TWI643320B - 具寬能隙氧化物之深紫外線感測裝置 - Google Patents

具寬能隙氧化物之深紫外線感測裝置 Download PDF

Info

Publication number
TWI643320B
TWI643320B TW106131302A TW106131302A TWI643320B TW I643320 B TWI643320 B TW I643320B TW 106131302 A TW106131302 A TW 106131302A TW 106131302 A TW106131302 A TW 106131302A TW I643320 B TWI643320 B TW I643320B
Authority
TW
Taiwan
Prior art keywords
oxide
layer
deep ultraviolet
sensing
epitaxial
Prior art date
Application number
TW106131302A
Other languages
English (en)
Other versions
TW201913979A (zh
Inventor
洪瑞華
李彥助
董俊沂
蔡錫翰
鄭力中
Original Assignee
鼎元光電科技股份有限公司
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鼎元光電科技股份有限公司, 國立交通大學 filed Critical 鼎元光電科技股份有限公司
Priority to TW106131302A priority Critical patent/TWI643320B/zh
Priority to US15/878,788 priority patent/US20190081192A1/en
Application granted granted Critical
Publication of TWI643320B publication Critical patent/TWI643320B/zh
Publication of TW201913979A publication Critical patent/TW201913979A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本發明為一種具寬能隙氧化物之深紫外線感測裝置,其利用一氧化物磊晶感測層設置於基板,使深紫外線(Deep Ultraviolet)感測裝置具較佳之特性, ,且進一步使深紫外線刺激氧化物磊晶感測層之光電流大幅增加,特別是針對深紫外光波段(280-200 nm)之感測效能大為提升。

