圓之影像(例如,具有不同照明角度、收集角度等等)。該基於電子束之檢驗子系統之多個模式可在該檢驗子系統之任何影像產生參數上不同。
電腦子系統124可耦合至偵測器134,如上文所描述。該偵測器可偵測自該晶圓之表面返回之電子,由此形成該晶圓之電子束影像。 該等電子束影像可包含任何適合電子束影像。電腦子系統124可經組態以如本文所進一步描述使用藉由偵測器134產生之輸出偵測該晶圓上之缺陷。電腦子系統124可經組態以執行本文所描述之任何額外(若干)步驟。一包含圖1a中展示之該檢驗子系統之系統可如本文所描述而進一步組態。
應注意本文中提供圖1a以大體上繪示一可包含在本文所描述之該等實施例中之一基於電子束之檢驗子系統之組態。如同上文所描述之該光學檢驗子系統,本文所描述之基於電子束之檢驗子系統組態可經修改以如當設計一商用檢驗系統時所通常執行般最佳化該檢驗子系統之性能。此外,本文所描述之該等系統可使用一現有檢驗子系統(例如,藉由添加本文所描述之功能性至一現有檢驗子系統)(諸如可自加利福尼亞州(Calif)苗必達市(Milpitas)之KLA-Tencor購得之eSxxx系列工具)實施。對於一些此等系統,本文所描述之方法可提供為該系統之選用功能性(例如,除該系統之其他功能性外)。或者,本文所描述之該系統可「從頭開始」設計以提供一全新系統。
該電腦子系統(例如,電腦子系統36或電腦子系統124)亦經組態用於判定經偵測之缺陷之特徵之值。例如,在上文所描述之該第一掃描期間,該電腦子系統可計算且收集每個經偵測之缺陷之各種特徵。特定言之,該電腦子系統可使用針對該晶圓上位置(在該等位置處偵測到該等缺陷)產生之輸出及/或關於輸出之資訊來判定經偵測之缺陷之特徵之值。該等特徵之值可或可不係定量值。例如,該等特徵之值可包含灰色位準或強度值。然而,該等特徵之值亦可包含定性值(諸如晶粒類型(其中偵測到該缺陷)、區域類型(其中偵測到該缺陷)、指示該缺陷是否比其背景更亮之極性及其類似者)。此等特徵之任一者之值可依任何適合方式判定。此外,該等缺陷之該等特徵可包含本文所描述或技術中已知之任何其他缺陷特徵。
基於該等特徵之值(例如,自該第一掃描收集之特徵資訊),該電腦子系統亦經組態用於自動對該等特徵(即,缺陷特徵)排名且識別特徵裁切行以將該等缺陷分組成筐(或子群組)。例如,各種缺陷特徵可經計算且接著自動排名。排名首位之特徵可用以將缺陷分組成不同子群組(筐)。依此方式,缺陷特徵節點之多個位準可用以將缺陷分組。每個節點可基於排名選擇不同特徵。依此方式,自動對該等特徵排名且識別特徵裁切行之結果可產生一缺陷分類模型、方法或演算法(諸如一缺陷分類決策樹)。
在選擇多樣化節點及針對每個節點之裁切行之一實例中,如果一使用者選擇晶粒類型、區域及極性,則此等可係頂端節點。在極性下,節點之使用者指定層(例如,1、2或3)可自已自該第一掃描保存之特徵選擇。每個節點及每個節點之裁切行可使用一途徑選擇,該途徑類似於在可自加利福尼亞州(Calif)苗必達市(Milpitas)之KLA-Tencor購得之IMPACT產品中之動力輔助節點及裁切行選擇中使用之途徑。可在該方案中指定節點之層及最大裁切行。
對於該等筐之各者,該電腦子系統亦經組態用於判定一或多個參數,如果應用於該等筐之各者中之該等缺陷之該等特徵之值,則該等參數將導致該等筐之各者中之一預定數量之缺陷。在一實施例中,該一或多個經判定之參數包含一或多個臨限值。例如,不同臨限值參數可應用於藉由一些上述缺陷特徵分離之每個子群組(筐)中以實現期望總缺陷計數。依此方式,對於每個子群組,一期望數量之缺陷可使用一或多個特定臨限值參數實現。
在一些實施例中,該一或多個經判定之參數包括用於公害過濾之一或多個參數。例如,本文所描述之該等實施例中使用之一公害過濾器可經組態使得使用者可調整特定層/裝置/等等之多樣化準則。此外,本文所描述之該等實施例可經組態用於針對公害過濾器設置自動 收集一使用者指定數量之缺陷而無需手動使用者方案設置。
圖2繪示如何產生一多樣化缺陷族群之一實施例。例如,在圖2之實施例中,筐200可用於一晶粒類型且僅在一假想實例中可含有125,000個缺陷。接著,筐200中之缺陷可基於該晶粒類型中之區域分離成筐202及一或多個其他筐(未展示)。在上文所描述之該假想實例中,筐202中之缺陷之數量可係100,000個缺陷。接著,筐202中之缺陷可基於極性分離成筐204及一或多個其他筐(未展示)。在上文所描述之該假想實例中,筐204中之缺陷之數量可係25,000個缺陷。接著,筐204中之缺陷可基於一缺陷偵測演算法之一參數(諸如用於藉由可自KLA-Tencor購得之一些檢驗工具之缺陷偵測之多晶粒自動定限(MDAT)演算法之中位數灰色位準)分離成筐206及一或多個其他筐(未展示)。在上文所描述之該假想實例中,筐206中之缺陷之數量可係12,500個缺陷。接著,筐206中之缺陷可基於該缺陷偵測演算法之另一參數(諸如臨限值偏移)分離成筐208及一或多個其他筐(未展示)。在最後層中使用之缺陷偵測參數可經選擇以實現缺陷之目標數量。
在另一實施例中,缺陷之預定數量藉由一使用者選擇。例如,本文所描述之該等實施例經組態用於針對一步驟方案調諧自動收集一使用者指定數量之缺陷而無需手動使用者方案設置。在一額外實施例中,缺陷之預定數量對於該等筐之至少兩個筐不同。在一些此等實施例中,一使用者可自初級及次級晶粒指定百分比缺陷、自區域指定百分比缺陷及甚至指定每個區域之百分比極性。如果一特定節點不具有足夠缺陷,則剩餘缺陷配額可再分佈相同位準至處之其他節點以產生使用者期望之總缺陷計數。例如,如果不存在來自一區域之足夠缺陷,則額外缺陷配額可再分佈至其他區域。
該電腦子系統進一步組態用於在該晶圓之一第二掃描中將該一或多個經判定之參數應用於藉由該偵測器產生之輸出以產生一缺陷族 群。因此,本文所描述之發現OSTS可包含兩個掃描。此外,如上文所描述,在該第一與第二OSTS掃描之間,該電腦子系統識別方案參數及公害過濾器以收集一目標數量之多樣化缺陷。該第二掃描可依任何適合方式執行。該缺陷族群可如本文所進一步描述藉由該第二掃描(例如,在該第二掃描期間將該一或多個經判定之參數應用於所產生之該檢驗子系統之一或多個偵測器之輸出)產生。
該缺陷族群具有一預定缺陷計數且以該等特徵之值多樣化。例如,本文所描述之該等實施例之目標可係產生許多具有一期望總缺陷計數及一多樣化缺陷族群之結果以幫助使用者快速發現所關注缺陷(DOI)。依此方式,在該第二掃描中,在該第一掃描之後識別之方案參數及公害過濾器應用於該第二掃描中以實現具有一多樣化缺陷族群之期望缺陷計數。多樣化藉由收集分佈在一多維空間中之使用不同缺陷特徵界定之缺陷實現。如此一來,本文所描述之該等實施例可經組態用於缺陷多樣化及熱掃描建立中之公害過濾器「訓練」。
在一實施例中,該電腦子系統經進一步組態用於自動且無需手動方案設置而執行偵測、判定值、自動排名、識別、判定該一或多個參數及應用。例如,本文所描述之該等實施例可用於自動偵測半導體晶圓上之多樣化缺陷而無需手動使用者方案設置。
如上文所描述,該等實施例可包含一初始掃描。然而,該等實施例可執行用於迭代調諧之該初始掃描之後續運行。該等迭代可包含首次運行一具有0臨限值偏移之掃描。在每次迭代之後,該電腦子系統可經組態用於發現實現具有期望多樣化之期望缺陷計數之公害過濾器且將偵測臨限值提升至一不會移除顯著數量之缺陷(其中附接該公害過濾器)之位準。如果提升經偵測之偏移,則其可應用於該方案且可執行一具有新臨限值之掃描。此程序可重複直至達到停止準則。依此方式,本文所描述之該等實施例可經組態用於偵測臨限值及公害過 濾器之同時迭代調諧。
