TWI623420B - 降低流體化床反應器中顆粒污染的方法及裝置 - Google Patents

降低流體化床反應器中顆粒污染的方法及裝置 Download PDF

Info

Publication number
TWI623420B
TWI623420B TW102140019A TW102140019A TWI623420B TW I623420 B TWI623420 B TW I623420B TW 102140019 A TW102140019 A TW 102140019A TW 102140019 A TW102140019 A TW 102140019A TW I623420 B TWI623420 B TW I623420B
Authority
TW
Taiwan
Prior art keywords
protective layer
fluidized bed
bed reactor
tce
reactor
Prior art date
Application number
TW102140019A
Other languages
English (en)
Other versions
TW201434618A (zh
Inventor
馬修J 米勒
麥可V 史潘格勒
Original Assignee
陝西有色天宏瑞科矽材料有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/670,200 external-priority patent/US9587993B2/en
Priority claimed from US13/939,067 external-priority patent/US9212421B2/en
Application filed by 陝西有色天宏瑞科矽材料有限責任公司 filed Critical 陝西有色天宏瑞科矽材料有限責任公司
Publication of TW201434618A publication Critical patent/TW201434618A/zh
Application granted granted Critical
Publication of TWI623420B publication Critical patent/TWI623420B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Silicon Compounds (AREA)
  • Glanulating (AREA)

Abstract

本發明揭示一種降低或消除經矽塗佈之顆粒之污染的方法及流體化床反應器。一或多個流體化床反應器組件之金屬表面至少部分塗有硬保護層,該硬保護層包含在650℃下極限抗拉強度為至少700MPa之材料。