Description

具寬能隙氧化物之深紫外線感測裝置
本發明係關於一種感測裝置,特別是一種具寬能隙氧化物之深紫外線感測裝置。
隨著科技的日新月異,各種微加工以及製程技術的迅速發展,使得各種高科技元件均朝著精密化、微小化的趨勢發展,這些微小元件的應用非常的廣泛,舉凡軍事、工業、醫療、光電通訊、生物科技以及日常生活中,都有其應用的例子,例如手機、印表機的噴墨裝置、生物晶片、各種光通訊元件等。由於人類對於微小化材料的殷切需求,已由原來的微米(micrometer,10-6)範圍進入了奈米(nanometer,10-9)範圍的時代。
習知的半導體製程係使用光罩來將晶圓及半導體基底等圖案化以形成各種半導體裝置。隨著積體電路等技術的進步,促使產品微小化,因而於半導體裝置中之電路佈局密度及特徵線將更趨精密。
目前紫外光的殺菌能力已獲得證實,其中波長介於200奈米至280奈米的深紫外光可以直接破壞細菌與病毒中脫氧核醣核酸(DNA)與氧核醣核酸(RNA)的鍵結,且殺菌效率可以高達99%至99.9%,又以波長介於250奈米至270奈米的深紫外光的殺菌效果最強。
近年來對此,不論是學界或是業界,基於氮化鎵鋁在光電材料上的卓越研發基礎上,遂以氮化鎵鋁(AlGaN)材料系統所發展出的深紫外線(DUV)光電偵測器,已發現可以用於生化檢測應用、消毒、殺菌或軍事用途等。對於這一系列的元件,必須使用到高鋁含量的氮化鎵鋁磊晶層。但是隨著鋁的摻雜比例增加,會造成晶體品質變差。再者,相對於氮化鎵,n型氮化鎵鋁磊晶層摻雜效率 較低,導致在高鋁含量的n型氮化鎵鋁磊歐姆電極的形成方面,面臨極大的困難,對於深紫外線感測裝置而言,成品良率亦是隨之下降。
綜上所述,本發明就上述之技術缺點提出一種具摻雜結構之深紫外線感測裝置,其提供新式具寬能隙氧化物,以在奈米製程環境中,仍然具較佳之光電效能。
本發明之一目的,在於提供一種具具寬能隙氧化物結構之深紫外線感測裝置,其在提供具氧化物磊晶感測層,以提供較佳之深紫外線光感測效率。
針對上述之目的,本發明提供一種具寬能隙氧化物結構之深紫外線感測裝置,其包含一基板、一氧化物磊晶感測層與一線路層。氧化物磊晶感測層設置於該基板上,該氧化物磊晶感測層含氧鎵鋅等元素形成單晶之化合物磊晶薄膜;線路層設置於該氧化物磊晶感測層,該線路層具有一第一線路單元與一第二線路單元,該第一線路單元分布於該線路層之一第一側,該第二線路單元分布於該線路層之一第二側,該第一線路單元設有複數個第一延伸部,第二線路單元設有複數個第二延伸部,該複數個第一延伸部與該複數個第二延伸部交錯延伸並設置於該氧化物磊晶感測層上。此外一入射光入射至該氧化物磊晶感測層,該氧化物磊晶感測層產生一光電流至該線路層。本發明藉由鋅與鎵不同磊晶成長元素比例至氧化物磊晶感測層,因而讓氧化物磊晶感測層對於深紫外光具有較佳之感測效能。
本發明提供一實施例,其在於該氧化物磊晶感測層為一具單晶結構薄膜。
本發明提供一實施例,其在於該鋅元素之成長流量比例係以5-20sccm產生不同鋅比例之磊晶膜。
本發明提供一實施例,其在於該複數個第一延伸部與該複數個第二延伸部之間具有一連續延伸之蛇形溝槽。
本發明提供一實施例,其在於該氧化物磊晶感測層之X光繞射入射角為18.67度、37.77度與58.17度。
本發明提供一實施例,其在於該基板為藍寶石基板。
本發明提供一實施例,其在於該氧化物磊晶感測層在攝氏800度至950度的條件下以氮氣或氧氣退火。
本發明提供一實施例,其在於該氧化物磊晶感測層之感測波長位於150奈米(nm)至280奈米(nm)。
綜上所述,本發明提供一種具寬能隙氧化物結構之深紫外線感測裝置,以提供氧化物磊晶感測層之高能隙用以提供較佳之感測效能。
10‧‧‧深紫外線感測裝置
12‧‧‧基板
14‧‧‧氧化物磊晶感測層
16‧‧‧線路層
162‧‧‧第一線路單元
162a‧‧‧第一延伸部
164‧‧‧第二線路單元
164a‧‧‧第二延伸部
Gas‧‧‧氣體容器
L‧‧‧入射光
N2‧‧‧氮氣
O2‧‧‧氧氣
Sd1‧‧‧第一側
Sd2‧‧‧第二側
V1‧‧‧氣閥
第一A圖:其為本發明之一實施例之結構示意圖;第一B圖:其為本發明之一實施例之光照示意圖;第二圖:其為本發明之一實施例之晶格示意圖;第三圖:其為本發明之一實施例之光電流相對偵測波長之曲線圖;第四圖:其為本發明之另一實施例之退火示意圖;第五圖:其為本發明之另一實施例之晶格示意圖;第六圖:其為本發明之另一實施例之退火相對偵測波長之曲線圖;以及第七圖:其為本發明之一實施例之退火相對反應時間之曲線圖。
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明,說明如後:在下文中,將藉由圖式來說明本發明之各種實施例來詳細描述本發明。然而本發明之概念可能以許多不同型式來體現,且不應解釋為限於本文中所闡述之例式性實施例。
