TWI632027B - Grinding wheel, surface grinder - Google Patents

Grinding wheel, surface grinder Download PDF

Info

Publication number
TWI632027B
TWI632027B TW106116131A TW106116131A TWI632027B TW I632027 B TWI632027 B TW I632027B TW 106116131 A TW106116131 A TW 106116131A TW 106116131 A TW106116131 A TW 106116131A TW I632027 B TWI632027 B TW I632027B
Authority
TW
Taiwan
Prior art keywords
dressing
grinding wheel
trimming
dresser
grooves
Prior art date
Application number
TW106116131A
Other languages
Chinese (zh)
Other versions
TW201741074A (en
Inventor
市原浩一
Original Assignee
住友重機械工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業股份有限公司 filed Critical 住友重機械工業股份有限公司
Priority to PCT/JP2017/041563 priority Critical patent/WO2018211722A1/en
Priority to KR1020197036990A priority patent/KR102486869B1/en
Priority to JP2019519039A priority patent/JP7009464B2/en
Publication of TW201741074A publication Critical patent/TW201741074A/en
Application granted granted Critical
Publication of TWI632027B publication Critical patent/TWI632027B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/10Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
    • B24B47/16Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces performing a reciprocating movement, e.g. during which the sense of rotation of the working-spindle is reversed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/02Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a reciprocatingly-moved work-table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding

Abstract

本發明提供一種砂輪及平面磨床,其在平面磨削中,可以抑制在被削材的表面產生顫紋等。因此使用於平面磨床之砂輪具備:設置於外周面之複數個第1螺旋槽;及設置於前述外周面之複數個第2螺旋槽,前述複數個第2螺旋槽各個分別與前述複數個第1螺旋槽交叉。並且,平面磨床具備該砂輪。並且,平面磨床進一步具備具有與固定面進行滑動之滑動面之可動載台,滑動面可以具有以沿可動載台的移動方向週期性連續之態樣形成之微小的複數個凹坑。 The invention provides a grinding wheel and a surface grinder, which can suppress the occurrence of chatter marks and the like on the surface of a material to be ground during surface grinding. Therefore, the grinding wheel used in the surface grinder includes: a plurality of first spiral grooves provided on the outer peripheral surface; and a plurality of second spiral grooves provided on the outer peripheral surface, each of the plurality of second spiral grooves being respectively different from the plurality of first Spiral grooves cross. The surface grinder includes the grinding wheel. In addition, the surface grinder further includes a movable stage having a sliding surface that slides with the fixed surface, and the sliding surface may have a small number of pits formed periodically and continuously along the moving direction of the movable stage.

Description

砂輪、平面磨床 Grinding wheel, surface grinder

本發明係有關一種使用於平面磨床之砂輪等。 The present invention relates to a grinding wheel and the like used in a surface grinder.

以往,已知有使用於平面磨床中之砂輪(旋轉砂輪)。例如,參閱專利文獻1等。 Conventionally, a grinding wheel (rotary grinding wheel) used in a surface grinder is known. For example, see Patent Document 1 and the like.

(先前技術文獻) (Prior technical literature) (專利文獻) (Patent Literature)

專利文獻1:日本特開2013-226634號公報 Patent Document 1: Japanese Patent Application Publication No. 2013-226634

砂輪會隨著使用而產生堵塞,造成磨削性能降低。因此,會有進行再生磨削性能之修整作業(修銳作業)的情形。 Grinding wheels can become clogged as they are used, resulting in reduced grinding performance. Therefore, there may be a case where a dressing operation (sharpening operation) for regenerating grinding performance is performed.

在修整作業中,例如利用具備單點金剛石之修整機,在砂輪的外周面生成比磨粒的外徑小的(例如數μm~數十μm左右的)切口(修整槽)。具體而言,使修整機接 觸旋轉中之砂輪並往返進行沿砂輪的寬度方向移動之動作。依該修整作業,藉由使修整機沿寬度方向移動之往程動作,在砂輪的外周面生成螺旋狀的一修整槽,並且,藉由返程動作而生成與一修整槽交叉之螺旋狀的另一修整槽。亦即,藉由交叉之一修整槽及另一修整槽而生成底面大致呈菱形的錐體、亦即大致呈四角錐狀的峰(以下,稱作修整峰)。 In the dressing operation, for example, a dresser equipped with a single-point diamond is used to form a notch (dressing groove) on the outer peripheral surface of the grinding wheel that is smaller than the outer diameter of the abrasive particles (for example, about several μm to several tens of μm). Specifically, the dresser is connected Touch the rotating wheel and move back and forth along the width of the wheel. According to this dressing operation, a spiral-shaped dressing groove is generated on the outer peripheral surface of the grinding wheel by moving the dressing machine forward in the width direction, and a spiral-shaped another dressing groove that intersects with a dressing groove is generated by the return motion. One trimming slot. In other words, by crossing one of the trimming grooves and the other trimming grooves, a bottom having a substantially rhombic shape, that is, a substantially quadrangular pyramid-shaped peak (hereinafter, referred to as a trimming peak) is generated.

然而,在藉由該修整作業而再生之砂輪上,因一修整槽與另一修整槽的交叉而生成之修整峰僅生成於在周方向(亦即旋轉方向)上180°對稱之2個角度位置。因此,在使用砂輪進行平面磨削之情況下,被削材在修整峰的頂點附近被磨削,因此,相對於隨著砂輪的旋轉而週期性地被修整峰切削之部分,未被修整峰切削之範圍變大,有可能在被削材的表面產生波紋(顫紋)。 However, on the grinding wheel regenerated by this dressing operation, the dressing peak generated due to the intersection of one dressing groove and the other dressing groove is generated only at two angles of 180 ° symmetry in the circumferential direction (that is, the rotation direction). position. Therefore, in the case of surface grinding using a grinding wheel, the material to be cut is ground near the apex of the trimming peak. Therefore, the peak is not trimmed relative to the part that is periodically trimmed by the trimming peak as the grinding wheel rotates The cutting range is widened, and there is a possibility that ripples (flutters) are generated on the surface of the material to be cut.

於是,鑑於上述課題,本發明的目的在於提供一種在平面磨削中可以抑制在被削材的表面上產生顫紋等之砂輪及平面磨床。 Then, in view of the said subject, it is an object of this invention to provide the grinding wheel and surface grinder which can suppress generation | occurrence | production of chatter marks etc. on the surface of a to-be-cut material during surface grinding.

為了達到上述目的,在一實施形態提供一種砂輪,係使用於平面磨床之砂輪,其具備:設置於外周面之複數個第1螺旋槽;及設置於前述外周面之複數個第2螺旋槽,前述複數個第2螺旋槽各個分別與前述複數個第1螺旋槽交叉。 In order to achieve the above object, an embodiment provides a grinding wheel, which is a grinding wheel for a surface grinder, which includes: a plurality of first spiral grooves provided on an outer peripheral surface; and a plurality of second spiral grooves provided on the outer peripheral surface, Each of the plurality of second spiral grooves intersects the plurality of first spiral grooves, respectively.

並且,可以提供一種具備前述砂輪之平面磨床。 Furthermore, it is possible to provide a surface grinder including the grinding wheel.

依上述實施形態,能夠提供一種在平面磨削中可以抑制在被削材的表面產生顫紋等之砂輪及平面磨床。 According to the above-mentioned embodiment, it is possible to provide a grinding wheel and a surface grinder that can suppress the occurrence of chatter marks and the like on the surface of the material to be ground during surface grinding.

1‧‧‧平面磨床 1‧‧‧ Surface Grinder

10‧‧‧可動載台 10‧‧‧ movable carrier

10A‧‧‧可動載台主體 10A‧‧‧Main body of movable stage

10B‧‧‧被導引腳部 10B‧‧‧ Guided lead

10BS‧‧‧滑動面 10BS‧‧‧Sliding surface

12‧‧‧被削材 12‧‧‧ to be cut

14‧‧‧導軌 14‧‧‧rail

14S‧‧‧導軌面(固定面) 14S‧‧‧rail surface (fixed surface)

15‧‧‧砂輪頭 15‧‧‧Grinding wheel head

16‧‧‧砂輪 16‧‧‧ Grinding wheel

18‧‧‧導軌 18‧‧‧rail

20‧‧‧控制裝置 20‧‧‧Control device

40‧‧‧顯示裝置 40‧‧‧ display device

100‧‧‧修整裝置 100‧‧‧dressing device

110、111、112、113‧‧‧修整機 110, 111, 112, 113‧‧‧ Finisher

115‧‧‧旋轉體 115‧‧‧rotating body

120‧‧‧驅動機構 120‧‧‧Drive mechanism

125‧‧‧旋轉位置檢測裝置 125‧‧‧rotation position detection device

130‧‧‧旋轉機構 130‧‧‧rotating mechanism

131‧‧‧旋轉軸 131‧‧‧rotation axis

140‧‧‧旋轉位置檢測裝置 140‧‧‧rotation position detection device

150‧‧‧控制器 150‧‧‧controller

201~203‧‧‧修整槽(第1螺旋槽) 201 ~ 203‧‧‧dressing groove (the first spiral groove)

211~213‧‧‧修整槽(第2螺旋槽) 211 ~ 213‧‧‧dressing groove (second spiral groove)

圖1係概略地表示本實施形態之平面磨床的結構的一例之圖。 FIG. 1 is a diagram schematically showing an example of the configuration of a surface grinder according to this embodiment.

圖2係表示本實施形態之修整裝置的結構的第1例之圖。 FIG. 2 is a diagram showing a first example of the configuration of the dressing apparatus according to this embodiment.

圖3A係對本實施形態之修整方法的第1例進行說明之圖。 FIG. 3A is a diagram explaining the first example of the trimming method of the embodiment.

圖3B係對本實施形態之修整方法的第1例進行說明之圖。 FIG. 3B is a diagram explaining the first example of the trimming method according to this embodiment.

圖3C係對本實施形態之修整方法的第1例進行說明之圖。 FIG. 3C is a diagram explaining the first example of the trimming method according to this embodiment.

圖4A係表示利用比較例之修整裝置進行修整作業之砂輪的一例之圖。 FIG. 4A is a diagram showing an example of a grinding wheel for performing a dressing operation using a dressing device of a comparative example. FIG.

圖4B係表示利用本實施形態之修整裝置進行修整作業之砂輪的一例之圖。 FIG. 4B is a diagram showing an example of a grinding wheel for performing a dressing operation using the dressing device according to this embodiment.

圖5係概略地表示本實施形態之修整裝置的結構的第2例之圖。 FIG. 5 is a diagram schematically showing a second example of the configuration of the dressing apparatus according to this embodiment.

圖6係對修整機的配置態樣具體地進行說明之圖。 FIG. 6 is a diagram for specifically explaining the configuration of the dresser.

圖7A係對本實施形態之修整方法的第2例進行說明之圖。 FIG. 7A is a diagram explaining a second example of the trimming method according to this embodiment.

圖7B係對本實施形態之修整方法的第2例進行說明之圖。 FIG. 7B is a diagram explaining a second example of the trimming method according to this embodiment.

圖7C係對本實施形態之修整方法的第2例進行說明之圖。 FIG. 7C is a diagram explaining a second example of the trimming method according to this embodiment.

圖8A係對本實施形態之修整方法的第2例進行說明之圖。 FIG. 8A is a diagram explaining a second example of the trimming method according to this embodiment.

圖8B係對本實施形態之修整方法的第2例進行說明之圖。 FIG. 8B is a diagram explaining a second example of the trimming method according to this embodiment.

圖8C係對本實施形態之修整方法的第2例進行說明之圖。 FIG. 8C is a diagram explaining a second example of the trimming method according to this embodiment.

圖9係概略地表示本實施形態之修整裝置的結構的第3例之圖。 FIG. 9 is a diagram schematically showing a third example of the configuration of the dressing apparatus according to this embodiment.

圖10A係對修整機的配置態樣具體地進行說明之圖。 FIG. 10A is a diagram for specifically explaining the configuration of the dresser.

圖10B係對修整機的配置態樣具體地進行說明之圖。 FIG. 10B is a diagram for specifically explaining the configuration of the dresser.

圖11A係對本實施形態之修整方法的第3例進行說明之圖。 FIG. 11A is a diagram explaining a third example of the trimming method according to this embodiment.

圖11B係對本實施形態之修整方法的第3例進行說明之圖。 FIG. 11B is a diagram for explaining a third example of the trimming method of this embodiment.

圖11C係對本實施形態之修整方法的第3例進行說明之圖。 FIG. 11C is a diagram explaining a third example of the trimming method according to this embodiment.

圖12係概略地表示本實施形態之修整裝置的結構的第4例之圖。 FIG. 12 is a diagram schematically showing a fourth example of the configuration of the dressing apparatus according to this embodiment.

圖13A係對本實施形態之修整方法的第4例進行說明之圖。 FIG. 13A is a diagram explaining a fourth example of the trimming method according to this embodiment.

圖13B係對本實施形態之修整方法的第4例進行說明之圖。 FIG. 13B is a diagram explaining a fourth example of the trimming method according to this embodiment.

圖14A係對本實施形態之修整方法的第5例進行說明之圖。 FIG. 14A is a diagram explaining a fifth example of the trimming method according to this embodiment.

圖14B係對本實施形態之修整方法的第5例進行說明之圖。 FIG. 14B is a diagram explaining a fifth example of the trimming method of the present embodiment.

圖14C係對本實施形態之修整方法的第5例進行說明之圖。 FIG. 14C is a diagram explaining a fifth example of the trimming method according to this embodiment.

圖15係對利用以本實施形態之修整裝置進行修整作業之砂輪之加工方法進行說明之圖。 FIG. 15 is a diagram illustrating a machining method of a grinding wheel for performing a dressing operation using the dressing device of this embodiment.

圖16係表示可以應用藉由圖15所示之加工方法而生成之複數個凹坑之滑動面的一例之圖。 FIG. 16 is a diagram showing an example of a sliding surface in which a plurality of pits generated by the processing method shown in FIG. 15 can be applied.

以下,參閱附圖,對用於實施發明的形態進行說明。 Hereinafter, embodiments for implementing the invention will be described with reference to the drawings.

[平面磨床的結構] [Structure of Surface Grinder]

首先,參閱圖1,對本實施形態之平面磨床1進行說明。 First, referring to Fig. 1, a surface grinder 1 according to this embodiment will be described.

圖1係概略地表示本實施形態之平面磨床1的結構的一例之圖。 FIG. 1 is a diagram schematically showing an example of the configuration of a surface grinder 1 according to this embodiment.

平面磨床1具有可動載台10、載台導引機構11、砂 輪頭15、砂輪16、導軌18、控制裝置20及顯示裝置40。 Surface grinder 1 has a movable stage 10, a stage guide mechanism 11, sand The wheel head 15, the grinding wheel 16, the guide rail 18, the control device 20 and the display device 40.

另外,圖中X方向表示可動載台10的移動方向,Y方向表示與X方向正交之砂輪頭15的移動方向,Z方向表示與X方向及Y方向正交之高度方向。 In the figure, the X direction indicates the moving direction of the movable stage 10, the Y direction indicates the moving direction of the grinding wheel head 15 orthogonal to the X direction, and the Z direction indicates the height direction orthogonal to the X and Y directions.

可動載台10設置成藉由載台導引機構11而可以沿X方向移動,並載置磨削對象之被削材12。 The movable stage 10 is provided so as to be movable in the X direction by the stage guide mechanism 11 and mounts the workpiece 12 to be ground.

載台導引機構11例如使用伺服馬達等作為驅動力源,使可動載台10沿X方向移動。 The stage guide mechanism 11 uses, for example, a servo motor or the like as a driving force source to move the movable stage 10 in the X direction.

砂輪頭15在下端部設置砂輪16,以可以沿Y方向移動且可以沿Z方向升降之方式安裝於導軌18。 The grinding wheel head 15 is provided with a grinding wheel 16 at a lower end portion, and is mounted on the guide rail 18 in such a manner that it can move in the Y direction and can be raised and lowered in the Z direction.

砂輪16具有圓柱形狀,以中心軸與Y方向平行之方式可旋轉地安裝於砂輪頭15的下端部。砂輪16與砂輪頭15一同沿Y方向及Z方向移動並旋轉而對被削材12的表面進行磨削。砂輪16以根據被削材12的性質和加工精度等進行選擇之磨粒(例如氧化鋁磨料和金剛石磨料)及保持磨粒之黏結劑為中心而構成。 The grinding wheel 16 has a cylindrical shape, and is rotatably attached to the lower end portion of the grinding wheel head 15 so that the central axis is parallel to the Y direction. The grinding wheel 16 moves and rotates in the Y direction and the Z direction together with the grinding wheel head 15 to grind the surface of the workpiece 12. The grinding wheel 16 is mainly composed of abrasive grains (for example, alumina abrasives and diamond abrasives) selected according to the properties and processing accuracy of the material 12 to be cut, and a binder that holds the abrasive grains.