已發展用於OSTS之一些方法及系統但具有若干缺點。例如,一些當前使用之OSTS方法收集具有一主動缺陷偵測臨限值之缺陷且自動調整子群組中之臨限值以實現一期望缺陷計數。該等當前使用之方法亦與更少的多樣化維度協作且無法基於不同缺陷特徵收集一多樣化缺陷族群。此外,該等當前使用之方法藉由與一固定多樣化方案協作而變得不靈活。該等當前使用之方法係進一步在公害抑制上弱,僅針對一特定偵測演算法起作用,且很大程度上取決於晶圓缺陷性且不取決於缺陷背景。
本文所描述之該等實施例具有優於此等當前使用之方法之若干優點。例如,當前BBP工具上普遍使用公害過濾器實現生產檢驗中之期望靈敏度及公害率。此等公害過濾器採用非常相同的多樣化策略,接著是調諧。為調諧此等檢驗方案,需要良好的訓練批結果及有效的取樣方案以針對公害過濾器之所有葉節點產生良好的訓練資料。本文所描述之該等實施例將可在欲調諧之公害過濾器之所有節點中產生快速且可靠的具有足夠缺陷計數之良好的訓練批結果。該等實施例亦閉合將致能一考慮貫穿調諧程序之必要缺陷多樣化之統一方案調諧途徑之迴路,即,(a)資料收集(熱掃描),(b)取樣(用於掃描電子顯微鏡(SEM)檢查以獲得實況)及(c)基於經分類之缺陷之公害過濾器調諧。本文所描述之該等實施例亦改良結果之時間。例如,在舊途徑中,使用者必須投入許多時間運行及調諧一掃描(有時一次以上)以實現期望結果。反之,本文所描述之該等實施例顯著地減少該時間。此外,該等當前使用之方法需要設定用以尤其針對邏輯區域運行一良好掃描之應用工程師技能之一特定位準。反之,本文所描述之該等實施例將更有效且自應用工程師方面移除許多手動工作。
本文所描述之額外實施例經組態用於多模式適應性缺陷發現。 例如,在一實施例中,該檢驗子系統經組態以使用不同光學模式來掃描該晶圓。在一此實例中,使用一BBP光學檢驗器之缺陷發現採用具有光學模式之一不同設定的多個晶圓掃描,以最大化偵測一晶圓上之所有缺陷類型的機率。一「模式」可大體上被界定為可共同地使用以針對一晶圓產生輸出的一組參數。因此,不同模式將具有至少一不同參數(諸如不同照明條件、不同收集/偵測條件等等)。依此方式,每個模式可視為該晶圓之一不同「視角」。一些模式可在一晶圓之相同掃描中使用。然而,一些模式僅可在一晶圓之不同掃描中使用。因此,本文所描述之使用不同模式之該晶圓的掃描可包含一或多個掃描。用於發現之模式的數量已穩定地增加,且當前最佳已知模式(BKM)係27個模式。本文所描述之該等實施例提供一用於依很可能產生更佳及更快發現結果之一更有效的方式來處理此豐富資訊的新方法。
一些用於發現一晶圓上之缺陷類型之當前使用的方法包含識別該BBP工具上之基本上覆蓋光學條件之整個光譜的一組不同光學模式。(當前BKM係使用27個模式。)此外,該等當前使用之方法包含:在使用每個模式掃描該晶圓,且在針對所有模式產生一熱檢驗之後,執行共性分析以發現在哪些模式中發現哪些缺陷。可計算針對每個獨特缺陷的捕獲率。(捕獲率等於偵測缺陷之模式的分數。)移除經偵測之缺陷的重複示例,且保持來自該第一模式(其中偵測到該缺陷)的缺陷。接著,使用發現(多樣性)取樣來獨立地處理使用每個模式產生之結果,以發現每個模式中之一組不同缺陷。此步驟亦包含識別已在先前模式中取樣之當前處理之模式中之缺陷且接著亦相對於該等缺陷多樣化的能力。
圖3示意地展示此方法。例如,如步驟300中所示,該方法可包含使用不同光學模式來掃描一晶圓多次。因此,每個模式可產生不同檢驗結果302,每個模式一個結果。如步驟304中所示,該方法可包含 發現掃描(模式)之間的共同缺陷,且計算針對每個獨特缺陷的捕獲率。例如,對於圖3中展示之使用不同模式所產生的檢驗結果306、308及310,該等結果之兩個或兩個以上結果可共同具有若干缺陷。特定言之,檢驗結果306及310共同具有缺陷312a及312b、檢驗結果308及310共同具有缺陷314a及314b、檢驗結果306及308共同具有缺陷316a及316b,且檢驗結果306、308及310共同具有缺陷318a、318b及318c。
如在步驟320中所示,該方法可包含自後續掃描(模式)移除重複使得相同缺陷不會被多次選擇。此外,如在步驟322中所示,該方法可包含使用使用者選擇的特徵而自每次掃描(模式)選擇一組不同缺陷。例如,該方法可包含自使用以一模式執行之一掃描產生的檢驗結果302a選擇一組不同缺陷,及自使用以另一模式執行之另一掃描產生的檢驗結果302b選擇一組不同缺陷。如步驟324中進一步所示,該方法可包含將自個別掃描(模式)選擇的缺陷組合成一最終「發現」組。
該等當前使用之方法(諸如上文所描述方法)相對於本文所描述之該等實施例具有兩個顯著缺點。首先,使用者必須選擇他們相信將給予他們最佳且最相關之多樣化的缺陷屬性組。儘管在某種程度上可獲得此知識,但對於一當前無法識別之給定晶圓可總是存在一組較佳屬性。此外,使用多模式資訊的方式係極笨拙的。本質上,每個模式使用缺陷捕獲率作為模式相關資訊,且除了消除重複以外,可藉由識別哪些缺陷已在其他模式中取樣跨越模式對多樣化機構起槓桿作用而獨立於彼此處理。此外,當前根本不使用編碼於來自多個模式之每個缺陷所具有之多組性質中的大量資訊。(缺陷趨向於在不同模式中具有不同光學表象,且此等差異可被用以發現獨特缺陷類型。)
本文中所進一步描述之該等實施例可採用一自一組訓練標誌資料點構建一缺陷分類模型的機器學習演算法。該模型針對該模型未訓 練之缺陷產生(a)缺陷分類及(b)分類可信度。接著,此資訊可用以搜索該模型中未知的缺陷類型。
在一種此類實施例中,該電腦子系統經組態用於基於使用該等不同模式產生之輸出偵測其他缺陷、使用以該等不同模式產生之輸出判定其他缺陷之特徵之值且基於所有該等缺陷之所有該等經判定之特徵之所有值之一組合執行缺陷發現。例如,該等實施例可包含使用不同模式掃描一晶圓一或多次。針對該等不同模式之各者藉由該檢驗系統之(若干)偵測器產生之輸出可如本文所進一步描述而使用以偵測該晶圓上之缺陷。此外,如本文所描述,該方法可包含判定藉由該等不同模式之各者偵測之缺陷之特徵之值。接著,所有該等缺陷之所有該等特徵之所有值可如本文所進一步描述而共同地使用以執行缺陷發現。
在另一種此類實施例中,該電腦子系統經組態用於基於使用該等不同模式產生之輸出偵測其他缺陷、比較其他缺陷以識別該等不同模式,其中使用該等不同模式偵測其他缺陷之各者、判定其他缺陷之各者之一組特徵,基於使用該等不同模式產生之輸出判定該組特徵且基於該組特徵針對不同類型之缺陷搜索其他缺陷。例如,該檢驗子系統可經組態以使用不同光學模式(假定M個模式)掃描一晶圓一或多次。接著,該電腦子系統可經組態用於執行共性分析以識別在哪個模式中偵測到哪些缺陷且建立所有獨特缺陷之一主列表。該電腦子系統亦可經組態用於藉由執行以下操作自多模式檢驗建立一多模式資料集。對於每個主列表缺陷,自所有模式收集所有特徵。即,如果每個模式針對每個經偵測之缺陷產生N個缺陷特徵,則一主列表缺陷將具有依以下方式構造之N x M個特徵。如果在模式J中偵測一主列表缺陷,則位置[N x(J-1)+1]至[N X J]中之其特徵將包含來自模式J之N個特徵。如果此主列表缺陷未在模式J中偵測到,則位置[N x(J-1)+ 1]至[N X J]中之其特徵將填滿零。接著,如本文所進一步描述,該電腦子系統可針對缺陷類型執行一適應性搜索。