Description

降低流體化床反應器中顆粒污染的方法及裝置 【相關申請案之交叉引用】
本發明主張2012年11月6日申請之美國申請案第13/670,200號及2013年7月10日申請之美國申請案第13/939,067號之權利,該等文獻以全文引用的方式併入本文中。
本發明係關於用於流體化床反應器,尤其熱分解帶矽氣體產生經矽塗佈之顆粒之流體化床反應器的硬保護層。
由於極佳質量轉移及熱轉移、增加沈積表面及連續生產,因此帶矽氣體在流體化床中之熱分解為產生用於光伏打及半導體行業之多晶矽的有吸引力的方法。與西門子(Siemens)型反應器相比較,流體化床反應器以一部分能量消耗提供顯著較高的生產率。流體化床反應器可高度自動化以顯著減少勞動力成本。
藉由涉及在流體化床反應器中熱解含矽物質(諸如矽烷、二矽烷或鹵代矽烷,諸如三氯矽烷或四氯矽烷)之化學氣相沈積法製造顆粒多晶矽為熟習此項技術者所熟知,且由包括以下專利及公開案之許多公開案例示:US 8,075,692、US 7,029,632、US 5,810,934、US 5,798,137、US 5,139,762、US 5,077,028、US 4,883,687、US 4,868,013、US 4,820,587、US 4,416,913、US 4,314,525、US 3,012,862、US 3,012,861、US2010/0215562、US2010/0068116、US2010/0047136、US2010/0044342、US2009/0324479、US2008/0299291、US2009/0004090、US2008/0241046、US2008/0056979、US2008/0220166、US 2008/0159942、US2002/0102850、US2002/0086530及US2002/0081250。
在反應器中,藉由分解選自由以下組成之群的帶矽氣體使矽沈積於顆粒上:矽烷(SiH4)、二矽烷(Si2He6)、高階矽烷(SinH2n+2)、二氯矽烷(SiH2Cl2)、三氯矽烷(SiHCl3)、四氯化矽(SiCl4)、二溴矽烷(SiH2Br2)、三溴矽烷(SiHBr3)、四溴化矽(SiBr4)、二碘矽烷(SiH2I2)、三碘矽烷(SiHI3)、四碘化矽(SiI4)及其混合物。帶矽氣體可與一或多種含鹵素氣體混合,該一或多種含鹵素氣體定義為由以下組成之群中之任一者:氯(Cl2)、氯化氫(HCl)、溴(Br2)、溴化氫(HBr)、碘(I2)、碘化氫(HI)及其混合物。帶矽氣體亦可與一或多種其他氣體(諸如氫氣(H2))及/或一或多種選自氮氣(N2)、氦氣(He)、氬氣(Ar)及氖氣(Ne)之惰性氣體混合。在特定具體實例中,帶矽氣體為矽烷,且矽烷與氫氣混合。將帶矽氣體以及任何伴隨氫氣、含鹵素氣體及/或惰性氣體引入流體化床反應器中且在反應器內熱分解產生矽沈積於反應器內之晶種顆粒上。
流體化床反應器中之常見問題為在流體化床中在高操作溫度下用於構造反應器及其組件之材料會污染經矽塗佈之顆粒。舉例而言,已展示在用於構造反應器部件之一些鎳合金中鎳會自基底金屬擴散至矽層中(例如經矽塗佈之顆粒上)。類似問題亦出現於經組態以熱分解帶鍺氣體 產生經鍺塗佈之顆粒的流體化床反應器中。
本發明係關於降低或消除經矽塗佈之顆粒由於在流體化床反應器中與金屬表面接觸而產生之污染。具有該金屬表面之反應器組件包括(但不限於)注射噴嘴、流體化氣體入口管、晶種入口管、產品提取出口管、襯套、探針總成、取樣噴嘴、壓力噴嘴、熱電偶、內加熱器及消泡器。
至少一個流體化床反應器組件具有包含至少部分塗有保護層之金屬的表面,該保護層包含在650℃下極限抗拉強度為至少700MPa之材料。在一些具體實例中,至少95%表面塗有保護層。保護層可具有至少0.1mm之平均厚度,諸如0.1mm至1mm之平均厚度。保護層之厚度可橫跨表面之寬度及/或沿表面之長度變化。在一個具體實例中,一部分流體化床反應器組件完全由化學組成與保護層實質上相同之材料構造。
金屬及保護層各自具有熱膨脹係數(thermal coefficient of expansion;TCE)。在一些具體實例中,TCE彼此相差30%。中間塗層可安置於金屬與保護層之間,其中中間塗層之TCE在金屬與保護層之TCE之間。
