TWI635395B - 超高速晶片間通訊 - Google Patents

超高速晶片間通訊 Download PDF

Info

Publication number
TWI635395B
TWI635395B TW102107010A TW102107010A TWI635395B TW I635395 B TWI635395 B TW I635395B TW 102107010 A TW102107010 A TW 102107010A TW 102107010 A TW102107010 A TW 102107010A TW I635395 B TWI635395 B TW I635395B
Authority
TW
Taiwan
Prior art keywords
interface
phy
usb
ssic
mac
Prior art date
Application number
TW102107010A
Other languages
English (en)
Other versions
TW201401063A (zh
Inventor
蘇利哈雷 雷崗納森
大衛 哈瑞曼
阿努 馬克
薩西許 奇拉潘
卡爾西 凡迪維路
薩里尼 沙瑪
歷珊 沙瓦
Original Assignee
英特爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾股份有限公司 filed Critical 英特爾股份有限公司
Publication of TW201401063A publication Critical patent/TW201401063A/zh
Application granted granted Critical
Publication of TWI635395B publication Critical patent/TWI635395B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • G06F13/4291Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus using a clocked protocol
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4027Coupling between buses using bus bridges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4247Bus transfer protocol, e.g. handshake; Synchronisation on a daisy chain bus
    • G06F13/426Bus transfer protocol, e.g. handshake; Synchronisation on a daisy chain bus using an embedded synchronisation, e.g. Firewire bus, Fibre Channel bus, SSA bus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Information Transfer Systems (AREA)
  • Power Sources (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

文中提供一種介面,用於裝置中單元之間之低功率、高頻寬通訊。該介面包含USB 3.0系統介面及超高速晶片間(SSIC)協定適配器,經組配以促進該USB3.0系統介面及多行動產業處理器介面實體層(M-PHY)介面之間之通訊。