在一種此類實施例中,搜索其他缺陷包括基於其他缺陷之一樣本設置一缺陷分類程序,將該缺陷分類程序應用於未包含在該樣本中之其他缺陷且判定藉由該缺陷分類程序指派至未包含在該樣本中之其他缺陷之分類之可信度之一位準。當該晶圓在一SEM檢查站上時可執行搜索其他缺陷。該SEM檢查站可如上文相對於圖1a所描述而組態(但圖1a中展示之該檢驗子系統之一或多個參數可取決於該電子束子系統是否用於檢驗或缺陷檢查而不同)。在此實施例中,該電腦子系統經組態用於自該多模式資料集取樣相對較小之一組缺陷。(該組之此大小經受特性化,但其可能大約5至50個缺陷。)接著,該系統可經組態用於SEM檢查且手動分類該組缺陷。如果該樣本中僅存在一缺陷類型,則該電腦子系統可取樣相對較小之另一組缺陷。否則,該電腦子系統可經組態用於針對已知缺陷類型使用藉由該SEM檢查及手動分類建立之訓練組建立一分類模型。該電腦子系統亦可經組態用於使用如上文所描述建立之分類模型分類多模式檢驗結果中之所有剩餘缺陷。此等缺陷將分類成該模型已知之具有各種位準之可信度之類型。
在一些此等實施例中,搜索其他缺陷亦包含取樣一組具有低於其他缺陷之他者之可信度之位準之可信度之該位準之其他缺陷、基於該樣本及該組經取樣之其他缺陷設置一新的缺陷分類程序、將該新的缺陷分類程序應用於未包含在該樣本中且未包含在該組經取樣之缺陷中之其他缺陷,且判定藉由該新的缺陷分類程序指派至未包含在該樣本或該組經取樣之缺陷中之其他缺陷之分類之可信度之位準。例如,該電腦子系統可經組態用於取樣一組最低可信度缺陷。該最低可信度缺陷係該模型無法很好地分類之缺陷,且其可能係新缺陷類型。該樣本組之大小經受特性化,但其可係大約5至50個缺陷。接著,該系統 可經組態用於此組缺陷之SEM檢查及手動分類。接著,該電腦子系統可將此等缺陷添加至該訓練組且訓練一新模型。接著,該新模型可用於分類該等多模式檢驗結果中之所有剩餘缺陷。與原始模型相同,該等缺陷將分類成該模型已知之具有各種位準之可信度之類型。接著,可取樣、檢查且手動分類具有最低位準之可信度之該等缺陷,且接著,可產生一新模型。當該模型停止產生相對較低之可信度分類時,此等步驟可重複。
圖4及圖5繪示用於多模式之缺陷發現程序。圖4展示用於建立多模式主列表之程序。圖5展示適應性發現方法,其可在一具有多模式資訊之使用者之SEM檢查站上執行。
如圖4之步驟400中所示,該檢驗子系統可使用不同光學模式多次(一或多次)掃描一晶圓。該電腦子系統可針對不同光學模式產生不同檢驗結果402。接著,該電腦子系統可建立所有獨特缺陷之一主列表,如步驟404中所示。例如,基於檢驗結果402a、402b及402c,該電腦子系統可建立包含藉由所有該等模式偵測之所有該等缺陷之資訊之主列表406。如果一缺陷已藉由一個以上模式偵測,則該主列表可僅包含該缺陷之一示例。接著,該電腦子系統可建立一多視角(多模式)主列表,如步驟408中所示。如圖4中所示,該多視角主列表可包含表410或任何其他適合資料結構,其中不同缺陷可與針對藉由所有用以掃描該晶圓之模式之缺陷判定之所有該等特徵相關聯。例如,在表410中,該等缺陷之ID可列在第一行中。接著,針對該等缺陷判定之任何特徵可列在該等缺陷之額外行中。例如,如圖4中所示,模式1及模式2可已用以掃描一晶圓。接著,基於使用模式1產生之輸出針對該等缺陷判定之缺陷特徵之值(F1、F2及F3)可列在該表之模式1部分下之行F1、F2及F3中。此外,基於使用模式2產生之輸出針對該等缺陷判定之缺陷特徵之值(F1、F2及F3)可列在該表之模式2部分下之行 F1、F2及F3中。依此方式,來自所有模式之該等特徵可組合成針對每個缺陷之一特徵組。此外,如果未在該等模式之任一者中偵測到一缺陷,則對應特徵可使用零指明。例如,如表410中所示,因為缺陷1未在模式2中偵測到,所以該表之模式2部分中之特徵之值(F1、F2及F3)係零。如表410中所示,在另一實例中,因為缺陷2未在模式1中偵測到,所以該表之模式1部分中之特徵之值F1、F2及F3係零。接著,該電腦子系統可自該多視角(多模式)主列表執行適應性缺陷選擇,如步驟412中所示。如圖5中所示,可執行該適應性缺陷選擇。
如圖5中所示,適應性發現(其可在一電子束缺陷檢查工具(諸如可自KLA-Tencor購得之eDR工具)上執行)(當該晶圓在該檢查工具上時)可包含選擇一小組不同缺陷,如步驟500中所示。該適應性發現亦可包含SEM檢查且對該等缺陷手動分類,如步驟502中所示。此外,該適應性發現可包含判定是否發現一個以上類型,如步驟504中所示。如果未發現一個以上類型,則該電腦子系統可經組態以重複步驟500中展示之選擇、步驟502中展示之檢查及分類及步驟504中展示之判定。如果已發現一個以上類型,則該電腦子系統可使用所有經分類之缺陷作為一訓練組構建一分類模型,如步驟506中所示。接著,該電腦子系統可使用經構造之模型對該主列表中的所有剩餘缺陷分類,如步驟508中所示。該電腦子系統判定模型是否收斂,如步驟510中所示。通過監視訓練混淆矩陣之分類可信度及穩定性建立收斂。該電腦子系統可建議何時停止,但最終一使用者可基於該電腦子系統之建議決定何時停止。如果該模型收斂,則該電腦子系統可停止,如步驟512中所示。如果該模型未收斂,則該電腦子系統可選擇一小組具有最低分類可信度之缺陷,如步驟514中所示。接著,該電腦子系統可執行步驟500及上文所描述之其他步驟。
本文所描述之該等實施例具有優於現有發現方法之若干優點。 例如,本文所描述之該等實施例藉由組合來自多個模式之缺陷特徵提供一處理多模式發現檢驗之新方式。因此,本文所描述之該等實施例消除在每個模式中獨立地執行缺陷發現之需要且接著與其組合在一起。此外,該多模式主列表不僅含關於每個缺陷之捕獲率之資訊,而且含關於哪些模式成功偵測一缺陷之資訊。此額外資訊無法在當今使用之現有方法中充分利用。該等實施例亦提供一用於終止發現程序之機構且因此避免發展一用於取樣欲應用於所有晶圓之大小之BKM之需要。此停止準則將導致對於不同晶圓之不同SEM檢查要求。此外,本文所描述之該等實施例可與所有缺陷特徵協作,與發現取樣不同,無一有效性之損失,其依賴使用者選擇一小組欲用於多樣化之特徵。本文所描述之該等實施例亦具有發現於分離缺陷類型時之重要缺陷特徵之能力,且此建議可隨後用於針對生產方案調諧之一第二回合發現。本文所描述之該等實施例亦可與其他途徑(諸如多樣化、偏壓等等)組合。
藉由使用一分類模型以選擇相對較低之可信度缺陷發現新缺陷類型而產生之結果已展示此途徑之作用正如發現取樣一樣良好或比該發現取樣更佳,其中額外優點係能夠即時建議檢查預算。特性化亦展示即便具有相對較大數量之缺陷特徵(大約500)且即使當絕大部分缺陷特徵係雜訊時,該分類模型仍足夠工作。此指示該多模式途徑應該極珍貴。如果該發現在一SEM檢查站上執行(其中該晶圓位於該工具上),則當一具有檢驗(BBP)及缺陷檢查(SEM)之熔合特徵一起工作時,此發現可係珍貴的。