導軌18例如使用2個伺服馬達等作為驅動力源,使砂輪頭15沿Y方向及Z方向移動。 The guide rail 18 uses, for example, two servo motors or the like as a driving force source to move the grinding wheel head 15 in the Y direction and the Z direction.

控制裝置20控制平面磨床1的各部,以調整可動載台10及砂輪頭15的位置並使砂輪16旋轉,藉此,對被削材12的表面進行磨削。控制裝置20例如以包括CPU、RAM、ROM,I/O等之電腦為中心而構成。 The control device 20 controls each part of the surface grinder 1 to adjust the positions of the movable stage 10 and the grinding wheel head 15 and rotate the grinding wheel 16, thereby grinding the surface of the workpiece 12. The control device 20 is constituted mainly by a computer including a CPU, a RAM, a ROM, and I / O.

顯示裝置40例如係液晶顯示器等。顯示裝置40藉由 控制裝置20控制,例如顯示被削材12的磨削條件等。 The display device 40 is, for example, a liquid crystal display. Display device 40 by The control device 20 controls and displays, for example, the grinding conditions of the workpiece 12.

[修整裝置的第1例] [First example of dressing device]

接著,參閱圖2,對進行使用於平面磨床1之砂輪16的修整作業(修銳作業)之修整裝置100做說明。 Next, referring to FIG. 2, a dressing apparatus 100 that performs a dressing operation (sharpening operation) of the grinding wheel 16 used in the surface grinder 1 will be described.

圖2係概略地表示本實施形態之修整裝置100的結構的第1例之圖。 FIG. 2 is a diagram schematically showing a first example of the configuration of the dressing apparatus 100 according to this embodiment.

修整裝置100包括修整機110、驅動機構120、旋轉機構130、旋轉位置檢測裝置140及控制器150。 The dressing device 100 includes a dresser 110, a driving mechanism 120, a rotation mechanism 130, a rotation position detection device 140, and a controller 150.

修整機110接觸到旋轉中之砂輪16的外周面(亦即,磨削被削材之作業面。以下,也稱作“砂輪作業面”),並生成切口(修整槽)。修整機110例如將單點金剛石作為原料,具有大致圓筒形狀,並且其前端部具有圓錐形狀。修整機110能夠生成比磨粒更小寬度(例如數μm~數十μm)的修整槽。 The dresser 110 comes into contact with the outer peripheral surface of the rotating grinding wheel 16 (that is, the working surface for grinding the material to be cut. Hereinafter, also referred to as the “working surface of the grinding wheel”), and generates a cut (dressing groove). The dresser 110 uses, for example, a single-point diamond as a raw material, has a substantially cylindrical shape, and has a conical shape at a front end portion. The dresser 110 can generate a dressing groove having a smaller width (for example, several μm to several tens μm) than the abrasive grains.

驅動機構120例如使用2個伺服馬達作為驅動力源,使修整機110(具體而言,保持修整機110之保持構件)沿左右方向(圖中的X軸的正方向及負方向)及上下方向(圖中的Z軸的正方向及負方向)移動。驅動機構120例如包括滾珠螺桿機構和齒輪齒條機構等。驅動機構120根據來自控制器150的控制指令調整左右位置及上下位置。藉此,能夠控制修整機110與安裝於後述旋轉軸131之砂輪16的外周面(砂輪作業面)的接觸狀態(修整槽的深度)、及在砂輪16的寬度方向(圖中的左右方向)上之 接觸位置。 The driving mechanism 120 uses, for example, two servo motors as a driving force source, so that the dresser 110 (specifically, the holding member holding the dresser 110) is oriented in the left-right direction (the positive and negative directions of the X axis in the figure) and the up-down direction. (Positive and negative directions of the Z axis in the figure). The drive mechanism 120 includes, for example, a ball screw mechanism and a rack and pinion mechanism. The driving mechanism 120 adjusts the left and right positions and the up and down positions according to a control instruction from the controller 150. This makes it possible to control the contact state (the depth of the dressing groove) of the dresser 110 with the outer peripheral surface (grinding surface) of the grinding wheel 16 mounted on a rotation shaft 131 described later, and the width direction of the grinding wheel 16 (left-right direction in the figure). Kamiyuki Contact location.

旋轉機構130例如使用伺服馬達等作為驅動力源,使安裝於旋轉軸131之砂輪16以既定的轉速進行旋轉。 The rotation mechanism 130 uses, for example, a servo motor or the like as a driving force source, and rotates the grinding wheel 16 mounted on the rotation shaft 131 at a predetermined rotation speed.

旋轉位置檢測裝置140例如為旋轉編碼器,檢測安裝於旋轉軸131之砂輪16的旋轉位置(角度位置)。旋轉位置檢測裝置140與控制器150連接成可以進行通訊,與所檢測到之砂輪16的角度位置對應之檢測訊號被發送到控制器150。 The rotation position detection device 140 is, for example, a rotary encoder and detects the rotation position (angular position) of the grinding wheel 16 mounted on the rotation shaft 131. The rotational position detecting device 140 is connected to the controller 150 so as to be able to communicate, and a detection signal corresponding to the detected angular position of the grinding wheel 16 is transmitted to the controller 150.

控制器150向驅動機構120發送控制指令,控制藉由驅動機構120沿上下左右移動驅動之修整機110的左右位置及上下位置。控制器150例如以包括CPU、RAM、ROM及I/O等之電腦為中心而構成。控制器150藉由調整驅動機構120的上下位置而能夠控制修整機110與砂輪16的外周面(砂輪作業面)的接觸狀態(修整槽的深度)。並且,控制器150一邊根據從旋轉位置檢測裝置140接收之檢測訊號而與砂輪16的角度位置同步,一邊控制修整機110的左右位置(在砂輪16的寬度方向上之接觸位置)。 The controller 150 sends a control instruction to the driving mechanism 120 to control the left and right positions and the up and down positions of the dresser 110 driven by the driving mechanism 120 moving up, down, and left and right. The controller 150 is mainly composed of a computer including a CPU, a RAM, a ROM, and I / O. The controller 150 can control the contact state (the depth of the dressing groove) of the dresser 110 and the outer peripheral surface (grinding surface of the grinding wheel) of the grinding wheel 16 by adjusting the vertical position of the driving mechanism 120. In addition, the controller 150 controls the left and right positions of the dresser 110 (the contact position in the width direction of the grinding wheel 16) while synchronizing with the angular position of the grinding wheel 16 based on the detection signal received from the rotational position detecting device 140.

[修整方法的第1例] [First example of dressing method]

接著,參閱圖3(圖3A~圖3C),對使用圖2所示之修整裝置100之修整方法(本實施形態之修整方法的第1例)進行說明。 Next, referring to Fig. 3 (Figs. 3A to 3C), a trimming method using the trimming device 100 shown in Fig. 2 (the first example of the trimming method of this embodiment) will be described.

圖3A~圖3C係對本實施形態之修整方法的第1例進 行說明之圖。具體而言,表示圖2所示之修整裝置100的動作。 3A to 3C show the first example of the trimming method of this embodiment. Illustration of line description. Specifically, the operation of the dressing apparatus 100 shown in FIG. 2 is shown.

如後述,修整裝置100重複3次以下步驟:使修整機110與旋轉中之砂輪16接觸,並在安裝於旋轉軸131之砂輪16的左右端之間往返移動。圖3A~圖3C分別係表示第1步驟~第3步驟中之修整槽的生成態樣之砂輪16的外周面(砂輪作業面)的展開圖。 As described later, the dressing device 100 repeats the following steps three times: the dresser 110 is brought into contact with the grinding wheel 16 in rotation, and moves back and forth between the left and right ends of the grinding wheel 16 mounted on the rotating shaft 131. FIGS. 3A to 3C are development views of the outer peripheral surface (grinding surface) of the grinding wheel 16 showing the generation state of the dressing groove in the first step to the third step, respectively.

另外,在圖3B及圖3C中分別用虛線來表示在之前的步驟中生成之修整槽,用實線來表示在第2步驟及第3步驟中生成之修整槽202、212及修整槽203、213。並且,第1步驟~第3步驟的各步驟以如下之流程進行:首先,使修整機110從砂輪16的左端向右端移動,接著,從右端向左端移動。並且,在本例子中,修整機110的左右方向的移動速度,具體而言,修整機110在砂輪16每旋轉1圈時的左右移動量(以下,稱作“修整進給量(dress lead)”)DL係砂輪16的寬度W的1/2(亦即,修整進給量DL=W/2)。並且,預先規定砂輪16的角度位置(0°~360°),旋轉位置檢測裝置140將與該角度位置對應之檢測訊號發送到控制器150。並且,圖中,由座標值“0”來表示砂輪16的左端位置,由座標值“W”來表示砂輪16的右端位置。 In addition, in FIG. 3B and FIG. 3C, the trimming grooves generated in the previous step are shown by dotted lines, and the trimming grooves 202 and 212 and the trimming grooves 203 and 203 generated in the second and third steps are shown by solid lines. 213. In addition, each of the first step to the third step is performed in the following flow: first, the dresser 110 is moved from the left end to the right end of the grinding wheel 16, and then, the right end is moved to the left end. Further, in this example, the moving speed of the dresser 110 in the left-right direction, specifically, the left-right movement amount of the dresser 110 per one rotation of the grinding wheel 16 (hereinafter referred to as "dressing feed (dress lead)" ") 1/2 of the width W of the DL-based grinding wheel 16 (that is, the trimming feed amount DL = W / 2). In addition, the angular position (0 ° to 360 °) of the grinding wheel 16 is specified in advance, and the rotational position detection device 140 sends a detection signal corresponding to the angular position to the controller 150. In the figure, the left end position of the grinding wheel 16 is represented by a coordinate value “0”, and the right end position of the grinding wheel 16 is represented by a coordinate value “W”.

在第1步驟中,首先,控制器150控制驅動機構120,以使修整機110在角度位置“0°”開始與砂輪16的左端位置(座標值“0”)接觸,並向右方向以修整進給量DL (=W/2)移動。接著,若修整機110到達砂輪16的右端位置(座標“W”),則控制器150控制驅動機構120,以使修整機110的移動方向相反,向左方向以修整進給量DL(=W/2)移動。具體而言,控制器150控制驅動機構120,使修整機110在角度位置“0°”開始與砂輪16的右端位置(座標值“W”)接觸,並向左方向以修整進給量DL(=W/2)移動。而且,控制器150控制驅動機構120,使修整機110移動至砂輪16的左端位置(座標值“0”)。 In the first step, first, the controller 150 controls the driving mechanism 120 so that the dresser 110 starts to contact the left end position (coordinate value "0") of the grinding wheel 16 at the angular position "0 °", and moves to the right to perform dressing Feed DL (= W / 2) Move. Next, when the dresser 110 reaches the right end position (coordinate "W") of the grinding wheel 16, the controller 150 controls the driving mechanism 120 so that the moving direction of the dresser 110 is reversed, and the dressing feed amount DL (= W / 2) Move. Specifically, the controller 150 controls the driving mechanism 120 so that the dresser 110 starts to contact the right end position (coordinate value "W") of the grinding wheel 16 at the angular position "0 °", and moves to the left with a dressing feed amount DL ( = W / 2) Move. The controller 150 controls the drive mechanism 120 to move the dresser 110 to the left end position of the grinding wheel 16 (coordinate value “0”).

如圖3A所示,修整機110在第1步驟的往程上,以修整進給量DL(=W/2)向右方向(圖3A的上方向)進給,藉此,在砂輪16的外周面上生成螺旋狀修整槽201,該螺旋狀修整槽201將砂輪16的左端的角度位置“0°”設為起點,將砂輪16的右端的角度位置“360°”(=“0°”)設為終點(圖中,參閱白色箭頭)。修整槽201以螺旋狀繞2圈砂輪16的外周面。 As shown in FIG. 3A, the dresser 110 feeds to the right (upward direction in FIG. 3A) with a dressing feed amount DL (= W / 2) in the course of the first step. A spiral-shaped dressing groove 201 is formed on the outer peripheral surface. The spiral-shaped dressing groove 201 sets the angular position “0 °” of the left end of the grinding wheel 16 as a starting point, and sets the angular position “360 °” (= “0 °”) of the right end of the grinding wheel 16. ) Is set to the end point (see the white arrow in the figure). The dressing groove 201 is wound around the outer peripheral surface of the grinding wheel 16 in a spiral shape.

並且,如圖3A所示,修整機110在第1步驟的返程上,以修整進給量DL(=W/2)向左方向(圖3A的下方向)進給,藉此,在砂輪16的外周面上生成螺旋狀修整槽211,該螺旋狀修整槽211將砂輪16的右端的角度位置“0°”設為起點,將砂輪16的左端的角度位置“360°”(=“0°”)設為終點(圖中,參閱黑色箭頭)。修整槽211以螺旋狀繞2圈砂輪16的外周面。並且,修整槽211與修整槽201交叉。 As shown in FIG. 3A, on the returning step of the first step, the dresser 110 feeds the dressing feed amount DL (= W / 2) to the left (downward direction in FIG. 3A). A spiral dressing groove 211 is generated on the outer peripheral surface of the spiral dressing groove. The spiral dressing groove 211 sets the angular position "0 °" of the right end of the grinding wheel 16 as a starting point, and sets the angular position of the left end of the grinding wheel 16 "360 °" (= "0 ° ") As the end point (see the black arrow in the figure). The dressing groove 211 is wound around the outer peripheral surface of the grinding wheel 16 in a spiral shape. The trimming groove 211 intersects the trimming groove 201.

在第2步驟中,控制器150相對於第1步驟將相位 (砂輪16的角度位置)錯開,以使修整機110移動。具體而言,控制器150控制驅動機構120,以使修整機110在角度位置“120°”開始與砂輪16的左端位置(座標值“0”)接觸,並向右方向以修整進給量DL(=W/2)移動。接著,若修整機110到達砂輪16的右端位置(座標“W”),則控制器150控制驅動機構120,以使修整機110的移動方向相反,向左方向以修整進給量DL(=W/2)移動。具體而言,控制器150控制驅動機構120,以使修整機110在角度位置“120°”開始與砂輪16的右端位置(座標值“W”)接觸,並向左方向以修整進給量DL(=W/2)移動。而且,控制器150控制驅動機構120,使修整機110移動至砂輪16的左端位置(座標值“0”)。 In the second step, the controller 150 sets the phase with respect to the first step. (Angular position of the grinding wheel 16) is shifted so that the dresser 110 is moved. Specifically, the controller 150 controls the driving mechanism 120 so that the dresser 110 starts to contact the left end position (coordinate value “0”) of the grinding wheel 16 at the angular position “120 °” and moves to the right to trim the feed amount DL (= W / 2) Move. Next, when the dresser 110 reaches the right end position (coordinate "W") of the grinding wheel 16, the controller 150 controls the driving mechanism 120 so that the moving direction of the dresser 110 is reversed, and the dressing feed amount DL (= W / 2) Move. Specifically, the controller 150 controls the driving mechanism 120 so that the dresser 110 starts to contact the right end position (coordinate value "W") of the grinding wheel 16 at the angular position "120 °", and moves to the left to trim the feed amount DL (= W / 2) Move. The controller 150 controls the drive mechanism 120 to move the dresser 110 to the left end position of the grinding wheel 16 (coordinate value “0”).

如圖3B所示,修整機110在第2步驟的往程上,以修整進給量DL(=W/2)向右方向(圖3B的上方向)進給,藉此,在砂輪16的外周面上生成螺旋狀修整槽202,該螺旋狀修整槽202將砂輪16的左端的角度位置“120°”設為起點,將砂輪16的右端的角度位置“120°”設為終點(圖中,參閱白色箭頭)。修整槽202與修整槽201平行亦即不交叉,並以螺旋狀繞2圈砂輪16的外周面。另一方面,修整槽202與在第1步驟中生成之修整槽211交叉。 As shown in FIG. 3B, the dresser 110 is fed in the rightward direction (upward direction in FIG. 3B) with a dressing feed amount DL (= W / 2) in the course of the second step. A spiral-shaped dressing groove 202 is formed on the outer peripheral surface. The spiral-shaped dressing groove 202 sets the angular position “120 °” of the left end of the grinding wheel 16 as the starting point, and sets the angular position “120 °” of the right end of the grinding wheel 16 as the end point (in the figure). , See white arrow). The dressing groove 202 is parallel to the dressing groove 201, that is, does not intersect, and is wound around the outer peripheral surface of the grinding wheel 16 in a spiral shape. On the other hand, the trimming groove 202 intersects the trimming groove 211 generated in the first step.