Description

超高速晶片間通訊
本發明關於使用超高速晶片間(SSIC)之裝置中使用晶片間通訊。
行動運算及通訊平台,諸如智慧手機及平板電腦,通常包含應用處理器系統晶片(SoC)及其他硬體裝置諸如蜂巢式數據機、無線聯網(WiFi)裝置及NAND儲存裝置。該些硬體組件間之通訊需要介面與諸如控制器之硬體組件的界定以實施介面及相關軟體堆疊而控制通訊。所需硬體及軟體組件的發展及後續調諧以確保最佳的實施,此為資源密集運用,其可影響解決方案上市的時間。目前晶片間通訊係藉由平台內部使用之高速晶片間介面處置以與裝置通訊。然而,此介面侷限於480Mbps且不提供頻寬可擴展性。如文中所使用,晶片間指出裝置內部通訊,其可為晶片或內部電路板之間。
通用串列匯流排(USB)為用於大量運算及消費者應用普及的週邊互連選擇。許多系統提供全面軟體 驅動程式組以支援一般可用的USB週邊裝置。此外,現有USB生態系統,包括USB矽供應商、設計商、及驗證及測試廠商,降低了USB主機及週邊裝置之產品製造的實施成本。USB 3.0規格增加5Gbps轉移速度之支援,以處理較高頻寬之需要。然而,USB 3.0規格不符合嵌入晶片間介面關於電力及EMI健全性之需求。
100‧‧‧運算系統
102‧‧‧系統晶片
104‧‧‧顯示裝置
106‧‧‧觸控螢幕感應器
108‧‧‧動作感應器
110‧‧‧基帶數據機
112‧‧‧高速儲存系統
114‧‧‧高清晰度視訊介面
116、140‧‧‧埠
118‧‧‧處理器
120‧‧‧系統晶片結構
122‧‧‧儲存系統
124‧‧‧I2S介面
126‧‧‧脈衝編碼調變介面
128‧‧‧行動產業處理器介面--顯示串列介面
130‧‧‧高速點對點串列匯流排
132‧‧‧I2C介面
134‧‧‧I2C匯流排
136‧‧‧USB 3.0裝置控制器
138‧‧‧高功率驅動器
142‧‧‧超高速晶片間主機控制器
144‧‧‧第一行動實體層
146、158‧‧‧超高速串列介面
148、160、168、172、202、310‧‧‧行動實體層
150、162、174‧‧‧超高速晶片間裝置控制器
152‧‧‧I2S介面
154‧‧‧RF及天線前端
156‧‧‧第二行動實體層
164‧‧‧靜態隨機存取記憶體
166‧‧‧動態隨機存取記憶體
170‧‧‧串列介面
176‧‧‧高清晰度多媒體介面
200、300‧‧‧超高速間片間實施
204‧‧‧超高速晶片間控制器堆疊
206、312‧‧‧協定層
208‧‧‧USB 3.0系統軟體介面
210、314‧‧‧鏈路層
212‧‧‧PIPE3
214‧‧‧鏈路訓練狀況狀態機
216、308‧‧‧超高速晶片間協定適配器
218、320‧‧‧參考行動實體層模組介面
302‧‧‧控制堆疊
304‧‧‧USB軟體堆疊
306‧‧‧USB 3.0超高速媒體存取控制
316‧‧‧鏈路訓練狀況狀態機狀態資訊
317‧‧‧握手線
318‧‧‧PIPE3介面
322‧‧‧實體適配器鏈路狀態機
324‧‧‧傳輸參考行動實體層模組介面控制區塊
326‧‧‧傳輸延遲緩衝器
328‧‧‧脈衝寬度調變/遠端暫存器存取協定
330‧‧‧組態介面
332‧‧‧接收控制區塊
334‧‧‧去傾斜
336、614‧‧‧彈性緩衝器
338‧‧‧邊帶匯流排
340‧‧‧共同時脈信號
342‧‧‧鎖相迴路
344‧‧‧超高速晶片間主機/裝置鏈路
400、500‧‧‧方法
402、404、406、408、410、412、414、416、418、420、422、424、426、428、430、432、502、504、506、508、510、512、514、516、518、520、522、524、526、528‧‧‧區塊
600‧‧‧非暫態機器可讀取媒體
602‧‧‧邏輯
604‧‧‧控制鏈路
606‧‧‧鏈路訓練狀況狀態機控制器
608‧‧‧行動實體層控制器
610‧‧‧去傾斜器
612‧‧‧拌碼器/解拌器
616‧‧‧條串化器/解條串化器
圖1為可依據實施例使用之運算系統的方塊圖;圖2為可依據實施例使用之SSIC(超高速晶片間)實施的示意;圖3為依據實施例之SSIC實施的方塊圖;圖4為依據實施例之透過SSIC鏈路發送資料之方法的流程圖;圖5為依據實施例之於裝置中SSIC通訊之方法的流程圖;以及圖6為依據實施例之保持用於實施SSIC通訊之程式的非暫態機器可讀取媒體。
揭露及圖式通篇使用相同編號以代指類似組件及特徵。100系列編號係指原始在圖1中所發現之特徵;200系列編號係指原始在圖2中所發現之特徵,以此類推。
目前USB 3.0規格提供用於與外部裝置之高速界接,例如最高約5GB或更高。然而,因為超高速實體層(PHY)之高電力消耗,標準USB 3.0超高速介面無法用於始終連接裝置的行動平台內部。例如,因為超高速PHY係設計用以驅動長度約三公尺之電纜,電力需求遠高於裝置內晶片間通訊所需。此外,用於與外部裝置界接之驅動程式未調諧通訊頻率以避免與其他裝置之EMI問題,諸如與行動提供者用於無線廣域網路(WWAN)通訊之內部無線電數據機。為滿足此需求,文中所描繪之實施例實施超高速晶片間(SSIC)介面作為USB3.0之最佳晶片間版本。
SSIC介面組合支援超高速協定之健全軟體與低功率行動產業處理器介面(MIPI)實體層(M-PHY),以提供可用於具最小資源投資之行動平台的介面。不同於標準的超高速,其通常固定在5Gbps,SSIC提供始自低至1.25Gbps之可擴展頻寬,以減少介面的電力消耗。SSIC使用MIPI M-PHY規格作為互連之實體層以符合嵌入晶片間介面之需求。MIPI M-PHY規格說明具高頻寬能力之連續實體層技術,其係特定開發用於行動應用以獲得與極佳功率效率組合之低接腳數。
然而,開發M-PHY規格假定將開發新作業及存取軟體以取代目前軟體介面。文中實施例中所說明之SSIC協定適配器充當標準USB 3.0超高速媒體存取控制 器(MAC)及M-PHY單元間之中間單元,翻譯每一連接之單元間之響應,並提供高速通訊同時允許目前技術重用。
在下列說明及申請項中,可使用「耦接」及「連接」用詞連同其衍生字。應理解的是該些用詞不意在相互同義。而是,在特定實施例中,「連接」可用以指出二或更多元件係相互直接實體或電接觸。「耦接」可表示二或更多元件係直接實體或電接觸。然而,「耦接」亦可表示二或更多元件並非相互直接接觸,但仍相互合作或互動。
若干實施例可以硬體、韌體、及軟體之一者或組合實施。若干實施例亦可實施為儲存於機器可讀取媒體上之指令,其可藉由運算平台讀取及執行以實施文中所描繪之作業。機器可讀取媒體可包括用於以例如電腦之機器可讀取之形式儲存或傳輸資訊的任何機構。例如,機器可讀取媒體可包括唯讀記憶體(ROM);隨機存取記憶體(RAM);磁碟儲存媒體;光學儲存媒體;快閃記憶體裝置;或電、光學、聲學或其他形式傳播信號,例如載波、紅外線信號、數位信號,或傳輸及/或接收信號之介面等等。
實施例為實施或範例。說明書中參照「實施例」、「一實施例」、「若干實施例」、「各式實施例」、或「其他實施例」表示結合實施例中所說明之特定特徵、結構、或特性係包括於本發明之至少若干實施例中,但 不一定為所有實施例。「實施例」、「一實施例」、或「若干實施例」之各式出現不一定均指相同實施例。