例示性保護層包括基於鈷之合金、基於鎳之合金或其組合。在一個具體實例中,保護層為包含以下的基於鈷之合金:25-35% Cr、10% W、10% Ni、5% Mo、3% Fe、2% Si、2% C、1.5% Mn、1% B、0.05% P、0.05% S及30.5-75%鈷。在另一具體實例中,保護層為包含以下的基於鎳之超合金:4-30% Mo、5-25% Cr、2-15% Co、3.5% Ti、2% Fe、2% Al、1% Mn、1% Si、0.5% Cu、0.1% C、0.1% Zr、0.01% B及23.4-89%鎳。
製造多晶矽之流體化床反應器單元包括界定反應器腔室之反應器、及表面面對反應器腔室之一或多個反應器組件,該表面包含至少部分塗有如本文所揭示之保護層的金屬。
製造顆粒狀多晶矽顆粒之方法的具體實例包括使含有矽之氣體流經在流體化床反應器界定之反應器腔室內含有晶種顆粒之流體化床反應器以實現含有矽之氣體的熱解及將多晶矽層沈積於晶種顆粒上形成經多晶矽塗佈之顆粒,其中該流體化床反應器包含表面面對反應器腔室的一或多個反應器組件,該表面包含至少部分塗有如本文所揭示之保護層的金屬。保護層可降低或消除經多晶矽塗佈之顆粒與金屬之接觸,且可降低或消除多晶矽顆粒之金屬污染。
本發明之特徵及優點將由以下實施方式變得更顯而易知,以下實施方式參考隨附圖式進行說明。
10‧‧‧流體化床反應器
20‧‧‧外壁
30‧‧‧反應器腔室
40‧‧‧入口管
50‧‧‧流體化氣體入口管
60‧‧‧晶種入口管
70‧‧‧產品出口管
80‧‧‧襯套
90‧‧‧探針總成
100‧‧‧加熱器
200‧‧‧入口管
210‧‧‧中間黏合層或助黏劑塗層
220‧‧‧外部保護層
300‧‧‧入口管
310‧‧‧入口管300之上部
320‧‧‧入口管300之下部
330‧‧‧保護層
A1‧‧‧中心軸
圖1為流體化床反應器之示意性截面正視圖。
圖2為塗有中間黏合層或助黏劑塗層及外部保護層之入口管的示意性截面正視圖。
圖3為入口管之示意性截面正視圖,該入口管包括由保護層材料構成之上部及塗有保護層材料之下部。
揭示降低或消除經矽塗層之顆粒污染之方法及流體化床反 應器之具體實例。一或多個流體化床反應器組件之金屬表面至少部分塗有硬保護層。如本文所用,術語「反應器組件(reactor component)」係指在反應器操作期間表面(例如包含金屬之表面)可接觸經矽塗佈之顆粒的流體化床反應器之任何組件。
除非上下文另外明確規定,否則如本文所用,「包含(comprising)」意謂「包括(including)」且單數形式「一(a/an)」或「該(the)」包括複數個指示物。除非上下文另外明確指示,否則術語「或(or)」係指所述交替性元素之單一元素或兩個或兩個以上元素之組合。
除非另外解釋,否則本文所用之所有技術及科學術語具有與本發明所屬領域的一般技術人員通常所理解之含義相同的含義。儘管與本文所述之方法及材料類似或相當之方法及材料可用於本發明之實施或測試中,但在下文中描述了適合方法及材料。材料、方法及實例僅為說明性的且不欲具有限制性。本發明之其他特徵由以下實施方式及申請專利範圍而變得顯而易知。
除非另外指出,否則應瞭解涉及組成之所有百分比均為重量百分比,亦即重量%。舉例而言,包含20%鈷之組成物每100g組成物包括20g鈷。
圖1為製造經矽塗佈之顆粒的流體化床反應器10之簡化示意圖。反應器10一般垂直延伸,具有界定反應器腔室30之外壁20、中心軸A1,且在不同高度可具有不同橫截面尺寸。圖1所示之反應器具有在各種高度具有不同橫截面尺寸之五個區域I至V。反應器腔室可由具有不同橫截面尺寸之壁界定,由此可使氣體在不同高度以不同速度經由反應器向上 流動。
經矽塗佈之顆粒藉由在反應器腔室30內熱分解帶矽氣體且將矽沈積於流體化床內之顆粒上而生長。設置一或多個入口管40以允許原始氣體,例如帶矽氣體或帶矽氣體、氫氣及/或惰性氣體(例如氦氣、氬氣)之混合物進入反應器腔室30中。反應器10另外包括一或多個流體化氣體入口管50。可經流體化入口管50將其他氫氣及/或惰性氣體傳遞至反應器中以提供足夠氣流使反應器床內之顆粒流體化。在製造開始時及在正常操作期間,經晶種入口管60將晶種顆粒引入反應器10中。藉由經一或多個產品出口管70自反應器10移除來採集經矽塗佈之顆粒。襯套80可垂直延伸通過反應器10。在一些排列中,襯套80與反應器壁20同心。所示襯套80一般為圓筒形。在一些具體實例中,探針總成90延伸至反應器腔室30中。反應器10另外包括一或多個加熱器100。在一些具體實例中,反應器包括在襯套80與外壁20之間環繞反應器腔室30同心安置之加熱器100環形陣列。在一些系統中,利用多個輻射加熱器100,加熱器100彼此等距離隔開。