並且,如圖3B所示,修整機110在第2步驟的返程上,以修整進給量DL(=W/2)向左方向(圖3B的下方 向)進給,藉此,在砂輪16的外周面上生成螺旋狀修整槽212,該螺旋狀修整槽212將砂輪16的右端的角度位置“120°”設為起點,將砂輪16的左端的角度位置“120°”設為終點(圖中,參閱黑色箭頭)。修整槽212與修整槽211平行亦即不與修整槽211交叉,並以螺旋狀繞2圈砂輪16的外周面。另一方面,修整槽212與在第1步驟中生成之修整槽201及在第2步驟(往程)中生成之修整槽202交叉。 Further, as shown in FIG. 3B, on the returning step of the second step, the dresser 110 moves to the left with a dressing feed amount DL (= W / 2) (bottom of FIG. 3B) Feed), thereby forming a helical dressing groove 212 on the outer peripheral surface of the grinding wheel 16, the helical dressing groove 212 setting the angular position "120 °" of the right end of the grinding wheel 16 as a starting point, and The angular position "120 °" is set as the end point (see the black arrow in the figure). The dressing groove 212 is parallel to the dressing groove 211, that is, does not cross the dressing groove 211, and is wound around the outer peripheral surface of the grinding wheel 16 in a spiral shape. On the other hand, the trimming groove 212 intersects the trimming groove 201 generated in the first step and the trimming groove 202 generated in the second step (forward).

在第3步驟中,控制器150相對於第2步驟進一步將相位(砂輪16的角度位置)錯開,以使修整機110移動。具體而言,控制器150控制驅動機構120,以使修整機110在角度位置“240°”開始與砂輪16的左端位置(座標值“0”)接觸,並向右方向以修整進給量DL(=W/2)移動。接著,若修整機110到達砂輪16的右端位置(座標“W”),則控制器150控制驅動機構120,以使修整機110的移動方向相反,向左方向以修整進給量DL(=W/2)移動。具體而言,控制器150控制驅動機構120,以使修整機110在角度位置“240°”與砂輪16的右端位置(座標值“W”)接觸,並向左方向以修整進給量DL(=W/2)移動。而且,控制器150控制驅動機構120,使修整機110移動至砂輪16的左端位置(座標值“0”)。 In the third step, the controller 150 further shifts the phase (the angular position of the grinding wheel 16) with respect to the second step to move the dresser 110. Specifically, the controller 150 controls the driving mechanism 120 so that the dresser 110 comes into contact with the left end position (coordinate value "0") of the grinding wheel 16 at the angular position "240 °" and moves to the right to trim the feed amount DL (= W / 2) Move. Next, when the dresser 110 reaches the right end position (coordinate "W") of the grinding wheel 16, the controller 150 controls the driving mechanism 120 so that the moving direction of the dresser 110 is reversed, and the dressing feed amount DL (= W / 2) Move. Specifically, the controller 150 controls the driving mechanism 120 so that the dresser 110 contacts the right end position (coordinate value "W") of the grinding wheel 16 at an angular position "240 °" and moves to the left with a dressing feed amount DL ( = W / 2) Move. The controller 150 controls the drive mechanism 120 to move the dresser 110 to the left end position of the grinding wheel 16 (coordinate value “0”).

如圖3C所示,修整機110在第3步驟的往程上,以修整進給量DL(=W/2)向右方向(圖3C的上方向)進給,藉此,在砂輪16的外周面上生成螺旋狀修整槽 203,該螺旋狀修整槽203將砂輪16的左端的角度位置“240°”設為起點,將砂輪16的右端的角度位置“240°”設為終點(圖中,參閱白色箭頭)。修整槽203與修整槽201、202平行、亦即不交叉,並以螺旋狀繞2圈砂輪16的外周面。另一方面,修整槽203與在第1步驟中生成之修整槽211及在第2步驟中生成之修整槽212交叉。 As shown in FIG. 3C, the dresser 110 is fed in the rightward direction (upward direction in FIG. 3C) with a dressing feed amount DL (= W / 2) in the course of the third step. Spiral trimming grooves on the outer peripheral surface 203, the spiral dressing groove 203 sets the angular position "240 °" of the left end of the grinding wheel 16 as the starting point, and sets the angular position "240 °" of the right end of the grinding wheel 16 as the end point (see the white arrow in the figure). The dressing groove 203 is parallel to the dressing grooves 201 and 202, that is, does not cross, and is wound around the outer peripheral surface of the grinding wheel 16 in a spiral shape. On the other hand, the trimming groove 203 intersects the trimming groove 211 generated in the first step and the trimming groove 212 generated in the second step.

並且,如圖3C所示,修整機110在第3步驟的返程上,以修整進給量DL(=W/2)向左方向(圖3C的下方向)進給,藉此,在砂輪16的外周面生成螺旋狀修整槽213,該螺旋狀修整槽213將砂輪16的右端的角度位置“240°”設為起點,將砂輪16的左端的角度位置“240°”設為終點(圖中,參閱黑色箭頭)。修整槽213與修整槽211、212平行亦即不交叉,並以螺旋狀繞2圈砂輪16的外周面。另一方面,修整槽213與在第1步驟~第3步驟中生成之修整槽201~203交叉。 As shown in FIG. 3C, the dresser 110 feeds the dressing feed amount DL (= W / 2) to the left (downward direction in FIG. 3C) on the returning step of the third step, and thereby, in the grinding wheel 16 A spiral dressing groove 213 is formed on the outer peripheral surface of the spiral dressing groove. The spiral dressing groove 213 sets the angular position “240 °” of the right end of the grinding wheel 16 as the starting point, and sets the angular position “240 °” of the left end of the grinding wheel 16 as the end point (in the figure). , See black arrow). The dressing groove 213 is parallel to the dressing grooves 211 and 212, that is, does not cross, and is wound around the outer peripheral surface of the grinding wheel 16 in a spiral shape. On the other hand, the trimming groove 213 intersects the trimming grooves 201 to 203 generated in the first step to the third step.

如圖3C所示,在第1步驟~第3步驟的各往程上生成之修整槽201~203以平行且等間隔(亦即,相同的節距DP(=DL/3))的方式呈螺旋狀生成於砂輪16的外周面。亦即,在砂輪16的外周面(砂輪作業面)生成3條修整槽201~203。並且,在第1行程~第3步驟的各返程上生成之修整槽211~213以平行且等間隔(亦即,相同的節距DP(=DL/3))的方式呈螺旋狀生成於砂輪16的外周面。亦即,在砂輪16的外周面(砂輪作業面)上生成與修整槽201~203交叉之3條修整槽211~213。 As shown in FIG. 3C, the trimming grooves 201 to 203 generated in each of the first to third steps are presented in parallel and at equal intervals (that is, the same pitch DP (= DL / 3)). A spiral shape is formed on the outer peripheral surface of the grinding wheel 16. That is, three dressing grooves 201 to 203 are formed on the outer peripheral surface (grinding surface) of the grinding wheel 16. In addition, the dressing grooves 211 to 213 generated on each return of the first to third steps are generated in a spiral shape on the grinding wheel in parallel and at equal intervals (that is, the same pitch DP (= DL / 3)). 16 outer peripheral surface. That is, three dressing grooves 211 to 213 that intersect the dressing grooves 201 to 203 are formed on the outer peripheral surface (grinding surface) of the grinding wheel 16.

並且,各修整槽201~203與各修整槽211~213如上所述交叉。因此,如圖3C所示,生成由修整槽201~203中的2個修整槽和修整槽211~213中的2個修整槽包圍之以大致菱形的區域作為底面之錐體,亦即大致四角錐狀峰部(修整峰)。修整峰相當於利用平面磨床1磨削被削材12之部分。 The trimming grooves 201 to 203 and the trimming grooves 211 to 213 intersect as described above. Therefore, as shown in FIG. 3C, a cone with a substantially rhombic area as the bottom surface is generated, which is surrounded by two trimming grooves in the trimming grooves 201 to 203 and two trimming grooves in the trimming grooves 211 to 213, that is, approximately four Pyramid peak (trimmed peak). The trimming peak is equivalent to grinding the part 12 to be cut by the surface grinder 1.

另外,在本實施形態中,成對的複數條修整槽(修整槽201~203及修整槽211~213)的條數Z為3,但可以將條數Z設為2,亦可以設為4以上。在此情況下,只要配合條數Z改變將相位錯開的量即可。在本實施形態中為3條,因此使相位以每“120°”改變,並使修整機110進行3次往返,但例如在2條的情況下,只要使相位以每“180°”改變,並使修整機110進行2次往返即可。並且,例如為4條的情況下,只要使相位以每“90°”改變,並使修整機110進行4次往返即可。亦即,針對條數Z,只要使相位以每“(360/Z)°”改變,並使修整機110進行Z次往返,藉此生成成對的複數條修整槽即可。 In addition, in the present embodiment, the number Z of the plurality of pairs of the trimming grooves (the trimming grooves 201 to 203 and the trimming grooves 211 to 213) is 3, but the number Z may be set to 2 or 4 the above. In this case, as long as the number of pieces Z is changed, the amount of phase shift can be changed. In this embodiment, the number of phases is changed by "120 °" and the trimmer 110 is made three round trips. However, for example, in the case of two lines, as long as the phase is changed by "180 °", It is sufficient to make the dresser 110 return twice. In addition, for example, in the case of four, the phase may be changed every "90 °" and the dresser 110 may be made four round trips. That is, for the number of strips Z, it is only necessary to change the phase every “(360 / Z) °” and make the dresser 110 make Z round trips, thereby generating a plurality of pairs of dressing grooves.

[作用] [effect]

接著,參閱圖4(圖4A、圖4B),說明利用圖2所示之修整裝置100進行了修整作業後之砂輪16,亦即生成後圖3C所示之修整槽201~203及修整槽211~213之砂輪16的作用。 Next, referring to FIG. 4 (FIGS. 4A and 4B), the grinding wheel 16 after the dressing operation using the dressing device 100 shown in FIG. 2 will be described, that is, the dressing grooves 201 to 203 and the dressing groove 211 shown in FIG. 3C are generated after generation. ~ 213 of the role of the grinding wheel 16.

圖4A係表示利用比較例之修整裝置進行了修整作業 後之砂輪16的一例之圖,圖4B係利用本實施形態之修整裝置100進行了修整作業後之砂輪16的一例之圖。具體而言,係砂輪16的外周面(砂輪作業面)的展開圖。 FIG. 4A shows a dressing operation performed by a dressing device of a comparative example FIG. 4B is a diagram showing an example of the grinding wheel 16 after performing a dressing operation using the dressing apparatus 100 of the present embodiment. Specifically, the development view of the outer peripheral surface (grinding surface) of the grinding wheel 16 is shown.

另外,相當於習知技術之比較例之修整裝置,僅進行本實施形態之修整裝置100中之第1步驟。並且,為了將砂輪16的外周面的相同角度位置上之修整槽的間隔(節距)設為相同,比較例之修整裝置中之修整進給量DLc係W/6(DLc=W/6)。並且,圖中的黑色圓點示意地表示修整峰的頂點。 In addition, the dressing device corresponding to the comparative example of the conventional technology performs only the first step in the dressing device 100 of this embodiment. In addition, in order to set the interval (pitch) of the dressing grooves at the same angular position on the outer peripheral surface of the grinding wheel 16, the dressing feed amount Dlc in the dressing device of the comparative example is W / 6 (DLc = W / 6) . In addition, the black dots in the figure schematically indicate the apex of the trimmed peak.

如圖4A所示,在利用比較例之修整裝置進行了修整作業後之砂輪16的外周面(砂輪作業面),生成有1個螺旋狀修整槽201c和與修整槽201c交叉之1個螺旋狀修整槽211c。在比較例中,如上所述,修整進給量DLc=W/6,因此修整槽201c、211c分別在砂輪16的外周面呈螺旋狀繞6圈。而且,由交叉之修整槽201c、211c所包圍之菱形修整峰在砂輪16的180°對稱的2個角度位置,具體而言,在角度位置“180°”和角度位置“360°”(=“0°”),以沿寬度方向排列之態樣生成。換言之,修整峰在修整槽201c或修整槽211c的方向上,在砂輪16的外周面(砂輪作業面)的每1圈排列有2個。 As shown in FIG. 4A, a spiral-shaped dressing groove 201c and a spiral-shaped shape intersecting the dressing groove 201c are formed on the outer peripheral surface (grinding surface) of the grinding wheel 16 after the dressing operation is performed by the dressing device of the comparative example. Trim groove 211c. In the comparative example, as described above, since the dressing feed amount DLc = W / 6, the dressing grooves 201c and 211c are spirally wound around the outer peripheral surface of the grinding wheel 16 for six turns. Moreover, the rhombic trimming peaks surrounded by the crossing trimming grooves 201c and 211c are at two angular positions of 180 ° symmetry of the grinding wheel 16, specifically, at the angular position "180 °" and the angular position "360 °" (= " 0 ° "), generated in a state of being arranged in the width direction. In other words, in the direction of the dressing groove 201c or the dressing groove 211c, two dressing peaks are arranged on the outer peripheral surface (grinding surface) of the grinding wheel 16 per turn.

如此,利用比較例之修整裝置進行了修整作業後之砂輪16,在外周面(砂輪作業面)中,僅在180°對稱的2個角度位置上生成修整峰。因此,當安裝於平面磨床1之砂輪16一邊旋轉一邊對被削材12進行磨削時,藉由生成 修整峰之2個角度位置的附近以外的部分磨削之被削材12的部分,可能幾乎不被磨削。於是,在被削材12中被修整峰磨削之部分和幾乎不被磨削之部分的差異明顯,有可能在被削材12的表面生成波紋或顫紋(顫紋標記)。亦即,有可能導致被削材12的品質下降。 In this way, in the grinding wheel 16 after the dressing operation was performed by the dressing device of the comparative example, a dressing peak was generated only at two angular positions of 180 ° symmetry on the outer peripheral surface (grinding surface). Therefore, when the grinding wheel 16 mounted on the surface grinder 1 grinds the workpiece 12 while rotating, The part of the material 12 to be ground, except for the vicinity of the two angular positions of the trimming peak, may be hardly ground. Therefore, the difference between the portion to be ground and sharpened by the trimming material 12 and the portion to be hardly ground is obvious, and there is a possibility that waviness or chatter marks (flutter marks) are generated on the surface of the workpiece 12. That is, the quality of the to-be-cut material 12 may fall.

相對於此,如圖4B所示,在利用本實施形態之修整裝置100進行了修整作業後之砂輪16上,如上所述,生成3條修整槽201~203和與該3條修整槽201~203分別交叉之3條修整槽211~213。而且,藉由3條修整槽201~203及3條修整槽211~213的交叉,在6個角度位置(角度位置“60°”,“120°”,“180°”,“240°”,“300°”及“360°”(=“0°”)),修整峰以沿寬度方向排列之態樣生成。換言之,修整峰在修整槽201~203或修整槽211~213的方向上,在砂輪16的外周面(砂輪作業面)的每1圈排列有6(=2‧Z)個。 In contrast, as shown in FIG. 4B, on the grinding wheel 16 after the dressing operation is performed by the dressing device 100 of the present embodiment, as described above, three dressing grooves 201 to 203 and the three dressing grooves 201 to 201 are generated. 203 three trimming grooves 211 to 213 respectively crossing. Moreover, by the intersection of the three trimming grooves 201 to 203 and the three trimming grooves 211 to 213, at six angular positions (the angular positions "60 °", "120 °", "180 °", "240 °", "300 °" and "360 °" (= "0 °")), the trimmed peaks are generated in a state of being arranged in the width direction. In other words, in the direction of the dressing grooves 201 to 203 or the dressing grooves 211 to 213, there are 6 (= 2 · Z) peaks of the dressing 16 arranged on each outer circumference of the grinding wheel 16 (grinding surface).