並非文中所說明及描繪之所有組件、特徵、結構、特性等需包括於特定實施例中。若「可」、「可能」、「能」、「可以」包括說明書陳述之組件、特徵、結構、或特性,則非必要包括例如組件、特徵、結構、或特性。若說明書或申請項提及「一」元件,則不一定表示僅有一元件。若說明書或申請項提及「一額外」元件,則並未排除有一個以上的額外元件。
請注意,儘管已參照特定實施說明若干實施例,依據若干實施例之其他實施亦為可能。因此,圖式中所描繪及/或文中所描繪之電路元件或其他特徵的配置及/或順序不需一定要按所描繪及說明之特定方式配置。依據若干實施例之許多其他配置亦為可能。
在圖中所示每一系統中,元件在若干狀況下可各具有相同代號或不同代號以表示所代表之元件可不同及/或類似。然而,元件可充分彈性以具有不同實施並與文中所示或所描繪之部分或全部系統作業。圖中所示各式元件可相同或不同。稱為第一元件者及稱為第二元件者是隨意的。
圖1為依據實施例可使用之運算系統100的方塊圖。運算系統100可包括智慧手機、平板電腦、膝上型電腦、桌上型電腦、伺服器節點及類似者。在圖1所描繪之示範實施例中,運算裝置100包括內建於可用以實施 智慧手機或平板電腦功能之裝置的若干單元或晶片。
例如,運算裝置100可包括系統晶片(SoC)102,其用以實施運算裝置100之基本作業。可包括顯示裝置104以提供來自SoC 102之輸出至使用者。觸控螢幕感應器106及動作感應器108可用以提供使用者輸入至運算裝置100。基帶數據機110可用以連接運算裝置100至無線廣域網路(WWAN),諸如行動電話網路。運算裝置100亦可包括高速儲存系統112,其可用以例如儲存需以高頻寬轉移之大量資料,諸如視訊及音頻檔案。如文中所使用,視訊檔案包括視訊及音頻資料,並可包括高清晰度視訊影像,諸如1920×1080(1080p規格下)之非交錯清晰度。可包括高清晰度視訊介面114以經由連接至埠116之電纜將視訊檔案轉移至外部裝置。可理解的是並非所有該些單元均呈現於所有實施例中。此外,可包括任何數量之其他單元以增加其他功能,諸如音頻系統以播放音頻檔案,及無線網路適配器(WIFI)用以連接至無線局域網路(WLAN)等等。
SoC 102可進一步包括處理器118及藉由SoC結構120或匯流排耦接至處理器118之若干其他系統。例如,SoC 102可經由SoC結構120耦接至儲存系統122。儲存系統122可包括動態隨機存取記憶體(DRAM)、靜態隨機存取記憶體(SRAM)、唯讀記憶體(ROM)、及與處理器118相關之暫存器的任何組合。儲存系統122可用以保持作業資料及程式,當藉由處理器118執行時提供 SoC 102之基本功能,及因而運算裝置100之基本功能。例如,程式可包括電話功能用以透過基帶數據機110以置放語音呼叫至WWAN,例如經由I2S介面124,其使用脈衝編碼調變(PCM)編碼語音信號。PCM介面126可用以與基帶數據機110交換PCM信號。
SoC 102使用顯示驅動程式驅動顯示裝置104,例如耦接至SoC結構120之行動產業處理器介面一顯示串列介面(MIPI DSI)128。MIPI DSI 128經由高速點對點串列匯流排130,其包括高速時脈通道及一或多個資料通道,而耦接至顯示裝置104。SoC結構120可包括I2C介面132以驅動I2C匯流排134,其可用以將觸控螢幕感應器106及動作感應器108耦接至SoC 102。
SoC 102可包括USB 3.0介面以將外部USB 3.0匯流排上之裝置提供至高速介面,例如最高5GB/s。USB 3.0介面可包括耦接至SoC結構120之USB 3.0裝置控制器136,及高功率驅動器138經組配以經由裝置上之埠140而驅動USB電纜。
在文中所描繪之實施例中,SoC 102可包括耦接至SoC結構120之超高速晶片間(SSIC)主機控制器142。SSIC主機控制器142經組配以允許位於運算裝置100內之SoC 102及高速裝置間之通訊。例如,該些裝置可包括基帶數據機110、高速儲存系統112、及高清晰度視訊介面114等等。
SSIC主機控制器142可鏈接至多M-PHY以界 接至特定裝置。例如,第一M-PHY 144可驅動超高速串列介面146至位於基帶數據機110內之M-PHY 148。基帶數據機110中M-PHY 148耦接至SSIC裝置控制器150,SSIC裝置控制器150耦接至基帶數據機110之結構或匯流排。基帶數據機110之結構亦可包含I2S介面152,其可耦接至PCM介面126以接受來自SoC 102之PCM信號。基帶數據機110之結構中的RF及天線前端154可用以耦接運算裝置100至WWAN進行語音及資料通訊。諸如第四代(4G)行動服務之高速資料通訊可發生於大幅頻寬,獲益自經由具SoC 102之SSIC介面的高速通訊。
耦接至SoC 102中之SSIC主機控制器142的第二M-PHY 156可驅動超高速串列介面158至位於高速儲存系統112內之M-PHY 160。M-PHY 160耦接至SSIC裝置控制器162,SSIC裝置控制器162耦接至高速儲存系統112之結構或匯流排。高速儲存系統112之結構亦可包括諸如SRAM 164或DRAM 166之記憶體或儲存裝置的任何組合。如所說明,高速儲存系統112可用以保持需要高頻寬以適當播放之大檔案,諸如高清晰度視訊檔案。因此,高速儲存系統112可獲益自至SoC 102之SSIC介面。此外,至高速儲存系統112之串列介面158可從多通道形成,其中,每一通道包括成對傳輸及接收線。每一通道可藉由例如在裝置及主機之單一組M-PHY支援,因而多通道方法可包括成群多M-PHY以增加頻寬。
耦接至SoC 102中之主機控制器142的另一 M-PHY 168可驅動串列介面170至位於高清晰度視訊介面114內之M-PHY 172。M-PHY 172耦接至SSIC裝置控制器174,SSIC裝置控制器174耦接至高清晰度視訊介面114之結構或匯流排。高清晰度視訊介面114之結構可包括例如用以經由連接至埠116之電纜而驅動電視的高清晰度多媒體介面(HDMI)176或其他裝置。關於高速儲存系統112,視訊檔案之頻寬需求可獲益自SSIC。此外,組合多M-PHY之多通道方法亦可用以增加至高清晰度視訊介面114之通訊的頻寬。
以上所說明之每一SSIC控制器可使用類似結構,允許硬體及軟體模組重用。此外,在文中所描繪之實施例中,目前高速控制器及M-PHY單元間之新中間介面類型或橋接器允許目前技術中使用之許多模組重用。如文中所描繪,橋接器稱為SSIC協定適配器,並關於圖2而進一步討論。
圖2為依據實施例之可使用之超高速晶片間(SSIC)實施200的示意。SSIC實施200包含與SSIC控制器堆疊204界接之一或多個M-PHY 202,SSIC控制器堆疊204包括硬體及軟體組件。SSIC控制器堆疊204類似於協定層206中之目前USB 3.0超高速控制器及USB 3.0系統軟體介面208以允許重用現有超高速軟體。
如進一步關於圖3所說明,鏈路層210提供流程控制、訓練及驗證信號、及通訊鏈路之封包定框。鏈路層210亦可從目前可用模組建構,以允許開發技術重用 。鏈路層210提供稱為PIPE3 212之USB 3.0相容介面,其通常用以與高功率驅動電路界接而與外部裝備通訊。鏈路層210亦提供鏈路訓練狀況狀態機(LTSSM)214之介面,其提供SSIC之控制。