本文所描述之額外實施例通常可稱為「1測試(NanoPoint)NP+程序窗限定(PWQ)掃描」。一般而言,本文所描述之該等實施例可用於NP之OSTS。術語「NP」大體上係指使用極小注意區域(例如,大約在該晶圓上印刷之一特徵之大小)之檢驗之一類型,其用法係藉由判 定由具有實質上高精確度(例如,在子像素位準)之一檢驗系統之一偵測器藉由(例如)將該偵測器之輸出與設計資料對準產生之輸出中之該等「微注意區域」之位置。一PWQ掃描大體上係指藉由一檢驗系統在一晶圓(於其上已形成印刷在該晶圓上之具有在該晶圓上執行之一製造程序之一或多個參數之不同(即,調變)值之至少兩個晶粒)執行之掃描之一類型。此等參數之實例包含但不限於在該晶圓上執行之一微影程序之曝露及劑量。
本文所描述之該等實施例可用以減少檢驗工具(諸如BBP工具)上之NP及PWQ掃描之設置及運行時間。例如,使用注意區域之用於PWQ掃描之一些當前使用之方法包含每個模式每次調變一測試(其中,通常大約20至大約50次調變),即,針對每個經調變之晶粒之一分離測試,且使用初始臨限值探測器(ITF)針對每次調變分離地設定靈敏度,其實行一初步掃描以評估晶粒之缺陷性且接著基於由使用者指派之百分比指派一靈敏度,且每次掃描之時間約等於完全晶圓掃描時間乘以調變行之數量。
該等當前使用之方法具有若干缺點,例如,該等當前使用之方法需要每次調變一測試,其在該BBP工具上耗費更多時間。每次掃描所需之時間係一完全晶圓掃描之時間乘以調變行之數量。用於該掃描之所需之額外時間自可用於其他珍貴的計劃之時間減去。此外,該等當前使用之方法需要針對ITF百分比之迭代調諧。使用者以針對每個臨限值區域之BKM ITF值開始。接著,使用者運行一些調變且調諧該ITF百分比且重複該程序直至使用者滿意該ITF百分比。
反之,本文所描述之該等實施例可包含每個模式1測試,使用後處理以跨越該晶圓設定靈敏度,類似於OSTS,除將針對NP注意區域(CA)與舊有CA及PWQ均工作外,且每次掃描之時間係該完全晶圓掃描時間。依此方式,本文所描述之該等實施例具有優於當前使用之方 法之若干優點(諸如更易於使用且減少檢驗工具(例如,BBP工具)上之掃描時間,該掃描時間可用於其他計劃)。例如,由於任何額外工具時間可用以實行生產掃描或其他方案設置,因此檢驗工具(諸如BBP工具)之時間係極珍貴。此外,增強的易於使用將使得方案設置時間更快。此時間節約對於檢驗工具使用者係關鍵的且可為使用者節約數百萬美元。
在一實施例中,該檢驗子系統經組態以當該偵測器產生輸出時在另一晶圓上掃描能量,另一晶圓係一PWQ晶圓,於其上使用針對一用以印刷該晶圓之程序之一或多個參數之不同值印刷至少兩個晶粒,且該電腦子系統經組態用於識別該輸出中之微注意區域且基於該等微注意區域中之該輸出偵測其他缺陷。例如,該等實施例可在針對BBP掃描之任何NP+PWQ流中利用。該等實施例亦可代替一熱掃描在正常NP掃描中使用用於更容易的分段及臨限值調諧。如本文所進一步描述,該檢驗子系統可經組態以在該晶圓上掃描能量。如本文所進一步描述,該電腦子系統可經組態以識別該輸出中之該等微注意區域(例如,藉由將該偵測器之該輸出與該晶圓之設計資料對準)。該電腦子系統亦可經組態以基於該等微注意區域中之該輸出依任何適合方式(例如,藉由將一缺陷偵測演算法及/或方法僅應用於在該等微注意區域中產生之該輸出)偵測缺陷。
依此方式,本文所描述之該等實施例可針對所有調變使用一測試而不是針對每個分離調變使用一測試。本文所描述之該等實施例可使用一將提供一步調諧之新演算法而不是使用ITF。此用於NP之稱為OSTS之新演算法將類似於OSTS,除其將在NP及舊有注意區域(CA)上而不是僅在舊有CA上工作外。由於該等實施例大幅減少設置與運行時間兩者,因此該等實施例在舊方法上改良。在設置期間,使用者將僅需要指定缺陷限制且選擇新演算法。將不存在進一步迭代之需要。 在運行時間期間,掃描時間將與完全晶圓掃描耗時一樣久,其係比使用舊方法之掃描時間快多倍。
在一種此類實施例中,針對使用該等不同值印刷之該至少兩個晶粒之兩個或兩個以上晶粒及該檢驗子系統之一或多個模式執行該掃描,偵測其他缺陷包含針對該一或多個模式分別產生一或多個缺陷族群,且該一或多個缺陷族群之各者包含在該至少兩個晶粒之兩個或兩個以上晶粒中偵測到之其他缺陷。依此方式,可針對至少兩個經調變之晶粒及該檢驗子系統之一或多個模式執行每次掃描。因此,一藉由任何一次掃描產生之缺陷族群可包含在該一次掃描中掃描之該等至少兩個經調變之晶粒中之缺陷。在一些此等實施例中,該一或多個模式之該一或多個缺陷族群對於該等至少兩個晶粒之兩個或兩個以上晶粒之各者分別包含約相同數量之缺陷。例如,新演算法(對於NP之OSTS)可跨越該晶圓運行一特定百分比之一掃描以評估缺陷性。使用此資訊,該演算法可跨越該晶圓分配缺陷使得該等缺陷將跨越該等晶粒均勻地分佈,確保對於所有調變存在相似缺陷計數。
在額外此等實施例中,該電腦子系統經組態用於分別基於該一或多個模式之該一或多個缺陷族群針對使用該一或多個模式之至少一者額外PWQ晶圓之檢驗選擇一或多個參數。例如,該演算法容許針對PWQ之一步調諧且跨越調變均勻地分佈缺陷。歸因於一步調諧,使用者將不再必須迭代地調諧臨限值。此亦將使測試數量自每調變一測試減少至所有調變一測試,大幅減少掃描時間。針對額外PWQ晶圓之檢驗選擇參數可依任何適合方式執行。
本文所描述之該等實施例上之一變動可包含設法對相似調變之組分組以減少測試之數量且可減少掃描時間。然而,此將意謂針對多個調變運行熱掃描以檢查哪些調變可被分組。此外,此仍將導致若干測試及一比本文所描述之該等實施例之掃描時間更久之掃描時間。
另一實施例係關於一種用於發現一晶圓上之缺陷之電腦實施方法。該方法包含藉由在該晶圓之一第一掃描中將一臨限值應用於藉由一檢驗系統之一偵測器產生之輸出而偵測一晶圓上之缺陷。該檢驗系統可相對於一檢驗子系統如本文所描述而組態。該方法亦包含用於判定該等值、自動對該等特徵排名、識別該等特徵、判定一或多個參數及應用本文所描述之該一或多個經判定之參數之步驟。使用一電腦系統執行此等步驟,該電腦系統可如本文所進一步描述而組態。
上文所描述之方法可包含用於執行本文所描述之(若干)系統實施例之任何其他一或多個功能之(若干)步驟。此外,上文所描述之方法可藉由本文所描述之系統之任一者執行。
本文所描述之所有方法可包含儲存一電腦可讀儲存媒體中之方法實施例之一或多個步驟之結果。該等結果可包含本文所描述之該等結果之任一者且可依技術中已知之任何方式儲存。該儲存媒體可包含本文所描述之任何儲存媒體或技術中已知之任何其他適合儲存媒體。在已儲存該等結果之後,該等結果可在該儲存媒體中存取且藉由本文所描述之方法或系統實施例之任一者使用、經格式化用於對一使用者顯示、藉由另一軟體模組、方法或系統使用等等。
另一實施例係關於一種非暫態電腦可讀媒體,其儲存可在一電腦系統上執行之用於執行一用於發現一晶圓上之缺陷之電腦實施方法之程式指令。一種此類實施例在圖6中展示。例如,如圖6中所示,非暫態電腦可讀媒體600儲存可在電腦系統604上執行之用於執行一用於發現一晶圓上之缺陷之電腦實施方法之程式指令602。該電腦實施方法可包含本文所描述之(若干)任何方法之(若干)任何步驟。
實施方法(諸如本文所描述之方法)之程式指令602可儲存在非暫態電腦可讀媒體600上。該電腦可讀媒體可係一儲存媒體(諸如一磁碟或一光碟、一磁帶或技術中已知之任何其他適合非暫態電腦可讀媒 體)。
可依各種方式之任一者實施該等程式指令,其包含(尤其)基於程序之技術、基於組件之技術及/或物件導向技術。例如,可使用Matlab、Visual Basic、ActiveX控制項、C、C++物件、C#、JavaBeans、微軟基礎類別(「MFC」)或如所需之其他技術或方法實施該等程式指令。