從而,在安裝於平面磨床1之砂輪16旋轉的同時,在外周面(砂輪作業面)的6個角度位置上生成之修整峰對被削材12進行磨削,因此,與比較例的情況相比,能夠抑制產生被削材12的表面的波紋或顫紋等。並且,藉由將所生成之成對的複數條修整槽的條數Z設為更多(Z4),配置修整峰之砂輪16的角度位置的數量(=2‧Z)增加,因此能夠進一步抑制被削材12的表面的波紋或顫紋等的產生。 Therefore, while the grinding wheel 16 mounted on the surface grinder 1 is rotating, the trimmed peaks generated at the six angular positions of the outer peripheral surface (grinding wheel working surface) grind the material 12 to be cut. It is possible to suppress the occurrence of waviness, chatter, and the like on the surface of the material 12 to be cut. In addition, by setting the number Z of the generated plurality of trimming grooves in pairs (Z 4) The number of angular positions (= 2‧Z) of the grinding wheel 16 where the trimming peak is disposed is increased, so that it is possible to further suppress the occurrence of waviness or chattering on the surface of the material 12 to be cut.

另外,成對的修整槽的修整進給量DL(亦即,修整 槽201~203、211~213在砂輪16的外周面每1圈的寬度方向上的移動量)係0.1mm以上為更佳。並且,成對的複數條修整槽的節距DP(亦即,修整槽201~203中相鄰之2個及修整槽211~213中相鄰之2個,在砂輪16的寬度方向上之間隔)係0.5mm以下為更佳。但成對的複數條修整槽的節距DP小於修整進給量DL。 In addition, the dressing feed amount DL of the dressing grooves in pairs (that is, dressing The movement amount of the grooves 201 to 203 and 211 to 213 in the width direction per one revolution of the outer peripheral surface of the grinding wheel 16 is more preferably 0.1 mm or more. In addition, the pitch DP of a plurality of pairs of dressing grooves (that is, the two adjacent ones of the dressing grooves 201 to 203 and the two adjacent ones of the dressing grooves 211 to 213 are spaced apart in the width direction of the grinding wheel 16 ) Is more preferably 0.5 mm or less. However, the pair of plural dressing grooves has a pitch DP smaller than the dressing feed DL.

[修整裝置的第2例] [Second example of dressing device]

接著,參閱圖5,對本實施形態之修整裝置100的第2例進行說明。 Next, a second example of the dressing apparatus 100 according to this embodiment will be described with reference to FIG. 5.

圖5係表示概略地表示本實施形態之修整裝置100的結構的第2例之圖。 FIG. 5 is a diagram schematically showing a second example of the configuration of the dressing apparatus 100 according to this embodiment.

本例之修整裝置100與圖2所示之第1例不同點在於,設置有複數個(3個)修整機111~113,以代替修整機110。 The dressing device 100 of this example is different from the first example shown in FIG. 2 in that a plurality of (3) dressers 111 to 113 are provided instead of the dresser 110.

以下,對於與圖2所示之修整裝置100相同的結構標註相同的符號,並以不同的部分為中心進行說明。 In the following, the same components as those of the dressing device 100 shown in FIG. 2 are denoted by the same reference numerals, and different portions will be mainly described.

修整機111~113藉由驅動機構120成為一體地沿左右方向(圖中的X軸的正方向及負方向)及上下方向(圖中的Z軸的正方向及負方向)移動驅動。以下,參閱圖6,對修整機111~113的具體的配置態樣進行說明。 The dressers 111 to 113 are integrally moved and driven by the driving mechanism 120 in the left-right direction (positive and negative directions of the X-axis in the figure) and the up-down direction (positive and negative directions of the Z-axis in the figure). Hereinafter, referring to FIG. 6, specific configuration patterns of the trimmers 111 to 113 will be described.

圖6係對修整機111~113的配置態樣具體地進行說明之圖。 FIG. 6 is a diagram for specifically explaining the configuration of the trimmers 111 to 113.

如圖6所示,修整機111~113是沿左右方向排列配 置。 As shown in Figure 6, the trimmers 111 to 113 are arranged along the left and right directions. Home.

修整機112以修整機111的左右位置(具體而言,生成修整槽之修整機111的前端的左右位置)為基準,向左方向偏移距離L1而配置。距離L1係修整進給量DL的整數倍(n倍)和由修整進給量DL除以條數Z(=3)之值的相加值(L1=n‧DL+DL/Z(n:1以上的整數))。藉此,若使修整機111~113成為一體地以修整進給量DL沿左右方向移動,則相對於利用修整機111生成之修整槽,利用修整機112生成之修整槽在砂輪16的寬度方向上偏移DL/3。 The dresser 112 is arranged based on the left and right positions of the dresser 111 (specifically, the left and right positions of the front end of the dresser 111 that generates a dressing groove), and is offset by a distance L1 in the left direction. The distance L1 is an integer multiple (n times) of the trimming feed DL and the value obtained by dividing the trimming feed DL by the number of strips Z (= 3) (L1 = n‧DL + DL / Z (n: An integer of 1 or more)). Therefore, if the dressers 111 to 113 are moved integrally with the dressing feed amount DL in the left-right direction, the dressing groove generated by the dresser 112 is in the width direction of the grinding wheel 16 with respect to the dressing slot generated by the dresser 111 Offset DL / 3.

修整機113以修整機111的左右位置為基準,向左方向偏移距離L2而配置。距離L2係修整進給量DL的整數倍(m倍)和由修整進給量DL的倍數除以條數Z(=3)之值的相加值(L2=m‧DL+2DL/Z(m:大於n的整數))。藉此,若使修整機111~113成為一體地以修整進給量DL沿左右方向移動,則相對於利用修整機111生成之修整槽,利用修整機113生成之修整槽在砂輪16的寬度方向上偏移2DL/3。 The dresser 113 is arranged with the left and right positions of the dresser 111 offset by a distance L2 in the left direction. The distance L2 is an integer multiple (m times) of the trimming feed DL and the value obtained by dividing the multiple of the trimming feed DL by the number of strips Z (= 3) (L2 = m‧DL + 2DL / Z ( m: an integer greater than n)). With this, if the dressers 111 to 113 are moved integrally with the dressing feed amount DL in the left-right direction, the dressing groove generated by the dresser 113 is in the width direction of the grinding wheel 16 with respect to the dressing slot generated by the dresser 111. Up offset 2DL / 3.

另外,因為必須在砂輪16的磨粒上生成複數個修整槽,修整槽的間隔(節距)通常設定為充分小於修整機111~113的外形尺寸。因此,如圖6的虛線所示,無法將修整機111~113單純向左右方向偏移DL/3而配置。 In addition, since it is necessary to generate a plurality of dressing grooves on the abrasive grains of the grinding wheel 16, the interval (pitch) of the dressing grooves is usually set sufficiently smaller than the external dimensions of the dressers 111 to 113. Therefore, as shown by the dotted line in FIG. 6, the finishers 111 to 113 cannot be arranged simply by shifting DL / 3 in the left-right direction.

[修整方法的第2例] [Second example of dressing method]

接著,參閱圖7(圖7A~圖7C)、圖8(圖8A~圖8C),對使用圖5所示之修整裝置100之修整方法(本實施形態之修整方法的第2例)進行說明。 Next, referring to Fig. 7 (Fig. 7A to Fig. 7C) and Fig. 8 (Fig. 8A to Fig. 8C), a dressing method (the second example of the dressing method of this embodiment) using the dressing device 100 shown in Fig. 5 will be described. .

圖7A~圖7C、圖8A~圖8C係對本實施形態之修整方法的第2例進行說明之圖。具體而言,表示圖5所示之修整裝置100的動作。 7A to 7C and 8A to 8C are diagrams for explaining a second example of the trimming method of this embodiment. Specifically, the operation of the dressing apparatus 100 shown in FIG. 5 is shown.

本例之修整裝置100進行1次以下步驟:使修整機111~113(中的至少1個)與旋轉中之砂輪16接觸,並成為一體地在安裝於旋轉軸131上之砂輪16的左右端之間往返移動(以下,稱作“往返步驟”)。圖7A~圖7C及圖8A~圖8C係表示該往返步驟中的往程及返程上之修整槽的生成態樣之砂輪16的外周面(砂輪作業面)的展開圖。 The dressing device 100 of this example performs the following steps once: bringing the dressers 111 to 113 (at least one of them) into contact with the grinding wheel 16 in rotation, and integrally mounting the left and right ends of the grinding wheel 16 mounted on the rotating shaft 131 Move back and forth (hereinafter referred to as "round trip step"). FIGS. 7A to 7C and FIGS. 8A to 8C are development views of the outer peripheral surface (grinding surface) of the grinding wheel 16 showing the generation state of the trimming grooves on the forward and return paths in the reciprocating step.

另外,在圖7B及圖7C中分別由虛線表示已利用其他修整機生成之修整槽,由實線表示利用修整機112及修整機113生成之修整槽202及修整槽203。並且,在圖8B及圖8C中分別由虛線表示已利用其他修整機生成之修整槽,由實線表示利用修整機112及修整機111生成之修整槽212及修整槽213。並且,本例中之往返步驟藉由以下流程進行:使修整機111~113成為一體地從砂輪16的左端向右端移動,接著,從右端向左端移動。並且,在本例中,與圖3A~圖3C的一例同樣地,修整進給量DL係砂輪16的寬度W的1/2(亦即,修整進給量DL=W/2)。並且,在本例中,以n2且m4作為前提。 In addition, in FIG. 7B and FIG. 7C, the dressing grooves generated by other dressers are indicated by broken lines, and the dressing grooves 202 and 203 generated by the dressers 112 and 113 are shown by solid lines, respectively. In FIG. 8B and FIG. 8C, the dressing grooves generated by other dressers are indicated by broken lines, and the dressing grooves 212 and 213 generated by the dresser 112 and the dresser 111 are shown by solid lines. In addition, the round-trip step in this example is performed by the following procedure: The dressers 111 to 113 are integrally moved from the left end to the right end of the grinding wheel 16, and then moved from the right end to the left end. In this example, as in the example of FIGS. 3A to 3C, the dressing feed amount DL-based grinding wheel 16 is ½ of the width W (that is, the dressing feed amount DL = W / 2). And, in this example, take n 2 and m 4 as a prerequisite.

在往返步驟中的往程上,控制器150控制驅動機構120,以使修整機111~113中的位於最右側之修整機111在角度位置“0°”開始與砂輪16的左端位置(座標值“0”)接觸,並使修整機111~113成為一體地向右方向以修整進給量DL(=W/2)移動。而且,控制器150控制驅動機構120,使修整機111~113中的位於最左側之修整機113移動至右端位置(座標值“W”)。 In the forward and backward steps, the controller 150 controls the driving mechanism 120 so that the rightmost dresser 111 among the dressers 111 to 113 starts at the angular position “0 °” and the left end position of the grinding wheel 16 (coordinate value) "0"), and the trimmers 111 to 113 are moved integrally to the right with a trimming feed amount DL (= W / 2). In addition, the controller 150 controls the driving mechanism 120 to move the leftmost dresser 113 among the dressers 111 to 113 to the right end position (coordinate value "W").

在往程上,首先,如圖7A所示,修整機111生成修整槽201。具體而言,修整機111以修整進給量DL(=W/2)向右方向(圖7A的上方向)進給,藉此,在砂輪16的外周面上生成螺旋狀修整槽201,該螺旋狀修整槽201將砂輪16的左端的角度位置“0°”設為起點,將砂輪16的右端的角度位置“360°”(=“0°”)設為終點(圖中,參閱白色箭頭)。 In the forward direction, first, as shown in FIG. 7A, the dresser 111 generates a dressing groove 201. Specifically, the dresser 111 feeds the dressing feed amount DL (= W / 2) to the right (upward direction in FIG. 7A), thereby generating a spiral dressing groove 201 on the outer peripheral surface of the grinding wheel 16. The spiral dressing groove 201 sets the angular position “0 °” of the left end of the grinding wheel 16 as the starting point, and sets the angular position “360 °” (= “0 °”) of the right end of the grinding wheel 16 as the end point (see the white arrow in the figure) ).

接著,如圖7B所示,修整機112生成修整槽202。具體而言,修整機112以修整進給量DL(=W/2)向右方向(圖7B的上方向)進給,藉此,砂輪16的外周面上生成螺旋狀修整槽202,該螺旋狀修整槽202將砂輪16的左端的角度位置“120°”設為起點,將砂輪16的右端的角度位置“120°”(=“0°”)設為終點(圖中,參閱白色箭頭)。 Next, as shown in FIG. 7B, the dresser 112 generates a dressing groove 202. Specifically, the dresser 112 feeds to the right (upward direction in FIG. 7B) with a dressing feed amount DL (= W / 2), whereby a spiral dressing groove 202 is generated on the outer peripheral surface of the grinding wheel 16, and the spiral The shape dressing groove 202 sets the angular position "120 °" of the left end of the grinding wheel 16 as the starting point, and sets the angular position "120 °" (= "0 °") of the right end of the grinding wheel 16 as the ending point (see the white arrow in the figure) .

接著,如圖7C所示,修整機113生成修整槽203。具體而言,修整機113以修整進給量DL(=W/2)向右方向(圖7C的上方向)進給,藉此,在砂輪16的外周面上 生成螺旋狀修整槽203,該螺旋狀修整槽203將砂輪16的左端的角度位置“240°”設為起點,將砂輪16的右端的角度位置“240°”(=“0°”)設為終點(圖中,參閱白色箭頭)。 Next, as shown in FIG. 7C, the dresser 113 generates a dressing groove 203. Specifically, the dresser 113 feeds the dressing feed amount DL (= W / 2) to the right (upward direction in FIG. 7C), whereby the dresser 113 is applied to the outer peripheral surface of the grinding wheel 16. A spiral dressing groove 203 is generated. The spiral dressing groove 203 sets the angular position “240 °” of the left end of the grinding wheel 16 as a starting point, and sets the angular position “240 °” (= “0 °”) of the right end of the grinding wheel 16 as a starting point. End point (see white arrow in the figure).

並且,在往返步驟中的返程上,控制器150控制驅動機構120,以使修整機111~113中的位於最左側之修整機113以角度位置“0°”開始與砂輪16的右端位置(座標值“W”)接觸,並使修整機111~113成為一體地向左方向以修整進給量DL(=W/2)移動。而且,控制器150控制驅動機構120,使修整機111~113中的位於最右側之修整機111移動至左端位置(座標值“0”)。 Further, on the return journey in the round-trip step, the controller 150 controls the driving mechanism 120 so that the leftmost dresser 113 among the dressers 111 to 113 starts at an angular position “0 °” and the right end position of the grinding wheel 16 (coordinates) Value "W"), and the dressers 111 to 113 are moved integrally to the left and moved by the dressing feed amount DL (= W / 2). In addition, the controller 150 controls the driving mechanism 120 to move the dresser 111 located at the far right among the dressers 111 to 113 to the left end position (the coordinate value is "0").

在返程上,首先,如圖8A所示,修整機113生成修整槽211。具體而言,修整機113以修整進給量DL(=W/2)向左方向(圖8A的下方向)進給,藉此,在砂輪16的外周面上生成螺旋狀修整槽211,該螺旋狀修整槽211將砂輪16的右端的角度位置“0°”設為起點,將砂輪16的左端的角度位置“360°”(=“0°”)設為終點(圖中,參閱黑色箭頭)。 On the return journey, first, as shown in FIG. 8A, the dresser 113 generates a dressing groove 211. Specifically, the dresser 113 feeds the dressing feed amount DL (= W / 2) to the left (downward direction in FIG. 8A), thereby generating a spiral dressing groove 211 on the outer peripheral surface of the grinding wheel 16. The spiral dressing groove 211 sets the angular position “0 °” of the right end of the grinding wheel 16 as the starting point, and sets the angular position “360 °” (= “0 °”) of the left end of the grinding wheel 16 as the end point (see the black arrow in the figure ).

接著,如圖8B所示,修整機112生成修整槽212。具體而言,修整機112以修整進給量DL(=W/2)向左方向(圖8B的下方向)進給,藉此,在砂輪16的外周面上生成螺旋狀修整槽212,該螺旋狀修整槽212將砂輪16的右端的角度位置“120°”設為起點,將砂輪16的左端的角度位置“120°”設為終點(圖中,參閱黑色箭頭)。 Next, as shown in FIG. 8B, the dresser 112 generates a dressing groove 212. Specifically, the dresser 112 feeds the dressing feed amount DL (= W / 2) to the left (downward direction in FIG. 8B), thereby generating a spiral dressing groove 212 on the outer peripheral surface of the grinding wheel 16. The spiral dressing groove 212 sets the angular position "120 °" of the right end of the grinding wheel 16 as a starting point, and sets the angular position "120 °" of the left end of the grinding wheel 16 as an end point (see the black arrow in the figure).