在文中所描繪之實施例中,個別M-PHY橋接器區塊或SSIC協定適配器216提供鏈路層210及M-PHY202間之橋接邏輯。該邏輯實施關於包括鏈路層210之PIPE3介面及每一M-PHY 202之參考M-PHY模組介面(RMMI)218間之轉移信號之SSIC的特定功能。SSIC協定適配器216實施機構以允許SSIC實施200使例如SSIC控制器堆疊204之上層操作如同連接至正常USB 3.0超高速鏈路。此功能可藉由追蹤鏈路訓練狀況狀態機(LTSSM)214及提供預期響應至鏈路層210而予實施。
SSIC實施200組合SSIC控制器堆疊204之USB 3.0超高速協定的目前軟體支援與低功率MIPI M-PHY 202以致能可受具最小資源投資之行動平台影響的SSIC實施200。不同於通常固定在5Gbps之標準超高速,SSIC實施200提供始自低至1.25Gbps之可擴展頻寬以減少介面之電力消耗。此關於圖3進一步詳細討論。
圖3為依據實施例之SSIC實施300的方塊圖。亦參照圖1,SSIC實施300可用以提供SoC 102及其他裝置間之SSIC通訊鏈路,其他裝置諸如基帶數據機110、高速儲存系統112、或高清晰度視訊介面114。在主機或裝置單元中,SSIC實施300包括控制堆疊302,控制堆 疊302包括USB軟體堆疊304及USB 3.0超高速媒體存取控制(MAC)306。如文中所描繪,稱為SSIC協定適配器308之橋接器層包括於SSIC實施300中,以提供控制堆疊302及MIPI M-PHY 310間之介面。USB軟體堆疊304、USB 3.0超高速MAC 306、及SSIC協定適配器308形成關於圖1所說明之SSIC主機控制器142。
USB 3.0超高速MAC 306可以藉由SSIC規格界定之不同鏈路速度作業,例如藉由高速檔位及速率。USB軟體堆疊304未針對SSIC實施300而從標準USB 3.0超高速改變。在USB 3.0超高速MAC 306中,協定層312在SSIC實施300中亦未改變。然而,USB 3.0超高速MAC 306中之鏈路層314可針對SSIC實施300具有若干改變,其係於SSIC規格中界定。例如,LTSSM狀態機器316可重新組配以具有雙向通訊,諸如保持與SSIC協定適配器308同步之握手線317。為追蹤鏈路狀態並控制通訊,USB 3.0超高速MAC 306經由PIPE3介面318而與SSIC協定適配器308傳達LTSSM狀態資訊316及資料封包。
SSIC協定適配器308實施USB 3.0超高速MAC 306之PIPE3介面308及M-PHY 310之參考M-PHY模組介面(RMMI)320間之通訊。SSIC協定適配器308實施機構以允許USB 3.0超高速MAC 306及USB軟體堆疊304操作如同連接至USB 3.0超高速鏈路,例如藉由追蹤LTSSM 316及提供鏈路上之預期響應。
為實施該些功能,SSIC協定適配器308經由RMMI 320從PIPE3介面318傳達USB 3.0封包至M-PHY 310,並映射SSIC之超高速功率狀態。如圖1中所示,單一PIPE3介面318可界接至多RMMI 320以提供多通道通訊。例如,多M-PHY 144、156、及168可與單一SSIC主機控制器142一起使用。此外,SSIC協定適配器308如SSIC規格中所說明處置傳輸拌碼器及接收解拌器。
此外,SSIC協定適配器308可調整鏈路速度,使裝置中之單元間之EMI干擾最小,例如,若基帶數據機偏移至類似頻率,則改變資料轉移率。如以下進一步詳細說明,該些功能係藉由SSIC協定適配器308內的個別區塊實施。
實體適配器鏈路狀態機(PA LINK SM)322代表SSIC協定適配器308之主狀態機。PA LINK SM 322匯集MIPI M-TX及M-RX資料及功率狀態以製造PIPE3介面318之資料及功率狀態。PA LINK SM 322亦處置各式作業及速度模式之高階控制。如PIPE3介面318之規格中所界定,支援接收器檢測及低頻週期信號(LFPS)接受。熱重置、鏈路連接、及鏈路脫離均於PA LINK SM 322中實施。追蹤USB 3.0超高速LTSSM狀態以翻譯PIPE3電力及資料狀態為RMMI電力及資料狀態,允許USB 3.0超高速MAC作動如同連接至正常USB 3.0超高速鏈路。
藉由PA LINK SM 322控制傳輸RMMI控制 區塊(TX RMMI CTRL)324。TX RMMI CTRL 324包括高速(HS)資料路徑中之拌碼器及傳輸資料多工。TX RMMI CTRL 324為叢發流量而與RMMI介面320之M-TX線界接。TX RMMI CTRL 324亦負責多通道組態中之通道管理。在多通道組態中,來自PIPE3介面之傳輸資料被條串化跨越RMMI資料通道上之不同通道。
例如,當M-PHY 310處於STALL模式,同時USB 3.0超高速MAC 306在傳輸時,TX DLY BUF 326可包括用於U0.STALL SUP埠。如進一步關於表1所說明,檢測連續邏輯閒置(LI)狀態以進入M-TX中MIPI M-PHY STALL狀態。U0.STALL SUP埠係在SSIC協定適配器308中實施,且對於USB超高速MAC 306是清晰的。
PWM/RRAP 328實施脈衝寬度調變(PWM)低速(LS)叢發及遠端暫存器存取協定(RRAP)支援。RRAP可用以編程遠端裝置M-PHY中之暫存器。在RXDETECT.LS-MODE期間,當鏈路經組配實施自動設定檔編程時,PWM/RRAP 328接受來自PA LNK SM 322之存取命令。當經組配實施非自動模式時,包含軟體且此區塊接受來自軟體或韌體之存取命令。
組態介面(CFG INTF)330處置M-TX及M-RX之本機MIPI M-PHY設定檔暫存器之編程。主功能為進出HIBERN8狀態、諸如至HS-BURST模式之高速(HS)模式改變、及升級或降級檔位及速率。CFG INTF 330接收來自PA LINK SM 322或軟體或韌體之存取命令。
RX CTRL 332與RMMI介面320之M-RX線界接。此區塊之功能包括M-RX上MIPI功率狀態解碼、用於修正歷經不同延遲時間之多通道資料的去傾斜334、及用於HS資料之解拌器。RX CTRL 332亦可包括彈性緩衝器336,例如當多M-PHY實施中之彈性緩衝器停用時。
可致能接收資料路徑中之彈性緩衝器336以管理主機及裝置中作業頻率間之不匹配。若實施多通道實施,可配合彈性緩衝器336中之功能處置通道至通道去傾斜管理。傾斜係指藉由從來源至目的地之不同傳輸延遲,或藉由具有例如於M-PHY 310中實施之彈性緩衝器的獨立通道,所造成之通道至通道延遲不匹配。因此,為簡化去傾斜,可停用多通道組態中使用之M-PHY中的彈性緩衝器。
對多通道組態而言,RX CTRL 332之主要功能為去傾斜之管理。去傾斜緩衝器334之實施包含使用MK0符號及SKP插入或刪除功能尋找叢發標記。標記係用以對齊不同通道上之資料串流。因而,維持跨越通道之匯入資料的完整性。每一通道解拌器經實施用於多通道組態。在解拌後,從多通道接收之資料串連並發送至PIPE3介面318中之接收資料線。RX CTRL 332亦翻譯個別M-PHY通道功率狀態至PA LINK SM 322,以指出PIPE3介面318之功率狀態。在低速脈衝寬度調變(PWM)模式期間,接收之資料未解拌但發送至PWM/RRAP 328。