電腦系統604可如本文所描述而進一步組態。
由於此描述,熟習技術者當明白本發明之各種態樣之進一步修改及替代實施例。例如,提供用於發現一晶圓上之缺陷之系統及方法。相應地,此描述欲視為僅繪示且為教示熟習技術者執行本發明之一般方式之目的。應瞭解本文展示及描述之本發明之形式欲視為目前偏好之實施例。元件及材料可替代本文所繪示及描述之該等元件及材料,可倒轉零件及程序,且可獨立地利用本發明之特定特徵,熟習技術者在獲得本發明之此描述之優點之後當明白上述所有。可在本文所描述之元件中進行改變而不會背離如在以下申請專利範圍中所描述之本發明之精神及範疇。

Claims (20)

  1. 一種經組態用於發現一晶圓上之缺陷之系統,其包括:一檢驗子系統,其包括至少一能源及一偵測器,其中該能源經組態以產生被引導至一晶圓且在一晶圓上被掃描之能量,且其中該偵測器經組態以自該晶圓偵測能量且回應於該經偵測之能量而產生輸出;及一電腦子系統,其經組態用於:藉由在該晶圓之一第一掃描中將一臨限值應用於由該偵測器產生之該輸出來偵測該晶圓上之缺陷;判定該等經偵測之缺陷之特徵的值;基於該等特徵之該等值,自動對該等特徵排名且識別特徵裁切行,以將該等缺陷分組成筐;對於該等筐之各者,如果一或多個參數被應用於該等筐之該各者中之該等缺陷之該等特徵之該等值將導致該等筐之該各者中之一預定數量的缺陷,則判定該或該等參數;且在該晶圓之一第二掃描中,將該一或多個經判定之參數應用於由該偵測器產生之該輸出以產生一缺陷族群,其中該缺陷族群具有一預定缺陷計數,且以該等特徵之該等值多樣化。
  2. 如請求項1之系統,其中該電腦子系統經進一步組態用於自動且無需手動方案設置來執行該偵測、該判定該等值、該自動排名、該識別、該判定該一或多個參數及該應用。
  3. 如請求項1之系統,其中該一或多個經判定之參數包括一或多個臨限值。
  4. 如請求項1之系統,其中該臨限值位於該輸出之一雜訊底處。
  5. 如請求項1之系統,其中該臨限值係自動地由該電腦子系統選擇。
  6. 如請求項1之系統,其中該等缺陷之該預定數量係由一使用者選擇。
  7. 如請求項1之系統,其中該等缺陷之該預定數量對於該等筐之至少兩個筐是不同的。
  8. 如請求項1之系統,其中該一或多個經判定之參數包括用於公害過濾的一或多個參數。
  9. 如請求項1之系統,其中該檢驗子系統經組態以使用不同模式來掃描該晶圓。
  10. 如請求項9之系統,其中該電腦子系統經進一步組態用於基於使用該等不同模式產生之該輸出來偵測其他缺陷、使用以該等不同模式產生之該輸出來判定該等其他缺陷之特徵的值,且基於所有該等缺陷之所有該等經判定之特徵之所有該等值之一組合來執行缺陷發現。
  11. 如請求項9之系統,其中該電腦子系統經進一步組態用於基於使用該等不同模式產生之該輸出來偵測其他缺陷、比較該等其他缺陷以識別該等不同模式,使用該等不同模式來偵測該等其他缺陷之各者、判定該等其他缺陷之各者之一組特徵,其中基於使用該等不同模式產生之該輸出來判定該組特徵,且基於該組特徵,針對不同類型之缺陷來搜索該等其他缺陷。
  12. 如請求項11之系統,其中該搜索包括基於該等其他缺陷之一樣本來設置一缺陷分類程序,將該缺陷分類程序應用於未包含於該樣本中之該等其他缺陷,且判定由該缺陷分類程序指派至未包含於該樣本中之該等其他缺陷之分類之可信度之一位準。
  13. 如請求項12之系統,其中該搜索進一步包括取樣一組具有低於 該等其他缺陷之他者之可信度之該位準之可信度之該位準的該等其他缺陷、基於該樣本及該組經取樣之該等其他缺陷來設置一新的缺陷分類程序、將該新的缺陷分類程序應用於未包含於該樣本中且未包含於該組經取樣之缺陷中的該等其他缺陷,且判定由該新的缺陷分類程序指派至未包含在該樣本或該組經取樣之缺陷中之該等其他缺陷之分類之可信度的該位準。
  14. 如請求項1之系統,其中該檢驗子系統經組態以當該偵測器產生該輸出時,於另一晶圓上掃描該能量,其中該另一晶圓係一程序窗限定晶圓,在該晶圓上針對一用以印刷該晶圓之程序的一或多個參數,使用不同值來印刷至少兩個晶粒,且其中該電腦子系統經進一步組態用於識別該輸出中之微注意區域,及基於該等微注意區域中之該輸出來偵測其他缺陷。
  15. 如請求項14之系統,其中對使用該等不同值來印刷之該至少兩個晶粒的兩個或兩個以上晶粒及該檢驗子系統的一或多個模式執行該掃描,其中偵測該等其他缺陷包括針對該一或多個模式分別產生一或多個缺陷族群,且其中該一或多個缺陷族群之各者包括在該至少兩個晶粒之該等兩個或兩個以上晶粒中偵測到的該等其他缺陷。
  16. 如請求項15之系統,其中對於該一或多個模式之該一或多個缺陷族群,分別包括該至少兩個晶粒之該等兩個或兩個以上晶粒之各者之約相同數量的缺陷。
  17. 如請求項15之系統,其中該電腦子系統經進一步組態用於分別基於該一或多個模式之該一或多個缺陷族群,針對使用該一或多個模式之至少一者之額外程序窗限定晶圓的檢驗,選擇一或多個參數。
  18. 如請求項1之系統,其中該能源係一寬頻帶電漿光源。
  19. 一種用於發現一晶圓上之缺陷之電腦實施方法,其包括:藉由在該晶圓之一第一掃描中將一臨限值應用於由一檢驗系統之一偵測器產生的輸出來偵測一晶圓上的缺陷,其中該檢驗系統包括至少一能源及該偵測器,其中該能源經組態以產生被引導至該晶圓且在該晶圓上被掃描之能量,且其中該偵測器經組態以自該晶圓偵測能量,且回應於經偵測之能量而產生該輸出;判定該等經偵測之缺陷之特徵的值;基於該等特徵之該等值,自動對該等特徵排名且識別特徵裁切行,以將該等缺陷分組成筐;對於該等筐之各者,如果一或多個參數被應用於該等筐之該各者中之該等缺陷之該等特徵的該等值將導致該等筐之該各者中之一預定數量的缺陷,則判定該或該等參數;且在該晶圓之一第二掃描中,將該一或多個經判定之參數應用於由該偵測器產生之該輸出以產生一缺陷族群,其中該缺陷族群具有一預定缺陷計數,且以該等特徵之該等值多樣化,且其中使用一電腦系統來執行該偵測、該判定該等值、該自動排名、該識別、該判定該一或多個參數及該應用。
  20. 一種非暫態電腦可讀媒體,其儲存可在一電腦系統上執行之用於執行一用於發現一晶圓上之缺陷之電腦實施方法之程式指令,其中該電腦實施方法包括:藉由在該晶圓之一第一掃描中將一臨限值應用於由一檢驗系統之一偵測器產生之輸出來偵測一晶圓上之缺陷,其中該檢驗系統包括至少一能源及該偵測器,其中該能源經組態以產生被引導至該晶圓且在該晶圓上被掃描之能量,且其中該偵測器經組態以自該晶圓偵測能量,且回應於該經偵測之能量而產生該 輸出;判定該等經偵測之缺陷之特徵的值;基於該等特徵之該等值,自動對該等特徵排名且識別特徵裁切行,以將該等缺陷分組成筐;對於該等筐之各者,如果一或多個參數被應用於該等筐之該各者中之該等缺陷之該等特徵的該等值將導致該等筐之該各者中之一預定數量的缺陷,則判定該或該等該等參數;且在該晶圓之一第二掃描中,將該一或多個經判定之參數應用於由該偵測器產生之該輸出以產生一缺陷族群,其中該缺陷族群具有一預定缺陷計數,且以該等特徵之值多樣化。
TW104136373A 2014-11-04 2015-11-04 晶圓缺陷發現 TWI644378B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462075002P 2014-11-04 2014-11-04