接著,如圖8C所示,修整機111生成修整槽213。具體而言,修整機111以修整進給量DL(=W/2)向左方向(圖8C的下方向)進給,藉此,在砂輪16的外周面上生成螺旋狀修整槽213,該螺旋狀修整槽213將砂輪16的右端的角度位置“240°”設為起點,將砂輪16的左端的角度位置“240°”設為終點(圖中,參閱黑色箭頭)。 Next, as shown in FIG. 8C, the dresser 111 generates a dressing groove 213. Specifically, the dresser 111 feeds the dressing feed amount DL (= W / 2) to the left (downward direction in FIG. 8C), thereby generating a spiral dressing groove 213 on the outer peripheral surface of the grinding wheel 16. The spiral dressing groove 213 sets the angular position “240 °” of the right end of the grinding wheel 16 as the starting point, and sets the angular position “240 °” of the left end of the grinding wheel 16 as the ending point (see the black arrow in the figure).

另外,在本例中,在返程上,修整機113、112、111依次生成修整槽211、212、213,但並不限定於該態樣。例如亦可以係修整機113生成修整槽213,修整機112生成修整槽211,修整機111生成修整槽212。並且,例如亦可以係修整機113生成修整槽212,修整機112生成修整槽213,修整機111生成修整槽211。 In addition, in this example, on the return journey, the trimmers 113, 112, and 111 generate the trimming grooves 211, 212, and 213 in sequence, but it is not limited to this aspect. For example, the trimmer 113 may generate a trimming groove 213, the trimmer 112 may generate a trimming groove 211, and the trimmer 111 may generate a trimming groove 212. In addition, for example, the trimmer 113 may generate a trimming groove 212, the trimmer 112 may generate a trimming groove 213, and the trimmer 111 may generate a trimming groove 211.

如此,藉由本例之修整方法(亦即,圖5所示之修整裝置100)而能夠生成與圖4B相同的成對的複數條修整槽(3條修整槽201~203及3條修整槽211~213)。 In this way, by the dressing method of this example (that is, the dressing device 100 shown in FIG. 5), a plurality of dressing grooves (three dressing grooves 201 to 203 and three dressing grooves 211), which are the same as in FIG. 4B, can be generated ~ 213).

並且,依本例之修整方法(亦即,圖5所示之修整裝置100),只要使複數個修整機成為一體地向左右方向往返一次即可,因此能夠以更短的時間生成成對的複數條修整槽。 In addition, according to the dressing method of this example (that is, the dressing device 100 shown in FIG. 5), it is only necessary to make a plurality of dressers integrally reciprocate once in the left and right directions, so that it is possible to generate pairs in a shorter time. Multiple trimming slots.

另外,在圖5所示之修整裝置100雖設置3個修整機111~113,但亦可以設置4個以上的修整機,從而生成4條以上的成對的複數條修整槽。並且,亦可以使修整機111~113成為一體地向左右方向往返複數次,從而生成4條以上的成對的複數條修整槽。 In addition, although three dressers 111 to 113 are provided in the dressing device 100 shown in FIG. 5, four or more dressers may be provided to generate a plurality of four or more pairs of dressing grooves. In addition, the trimmers 111 to 113 may be integrally moved back and forth in the left-right direction a plurality of times, thereby generating a plurality of trimming grooves of four or more pairs.

[修整裝置的第3例] [Third example of dressing device]

接著,參閱圖9,對本實施形態之修整裝置100的第3例進行說明。 Next, a third example of the dressing apparatus 100 according to this embodiment will be described with reference to FIG. 9.

圖9係概略地表示本實施形態之修整裝置100的結構的第3例之圖。 FIG. 9 is a diagram schematically showing a third example of the configuration of the dressing apparatus 100 according to this embodiment.

本例之修整裝置100與圖2所示之第1例不同點在於,與圖5所示之第2例同樣地,設置複數個(3個)修整機111~113,以代替修整機110。 The dressing device 100 of this example is different from the first example shown in FIG. 2 in that a plurality of (3) dressers 111 to 113 are provided instead of the dresser 110 in the same manner as the second example shown in FIG. 5.

並且,本例之修整裝置100與圖2所示之第1例及圖5所示之第2例不同點在於,修整機111~113分別配置於具有沿左右方向之旋轉軸之旋轉體115的外周面上之不同的角度位置(周方向的位置)。 In addition, the dressing device 100 of this example is different from the first example shown in FIG. 2 and the second example shown in FIG. 5 in that the dressers 111 to 113 are respectively disposed on a rotating body 115 having a rotation axis in the left-right direction. Different angular positions (peripheral positions) on the outer peripheral surface.

並且,本例之修整裝置100與圖2所示之第1例及圖5所示之第2例不同點在於,進一步設置有檢測旋轉體115的旋轉位置之旋轉位置檢測裝置125。 In addition, the dressing device 100 of this example is different from the first example shown in FIG. 2 and the second example shown in FIG. 5 in that a rotation position detection device 125 that detects the rotation position of the rotating body 115 is further provided.

以下,對於圖2、圖5所示之修整裝置100相同的結構標註相同的符號,並以不同的部分為中心進行說明。 Hereinafter, the same components of the dressing device 100 shown in FIG. 2 and FIG. 5 are denoted by the same reference numerals, and different portions will be mainly described.

修整機111~113配置於具有沿左右方向之旋轉軸之旋轉體115的外周面。以下,參閱圖10(圖10A、圖10B),對修整機111~113的具體的配置態樣進行說明。 The dressers 111 to 113 are arranged on the outer peripheral surface of the rotating body 115 having a rotation axis in the left-right direction. Hereinafter, referring to FIG. 10 (FIGS. 10A and 10B), specific configuration aspects of the trimmers 111 to 113 will be described.

圖10A、圖10B係對修整機111~113的配置態樣具體地進行說明之圖。具體而言,圖10A係從左方觀察旋轉體115之圖,圖10B係從正面觀察旋轉體115之圖。 FIG. 10A and FIG. 10B are diagrams for specifically describing the configuration of the trimmers 111 to 113. Specifically, FIG. 10A is a view of the rotating body 115 viewed from the left, and FIG. 10B is a view of the rotating body 115 viewed from the front.

另外,在圖10B中,修整機113因進入到旋轉體115 的背面而用虛線來表示。 In addition, in FIG. 10B, the dresser 113 enters the rotating body 115 because The back side is shown with a dashed line.

如圖10A所示,修整機111~113配置於旋轉體115的外周面的不同的角度位置(周方向的位置)。 As shown in FIG. 10A, the dressers 111 to 113 are arranged at different angular positions (positions in the circumferential direction) on the outer peripheral surface of the rotating body 115.

並且,如圖10B所示,修整機111~113分別在左右方向上以DL/Z(在本例中,條數Z=3)的間隔進行配置。具體而言,以修整機111的左右位置為基準,修整機112向左方向偏移DL/Z而配置,修整機113向左方向偏移2DL/Z而配置。 Further, as shown in FIG. 10B, the dressers 111 to 113 are arranged at intervals of DL / Z (in this example, the number of pieces Z = 3) in the left and right directions. Specifically, based on the left and right positions of the trimmer 111, the trimmer 112 is arranged to be shifted to the left by DL / Z, and the trimmer 113 is arranged to be shifted to the left by 2DL / Z.

如後述,旋轉體115以相對於砂輪16的轉速為充分高的轉速進行旋轉。因此,如由圖10B的一點鏈線所示,若從以比較低的速度進行旋轉之砂輪16側觀察,則能夠視為與修整機111~113沿左右方向排列配置之狀態相同。 As described later, the rotating body 115 rotates at a sufficiently high rotation speed with respect to the rotation speed of the grinding wheel 16. Therefore, as shown by the one-dot chain line in FIG. 10B, when viewed from the side of the grinding wheel 16 rotating at a relatively low speed, it can be regarded as the same state in which the dressers 111 to 113 are arranged in the left-right direction.

返回圖9,驅動機構120具備例如追加的伺服馬達,而將旋轉體115進行旋轉驅動。驅動機構120使旋轉體115以比旋轉機構130所致之砂輪16的轉速充分高的轉速(旋轉機構130所致之砂輪16的轉速的10倍以上為較佳)進行旋轉。並且,驅動機構120將設置有修整機111~113之旋轉體115沿左右方向(圖中的X軸的正方向及負方向)及上下方向(圖中的Z軸的正方向及負方向)進行移動驅動。 Returning to FIG. 9, the drive mechanism 120 includes, for example, an additional servo motor, and rotates the rotating body 115. The driving mechanism 120 rotates the rotating body 115 at a rotation speed sufficiently higher than the rotation speed of the grinding wheel 16 caused by the rotation mechanism 130 (preferably 10 times or more of the rotation speed of the grinding wheel 16 caused by the rotation mechanism 130). In addition, the driving mechanism 120 performs the rotating body 115 provided with the dressers 111 to 113 in the left-right direction (positive and negative directions of the X axis in the figure) and the up-down direction (positive and negative directions of the Z axis in the figure). Mobile drive.

旋轉位置檢測裝置125例如係旋轉編碼器,其檢測旋轉體115在砂輪16的旋轉位置(角度位置)。旋轉位置檢測裝置125與控制器150連接成可以進行通訊,所檢測 到之與旋轉體115的角度位置對應之檢測訊號被發送到控制器150。 The rotational position detection device 125 is, for example, a rotary encoder that detects the rotational position (angular position) of the rotating body 115 on the grinding wheel 16. The rotation position detection device 125 is connected to the controller 150 so that communication can be performed. The detection signal corresponding to the angular position of the rotating body 115 is transmitted to the controller 150.

控制器150向驅動機構120發送控制指令,控制藉由驅動機構120而沿上下左右移動驅動之設置有修整機111~113的旋轉體115的左右位置及上下位置。並且,控制器150一邊根據來自旋轉位置檢測裝置125的檢測訊號來確認旋轉體115以相對於砂輪16的轉速為充分高的速度進行旋轉之狀態,一邊進行驅動機構120的控制。 The controller 150 sends a control instruction to the driving mechanism 120 to control the left and right positions and the up and down positions of the rotating body 115 provided with the dressers 111 to 113 to be driven to move up, down, and left and right by the driving mechanism 120. The controller 150 controls the drive mechanism 120 while confirming that the rotating body 115 is rotating at a sufficiently high speed relative to the rotational speed of the grinding wheel 16 based on a detection signal from the rotational position detecting device 125.

[修整方法的第3例] [Third example of dressing method]

接著,參閱圖11(圖11A~圖11C),對使用圖9所示之修整裝置100之修整方法(本實施形態之修整方法的第3例)進行說明。 Next, referring to Fig. 11 (Figs. 11A to 11C), a dressing method using the dressing device 100 shown in Fig. 9 (a third example of the dressing method of this embodiment) will be described.

圖11A~圖11C係對本實施形態之修整方法的第3例進行說明之圖。具體而言,表示圖9所示之修整裝置100的動作。 11A to 11C are diagrams for explaining a third example of the trimming method of this embodiment. Specifically, the operation of the dressing apparatus 100 shown in FIG. 9 is shown.

本例之修整裝置100進行1次以下步驟:使修整機111~113(中的至少1個)與旋轉中之砂輪16接觸,並成為一體地在安裝於旋轉軸131之砂輪16的左右端之間進行往返移動(以下,稱作“往返步驟”)。圖11A~圖11C係表示該往返步驟中的往程上之修整槽的生成態樣之砂輪16的外周面(砂輪作業面)的展開圖。 The dressing device 100 of this example performs the following steps once: bringing the dressers 111 to 113 (at least one of them) into contact with the grinding wheel 16 in rotation, and integrating them into the left and right ends of the grinding wheel 16 mounted on the rotating shaft 131 And back and forth (hereinafter, referred to as a "round trip step"). FIGS. 11A to 11C are development views showing the outer peripheral surface (grinding surface) of the grinding wheel 16 in which the trimming grooves are generated in the forward and backward steps in the reciprocating step.

在往返步驟中的往程上,控制器150控制驅動機構120,以使修整機111~113中的位於最右側之修整機111 在角度位置“0°”開始與砂輪16的左端位置(座標值“0°”)接觸,並使修整機111~113成為一體地向右方向以修整進給量DL(=W/2)移動。而且,控制器150控制驅動機構120,使修整機111~113中的位於最左側之修整機113移動至右端位置(座標值“W”)。 In the forward and backward steps, the controller 150 controls the driving mechanism 120 so that the rightmost dresser 111 among the dressers 111 to 113 At the angular position "0 °", it starts to contact the left end position (coordinate value "0 °") of the grinding wheel 16, and the dressers 111 to 113 are integrated to move to the right with the dressing feed DL (= W / 2). . In addition, the controller 150 controls the driving mechanism 120 to move the leftmost dresser 113 among the dressers 111 to 113 to the right end position (coordinate value "W").

如圖11A所示,首先,修整機111開始生成修整槽201。之後,若砂輪16旋轉120°,則如圖11B所示,修整機112開始生成修整槽202。之後,若砂輪16進一步旋轉120°,則如圖11C所示,修整機113開始生成修整槽203。之後,修整機111~113同時生成修整槽201~203,直至修整機111結束生成修整槽201,亦即,直至修整機111到達砂輪16的右端位置(座標值“W”)。而且,在修整機111結束生成修整槽201之後,若砂輪16旋轉120°,則修整機112結束生成修整槽202,若砂輪16進一步旋轉120°,則修整機113結束生成修整槽203,完成3條修整槽201~203。 As shown in FIG. 11A, first, the dresser 111 starts to generate a dressing groove 201. After that, if the grinding wheel 16 rotates 120 °, as shown in FIG. 11B, the dresser 112 starts to generate a dressing groove 202. After that, if the grinding wheel 16 is further rotated by 120 °, as shown in FIG. 11C, the dresser 113 starts generating a dressing groove 203. After that, the dressers 111 to 113 generate the dressing grooves 201 to 203 at the same time, until the dresser 111 finishes generating the dressing grooves 201, that is, until the dresser 111 reaches the right end position of the grinding wheel 16 (the coordinate value "W"). Moreover, after the dresser 111 finishes generating the dressing groove 201, if the grinding wheel 16 rotates 120 °, the dresser 112 ends generating the dressing groove 202, and if the grinding wheel 16 further rotates 120 °, the dresser 113 ends generating the dressing groove 203, completing 3 Trim grooves 201 ~ 203.

並且,在往返步驟中的返程上,控制器150控制驅動機構120,以使修整機111~113中的位於最左側之修整機113在角度位置“0°”開始與砂輪16的右端位置(座標值“W”)接觸,並使修整機111~113成為一體地向左方向以修整進給量DL(=W/2)移動。而且,控制器150控制驅動機構120,使修整機111~113中的位於最右側之修整機111移動至左端位置(座標值“0”)。 Further, on the return journey in the round-trip step, the controller 150 controls the driving mechanism 120 so that the leftmost dresser 113 among the dressers 111 to 113 starts at an angular position “0 °” and the right end position (coordinate of the grinding wheel 16) Value "W"), and the dressers 111 to 113 are moved integrally to the left and moved by the dressing feed amount DL (= W / 2). In addition, the controller 150 controls the driving mechanism 120 to move the dresser 111 located at the far right among the dressers 111 to 113 to the left end position (the coordinate value is "0").

雖然未圖示,但與圖11A~圖11C所示之往程同樣 地,返程係修整機111~113同時生成修整槽211~213之態樣。具體而言,首先,修整機113開始生成修整槽211。之後,若砂輪16旋轉120°,則修整機112開始生成修整槽212。之後,若砂輪16進一步旋轉120°,則修整機111開始生成修整槽213。之後,修整機111~113同時生成修整槽211~213,直至修整機113結束生成修整槽211,亦即直至修整機113到達砂輪16的左端位置(座標值“0”)。而且,在修整機113結束生成修整槽211之後,若砂輪16旋轉120°,則修整機112結束生成修整槽212,若砂輪16進一步旋轉120°,則修整機111結束生成修整槽213,完成3條修整槽211~213。 Although not shown, it is the same as shown in FIG. 11A to FIG. 11C In the ground, the returning units 111 to 113 simultaneously generate the appearances of the dressing grooves 211 to 213. Specifically, first, the dresser 113 starts generating the dressing groove 211. After that, if the grinding wheel 16 rotates 120 °, the dresser 112 starts to generate a dressing groove 212. After that, if the grinding wheel 16 is further rotated by 120 °, the dresser 111 starts to generate a dressing groove 213. After that, the dressers 111 to 113 generate dressing grooves 211 to 213 at the same time, until the dresser 113 finishes generating the dressing grooves 211, that is, until the dresser 113 reaches the left end position of the grinding wheel 16 (the coordinate value is "0"). Furthermore, after the dresser 113 finishes generating the dressing groove 211, if the grinding wheel 16 rotates 120 °, the dresser 112 ends generating the dressing groove 212, and if the grinding wheel 16 further rotates 120 °, the dresser 111 ends generating the dressing groove 213, completing 3 Trim grooves 211 ~ 213.