MIPI M-PHY 310為SSIC鏈路之實體層,相容 於MIPI M-PHY規格。MIPI M-PHY 310以不同高速(HS)檔位及速率實施高頻寬連續實體層。其亦支援位元或PWM方案以1檔(低速)用於編程遠端M-PHY設定檔。M-PHY 310經由RMMI介面320與SSIC協定適配器308界接。在大部分實施中,呈現邊帶(SB)匯流排338以編程M-PHY 310中之暫存器。邊帶匯流排338藉由埠耦接至SoC之結構,允許直接存取M-PHY暫存器。MIPI M-PHY 310亦可提供共同時脈信號340用於SSIC實施300,例如來自鎖相迴路(PLL)342。
SSIC主機/裝置鏈路344可為USB主機或裝置控制器。此鏈路相容於SSIC[SSIC]規格。對主機鏈路而言,此控制器具有主機功能及USB系統軟體及應用。對裝置鏈路而言,此控制器具有裝置驅動程式及功能。鏈路之實體層相容於MIPI M-PHY[MPHY]。
建立通訊
SSIC協定適配器建立及維持USB超高速MAC及M-PHY層間之通訊,例如表1中所示,藉由映射預期狀態及MAC及M-PHY間之轉換。因而,M-PHY之功能一般不可見於握手線外部之MAC,且MAC實施如同連接至標準高速USB 3.0實體層(PHY)。對於作業系統等級及更高之軟體而言,鏈路一般為標準USB 3.0。
用於建立通訊之程序始自狀態1,其中MAC中鏈路訓練及狀況狀態機器處於超高速停用狀態( SS.DISABLED)。此時,M-PHY亦斷電(未供電/停用)。當鏈路未供電時,或若已主張本機重置,則鏈路處於此狀態。當LTSSM轉換為更活躍狀態時,例如藉由取消主張本機重置,MAC如狀態2中所示從SS.DISABLED轉換至RX.DETECT。SSIC協定適配器接著可將M-PHY從停用轉換至HIBERN8。
SSIC協定適配器未對於MAC之LTSSM發佈的RX.DETECT命令(狀態3)採取動作,但返回「無檢測到裝置」響應以保持MAC掌握鏈路。同時,SSIC協定適配器使用M-PHY檢測機構以判定是否有任何其他裝置耦接至鏈路。具體地,M-PHY傳輸器(Tx)發送零信號,稱為DIFF N(或DIF N)以觸發耦接之裝置啟用(Tactivate),同時M-PHY接收器尋找DIFF N以觸發接收(Tactivation)。
一旦M-PHY檢測到啟用,例如藉由耦接之裝置,鏈路系統可進入狀態4。此發生於MPHY Tx已完成發送用於Tactivate之DIFF-N且MPHY Rx已接收對應DIFF-N信號。SSIC協定適配器接著引領M-PHY進入高速(HS)狀態,其中其已就緒可發送訓練符號。訓練符號為一組資料圖樣,藉由接收器用以建立與傳輸器之高速鏈路。在訓練完成後,SSIC協定適配器發送信號予MAC,裝置耦接至鏈路,狀態從RX.DETECT改變為POLLING。M-PHY之狀態從HIBERN8改變為STALL以等候來自MAC之資料封包。
此時,裝置之間已建立通訊,且高速資料封包已轉移。對系統而言,主機及裝置之間已建立正常USB 3.0高速通訊鏈路。SSIC協定適配器於MAC及M-PHY之間傳送將經由鏈路發送之資料。軟體堆疊中系統軟體接著可判定裝置類型並裝載適當驅動程式,例如來自系統記憶體或來自裝置本身。通訊係以HS BURST模式經由SSIC協定適配器發生。
若需要資料暫停,例如有一段期間無資料發送,SSIC協定適配器可驅動M-PHY進入STALL模式, 如狀態5中所示。STALL為伺機狀態,其於M-PHY通訊期間保存電力,且於較高層級不可見。例如,在M-PHY之STALL期間,MAC藉由保持在Polling模式而持續尋求資料轉移。鏈路之任一端可進入STALL模式,例如SSIC協定適配器驅動M-PHY Tx以驅動DIFF N至鏈路上而引領Tx進入STALL,或從使M-PHY Rx至處於STALL之其他裝置的M-PHY接收DIFF N。
一旦資料可用於發送或接收,如藉由於M-PHY之間交換之一連串信號指出,在狀態6,SSIC協定適配器將M-PHY狀況從STALL改變回至HS-BURST,並發信號通知MAC,狀況可從POLLING改變至U0(正常通訊)。在此實施中,再一次因為各自接收藉由SSIC協定適配器提供之預期信號,M-PHY或MAC相互均不知道。此狀態轉進至狀態7,其中MAC假定發生正常通訊(U0),且當資料可用於鏈路上時,M-PHY於HS BURST及STALL之間來回移動。藉由SSIC協定適配器使MPHY-TX嵌入填料符號或邏輯閒置(LI)符號,同時MPHY-Rx因此移除該些符號,通訊期間可實施資料傳輸較短暫停。該些狀態之轉換對MAC而言是清晰的。
在POLLING狀態期間,發送之資料僅可用以訓練用於USB 3.0之M-PHY間之鏈路並組配裝置。相反地,U0狀態為實際通訊狀態。在U0期間,發生實際資料通訊,包括裝置組態、驅動程式裝載、及實質性資料交換。
若資料量下降,諸如若裝置及主機間之通訊暫時終止,SSIC協定適配器可接受指出MAC從U0切換至U3(暫停通訊)狀態之信號,如狀態8中所示。當系統軟體無進一步資料經由MAC發送時,發生U0至U3轉換。SSIC協定適配器接著可將M-PHY從HS-BURST切換至STALL,及接著至HIBERN8。如狀態9中所示,只要裝置之間無進一步資料發送,MAC可保持處於U3且M-PHY處於HIBERN8。
一旦需要恢復通訊,如狀態10中所示,MAC可切換,指出狀態準備從U3至U0,且SSIC協定適配器可重新建立通訊。在此狀況下,MAC發送封包用於重新訓練鏈路,其實質上可為SSIC協定適配器忽略。SSIC協定適配器使用M-PHY以重新訓練鏈路,接著將M-PHY從HIBERN8切換至STALL,最後至HS-BURST。此時,SSIC協定適配器可通知MAC已建立通訊,且狀態可從U3改變至U0。一旦建立通訊,如關於圖4所說明,封包串流可於裝置之間傳達。
圖4為依據實施例之透過SSIC鏈路發送資料之方法400的流程圖。為簡化說明,程序界定為封包串流經由鏈路從USB軟體堆疊轉移至裝置。方法400始自區塊402,其中在系統之記憶體上運行之程式,諸如關於圖1討論之SoC 102,具體地藉由將資料儲存於記憶體中之連續區,而建立用於轉移之資料區塊。在區塊404,主機程式發送記憶體位置之指標(及若干位元組)至主機控制 器,例如在MAC中,區塊備妥且應透過USB 3.0介面轉移至另一裝置。在區塊406,MAC存取資料區塊並檢查鏈路進行作業。在區塊408,MAC判定鏈路是否備妥可進行使用。可理解的是MAC作動如同鏈路為USB 3.0超高速鏈路,且通常不知道用以維持與PA LINK SM 322同步之握手外部的SSIC鏈路(圖3)。若鏈路未備妥,監控來自MAC之LTSSM命令的SSIC協定適配器,便於區塊410建立通訊鏈路。此可藉由關於表1所討論之技術實施。若於鏈路建立期間發生錯誤,如區塊412中判定,SSIC協定適配器便於區塊414向MAC報告USB 3.0格式化錯誤,並於區塊416處理終止。