US62/075,002 2014-11-04
US14/931,226 2015-11-03
US14/931,226 US9518934B2 (en) 2014-11-04 2015-11-03 Wafer defect discovery

Publications (2)

Publication Number Publication Date
TW201626478A TW201626478A (zh) 2016-07-16
TWI644378B true TWI644378B (zh) 2018-12-11

Family

ID=55852384

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104136373A TWI644378B (zh) 2014-11-04 2015-11-04 晶圓缺陷發現

Country Status (7)

Country Link
US (2) US9518934B2 (zh)
JP (1) JP6490211B2 (zh)
KR (1) KR102276925B1 (zh)
CN (1) CN107003249B (zh)
SG (1) SG11201703560VA (zh)
TW (1) TWI644378B (zh)
WO (1) WO2016073638A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518934B2 (en) * 2014-11-04 2016-12-13 Kla-Tencor Corp. Wafer defect discovery
US9702827B1 (en) * 2014-11-20 2017-07-11 Kla-Tencor Corp. Optical mode analysis with design-based care areas
EP3086175B1 (en) * 2015-04-22 2022-01-26 IMEC vzw Method for hotspot detection and ranking of a lithographic mask
US10204290B2 (en) * 2016-10-14 2019-02-12 Kla-Tencor Corporation Defect review sampling and normalization based on defect and design attributes
JP6353008B2 (ja) * 2016-11-02 2018-07-04 ファナック株式会社 検査条件決定装置、検査条件決定方法及び検査条件決定プログラム
US10679909B2 (en) 2016-11-21 2020-06-09 Kla-Tencor Corporation System, method and non-transitory computer readable medium for tuning sensitivies of, and determining a process window for, a modulated wafer
US11047806B2 (en) * 2016-11-30 2021-06-29 Kla-Tencor Corporation Defect discovery and recipe optimization for inspection of three-dimensional semiconductor structures
US10365617B2 (en) * 2016-12-12 2019-07-30 Dmo Systems Limited Auto defect screening using adaptive machine learning in semiconductor device manufacturing flow
US10234402B2 (en) * 2017-01-05 2019-03-19 Kla-Tencor Corporation Systems and methods for defect material classification
JP6731370B2 (ja) 2017-03-27 2020-07-29 株式会社日立ハイテク 画像処理システム及び画像処理を行うためのコンピュータープログラム
US10733744B2 (en) * 2017-05-11 2020-08-04 Kla-Tencor Corp. Learning based approach for aligning images acquired with different modalities
US10620135B2 (en) * 2017-07-19 2020-04-14 Kla-Tencor Corp. Identifying a source of nuisance defects on a wafer
US10713534B2 (en) * 2017-09-01 2020-07-14 Kla-Tencor Corp. Training a learning based defect classifier
EP3454128B1 (en) * 2017-09-12 2020-01-29 IMEC vzw A method and system for detecting defects of a lithographic pattern
US11514357B2 (en) * 2018-03-19 2022-11-29 Kla-Tencor Corporation Nuisance mining for novel defect discovery
US11056366B2 (en) * 2018-03-23 2021-07-06 Kla Corporation Sample transport device with integrated metrology
US10670536B2 (en) * 2018-03-28 2020-06-02 Kla-Tencor Corp. Mode selection for inspection
JP6675433B2 (ja) * 2018-04-25 2020-04-01 信越化学工業株式会社 欠陥分類方法、フォトマスクブランクの選別方法、およびマスクブランクの製造方法
US11151711B2 (en) * 2018-06-06 2021-10-19 Kla-Tencor Corporation Cross layer common-unique analysis for nuisance filtering
US10801968B2 (en) * 2018-10-26 2020-10-13 Kla-Tencor Corporation Algorithm selector based on image frames
US10545099B1 (en) 2018-11-07 2020-01-28 Kla-Tencor Corporation Ultra-high sensitivity hybrid inspection with full wafer coverage capability