如此,藉由本例之修整方法(亦即,圖9所示之修整裝置100)能夠生成與圖4B相同的成對的複數條修整槽(3條修整槽201~203及3條修整槽211~213)。 In this way, by the dressing method of this example (that is, the dressing device 100 shown in FIG. 9), a plurality of dressing grooves (three dressing grooves 201 to 203 and three dressing grooves 211 to 211), which are the same as in FIG. 4B, can be generated. 213).

並且,依本例之修整方法(亦即,圖9所示之修整裝置100),只要使設置有複數個修整機之旋轉體沿左右方向往返一次即可,因此能夠以更短的時間生成成對的複數條修整槽。 In addition, according to the dressing method of this example (that is, the dressing device 100 shown in FIG. 9), as long as the rotating body provided with a plurality of dressers is reciprocated once in the left-right direction, it can be generated in a shorter time. A plurality of pairs of trimming slots.

並且,依本例之修整方法(亦即,圖9所示之修整裝置100),複數個修整機配置於旋轉體的不同的角度位置,因此能夠將各修整機的左右方向的間隔設為最小(亦即,DL/Z)。藉此,能夠進一步縮小複數個修整機所佔有之左右方向的尺寸。亦即,能夠實現修整裝置100的小型化。並且,可以減少使複數個修整機(設置有複數個修整 機之旋轉體)沿左右方向的移動量,並能夠以更短的時間生成成對的複數條修整槽。 In addition, according to the dressing method of this example (that is, the dressing device 100 shown in FIG. 9), since a plurality of dressers are arranged at different angular positions of the rotating body, the interval in the left-right direction of each dresser can be minimized. (I.e. DL / Z). This makes it possible to further reduce the size in the left-right direction occupied by the plurality of finishers. That is, miniaturization of the dressing apparatus 100 can be achieved. In addition, it is possible to reduce the number of dressers (with multiple dressers provided). The amount of movement of the machine's rotating body) in the left and right directions can generate a plurality of trimming grooves in pairs in a shorter time.

另外,在圖9所示之修整裝置100中,設置有3個修整機111~113,但亦可以在旋轉體115的不同的角度位置(周方向的位置)設置4個以上的修整機,從而生成4條以上的成對的複數條修整槽。並且,亦可以使設置有修整機111~113之旋轉體115沿左右方向往返複數次,從而生成4條以上的成對的複數條修整槽。 In addition, in the dressing device 100 shown in FIG. 9, three dressers 111 to 113 are provided. However, four or more dressers may be provided at different angular positions (positions in the circumferential direction) of the rotating body 115 so that Generate 4 or more pairs of trimming slots. In addition, the rotating body 115 provided with the trimmers 111 to 113 may be reciprocated a plurality of times in the left-right direction to generate a plurality of pairs of trimming grooves.

[修整裝置的第4例] [Fourth Example of Dressing Device]

接著,參閱圖12,對本實施形態之修整裝置100的第4例進行說明。 Next, a fourth example of the dressing apparatus 100 according to this embodiment will be described with reference to FIG. 12.

圖12係概略地表示本實施形態之修整裝置100的結構的第4例之圖。 FIG. 12 is a diagram schematically showing a fourth example of the configuration of the dressing apparatus 100 according to this embodiment.

本例之修整裝置100與圖2所示之第1例不同點在於,省略了旋轉位置檢測裝置140。 The dressing device 100 of this example is different from the first example shown in FIG. 2 in that the rotation position detecting device 140 is omitted.

以下,對於與圖2所示之修整裝置100相同的結構標註相同的符號,並以不同的部分為中心進行說明。 In the following, the same components as those of the dressing device 100 shown in FIG. 2 are denoted by the same reference numerals, and different portions will be mainly described.

控制器150控制驅動機構120,以藉由預先設定之修整行程DS及修整速度V進行使用修整機110之砂輪16的修整作業。具體而言,控制器150將修整機110配置於與預先設定之修整行程DS對應之位置,並且,從該位置使修整機110以預先設定之修整速度V進行複數次與修整作業對應之左右方向的往返動作(亦即,與在砂輪16上 生成之修整槽的條數相當之次數)。 The controller 150 controls the driving mechanism 120 to perform a dressing operation using the grinding wheel 16 of the dresser 110 with a preset dressing stroke DS and a dressing speed V. Specifically, the controller 150 arranges the dresser 110 at a position corresponding to a preset dressing stroke DS, and from this position causes the dresser 110 to perform a plurality of left-right directions corresponding to the dressing operation at a preset dressing speed V. The round-trip action (that is, with the wheel 16 The number of generated trimming grooves is equivalent).

另外,修整速度V係使修整機110沿左右方向移動之絕對速度,其不同於取決於砂輪16的轉速之修整進給量DL。並且,修整行程DS係在砂輪16的修整作業中使修整機110沿左右方向移動之行程量。具體而言,修整行程DS設定為砂輪16的寬度W以上,係在接觸砂輪16之前的空轉行程量加上砂輪16的寬度W之值。 In addition, the dressing speed V is an absolute speed at which the dresser 110 moves in the left-right direction, which is different from the dressing feed amount DL depending on the rotation speed of the grinding wheel 16. The dressing stroke DS is a stroke amount for moving the dresser 110 in the left-right direction during the dressing operation of the grinding wheel 16. Specifically, the dressing stroke DS is set to be equal to or greater than the width W of the grinding wheel 16, and is a value obtained by adding the idling stroke amount before the grinding wheel 16 to the width W of the grinding wheel 16.

[修整方法的第4例] [Fourth example of dressing method]

接著,參閱圖13(圖13A、圖13B),對使用圖12所示之修整裝置100之修整方法(本實施形態之修整方法的第4例)進行說明。 Next, referring to FIG. 13 (FIGS. 13A and 13B), a dressing method using the dressing device 100 shown in FIG. 12 (a fourth example of the dressing method of this embodiment) will be described.

圖13A、圖13B係對本實施形態之修整方法的第4例進行說明之圖。具體而言,圖13A係概略地表示基於圖12所示之修整裝置100之砂輪16的修整作業中修整機110的動作之圖。並且,圖13B是表示使用圖12所示之修整裝置100之砂輪16的修整作業中之各步驟(助轉步驟S0、修整步驟S1及空轉步驟S2)的流程之示意圖。 13A and 13B are diagrams for explaining a fourth example of the trimming method of this embodiment. Specifically, FIG. 13A is a diagram schematically showing the operation of the dresser 110 during the dressing operation by the grinding wheel 16 of the dressing device 100 shown in FIG. 12. 13B is a schematic diagram showing the flow of each step (the assisting step S0, the dressing step S1, and the idling step S2) in the dressing operation using the grinding wheel 16 of the dressing device 100 shown in FIG.

如上所述,本例之修整裝置100省略了砂輪16的旋轉位置檢測裝置140,因此控制器150無法使修整機110的動作與砂輪16的旋轉動作同步。於是,在本例中,預先調整修整速度V、修整行程DS及砂輪的轉速ω,以藉由僅使修整機110單純沿左右方向進行往返而能夠生成與圖4B相同的成對的複數條修整槽。以下,具體地進行說 明。 As described above, the dressing device 100 of this example omits the rotational position detecting device 140 of the grinding wheel 16, so the controller 150 cannot synchronize the operation of the dresser 110 with the rotating operation of the grinding wheel 16. Therefore, in this example, the dressing speed V, the dressing stroke DS, and the rotational speed ω of the grinding wheel are adjusted in advance so that the dresser 110 can only generate a plurality of dressing pairs as shown in FIG. 4B by simply reciprocating the dresser 110 in the left-right direction. groove. Hereinafter, specifically, Bright.

另外,在本例中,以在修整行程DS及修整速度V設置內定值DSd、Vd為前提進行說明。同樣地,以對砂輪16的轉速ω設置內定值ωd為前提進行說明。 In addition, in this example, description will be given on the premise that the trimming stroke DS and the trimming speed V are set with the preset values DSd and Vd. Similarly, a description will be given on the premise that the rotation speed ω of the grinding wheel 16 is set to the preset value ωd.

如圖13A所示,修整機110藉由由控制器150控制之驅動機構120而被驅動,並以與修整行程DS對應之位置亦即從砂輪16的寬度方向的一端(圖中的左端)朝向另一端(圖中的右端)分離修整行程DS之位置(初始位置)為基準,沿左右方向進行往返,藉此,在砂輪16上生成成對的複數條修整槽。具體而言,修整機110在基於控制器150之驅動機構120的控制下進行複數次(亦即,成對的修整槽的條數的量)如下之往返步驟:從初始位置(參閱圖中的實線或一點鏈線的修整機110)朝向砂輪16以修整速度V移動,若到達砂輪16的一端(左端)(參閱圖中的虛線的修整機110),則折回而以修整速度V移動至初始位置。 As shown in FIG. 13A, the dresser 110 is driven by a driving mechanism 120 controlled by the controller 150, and faces at a position corresponding to the dressing stroke DS, that is, from one end (left end in the figure) in the width direction of the grinding wheel 16 The other end (the right end in the figure) separates the position (initial position) of the dressing stroke DS as a reference, and reciprocates in the left-right direction, thereby generating a plurality of pairs of dressing grooves on the grinding wheel 16. Specifically, the trimmer 110 performs a plurality of round trips (ie, the number of pairs of trimming grooves) under the control of the driving mechanism 120 based on the controller 150 as follows: from the initial position (see the figure The dresser 110 (solid line or one-point chain line) moves toward the grinding wheel 16 at a dressing speed V. If it reaches one end (left end) of the grinding wheel 16 (refer to the dresser 110 shown by the dotted line in the figure), it turns back and moves at a dressing speed V to initial position.

此時,如圖13B所示,修整機110的移動步驟中包括:從初始位置到與砂輪16接觸之前的助轉步驟S0;修整步驟S1,一邊與砂輪16的磨削作業面(外周面)接觸,一邊向寬度方向進行往返;及空轉步驟S2,從砂輪16的一端(右端)返回到初始位置,從初始位置再次折回而到達至砂輪16的一端(右端)。修整機110在最初的助轉步驟S0以後,一邊重複由修整步驟S1和空轉步驟S2構成之往返步驟,一邊生成成對的複數條修整槽。 At this time, as shown in FIG. 13B, the moving step of the dresser 110 includes: the assisting step S0 from the initial position to the contact with the grinding wheel 16; and the dressing step S1, while grinding the work surface (outer peripheral surface) with the grinding wheel 16 Contact, while reciprocating in the width direction; and in the idling step S2, returning from one end (right end) of the grinding wheel 16 to the initial position, returning from the initial position again to reach one end (right end) of the grinding wheel 16. The dresser 110 repeats the round trip step consisting of the dressing step S1 and the idling step S2 after the initial assisting step S0, and generates a plurality of pairs of dressing grooves.

在此,在生成條數Z的成對的複數條修整槽之情況下,相對於在前1個往返步驟中生成之修整槽,在第2次以後的往返步驟中生成之修整槽必須使相位偏移2π/Z[rad],亦即複數條修整槽的周方向節距θ。亦即,在某一次往返步驟中開始與砂輪16接觸之角度位置,必須從前一次往返步驟的最先開始與砂輪16接觸之角度位置偏移複數條修整槽的周方向節距θ。以下,將在某一次往返步驟中開始與砂輪16接觸之角度位置與在前一次往返步驟的最先開始與砂輪16接觸之角度位置之差,亦即藉由往返步驟而產生之砂輪16的周方向的換算成旋轉1圈(2π[rad])的相位差,稱作藉由往返步驟而產生之相位差Φ。 Here, in the case where a plurality of pairs of trimming grooves of the number Z are generated, the phase of the trimming grooves generated in the second and subsequent rounding steps must be phased relative to the trimming grooves generated in the previous round-trip step. The offset is 2π / Z [rad], that is, the circumferential direction pitch θ of the plurality of trimming grooves. That is, the angular position of contact with the grinding wheel 16 in a certain reciprocating step must be shifted from the angular position θ of the plurality of dressing grooves from the angular position of contact with the grinding wheel 16 at the beginning of the previous reciprocating step. In the following, the difference between the angular position where the wheel 16 comes into contact with the grinding wheel 16 in a certain round trip step and the angular position where it first comes into contact with the grinding wheel 16 in the previous round trip step, that is, the circumference of the grinding wheel 16 generated by the round trip step. The direction is converted into a phase difference of one rotation (2π [rad]), which is called a phase difference Φ generated by a round trip.

藉由往返步驟而產生之相位差Φ[rad],能夠使用往返步驟期間的砂輪16的轉數N並由以下式(1)表示。 With the phase difference Φ [rad] generated by the round-trip step, the number of revolutions N of the grinding wheel 16 during the round-trip step can be used and expressed by the following formula (1).

另外,int(N)表示轉數N的整數部分。 In addition, int (N) represents an integer part of the number of revolutions N.

往返步驟期間的砂輪16的轉數N,能夠使用砂輪16的轉速ω和往返步驟的所需時間T並由以下式(2)表示。 The number of revolutions N of the grinding wheel 16 during the round-trip step can be expressed by the following formula (2) using the rotation speed ω of the grinding wheel 16 and the time T required for the round-trip step.

N=ωT‧‧‧(2) N = ωT‧‧‧ (2)

並且,往返步驟的所需時間T,能夠使用修整速度V、修整行程DS並由以下式(3)表示。 In addition, the required time T for the round-trip step can be expressed by the following formula (3) using the dressing speed V and the dressing stroke DS.

T=2DS/V‧‧‧(3) T = 2DS / V‧‧‧ (3)

藉此,往返步驟期間的砂輪16的轉數N,能夠從式 (2)、(3)中使用砂輪16的轉速ω、修整速度V、修整行程DS並由以下式(4)表示。 With this, the number of revolutions N of the grinding wheel 16 during the round-trip step can be obtained from the formula The rotation speed ω, the dressing speed V, and the dressing stroke DS of the grinding wheel 16 in (2) and (3) are expressed by the following formula (4).

N=2ω‧DS/V‧‧‧(4) N = 2ω‧DS / V‧‧‧ (4)

依式(1)、(4),藉由往返步驟而產生之相位差Φ能夠使用砂輪16的轉速ω、修整速度V、修整行程DS來表示。亦即,能夠藉由調整砂輪16的轉速ω、修整速度V、修整行程DS中的至少1個而調整相位差Φ。 According to the formulas (1) and (4), the phase difference Φ generated by the round-trip step can be expressed by the rotation speed ω of the grinding wheel 16, the dressing speed V, and the dressing stroke DS. That is, the phase difference Φ can be adjusted by adjusting at least one of the rotation speed ω, the dressing speed V, and the dressing stroke DS of the grinding wheel 16.

假如,在砂輪16的轉速ω、修整速度V、修整行程DS為內定值Vd、DSd、ωd之狀態下,如上所述,在相位差Φ與複數條修整槽的周方向節距θ(=2π/Z)相等的情況下,控制器150以其內定狀態就那樣使修整機110進行對應於條數Z的往返步驟(亦即,圖13B中的修整步驟S1及實線的空轉步驟S2),藉此,能夠生成如圖4(b)所示之成對的複數條修整槽。 If the rotational speed ω, the dressing speed V, and the dressing stroke DS of the grinding wheel 16 are the predetermined values Vd, DSd, and ωd, as described above, the phase difference Φ and the circumferential pitch θ of a plurality of dressing grooves (= When 2π / Z) are equal, the controller 150 causes the trimming machine 110 to perform the round-trip steps corresponding to the number Z in its default state (that is, the trimming step S1 in FIG. 13B and the solid-line idling step S2) Thus, a plurality of trimming grooves in pairs as shown in FIG. 4 (b) can be generated.

另一方面,在藉由往返步驟而產生之相位差Φ與複數條修整槽的周方向節距θ之間存在差異之情況下,必須將砂輪16的轉速ω、修整速度V、修整行程DS中的至少1個從內定值Vd、DSd、ωd進行變更,以使藉由往返步驟而產生之相位差Φ與複數條修整槽的周方向節距θ相等。 On the other hand, if there is a difference between the phase difference Φ generated by the round-trip step and the circumferential pitches θ of the plurality of dressing grooves, the rotation speed ω, dressing speed V, and dressing stroke DS of the grinding wheel 16 must be At least one of the values is changed from the default values Vd, DSd, and ωd so that the phase difference Φ generated by the round-trip step is equal to the circumferential direction pitch θ of the plurality of trimming grooves.