若無誤地建立通訊,流程便前進至區塊418。在區塊418,MAC便將位元串流從記憶體區塊格式化為USB 3.0封包。在區塊420,MAC透過PIPE3介面發送封包至SSIC協定適配器。
在區塊422,在多通道實施中,SSIC協定適配器條串化資料跨越多通道以提供用於鏈路之更高表面頻寬。在區塊424,SSIC協定適配器接著拌碼每一通道之資料。拌碼使用演算法使線上位元圖樣隨機化,以管理鏈路線路上之能量及頻率。此避免能量需要大於驅動程式所可提供,並降低裝置間之EMI。該演算法對於鏈路之每一端的SSIC協定適配器為已知,以允許資料在裝置解拌。在區塊426,SSIC協定適配器發送資料至M-PHY進行傳輸。在區塊428,M-PHY將8位元區塊轉換為10位元區塊 用於串行鏈路。該編碼允許於串行鏈路之另一端重新產生時脈信號而不需使用時脈專用線。在區塊430,M-PHY發送資料至裝置中之對應M-PHY。
接著在區塊432處理終止。此於一旦符號從對應裝置M-PHY返回表示資料已成功接收便可實施。此外,SSIC協定適配器可接收LTSSM命令表示MAC已進入U3模式。回應於此,SSIC協定適配器可將M-PHY置於STALL模式,接著置於HIBERN8模式。若MAC保持處於U0,但無更多進一步資料,SSIC協定適配器可將M-PHY置於STALL模式,並於後續時間延遲之後,將M-PHY置於HIBERN8模式。
圖5為依據實施例之裝置中SSIC通訊之方法500的流程圖。方法500始自區塊502,當M-PHY接收來自另一裝置上之對應M-PHY的信令封包時,表示該另一裝置已備妥發送資料封包。在區塊504,SSIC協定適配器判定鏈路是否備妥。若否,在區塊506,SSIC協定適配器發出LTSSM命令以通知MAC,將開始資料轉移。若MAC發出一錯誤,如區塊508中判定,則SSIC協定適配器可等候或重新發出命令。若MAC仍報告錯誤,如區塊508中判定,則在區塊510,可向裝置報告錯誤。接著在區塊512處理終止。若在區塊508未識別到錯誤信息,或MAC已於區塊504報告備妥,處理流程前進至區塊514。
在區塊514,M-PHY透過鏈路接收來自裝置之串列資料。在區塊516,M-PHY將10位元區塊轉換為 8位元區塊,重新形成封包資料。在區塊518,封包資料透過RMMI介面被發送至SSIC協定適配器。在區塊520,若使用多通道實施法,則SSIC去傾斜通道以補償通道上時間延遲之差異。
在區塊522,SSIC協定適配器接著解拌位元串流以重新形成封包串流。在區塊524,在多通道實施法中,資料從多通道解條串化,以重新組建藉由裝置發送之封包串流。
在區塊526,SSIC協定適配器發送封包串流至MAC。在區塊528,例如藉由將資料儲存於記憶體區塊中並提供具記憶體位置及位元組長度之中斷信號,MAC發送資料至主機上。
可理解的是圖4及5之流程圖僅描繪示範實施例。在各式實施例中可省略若干區塊,同時在其他實施例中可增加額外區塊。
圖6為依據實施例之非暫態機器可讀取媒體600,其保持用於實施SSIC通訊之資料及程式。非暫態機器可讀取媒體600可為SSIC協定適配器308上保持程式之RAM或ROM或固接式邏輯模組。非暫態機器可讀取媒體600可藉由邏輯602存取,例如關於圖3所討論之PA LINK SM 322。非暫態機器可讀取媒體600可提供模組,諸如固接式電路或程式,當藉由邏輯602透過控制鏈路604執行時,實施SSIC協定適配器之控制功能。可包括LTSSM控制器606,其於正常USB 3.0通訊對話期間 提供MAC預期之命令。可配置M-PHY控制器608以於通訊對話期間提供M-PHY預期之控制信號。可包括去傾斜器610以去傾斜多通道資料,如以上所說明。可包括拌碼器/解拌器612以拌碼及解拌封包串流而平衡互連線路上之能量。在若干實施例中,可包括彈性緩衝器614以取代連接之M-PHY單元中的彈性緩衝器。可包括條串化器/解條串化器616以將條串傳出資料擷取至多通道上進行傳輸,並擷取從多通道接收之資料及將資料串連為單一資料串流。
範例1
文中描繪裝置中之單元間之低功率高頻寬通訊的介面。介面包括通用串列匯流排(USB)3.0系統介面及超高速晶片間(SSIC)協定適配器,其經組配以促進USB3.0系統介面及M-PHY介面間之通訊。
SSIC協定適配器可經組配以映射SSIC之超高速功率狀態。SSIC協定適配器可經組配以映射單一PIPE3介面至多M-PHY。SSIC協定適配器可包括傳輸拌碼器及接收解拌器。
USB 3.0系統介面包括USB軟體堆疊及USB超高速MAC。USB超高速MAC包括包含USB 3.0協定產生器之協定層及包含鏈路訓練狀況狀態機(LTSSM)之鏈路層。
SSIC協定適配器可包括傳輸器參考M-PHY 模組介面控制區塊(TX RMMI CTRL),經組配以接收來自MAC之PIPE3介面的資料,並將RMMI介面上M-TX線上之資料置放至M-PHY。TX RMMI CTRL可經組配以管理多通道組態中之多通道。此外,TX RMMI CTRL可經組配以條串化資料跨越RMMI資料線中之多通道。
SSIC協定適配器可包括接收器參考M-PHY模組介面控制區塊(RX RMMI CTRL),經組配以從M-PHY接收來自RMMI介面上之M-RX線的資料,解拌該資料,串連該資料,及將該資料置放於PIPE3接收資料線上。
SSIC協定適配器可耦接至若干M-PHY。至少二M-PHY用以提供多通道組態。M-PHY可為裝置外部。
範例2
文中揭露實施裝置中之單元間之SSIC通訊的方法。方法包括從媒體存取控制器(MAC)接收SSIC協定適配器中之USB 3.0封包。USB 3.0封包係於SSIC協定適配器中拌碼,且拌碼之封包發送至M-PHY透過串行鏈路進行傳輸。
方法包括從M-PHY接收SSIC協定適配器中之拌碼之封包,解拌拌碼之封包以形成USB 3.0封包,及發送USB 3.0封包至MAC。
在方法中,藉由發出鏈路訓練狀況狀態機(LTSSM)信號至MAC以控制通訊,可建立通訊。M-PHY 可置於STALL模式而未影響MAC之狀態。此外,M-PHY鏈路可於STALL模式及HS-BURST模式之間移動而未影響MAC之狀態。M-PHY鏈路可從SSIC協定適配器訓練,而未使用MAC發出之訓練命令。
範例3
文中揭露至少一非暫態機器可讀取媒體。至少一非暫態機器可讀取媒體包括儲存於其中的指令,回應於該指令於運算裝置上執行,致使運算裝置發出鏈路訓練及狀況狀態機(LTSSM)命令至媒體存取控制器,並發出M-PHY命令至M-PHY。
申請項第15項之至少一非暫態機器可讀取媒體亦可包括儲存於其中的指令,回應於該指令於運算裝置上執行,致使運算裝置於發送封包至M-PHY之前拌碼傳出封包,並解拌來自M-PHY之匯入封包。
可理解的是上述範例中所指明者可用於一或多個實施例中任何一處。例如,以上所說明之運算裝置的所有任意特徵亦可關於文中所描繪之方法或電腦可讀取媒體之任一者實施。此外,儘管文中已使用流程圖及/或狀態圖說明,本發明不侷限於該些圖或文中對應說明。例如,流程不一定行經每一描繪之區塊或狀態,或完全如同所描繪及文中所說明之相同順序。
本發明不限於文中所列特定細節。事實上,具有本揭露好處之熟悉本技藝之人士將理解,可在本發明 之範圍內實施來自上述說明及圖式的許多其他變化。因此,包括任何修訂之下列申請項界定本發明之範圍。