首先,請參閱第一A圖,其為本發明之一實施例之結構示意圖。如圖所示,本發明為一種具寬能隙氧化物結構之深紫外線感測裝置10,其包含一基板12、一氧化物磊晶感測層14與一線路層16。線路層16包含一第一線路單元 162與一第二線路單元164,第一線路單元162具有複數個第一延伸部162a,第二線路單元164具有複數個第二延伸部164a。此外,深紫外線感測裝置10具有一第一側Sd1與一第二側Sd2。氧化物磊晶感測層14為設置於基板12之上,而線路層16設置於氧化物磊晶感測層14之上,其中,第一線路單元162位於第一側Sd1而設置於氧化物磊晶感測層14之上,第二線路單元164位於第二側Sd2而設置於氧化物磊晶感測層14之上,其中,基板12為藍寶石基板,氧化物磊晶感測層14為通入鋅氣體,成長比例係以5-20sccm產生不同鋅比例之磊晶膜。其中sccm標準毫升數(standard-state cubic centimeter per minute,sccm),線路層16之材料為選自於鈦、鋁、金或其組合。
此外,該複數個第一延伸部162a自第一線路單元162所在位置,也就是自第一側Sd1向第二線路單元164之所在位置延伸,也就是向第二側Sd2延伸,而該複數個第二延伸部164a自第二線路單元164所在位置,也就是第二側Sd2向第一線路單元162所在位置延伸,也就是向第一側Sd1延伸,且該複數個第一延伸部162a與該複數個第二延伸部164a為交錯設置,因而交錯延伸,藉此該複數個第一延伸部162a與該複數個第二延伸部164a之間具有一連續延伸之蛇形溝槽G。此外,如第一B圖所示,線路層16之第一線路單元162與一第二線路單元164分別電性連接至一外部電路(圖未示),因而讓氧化物磊晶感測層14於接收到入射光L時,產生自第二線路單元164經氧化物磊晶感測層14至第一線路單元162之電子電洞變化,因而在第一線路單元162與第二線路單元164之間產生光電流至外部電路。
請參閱第二圖,其為本發明之一實施例之晶格示意圖。如圖所示,本發明之具摻雜結構之深紫外線感測裝置10,其氧化物磊晶感測層14為利用氧化鎵(Ga2O3)與氧化鋅(ZnO)化合而成氧化鋅鎵(ZnGa2O4,ZGO)之寬能隙半導體材料(5eV),本實施例利用氧化鋅鎵之高耐壓電場及高飽和電子速度以提供感測裝置較佳之光電特性;且其2 θ為18.67度、37.77度與58.17度具有峰值,也就是X光繞射之入射角為18.67度、37.77度與58.17度時,具有X光繞射光譜響應,相近於繞射標準聯合委員會(Joint Committee on Pow-der Diffraction Standard,JCPDS)卡片編號38-1240所提供之標準晶格圖的入射角位於18.4度(111)、37.34度(222) 與57.4度(511)。
再者,由於基板12為藍寶石基板,而有助於氧化鎵磊晶,並如第二圖所示,採用有機金屬化學氣相沉積(MOCVD)製程,使讓鋅元素均勻化合於氧化鎵之磊晶結構,並構成單晶結構薄膜。再者,如第三圖所示,其為本發明之一實施例之光電流相對偵測波長之曲線圖;本實施例之氧化鎵摻雜鋅,鋅氣體成長的比例為5sccm、10sccm與20sccm下,在紫外光波長(150奈米至300奈米)下,揭示有不錯的響應效果,也就是氧化物磊晶感測層14於紫外光波長下激發奈安培級之光電流。
請參閱第四圖,本發明之另一實施例之退火示意圖。如圖所示,在氧化物磊晶感測層14形成於基板12上後,對氧化物磊晶感測層14進行退火製程,例如:微波退火、雷射退火等,以灌入一氣體容器Gas之氣體並氣閥V1導入磊晶艙室(圖未示),進而讓氧化物磊晶感測層14在攝氏800度至950度的條件下進行退火,氣體容器Gas之氣體可為氮氣或氧氣。如第五圖所示,其為本發明之另一實施例之晶格示意圖,氧化物磊晶感測層14經攝氏800度退火後,晶格強度相較於如第二圖所示之晶格強度更佳。如第六圖所示,氧化鎵鋅在經過攝氏800度之氧氣退火或氮氣退火,深紫外線感測裝置10之感測波長坐落在150nm至280nm,甚至是200nm至250nm;如第七圖所示,藉由氧氣或氮氣對氧化物磊晶感測層進行退火,本實施例中,尤以利用氧氣灌注並在攝氏800度至950度左右之溫度條件下進行退火,因而讓反應時間縮短。
以上所述之實施例,本發明之具摻雜結構之深紫外線感測裝置,其為利用寬能隙氧化物製成感測層,以改善深紫外線感測裝置之感測強度,同時,更進一步藉由對日退火製程,以提供較低感測波常與較佳之感測效能。
惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。