US11010885B2 (en) * 2018-12-18 2021-05-18 Kla Corporation Optical-mode selection for multi-mode semiconductor inspection
US10930597B2 (en) * 2019-03-27 2021-02-23 Kla-Tencor Corporation Die screening using inline defect information
US11114324B2 (en) 2019-04-10 2021-09-07 KLA Corp. Defect candidate generation for inspection
CN110068578B (zh) * 2019-05-17 2022-02-22 苏州图迈蓝舸智能科技有限公司 一种pvc地板的表观缺陷检测方法、装置及终端设备
JP7222821B2 (ja) * 2019-06-14 2023-02-15 株式会社ニューフレアテクノロジー マルチビーム検査装置
US11055840B2 (en) * 2019-08-07 2021-07-06 Kla Corporation Semiconductor hot-spot and process-window discovery combining optical and electron-beam inspection
KR102602005B1 (ko) * 2019-09-04 2023-11-15 주식회사 히타치하이테크 하전 입자선 장치
US11410292B2 (en) * 2019-09-27 2022-08-09 Kla Corporation Equi-probability defect detection
WO2022051551A1 (en) * 2020-09-02 2022-03-10 Applied Materials Israel Ltd. Multi-perspective wafer analysis
US11967056B2 (en) 2020-12-31 2024-04-23 Infrastructure Dl, Llc Systems, methods and apparatuses for detecting and analyzing defects in underground infrastructure systems
US11887296B2 (en) * 2021-07-05 2024-01-30 KLA Corp. Setting up care areas for inspection of a specimen
CN117813547A (zh) * 2021-08-11 2024-04-02 Asml荷兰有限公司 掩模缺陷检测
CN113628212B (zh) * 2021-10-12 2022-03-11 高视科技(苏州)有限公司 不良偏光片识别方法、电子设备和存储介质
US11922619B2 (en) 2022-03-31 2024-03-05 Kla Corporation Context-based defect inspection
US20230314336A1 (en) 2022-03-31 2023-10-05 Kla Corporation Multi-mode optical inspection
CN115360116B (zh) * 2022-10-21 2023-01-31 合肥晶合集成电路股份有限公司 一种晶圆的缺陷检测方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080167829A1 (en) * 2007-01-05 2008-07-10 Allen Park Methods and systems for using electrical information for a device being fabricated on a wafer to perform one or more defect-related functions
US20090299681A1 (en) * 2008-05-29 2009-12-03 Hong Chen Methods and systems for generating information to be used for selecting values for one or more parameters of a detection algorithm
US20130202189A1 (en) * 2006-09-27 2013-08-08 Hitachi High-Technologies Corporation Defect classification method and apparatus, and defect inspection apparatus
US20140050389A1 (en) * 2012-08-14 2014-02-20 Kla-Tencor Corporation Automated Inspection Scenario Generation
TW201432797A (zh) * 2006-03-08 2014-08-16 Applied Materials Inc 用於熱處理形成於基材上之結構的方法
TW201431645A (zh) * 2013-01-23 2014-08-16 Applied Materials Inc 在研磨期間使用攝影機的反射量測
TW201435330A (zh) * 2013-01-02 2014-09-16 Kla Tencor Corp 偵測晶圓上之缺陷
TW201435297A (zh) * 2013-01-14 2014-09-16 Kla Tencor Corp 多重入射角半導體度量衡系統及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903342A (en) * 1995-04-10 1999-05-11 Hitachi Electronics Engineering, Co., Ltd. Inspection method and device of wafer surface
US5999003A (en) 1997-12-12 1999-12-07 Advanced Micro Devices, Inc. Intelligent usage of first pass defect data for improved statistical accuracy of wafer level classification
JP4183492B2 (ja) * 2002-11-27 2008-11-19 株式会社日立製作所 欠陥検査装置および欠陥検査方法
US8698093B1 (en) 2007-01-19 2014-04-15 Kla-Tencor Corporation Objective lens with deflector plates immersed in electrostatic lens field