Claims (20)

  1. 一種用於裝置內單元間之低功率高頻寬通訊之介面,包含:通用串列匯流排(USB)系統介面;以及根據超高速晶片間(SSIC)協定的協定適配器,經組配用以促進該USB系統介面及行動產業處理器介面實體層(M-PHY)介面之間之通訊。
  2. 如申請專利範圍第1項之介面,其中,該協定適配器經組配用以映射SSIC之超高速功率狀態。
  3. 如申請專利範圍第1項之介面,其中,該協定適配器經組配用以映射用於週邊組件互連(PCI)Express、串列先進技術附件(SATA)、及通用串列匯流排(USB)超高速架構(PIPE3介面)的單一PHY介面至多M-PHY。
  4. 如申請專利範圍第1項之介面,其中該協定適配器包含:傳輸拌碼器;及接收解拌器。
  5. 如申請專利範圍第1項之介面,其中,該USB系統介面包含:USB軟體堆疊;以及USB超高速媒體存取控制器(MAC),包含:協定層,包含USB協定產生器;以及鏈路層,包含鏈路訓練狀況狀態機(LTSSM)。
  6. 如申請專利範圍第1項之介面,其中,該協定適配 器包含傳輸器參考M-PHY模組介面控制區塊(TX RMMI CTRL),經組配用以:從該MAC之PIPE3介面接收資料;以及在通往M-PHY的參考M-PHY模組介面(RMMI)上,將該資料置放至行動產業處理器介面(MIPI)發射器(M-TX)線上。
  7. 如申請專利範圍第1項之介面,其中,該協定適配器包含接收器參考M-PHY模組介面控制區塊(RX RMMI CTRL),經組配用以:在來自M-PHY之RMMI介面上,從該行動產業處理器介面(MIPI)接收器(M-RX)線接收資料;解拌該資料;串連該資料;以及將該資料置放於PIPE3接收資料線上。
  8. 如申請專利範圍第1項之介面,其中,該協定適配器耦接至複數M-PHY。
  9. 如申請專利範圍第1項之介面,其中該M-PHY在該裝置的外部。
  10. 如申請專利範圍第4項之介面,其中,該TX RMMI CTRL被組配用以多通道組態管理多數通道。
  11. 如申請專利範圍第4項之介面,其中,該TX RMMI CTRL被組配用以條串化跨越RMMI資料通道上的多數通道的資料。
  12. 如申請專利範圍第8項之介面,其中該複數M- PHY的至少二者用以提供多通道組態。
  13. 一種用於實施裝置內之單元間之超高速晶片間(SSIC)通訊的方法,包含:在協定適配器中,從媒體存取控制器(MAC)接收USB封包;拌碼該SSIC協定適配器中之該USB封包;以及發送該等拌碼封包至M-PHY用於透過串行鏈路傳輸。
  14. 如申請專利範圍第13項之方法,包含:在該協定適配器中從該M-PHY接收拌碼封包;解拌該等拌碼封包以形成USB封包;以及發送該等USB封包至該MAC。
  15. 如申請專利範圍第13項之方法,包含藉由從該協定適配器發佈鏈路訓練狀況狀態機(LTSSM)信號至該MAC以控制該通訊,來建立通訊。
  16. 如申請專利範圍第13項之方法,包含在不使用由該MAC發佈之訓練命令情況下,從該協定適配器訓練該M-PHY鏈路。
  17. 如申請專利範圍第13項之方法,包含將該M-PHY置於STALL模式,而未影響該MAC之狀態。
  18. 如申請專利範圍第13項之方法,包含於STALL模式及HS-BURST模式之間移動該M-PHY鏈路,而未影響該MAC之該狀態。
  19. 一種非暫態機器可讀取媒體,包含儲存於其中的 指令,回應於所述指令於運算裝置上執行,致使該運算裝置用以:發佈鏈路訓練及狀況狀態機(LTSSM)命令至媒體存取控制器;及發佈M-PHY命令至M-PHY。
  20. 如申請專利範圍第19項之非暫態機器可讀取媒體,包含儲存於其中的指令,回應於所述指令於運算裝置上執行,致使該運算裝置用以:在發送多數封包至M-PHY之前,拌碼所傳出的該等封包;以及解拌來自M-PHY之匯入封包。
TW102107010A 2012-03-30 2013-02-27 超高速晶片間通訊 TWI635395B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/435,926 US8972646B2 (en) 2012-03-30 2012-03-30 Superspeed inter-chip interface
US13/435,926 2012-03-30