例如,藉由使修整行程DS改變相當於從相位差Φ減去周方向節距θ之相位差修正量△Φ(=Φ-θ)之修整行程換算修正量△X(參閱圖13A、圖13B),能夠將相位差Φ和複數條修整槽的周方向節距θ設為相等。修整行程換算修正量△X可使用修整速度V、砂輪16的轉速ω並由以 下式(5)表示。 For example, changing the dressing stroke DS by changing the phase difference correction amount ΔΦ (= Φ-θ) from the phase difference Φ minus the circumferential pitch θ (see FIG. 13A, FIG. 13B) ), The phase difference Φ and the circumferential pitch θ of the plurality of trimming grooves can be made equal. The dressing stroke conversion correction amount △ X can be adjusted by the dressing speed V and the rotation speed ω of the grinding wheel 16 It is represented by following formula (5).

因此,將修整行程DS設定並變更為對內定值DSd加上修整行程換算修正量△X之值(修正修整行程值DSc),藉此控制器150僅單純從對應於修整行程DS(=DSc)之初始位置(參閱圖13A中的一點鏈線的修整機110)以修整速度V(=Vd)使修整機110進行往返步驟(亦即,圖13B中的修整步驟S1及虛線的空轉步驟S2),便能夠在砂輪16生成成對的複數條修整槽。 Therefore, the trimming stroke DS is set and changed to the value of the preset stroke DSd plus the trimming stroke conversion correction amount ΔX (the trimming stroke value DSc), so that the controller 150 simply changes the value corresponding to the trimming stroke DS (= DSc). ) 'S initial position (see the one-point chain trimmer 110 in FIG. 13A) to make the trimmer 110 go back and forth at a trimming speed V (= Vd) (that is, the trimming step S1 in FIG. 13B and the dotted idling step S2 ), A plurality of pairs of dressing grooves can be generated on the grinding wheel 16.

另外,在本例中,將修整行程DS從內定值DSd進行了變更,但亦可以將修整速度V或砂輪16的轉速ω從內定值Vd、ωd進行變更,藉此使相位差Φ與複數條修整槽的周方向節距θ相等。並且,亦可以在空轉步驟S2中,使修整機110的動作暫且停止相當於相位差修正量△Φ之時間,藉此使相位差Φ與複數條修整槽的周方向節距θ相等。亦即,亦可以在空轉步驟S2中,設置相當於相位差修正量△Φ之停留時間(dwell time)。並且,在本例中,以內定狀態為基準變更修整行程DS等,但亦可以在既定範圍內,適當地調整砂輪16的轉速ω、修整速度V、修整行程DS,以使相位差Φ與複數條修整槽的周方向節距θ相等。 In addition, in this example, the dressing stroke DS was changed from the default value DSd, but the dressing speed V or the rotation speed ω of the grinding wheel 16 may be changed from the default values Vd and ωd, so that the phase difference Φ and The circumferential direction pitch θ of the plurality of trimming grooves is equal. In addition, in the idling step S2, the operation of the dresser 110 may be temporarily stopped for a time equivalent to the phase difference correction amount ΔΦ, so that the phase difference Φ is equal to the circumferential pitch θ of the plurality of dressing grooves. That is, in the idling step S2, a dwell time corresponding to the phase difference correction amount ΔΦ may be set. Moreover, in this example, the dressing stroke DS and the like are changed based on a predetermined state, but the rotation speed ω, the dressing speed V, and the dressing stroke DS of the grinding wheel 16 can be appropriately adjusted within a predetermined range so that the phase difference Φ and the complex number The circumferential direction pitch θ of the trimming grooves is equal.

如此,在本例中,預先設定砂輪16的轉速ω、修整速度V、修整行程DS,以使藉由往返步驟而產生之相位差Φ與複數條修整槽的周方向節距θ(=2π/Z)相等。藉 此,控制器150即使不使用旋轉位置檢測裝置140亦能夠生成成對的複數條修整槽。 As such, in this example, the rotation speed ω, the dressing speed V, and the dressing stroke DS of the grinding wheel 16 are set in advance so that the phase difference Φ generated by the reciprocating step and the circumferential pitch θ (= 2π / Z) are equal. borrow Accordingly, the controller 150 can generate a plurality of trimming grooves in pairs without using the rotation position detecting device 140.

[修整方法的第5例] [Fifth example of dressing method]

接著,參閱圖14(圖14A~圖14C),對基於本實施形態之修整裝置100之修整方法的第5例進行說明。 Next, referring to Fig. 14 (Figs. 14A to 14C), a fifth example of the dressing method of the dressing device 100 according to this embodiment will be described.

在本例中,與上述修整方法的第1例~第4例同樣地,藉由修整裝置100在砂輪16的磨削作業面上生成成對的複數條修整槽,並且以追跡(trace)所生成之成對的複數條修整槽之態樣進行1次以上相同的修整作業。 In this example, similarly to the first to fourth examples of the above-mentioned dressing method, the dressing device 100 generates a plurality of dressing grooves in pairs on the grinding work surface of the grinding wheel 16 and traces them. Perform the same trimming operation more than once for the generated plural pairs of trimming grooves.

例如,在上述本實施形態之修整裝置100的第1例~第3例的情況下,控制器150根據旋轉位置檢測裝置140的檢測訊號,使砂輪16的角度位置與修整機110的左右位置(砂輪16的寬度方向的接觸位置)適當地同步,藉此,能夠以追跡在第1次的修整作業中生成之成對的複數條修整槽之態樣使修整機110進行第2次以後的修整作業。並且,例如,在上述本實施形態之第4例之修整裝置100的情況下,預先設定砂輪16的轉速ω、修整速度V、修整行程DS以使相位差Φ與複數條修整槽的周方向節距θ相等即可。藉此,控制器150僅單純從對應於修整行程DS之初始位置以修整速度V使修整機110進行往返步驟,便能夠以追跡在第1次修整作業中生成之成對的複數條修整槽之態樣,使修整機110進行第2次以後的修整作業。 For example, in the case of the first to third examples of the dressing device 100 of the present embodiment described above, the controller 150 adjusts the angular position of the grinding wheel 16 and the left and right positions of the dresser 110 based on the detection signal of the rotational position detecting device 140 ( The contact position of the grinding wheel 16 in the width direction) is appropriately synchronized, thereby making it possible to make the dresser 110 perform the second and subsequent dressing in the form of tracking a plurality of dressing grooves that are paired in the first dressing operation. operation. Further, for example, in the case of the dressing device 100 of the fourth example of the present embodiment, the rotation speed ω, the dressing speed V, and the dressing stroke DS of the grinding wheel 16 are set in advance so that the phase difference Φ and the circumferential direction knots of the plurality of dressing grooves are set. The distances θ may be equal. With this, the controller 150 can simply trace the dresser 110 to and from the initial position corresponding to the dressing stroke DS at the dressing speed V, and can track the pair of multiple dressing grooves generated in the first dressing operation. As such, the dresser 110 is caused to perform the second and subsequent dressing operations.

圖14A~圖14C係表示使用本實施形態之修整裝置100之修整方法的第4例之圖。具體而言,圖14A~圖14C係第2次以後的修整作業以追跡藉由第1次的修整作業而生成之成對的複數條修整槽之態樣進一步進行修整作業而形成之修整槽的變化之圖。更具體而言,圖14A係示意地表示藉由第1次的修整作業而生成之修整槽的深度之圖,圖14B係示意地表示第2次修整作業之後的修整槽的深度之圖,圖14C係示意地表示第N(3)次修整作業之後的修整槽的深度之圖。 14A to 14C are diagrams showing a fourth example of a dressing method using the dressing apparatus 100 according to this embodiment. Specifically, FIG. 14A to FIG. 14C are the second and subsequent trimming operations to trace the trimming grooves formed by further trimming operations in the form of a plurality of pairs of trimming grooves generated by the first trimming operation. Diagram of change. More specifically, FIG. 14A is a diagram schematically showing the depth of the trimming groove generated by the first trimming operation, and FIG. 14B is a diagram schematically showing the depth of the trimming groove after the second trimming operation. 14C is a schematic representation of the Nth ( 3) The depth of the dressing groove after the dressing operation.

例如,如圖14A所示,在第1次的修整作業中,將砂輪16的磨削作業面與修整機110的接觸深度(切入量)設為較小的值(例如,10μm左右,小於10μm為較佳),藉此可生成較淺的成對的複數條修整槽。其原因在於,若將1次修整作業中之切入量設為較大,以使一次生成較深的槽,則導致產生磨粒破碎之現象(破碎現象)或因黏結劑無法承受切削力而連磨粒一起脫落之現象(脫落現象)等,很可能無法得到較深的修整槽。 For example, as shown in FIG. 14A, in the first dressing operation, the contact depth (cut-in amount) of the grinding work surface of the grinding wheel 16 and the dresser 110 is set to a small value (for example, about 10 μm, less than 10 μm (Better), thereby generating shallower pairs of trimming grooves. The reason is that if the cut-in amount in one trimming operation is set to be large so that deep grooves are formed at one time, the phenomenon that the abrasive grains are broken (crushing phenomenon) or because the adhesive cannot bear the cutting force is connected. The phenomenon that the abrasive grains fall off together (falling off phenomenon) may not be able to obtain a deeper dressing groove.

而且,如圖14B、圖14C所示,以追跡在第1次的修整作業中生成之修整槽的方式進行第2次以後的修整作業。如上所述,在第2次修整作業中,為了抑制破碎現象或脫落現象,亦將對砂輪16的磨削作業面之修整機110的切入量設定為較小。藉此,砂輪16的成對的修整槽的各自的深度在每次重複修整作業中逐漸加深。 As shown in FIGS. 14B and 14C, the second and subsequent trimming operations are performed so as to trace the trimming grooves generated in the first trimming operation. As described above, in the second dressing operation, the cutting amount of the dresser 110 for the grinding work surface of the grinding wheel 16 is also set to be small in order to suppress the crushing phenomenon or the falling phenomenon. Thereby, the respective depths of the paired dressing grooves of the grinding wheel 16 are gradually deepened each time the dressing operation is repeated.

如此,在本例中,以追跡所生成之成對的複數條修整 槽之態樣進一步進行修整作業,藉此能夠抑制產生破碎現象或脫落現象等,且能夠生成較深的成對的複數條修整槽。具體而言,在1次修整作業中,通常,僅能夠生成小於10μm的深度,最大為20μm~30μm左右深度的修整槽,但依本例能夠生成超過100μm之非常深的修整槽。從而,藉由本例的修整方法而進行修整作業之砂輪16具有非常深的槽,因此能夠經由深的修整槽向砂輪的外部排出磨削粉。因此,能夠抑制產生砂輪16的堵塞,並能夠使進行修整作業之間隔(亦即,從修整作業至下一個修整作業之間的期間)較長。 So, in this example, trimming the generated plural pairs of traces The shape of the grooves is further trimmed, thereby suppressing the occurrence of breakage or peeling, etc., and generating a plurality of deeper pairs of trimming grooves. Specifically, in a single dressing operation, usually, only a dressing groove having a depth of less than 10 μm and a maximum depth of about 20 μm to 30 μm can be generated, but in this example, a very deep dressing groove exceeding 100 μm can be generated. Therefore, since the grinding wheel 16 which performs the dressing operation by the dressing method of this example has a very deep groove, the grinding powder can be discharged to the outside of the grinding wheel through the deep dressing groove. Therefore, the occurrence of clogging of the grinding wheel 16 can be suppressed, and the interval between performing the dressing operation (that is, the period from the dressing operation to the next dressing operation) can be made longer.

[利用形成有成對的複數條修整槽之砂輪之加工方法] [Processing method using a grinding wheel formed with a plurality of pairs of dressing grooves]

接著,參閱圖15、圖16,對利用了砂輪16之被削材12的加工方法進行說明,該砂輪16藉由本實施形態之修整方法而生成有成對的複數條修整槽。 Next, a processing method of the workpiece 12 using a grinding wheel 16 will be described with reference to FIG. 15 and FIG. 16. The grinding wheel 16 has a plurality of pairs of dressing grooves formed by the dressing method of this embodiment.

圖15係表示利用藉由本實施形態之修整裝置100而進行了修整作業後之砂輪16之加工方法的一例之圖。具體而言,圖15係表示利用裝配有藉由本實施形態之修整裝置100而進行了修整作業後之砂輪16之平面磨床1在被削材12的表面形成週期性凹坑之狀況之側視圖。 FIG. 15 is a diagram showing an example of a processing method of the grinding wheel 16 after the dressing operation is performed by the dressing device 100 of the present embodiment. Specifically, FIG. 15 is a side view showing a state where a periodic grinder is formed on the surface of the material 12 to be cut by the surface grinder 1 equipped with the grinding wheel 16 after the dressing operation is performed by the dressing device 100 of the present embodiment.

另外,在本例中,在砂輪16上形成有成對的4條修整槽(條數Z=4)。 In addition, in this example, a pair of four dressing grooves (the number Z = 4) are formed in the grinding wheel 16.

如圖15所示,可動載台10沿X方向(圖中的左方向)移動,藉此,被削材12沿X方向進給,被削材12的 表面藉由旋轉之砂輪16而被磨削。 As shown in FIG. 15, the movable stage 10 moves in the X direction (left direction in the figure), whereby the workpiece 12 is fed in the X direction. The surface is ground by a rotating grinding wheel 16.

如上所述,在砂輪16的磨削作業面上,沿周方向形成有條數Z的2倍的修整峰(本例的情況下,條數4的2倍的8個修整峰)16A。因此,在被削材12的表面(被磨削面),在微觀觀察下,在砂輪16旋轉1圈的期間被削材12沿X方向進給之距離(亦即,可動載台10的移動距離)L之間,形成與在砂輪16的外周上形成之2‧Z(=8)的修整峰16A對應之2‧Z的連續之凹坑12A。 As described above, on the grinding work surface of the grinding wheel 16, two trimming peaks of twice the number Z (eight trimming peaks of twice the number of four in the case of this example) 16A are formed in the circumferential direction. Therefore, on the surface (grinded surface) of the material 12 to be ground, the distance by which the material 12 is fed in the X direction during the rotation of the grinding wheel 16 under a microscopic observation (that is, the movement of the movable stage 10) Distance) L forms a continuous pit 12A of 2‧Z corresponding to the 2‧Z (= 8) trim peak 16A formed on the outer periphery of the grinding wheel 16.

平面磨床1的控制裝置20一邊使可動載台10的X方向的位置與砂輪16的角度位置同步,一邊使可動載台10重複進行往返,藉此,能夠使砂輪16的修整峰16A對形成於被削材12之週期性凹坑12A的部分重複進行磨削。因此,利用平面磨床1,能夠在被削材12上形成具有較大的深度(例如,數十μm~數百μm的深度)的沿進給方向連續之週期性凹坑12A。 The control device 20 of the surface grinder 1 can synchronize the X-direction position of the movable stage 10 with the angular position of the grinding wheel 16 and repeat the reciprocating movement of the movable stage 10, thereby enabling the pair of trimming peaks 16A of the grinding wheel 16 to be formed on The portion of the periodic pit 12A of the workpiece 12 is repeatedly ground. Therefore, with the surface grinder 1, it is possible to form a periodic recess 12A in the feed direction having a large depth (for example, a depth of several tens μm to several hundreds μm) on the material 12 to be cut.

砂輪16每旋轉1圈時可動載台10的移動距離L,可以使用可動載台10的移動速度Vt、砂輪16的轉速ωg並由以下式(6)表示。 The moving distance L of the movable stage 10 for each revolution of the grinding wheel 16 can be expressed by the following formula (6) using the moving speed Vt of the movable stage 10 and the rotation speed ωg of the grinding wheel 16.

L=Vt/ωg‧‧‧(6) L = Vt / ωg‧‧‧ (6)

並且,形成於被削材12之週期性凹坑12A的進給方向亦即X方向的節距p,可以由以下式(7)表示。 In addition, the feed direction of the periodic dimples 12A formed in the material to be cut 12, that is, the pitch p in the X direction, can be expressed by the following formula (7).

p=L/2Z‧‧‧(7) p = L / 2Z‧‧‧ (7)

例如,在將可動載台10的移動速度Vt及砂輪16的轉速ωg設為以下式(8)、(9)的條件時,砂輪16每 旋轉1圈時可動載台10的移動距離L,可以如下式(10)計算。 For example, when the moving speed Vt of the movable stage 10 and the rotation speed ωg of the grinding wheel 16 are set to the conditions of the following formulas (8) and (9), the grinding wheel 16 The moving distance L of the movable stage 10 during one rotation can be calculated by the following formula (10).