Claims (9)

  1. 一種具寬能隙氧化物結構之深紫外線感測裝置,其包含:一基板;一氧化物磊晶感測層,其設置於該基板上,該氧化物磊晶感測層係由氧鎵鋅元素組合而成;以及一線路層,其設置於該氧化物磊晶感測層,該線路層具有一第一線路單元與一第二線路單元,該第一線路單元分布於該線路層之一第一側,該第二線路單元分布於該線路層之一第二側,該第一線路單元設有複數個第一延伸部,第二線路單元設有複數個第二延伸部,該複數個第一延伸部與該複數個第二延伸部交錯延伸並設置於該氧化物磊晶感測層上;其中,一入射光入射至該氧化物磊晶感測層,該氧化物磊晶感測層產生一光電流於該第一線路單元與該第二線路單元之間,以經由該線路層傳導至外部。
  2. 如請求項第1項所述之具寬能隙氧化物結構之深紫外線感測裝置,其中該氧化物磊晶感測層為一具單晶結構薄膜。
  3. 如請求項第1項所述之具寬能隙氧化物結構之深紫外線感測裝置,其中該複數個第一延伸部與該複數個第二延伸部之間具有一連續延伸之蛇形溝槽。
  4. 如請求項第1項所述之具寬能隙氧化物結構之深紫外線感測裝置,其中該氧化物磊晶感測層之材料為氧化鋅鎵(ZnGa2O4,ZGO)。
  5. 如請求項第1項所述之具寬能隙氧化物結構之深紫外線感測裝置, 其中該鋅元素之成長流量比例為5-20sccm。
  6. 如請求項第1項所述之具寬能隙氧化物結構之深紫外線感測裝置,其中該氧化物磊晶感測層之X光繞射入射角為18.67度、37.77度與58.17度。
  7. 如請求項第1項所述之具寬能隙氧化物結構之深紫外線感測裝置,其中該基板為藍寶石基板。
  8. 如請求項第1項所述之具寬能隙氧化物結構之深紫外線感測裝置,其中該氧化物磊晶感測層在攝氏800度至950度的條件下以氮氣或氧氣退火。
  9. 如請求項第1項所述之具寬能隙氧化物結構之深紫外線感測裝置,其中該氧化物磊晶感測層之感測波長位於150奈米(nm)至280奈米(nm)。
TW106131302A 2017-09-12 2017-09-12 具寬能隙氧化物之深紫外線感測裝置 TWI643320B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106131302A TWI643320B (zh) 2017-09-12 2017-09-12 具寬能隙氧化物之深紫外線感測裝置
US15/878,788 US20190081192A1 (en) 2017-09-12 2018-01-24 Solar-blind detecting device with wide-bandgap oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106131302A TWI643320B (zh) 2017-09-12 2017-09-12 具寬能隙氧化物之深紫外線感測裝置

Publications (2)

Publication Number Publication Date
TWI643320B true TWI643320B (zh) 2018-12-01
TW201913979A TW201913979A (zh) 2019-04-01

Family

ID=65431948

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106131302A TWI643320B (zh) 2017-09-12 2017-09-12 具寬能隙氧化物之深紫外線感測裝置

Country Status (2)