Publications (2)

Publication Number Publication Date
TW201401063A TW201401063A (zh) 2014-01-01
TWI635395B true TWI635395B (zh) 2018-09-11

Family

ID=49236619

Family Applications (2)

Application Number Title Priority Date Filing Date
TW102107010A TWI635395B (zh) 2012-03-30 2013-02-27 超高速晶片間通訊
TW104124066A TWI637272B (zh) 2012-03-30 2013-02-27 超高速晶片間通訊

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104124066A TWI637272B (zh) 2012-03-30 2013-02-27 超高速晶片間通訊

Country Status (5)

Country Link
US (2) US8972646B2 (zh)
EP (1) EP2832075A4 (zh)
CN (1) CN104205781B (zh)
TW (2) TWI635395B (zh)
WO (1) WO2013149146A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8341303B2 (en) 2008-06-30 2012-12-25 Intel Corporation Asymmetrical universal serial bus communications
JP5936498B2 (ja) * 2012-01-16 2016-06-22 ルネサスエレクトロニクス株式会社 Usb3.0デバイス及び制御方法
CN103577366B (zh) * 2012-07-19 2016-09-14 财团法人工业技术研究院 便携式电子装置及其数据传输方法
US9600431B2 (en) 2012-10-22 2017-03-21 Intel Corporation High performance interconnect physical layer
CN103970703A (zh) * 2013-02-05 2014-08-06 财团法人工业技术研究院 Usb ssic 可抽取式电子装置及其转接装置
CN105579952B (zh) * 2013-10-23 2019-07-12 英特尔公司 利用伪停顿的高速通道上的emi抑制
USRE49652E1 (en) 2013-12-16 2023-09-12 Qualcomm Incorporated Power saving techniques in computing devices
WO2015150505A1 (en) * 2014-04-01 2015-10-08 Silicon Line Gmbh Circuit arrangement and corresponding method
US9971730B2 (en) 2014-06-16 2018-05-15 Qualcomm Incorporated Link layer to physical layer (PHY) serial interface
US20150378418A1 (en) * 2014-06-26 2015-12-31 Qualcomm Incorporated Systems and methods for conserving power in a universal serial bus (usb)
US9792246B2 (en) * 2014-12-27 2017-10-17 Intel Corporation Lower-power scrambling with improved signal integrity
CN106294252B (zh) * 2015-06-05 2019-07-09 瑞昱半导体股份有限公司 超高速芯片互连装置及其连接控制方法
CN106371965B (zh) * 2015-07-22 2019-07-09 深圳市中兴微电子技术有限公司 一种超速片间串行总线的监控系统及方法
US10181975B2 (en) * 2015-09-04 2019-01-15 Intel Corporation Override subsystems for rapid recovery from serial-link errors
US20170118125A1 (en) * 2015-10-23 2017-04-27 Qualcomm Incorporated Radio frequency front end devices with high data rate mode
KR102453113B1 (ko) 2015-12-16 2022-10-12 삼성전자주식회사 대기 상태 시 전력을 절감하는 송신 회로
US20170176534A1 (en) * 2015-12-18 2017-06-22 Intel Corporation Self-characterizing high-speed communication interfaces
CN108605055A (zh) 2016-02-01 2018-09-28 高通股份有限公司 串行链路中的可编程分布式数据处理
US20170222686A1 (en) 2016-02-01 2017-08-03 Qualcomm Incorporated Scalable, high-efficiency, high-speed serialized interconnect
US10159053B2 (en) 2016-02-02 2018-12-18 Qualcomm Incorporated Low-latency low-uncertainty timer synchronization mechanism across multiple devices
US10152446B2 (en) * 2016-10-01 2018-12-11 Intel Corporation Link-physical layer interface adapter
US10425124B1 (en) * 2018-03-14 2019-09-24 Pericom Semiconductor Corporation Repeaters with fast transitions from low-power standby to low-frequency signal transmission
CN111475446B (zh) * 2019-01-23 2021-10-19 纬联电子科技(中山)有限公司 显示装置及其高显示带宽控制方法
EP4280487A4 (en) * 2021-01-30 2023-12-20 Huawei Technologies Co., Ltd. COMMUNICATION DEVICE AND DATA TRANSMISSION METHOD
TWI782694B (zh) * 2021-09-06 2022-11-01 智原科技股份有限公司 時序調整電路、時序不對稱消除方法及接收電路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110219163A1 (en) * 2010-03-03 2011-09-08 Duncan Beadnell USB 3 Bridge With Embedded Hub
US20120017016A1 (en) * 2010-07-13 2012-01-19 Kenneth Ma Method and system for utilizing low power superspeed inter-chip (lp-ssic) communications

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581041B1 (en) * 2003-12-29 2009-08-25 Apple Inc. Methods and apparatus for high-speed serialized data transfer over network infrastructure using a different protocol
US8166221B2 (en) * 2004-03-17 2012-04-24 Super Talent Electronics, Inc. Low-power USB superspeed device with 8-bit payload and 9-bit frame NRZI encoding for replacing 8/10-bit encoding
US8150452B2 (en) * 2007-11-16 2012-04-03 Standard Microsystems Corporation Providing a connection between a memory medium of a mobile device and an external device
US8312190B2 (en) * 2008-03-06 2012-11-13 Integrated Device Technology, Inc. Protocol translation in a serial buffer
US7788428B2 (en) * 2008-03-27 2010-08-31 Sony Ericsson Mobile Communications Ab Multiplex mobile high-definition link (MHL) and USB 3.0
US8341303B2 (en) * 2008-06-30 2012-12-25 Intel Corporation Asymmetrical universal serial bus communications
US8510494B2 (en) * 2009-12-24 2013-08-13 St-Ericsson Sa USB 3.0 support in mobile platform with USB 2.0 interface
US8234416B2 (en) * 2010-04-06 2012-07-31 Via Technologies, Inc. Apparatus interoperable with backward compatible optical USB device
US8327042B2 (en) * 2010-09-03 2012-12-04 Plx Technology, Inc. Automatic port accumulation
US8683087B2 (en) * 2011-04-11 2014-03-25 Fairchild Semiconductor Corporation Mobile device auto detection apparatus and method
TWI528786B (zh) * 2011-11-14 2016-04-01 鴻海精密工業股份有限公司 資訊傳輸裝置
US20130191568A1 (en) * 2012-01-23 2013-07-25 Qualcomm Incorporated Operating m-phy based communications over universal serial bus (usb) interface, and related cables, connectors, systems and methods
US8839020B2 (en) * 2012-01-24 2014-09-16 Qualcomm Incorporated Dual mode clock/data recovery circuit
US8549205B1 (en) * 2012-05-22 2013-10-01 Intel Corporation Providing a consolidated sideband communication channel between devices
US8437343B1 (en) * 2012-05-22 2013-05-07 Intel Corporation Optimized link training and management mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110219163A1 (en) * 2010-03-03 2011-09-08 Duncan Beadnell USB 3 Bridge With Embedded Hub
US20120017016A1 (en) * 2010-07-13 2012-01-19 Kenneth Ma Method and system for utilizing low power superspeed inter-chip (lp-ssic) communications

Also Published As

Publication number Publication date
US20130262731A1 (en) 2013-10-03
WO2013149146A1 (en) 2013-10-03
EP2832075A1 (en) 2015-02-04
TW201541256A (zh) 2015-11-01
CN104205781B (zh) 2018-03-13
EP2832075A4 (en) 2015-11-11
CN104205781A (zh) 2014-12-10
US9280510B2 (en) 2016-03-08
US20150134866A1 (en) 2015-05-14
TWI637272B (zh) 2018-10-01
US8972646B2 (en) 2015-03-03
TW201401063A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
TWI635395B (zh) 超高速晶片間通訊
CN106970886B (zh) 使用第二协议的扩展功能结构来控制第一协议的物理链路
US9830292B2 (en) Architected protocol for changing link operating mode
US8549205B1 (en) Providing a consolidated sideband communication channel between devices
US9031064B2 (en) Providing a load/store communication protocol with a low power physical unit
US8638783B2 (en) Optimized link training and management mechanism
US9904650B2 (en) Configuring a remote M-PHY
US10771593B2 (en) Contactless communication interface systems and methods