Vt=40[m/min]‧‧‧(8) Vt = 40 [m / min] ‧‧‧ (8)

ωg=1000[rpm]‧‧‧(9) ωg = 1000 [rpm] ‧‧‧ (9)

L=0.04[m]‧‧‧(10) L = 0.04 [m] ‧‧‧ (10)

藉此,形成於被削材12之週期性凹坑12A的節距p,在條數Z=4的情況下,可以如下式(11)計算。 With this, the pitch p of the periodic pits 12A formed in the material to be cut 12 can be calculated by the following formula (11) when the number of pieces Z = 4.

p=0.04/2‧4=0.005[m]=5[mm]‧‧‧(11)。 p = 0.04 / 2‧4 = 0.005 [m] = 5 [mm] ‧‧‧ (11).

同樣地,例如在砂輪16上形成有10條成對的修整槽之情況下,亦即在條數Z=10的情況下,節距p進一步變短,係2[mm]。並且,例如,在砂輪16上形成有2條成對的修整槽之情況下,亦即在條數Z=2的情況下,節距p係10[mm]。 Similarly, for example, when 10 pairs of dressing grooves are formed on the grinding wheel 16, that is, when the number of pieces Z = 10, the pitch p is further shortened to be 2 [mm]. In addition, for example, when two pairs of dressing grooves are formed on the grinding wheel 16, that is, when the number of pieces Z = 2, the pitch p is 10 [mm].

如此,依本例之加工方法,亦即,一邊使砂輪16的修整峰與形成於被削材12的表面之凹坑12A同步,一邊利用砂輪16的修整峰對被削材12的凹坑12A的部分重複進行磨削,藉此,在被削材12的被磨削面上,能夠形成具有較大的深度(例如10μm以下的範圍,數十μm~數百μm的深度為較佳),並且具有較小的微小節距p亦即坑長(例如,10mm以下的範圍,5mm以下為較佳)之週期性連續之凹坑12A。 Thus, according to the processing method of this example, that is, while synchronizing the dressing peaks of the grinding wheel 16 with the pits 12A formed on the surface of the material 12 to be cut, the dressing peaks of the grinding wheel 16 are used to pit 12A of the material 12 to be cut. Grinding is repeated, so that a large depth can be formed on the surface to be ground of the material 12 (for example, a range of 10 μm or less, and a depth of tens of μm to hundreds of μm is preferred). And it has a small continuous pitch 12A that is a periodic continuous pit 12A that is a pit length (for example, a range of 10 mm or less, preferably 5 mm or less).

藉由本例之加工方法而形成之週期性連續之凹坑12A,如上所述,坑長微小,且深度亦較大,因此適合作為機床的動壓滑動導引面(滑動面)中之潤滑油的貯油器 而利用。 The periodically continuous pits 12A formed by the processing method of this example, as mentioned above, the pit length is small and the depth is large, so it is suitable as a lubricant in the dynamic pressure sliding guide surface (sliding surface) of the machine tool. Oil reservoir While using.

例如,圖16係表示可以適用藉由圖15所示之加工方法而生成之複數個凹坑12A之滑動面(動壓滑動導引面)的一例之圖。具體而言,圖16係表示平面磨床1中之可動載台10的詳細結構的一例之X方向的剖視圖。 For example, FIG. 16 is a diagram showing an example of a sliding surface (dynamic pressure sliding guide surface) in which a plurality of dimples 12A generated by the processing method shown in FIG. 15 can be applied. Specifically, FIG. 16 is a cross-sectional view in the X direction showing an example of a detailed structure of the movable stage 10 in the surface grinder 1.

如圖16所示,可動載台10包括可動載台主體10A、及設置於可動載台主體下面的Y方向之兩端部之被導引腳部10B。 As shown in FIG. 16, the movable stage 10 includes a movable stage main body 10A and guided pin portions 10B provided at both ends in the Y direction below the movable stage main body.

被導引腳部10B是作為設置於平面磨床1之固定部而配置於導軌14上。 The guided pin portion 10B is disposed on the guide rail 14 as a fixed portion provided on the surface grinder 1.

被導引腳部10B的下面亦即滑動面10BS,隨著可動載台10在X方向之移動,而與導軌14的導軌面14S(固定面的一例)進行滑動。亦即,被導引腳部10B的滑動面10BS相當於動壓滑動導引面。因此,藉由將圖15所示之加工方法應用於被導引腳部10B的滑動面10BS,能夠設置沿可動載台10的移動方向連續形成之較大的深度及較小的微小坑長的複數個凹坑12A。藉此,在可動載台10的靜止狀態下,滑動面10BS與導軌面14S之間的靜止摩擦力變高,有定位等的精度變差之傾向時,能夠將複數個凹坑12A作為貯油器而利用,因此能夠減小滑動阻力,並能夠提高精度。並且,通常,為了形成動壓滑動導引面上之貯油器,必須實施利用手工的刮削(scraping)等的加工,在加工效率顯著降低時,能夠藉由平面磨床1而自動形成複數個凹坑12A,因此亦能夠大幅提高加工效率。 The lower surface of the guided pin portion 10B, that is, the sliding surface 10BS, slides with the rail surface 14S (an example of a fixed surface) of the rail 14 as the movable stage 10 moves in the X direction. That is, the sliding surface 10BS of the guided pin portion 10B corresponds to a dynamic pressure sliding guide surface. Therefore, by applying the processing method shown in FIG. 15 to the sliding surface 10BS of the lead portion 10B, it is possible to set a large depth and a small minute pit length continuously formed along the moving direction of the movable stage 10. A plurality of pits 12A. Thus, when the static friction between the sliding surface 10BS and the guide surface 14S becomes high in the stationary state of the movable stage 10, and the accuracy such as positioning tends to deteriorate, the plurality of dimples 12A can be used as an oil reservoir. And use, it is possible to reduce sliding resistance and improve accuracy. In addition, in order to form an oil reservoir on a dynamic pressure sliding guide surface, a process such as manual scraping must be performed. When the processing efficiency is significantly reduced, the surface grinder 1 can automatically form a plurality of pits. 12A, so it can greatly improve processing efficiency.

以上,對用於實施本發明的形態進行了詳述,但本發明並非限定於該等特定實施形態,在專利申請範圍中所記載之本發明的主旨的範圍內,可以進行各種變形/變更。 As mentioned above, although the form for implementing this invention was described in detail, this invention is not limited to these specific embodiment, Various deformation | transformation and change are possible within the range of the summary of this invention described in the patent application range.

另外,本申請係主張基於2016年5月17日申請之日本專利申請第2016-98879號的優先權者,該日本專利申請的所有內容藉由參閱而援用於本申請中。 In addition, this application claims priority based on Japanese Patent Application No. 2016-98879 filed on May 17, 2016, and the entire contents of this Japanese patent application are incorporated herein by reference.

Claims (5)

一種砂輪,係使用於磨床之砂輪,其具備:設置於外周面之複數個第1螺旋槽;及設置於前述外周面之複數個第2螺旋槽,前述複數個第2螺旋槽各個分別與前述複數個第1螺旋槽交叉,由前述複數個第1螺旋槽中的在前述外周面上相鄰之2個和前述複數個第2螺旋槽中的在前述外周面上相鄰之2個包圍之峰,在前述外周面的每1圈設置有3個以上。A grinding wheel is a grinding wheel used in a grinding machine, comprising: a plurality of first spiral grooves provided on an outer peripheral surface; and a plurality of second spiral grooves provided on the outer peripheral surface, each of the plurality of second spiral grooves being respectively different from the foregoing The plurality of first spiral grooves intersect and are surrounded by two of the plurality of first spiral grooves adjacent to the outer peripheral surface and two of the plurality of second spiral grooves adjacent to the outer peripheral surface. There are three or more peaks per one turn of the outer peripheral surface. 一種砂輪,係使用於磨床之砂輪,其具備:設置於外周面之複數個第1螺旋槽;及設置於前述外周面之複數個第2螺旋槽,前述複數個第2螺旋槽各個分別與前述複數個第1螺旋槽交叉,前述複數個第1螺旋槽的各個平行,前述複數個第2螺旋槽的各個平行,各個前述複數個第1螺旋槽及各個前述複數個第2螺旋槽,在前述外周面的每1圈的寬度方向上的移動量係0.1mm以上,在前述外周面的寬度方向上之前述複數個第1螺旋槽中相鄰之2個及前述複數個第2螺旋槽中相鄰之2個的間隔係0.5mm以下,前述間隔小於前述移動量。A grinding wheel is a grinding wheel used in a grinding machine, comprising: a plurality of first spiral grooves provided on an outer peripheral surface; and a plurality of second spiral grooves provided on the outer peripheral surface, each of the plurality of second spiral grooves being respectively different from the foregoing The plurality of first spiral grooves intersect, each of the plurality of first spiral grooves is parallel, each of the plurality of second spiral grooves is parallel, each of the plurality of first spiral grooves and each of the plurality of second spiral grooves, in the foregoing The amount of movement in the width direction per one revolution of the outer peripheral surface is 0.1 mm or more. Two adjacent ones of the plurality of first spiral grooves and the plurality of second spiral grooves in the width direction of the outer peripheral surface are phase-shifted. The interval between two adjacent ones is 0.5 mm or less, and the interval is smaller than the movement amount. 如申請專利範圍第1或2項所述之砂輪,其中,前述第1螺旋槽及前述第2螺旋槽,其深度至少係10μm以上。The grinding wheel according to item 1 or 2 of the scope of patent application, wherein the depth of the first spiral groove and the second spiral groove is at least 10 μm or more. 一種磨床,其特徵在於,係具備:申請專利範圍第1或2項所述之砂輪。A grinding machine is characterized by comprising: a grinding wheel according to item 1 or 2 of the scope of patent application. 如申請專利範圍第4項所述之磨床,係進一步具備:具有與固定面進行滑動之滑動面之可動載台,前述滑動面具有以沿前述可動載台的移動方向週期性連續之態樣形成之深度10μm以上及長度10mm以下的複數個凹坑。The grinding machine according to item 4 of the scope of patent application, further comprising: a movable stage having a sliding surface that slides with the fixed surface, and the sliding surface is formed in a state of being continuously continuous along the moving direction of the movable stage. A plurality of pits having a depth of 10 μm or more and a length of 10 mm or less.
TW106116131A 2016-05-17 2017-05-16 Grinding wheel, surface grinder TWI632027B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/041563 WO2018211722A1 (en) 2016-05-17 2017-11-17 Grindstone and grinder
KR1020197036990A KR102486869B1 (en) 2016-05-17 2017-11-17 Dressing method, dressing device, grindstone and grinding machine
JP2019519039A JP7009464B2 (en) 2016-05-17 2017-11-17 Dressing method and dressing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016098879A JP2018027574A (en) 2016-05-17 2016-05-17 Grindstone, and surface grinding machine
JP2016-098879 2016-05-17

Publications (2)

Publication Number Publication Date
TW201741074A TW201741074A (en) 2017-12-01
TWI632027B true TWI632027B (en) 2018-08-11

Family

ID=61230014

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106116131A TWI632027B (en) 2016-05-17 2017-05-16 Grinding wheel, surface grinder

Country Status (5)

Country Link
JP (2) JP2018027574A (en)
KR (1) KR102486869B1 (en)
CN (1) CN110769979B (en)
TW (1) TWI632027B (en)
WO (1) WO2018211722A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114083358B (en) * 2022-01-19 2022-04-12 河北工业大学 Industrial robot polishing process optimization method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113878A (en) * 1996-10-09 1998-05-06 Asahi Diamond Ind Co Ltd Super abrasive grain wheel and its manufacturing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85203992U (en) * 1985-09-25 1986-10-08 康济 Multi-head screw sand-wheel
JPH029586A (en) * 1988-06-24 1990-01-12 Oodaka Seiko Kk Electrodeposition grinder element
JPH0715725Y2 (en) * 1992-05-08 1995-04-12 大阪ダイヤモンド工業株式会社 Electroplated whetstone
JPH079337A (en) * 1993-06-23 1995-01-13 Hitachi Seiko Ltd Dressing method of grinding wheel using single stone dresser
US5997597A (en) * 1998-02-24 1999-12-07 Norton Company Abrasive tool with knurled surface
JP2002361553A (en) 2001-06-06 2002-12-18 Nagase Integrex Co Ltd Dressing device and dressing method
JP2005321048A (en) * 2004-05-10 2005-11-17 Koyo Seiko Co Ltd Rolling slide part, and method for manufacturing the same
DE102008010301A1 (en) * 2008-02-21 2009-09-03 Liebherr-Verzahntechnik Gmbh Method for operating a gear grinding machine
JP5322549B2 (en) 2008-09-18 2013-10-23 住友重機械工業株式会社 Grinding method
CN202292462U (en) * 2011-09-09 2012-07-04 中国南方航空工业(集团)有限公司 Grinding wheel
JP5870659B2 (en) * 2011-12-05 2016-03-01 ニプロ株式会社 Puncture needle manufacturing method and puncture needle
JP2013184237A (en) * 2012-03-06 2013-09-19 Sumitomo Heavy Ind Ltd Surface grinding machine
JP5832964B2 (en) 2012-03-28 2015-12-16 住友重機械工業株式会社 Surface grinding machine
JP5997597B2 (en) * 2012-12-10 2016-09-28 株式会社荏原製作所 Magnetic bearing device and method for reducing vibration caused by magnetic bearing device
JP6563241B2 (en) 2015-04-10 2019-08-21 株式会社岡本工作機械製作所 Grinding wheel forming method of grinding wheel
CN105945730A (en) * 2016-06-28 2016-09-21 中国南方航空工业(集团)有限公司 Trimming tool for spiral groove grinding wheel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10113878A (en) * 1996-10-09 1998-05-06 Asahi Diamond Ind Co Ltd Super abrasive grain wheel and its manufacturing method

Also Published As

Publication number Publication date
JP7009464B2 (en) 2022-01-25
KR20200004885A (en) 2020-01-14
JPWO2018211722A1 (en) 2020-05-14
JP2018027574A (en) 2018-02-22
CN110769979A (en) 2020-02-07
WO2018211722A1 (en) 2018-11-22
TW201741074A (en) 2017-12-01
KR102486869B1 (en) 2023-01-10
CN110769979B (en) 2023-04-21

Similar Documents

Publication Publication Date Title
CN101778698B (en) Dressing method and dressing apparatus for barrel worm-shaped tool, and internal gear grinding machine
JP5323427B2 (en) Honing processing method and honing machine
CN103878635B (en) Machine tool control system
CN104044075B (en) Adopt the method rotating green silicon carbide frotton finishing resin basic circle arc diamond grindin g wheel
CN107052462A (en) The complex-curved fast response servo ultraprecise fly cutter cutting working method of fragile material
CN108747603A (en) The coarse-fine of non-rotating optical array integrates progressive method for grinding
TWI632027B (en) Grinding wheel, surface grinder
EP3437799A1 (en) Machine tool and method for machining high precision cutting tools
JP6457169B2 (en) Lathe control system
JP2010076032A (en) Taper honing processing method and taper honing machine
JP6197567B2 (en) Truing method and truing device
JP6127657B2 (en) Truing method for rotating wheel and grinding machine for carrying out the truing method
JP6005529B2 (en) Centerless grinding method and centerless grinding apparatus for edge portion of tapered surface
JP5178447B2 (en) Grinding quality evaluation method, evaluation map creation method, and evaluation map
JP5751706B2 (en) Gear type workpiece processing method
JP2010253623A (en) Grinding wheel forming method
JP6023101B2 (en) Gear honing method
RU2570135C1 (en) Method of dressing of grinding wheel of centreless grinder
RU149877U1 (en) GRINDING CIRCLE WITH INTERRUPTED SURFACE
RU43209U1 (en) CENTERLESS ROUND GRINDING MACHINE
RU73634U1 (en) CENTERLESS GRINDING MACHINE FOR TREATMENT OF CONIC SURFACES
CN204361057U (en) Single-sided lapping machine
JP5815814B1 (en) Centerless grinding method and apparatus
RU126980U1 (en) GRINDING SIDE SURFACE DEVICE
RU2469818C1 (en) Machining method of shaped shafts with convex profile as per specified size