Country Link
US (1) US20190081192A1 (zh)
TW (1) TWI643320B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797422A (zh) * 2019-12-11 2020-02-14 中国科学院长春光学精密机械与物理研究所 一种ZnGaO紫外探测器及其制备方法
CN111081799A (zh) * 2019-12-11 2020-04-28 中国科学院长春光学精密机械与物理研究所 一种锌镓氧紫外探测器及其制备方法
CN114914312A (zh) * 2022-06-07 2022-08-16 中国人民解放军国防科技大学 一种日盲紫外探测器及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021021739A1 (en) 2019-07-31 2021-02-04 QXONIX Inc. Mass loaded bulk acoustic wave (baw) resonator structures, devices and systems
CN111029435A (zh) * 2019-12-11 2020-04-17 中国科学院长春光学精密机械与物理研究所 一种ZnGaO紫外探测器及其制备方法
CN111081798A (zh) * 2019-12-11 2020-04-28 中国科学院长春光学精密机械与物理研究所 一种锌镓氧材料薄膜及其制备方法
CN111293181B (zh) * 2020-02-18 2021-09-03 湖北大学 一种MSM型α-Ga2O3基日盲紫外光探测器
CN114866141A (zh) * 2022-04-24 2022-08-05 浙江理工大学 一种基于氧化镓日盲探测器的紫外光通讯系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW515108B (en) * 2001-08-09 2002-12-21 Univ Nat Cheng Kung Structure of GaN metal-semiconductor-metal-type UV sensor and method for producing the same
US20050181122A1 (en) * 2004-02-16 2005-08-18 Kabushiki Kaisha Kobe Seiko Sho Ultraviolet sensor and method for manufacturing the same
TWI293805B (en) * 2006-01-24 2008-02-21 Ind Tech Res Inst Ultraviolet detector
TWI520369B (zh) * 2013-05-22 2016-02-01 法國電氣股份有限公司 光敏裝置的製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW515108B (en) * 2001-08-09 2002-12-21 Univ Nat Cheng Kung Structure of GaN metal-semiconductor-metal-type UV sensor and method for producing the same
US20050181122A1 (en) * 2004-02-16 2005-08-18 Kabushiki Kaisha Kobe Seiko Sho Ultraviolet sensor and method for manufacturing the same
TWI293805B (en) * 2006-01-24 2008-02-21 Ind Tech Res Inst Ultraviolet detector
TWI520369B (zh) * 2013-05-22 2016-02-01 法國電氣股份有限公司 光敏裝置的製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797422A (zh) * 2019-12-11 2020-02-14 中国科学院长春光学精密机械与物理研究所 一种ZnGaO紫外探测器及其制备方法
CN111081799A (zh) * 2019-12-11 2020-04-28 中国科学院长春光学精密机械与物理研究所 一种锌镓氧紫外探测器及其制备方法
CN110797422B (zh) * 2019-12-11 2022-05-24 中国科学院长春光学精密机械与物理研究所 一种ZnGaO紫外探测器及其制备方法
CN114914312A (zh) * 2022-06-07 2022-08-16 中国人民解放军国防科技大学 一种日盲紫外探测器及其制备方法
CN114914312B (zh) * 2022-06-07 2024-04-26 中国人民解放军国防科技大学 一种日盲紫外探测器及其制备方法

Also Published As

Publication number Publication date
US20190081192A1 (en) 2019-03-14
TW201913979A (zh) 2019-04-01

Similar Documents

Publication Publication Date Title
TWI643320B (zh) 具寬能隙氧化物之深紫外線感測裝置
Zhang et al. High performance flexible visible-blind ultraviolet photodetectors with two-dimensional electron gas based on unconventional release strategy
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
JP5002703B2 (ja) 半導体発光素子
Liu et al. Visible-blind photodetectors with Mg-doped ZnO nanorods
US11695095B2 (en) Integration of III-Nitride nanowire on transparent conductive substrates for optoelectronic and electronic devices
CN104465849A (zh) 半导体光检测装置
CN113224140A (zh) 一种半导体基板上的薄膜生长方法及其应用
So et al. Rapid fabrication and packaging of AlGaN/GaN high-temperature ultraviolet photodetectors using direct wire bonding
Yoon et al. Stable and efficient green perovskite nanocrystal–polysilazane films for white LEDs using an electrospray deposition process
Wang et al. Surface chemical and local electronic properties of Al x Ga 1-x N epi-layers grown by MOCVD
KR101619110B1 (ko) 반도체 광전소자 및 이의 제조방법
O’Reilly et al. Room-temperature ultraviolet luminescence from γ-CuCl grown on near lattice-matched silicon
Chang et al. AlGaN/GaN MSM photodetectors with photo-CVD annealed Ni/Au semi-transparent contacts
TWI694495B (zh) 寬能隙氧化物磊晶薄膜之製造方法
JP5779005B2 (ja) 紫外線受光素子及びそれらの製造方法
Chen et al. Algan metal–semiconductor–metal photodetectors with low-temperature AlN cap layer and recessed electrodes
TWI818439B (zh) 用於製造經改善的石墨烯基板的方法及其應用
Babichev et al. Ultra-wide electroluminescence spectrum of LED heterostructures based on GaPAsN semiconductor alloys
JP3440992B2 (ja) シリコンと窒素を主成分とする発光材料及びその製造方法並びにこれを用いた発光素子
JP2010056508A (ja) 半導体素子
Fakhri et al. Preparation of GaN/Porous silicon heterojunction photodetector by laser deposition technique
Lee et al. High Brightness, Large Scale GaN Based Light-Emitting Diode Grown on 8-Inch Si Substrate
Chang et al. AlGaN/GaN two-dimensional electron gas metal-insulator-semiconductor photodetectors with sputtered SiO2 layers
JP5426650B2 (ja) 半導体発光素子