KR101674698B1 (ko) * 2009-02-13 2016-11-09 케이엘에이-텐코어 코오포레이션 웨이퍼 상의 결함들 검출
JP5537282B2 (ja) * 2009-09-28 2014-07-02 株式会社日立ハイテクノロジーズ 欠陥検査装置および欠陥検査方法
US8664594B1 (en) 2011-04-18 2014-03-04 Kla-Tencor Corporation Electron-optical system for high-speed and high-sensitivity inspections
US8692204B2 (en) 2011-04-26 2014-04-08 Kla-Tencor Corporation Apparatus and methods for electron beam detection
ES2541418T3 (es) * 2011-06-13 2015-07-20 Parker-Hannificn Corporation Sistema de refrigeración de bucle con bomba
US9176069B2 (en) * 2012-02-10 2015-11-03 Kla-Tencor Corporation System and method for apodization in a semiconductor device inspection system
US8716662B1 (en) 2012-07-16 2014-05-06 Kla-Tencor Corporation Methods and apparatus to review defects using scanning electron microscope with multiple electron beam configurations
US9518934B2 (en) * 2014-11-04 2016-12-13 Kla-Tencor Corp. Wafer defect discovery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201432797A (zh) * 2006-03-08 2014-08-16 Applied Materials Inc 用於熱處理形成於基材上之結構的方法
US20130202189A1 (en) * 2006-09-27 2013-08-08 Hitachi High-Technologies Corporation Defect classification method and apparatus, and defect inspection apparatus
US20080167829A1 (en) * 2007-01-05 2008-07-10 Allen Park Methods and systems for using electrical information for a device being fabricated on a wafer to perform one or more defect-related functions
US20090299681A1 (en) * 2008-05-29 2009-12-03 Hong Chen Methods and systems for generating information to be used for selecting values for one or more parameters of a detection algorithm
US20140050389A1 (en) * 2012-08-14 2014-02-20 Kla-Tencor Corporation Automated Inspection Scenario Generation
TW201435330A (zh) * 2013-01-02 2014-09-16 Kla Tencor Corp 偵測晶圓上之缺陷
TW201435297A (zh) * 2013-01-14 2014-09-16 Kla Tencor Corp 多重入射角半導體度量衡系統及方法
TW201431645A (zh) * 2013-01-23 2014-08-16 Applied Materials Inc 在研磨期間使用攝影機的反射量測

Also Published As

Publication number Publication date
TW201626478A (zh) 2016-07-16
SG11201703560VA (en) 2017-05-30
WO2016073638A1 (en) 2016-05-12
US20160123898A1 (en) 2016-05-05
US9518934B2 (en) 2016-12-13
CN107003249A (zh) 2017-08-01
US20170076911A1 (en) 2017-03-16
KR20170082559A (ko) 2017-07-14
JP6490211B2 (ja) 2019-03-27
JP2018504768A (ja) 2018-02-15
KR102276925B1 (ko) 2021-07-12
CN107003249B (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
TWI644378B (zh) 晶圓缺陷發現
KR102438824B1 (ko) 3차원 반도체 구조체들의 검사를 위한 결함 발견 및 레시피 최적화
KR102435627B1 (ko) 리피터 검출
KR102153158B1 (ko) 광학적 검사 및 광학적 리뷰로부터의 결함 속성에 기초한 전자 빔 리뷰를 위한 결함 샘플링
US9766187B2 (en) Repeater detection
TWI673489B (zh) 以使用一適應性滋擾過濾器產生針對一樣本之檢驗結果之系統及方法,以及非暫時性電腦可讀媒體
TW201721784A (zh) 調適性自動缺陷分類
KR102177677B1 (ko) 계측 최적화 검사
KR20170086539A (ko) 프로세스 윈도우 특성묘사를 위한 가상 검사 시스템
US10670536B2 (en) Mode selection for inspection
TWI752100B (zh) 用於訓練檢查相關演算法之系統、非暫時性電腦可讀媒體及電腦實施方法
US9891538B2 (en) Adaptive sampling for process window determination
KR102629852B1 (ko) 다중-모드 검사를 위한 통계적 학습-기반 모드 선택
TWI798386B (zh) 用於新穎缺陷發現之損害探勘
US10557802B2 (en) Capture of repeater defects on a semiconductor wafer
TW202041852A (zh) 使用內嵌缺陷資訊之晶粒篩選