反應器在反應器之各個部分中之溫度不同。舉例而言,當將矽烷用作多晶矽顆粒製造中釋放矽之含矽化合物進行操作時,I區(亦即底部區)之溫度為環境溫度至100℃(圖1)。在II區(亦即冷卻區)中,溫度典型地在50至700℃之範圍內。在III區(中間區)中,溫度實質上與IV區相同。使IV區之中心部分(亦即反應及飛濺區)維持於620至760℃,且宜為660至690℃,其中在接近IV區之壁處(亦即輻射區)溫度增加至700至900℃。V區之上部(亦即淬滅區)之溫度為400至450℃。
反應器腔室30中與經矽塗佈之顆粒接觸之表面可為產品污 染源。舉例而言,軟金屬易於由與流體化矽顆粒之接觸磨傷。術語「磨傷(galling)」係指以相對運動直接接觸之金屬表面之間的材料發生磨損及轉移。矽顆粒可被轉移之金屬污染。磨傷亦會導致金屬組件耗損,從而因替換組件或將金屬表面研磨或機械加工以使其恢復再使用條件而產生反應器停工期。因此,需要更能耐受反應器條件、降低產品污染或具有兩者之改良之反應器表面。
揭示適用於耐受反應器條件及/或降低產品污染之保護層之具體實例。所揭示之保護層可用於一或多個在反應器操作期間金屬表面曝露於經矽塗佈之顆粒,亦即在反應器操作期間金屬表面面對經矽塗佈之顆粒的反應器組件。可接受保護層之反應器組件包括(但不限於)注射噴嘴或入口管40、流體化氣體入口管50、晶種入口管60、產品提取出口管70、襯套80、探針總成90、取樣噴嘴(圖中未示)、壓力噴嘴(圖中未示)、熱電偶(圖中未示)、內加熱器(圖中未示)及消泡器(圖中未示)。反應器組件之至少一部分曝露之金屬表面塗有所揭示保護層之一具體實例。在一些具體實例中,曝露之金屬表面全部或實質上全部塗有保護層。舉例而言,至少95%、至少97%或至少99%曝露之金屬表面可塗有保護層。因此,在反應器操作期間面向反應器腔室及/或曝露於經矽塗佈之顆粒的表面包含至少部分塗有保護層之金屬。
在流體化床反應器中在高溫(諸如操作溫度)下可能難以量測硬度。然而,硬度與極限抗拉強度之間存在正相關性。因此,極限抗拉強度可用作高溫下硬度之代表。在一些具體實例中,保護層在650℃下之極限抗拉強度為至少700MPa,在650℃下之極限抗拉強度宜為至少800 MPa、至少900MPa或至少1000MPa。極限抗拉強度(抗拉測試期間材料耐受之最大工程應力,例如材料之應力/應變曲線上之峰值)可使用抗拉測試機(例如Instron®,Norwood,MA)測定。用於測試金屬極限抗拉強度之適合方法包括美國檢驗與材料學會(American Society of Testing and Materials;ASTM)E8及ASTM A370。
因為流體化床反應器內之組件會經受大的溫度變化,所以下伏材料之熱膨脹係數(TCE-1)與保護層之熱膨脹係數(TCE-2)類似。在一些具體實例中,TCE-2與TCE-1相差30%,宜相差20%或10%。當下伏材料為304H鋼(TCE=18.6×10-6/K)或800H鋼(TCE=16.9×10-6/K)時,保護層可具有之TCE可例如為11.8×10-6/K(亦即TCE-1×0.7)至24.2×10-6/K(亦即TCE-1÷0.7),TCE宜為13.5×10-6/K至22.3×10-6/K。一般而言,硬度足以耐受反應器條件之保護層的TCE將小於或等於下伏材料之TCE。
在一些具體實例中,在塗覆保護層之前將中間黏合層或助黏劑塗層塗覆於反應器組件。舉例而言,如圖2中所示,入口管200可塗有中間黏合層或助黏劑塗層210及外部保護層220。中間塗層之熱膨脹係數(TCE-3)宜在TCE-1與TCE-2之間。中間塗層可藉由在流體化床反應器操作期間減少或預防保護層與下伏反應器組件分層而增加保護層之耐久性。在一個具體實例中,中間塗層為鎳-鉻合金。
在一些具體實例中,保護層之最小平均厚度為0.1mm,及/或平均厚度為0.1mm至1mm,諸如0.1mm至0.7mm或0.25mm至0.5mm。在某些具體實例中,塗層厚度可橫跨組件之表面及/或沿組件之長度變化。舉例而言,若在流體化床反應器操作期間探針、噴嘴或襯套之一部分典型 地會經受較大程度之侵蝕,則可在探針、噴嘴或襯套之彼部分塗覆較厚保護層。
在某些具體實例中,一部分反應器組件之組成可與保護層材料相同。其餘反應器組件可塗有保護層。舉例而言,如圖3中所示,入口管300之上部310(例如向上面對注射噴嘴或流體化氣體入口管)可全部由保護層材料構成,而入口管300之下部320塗有保護層材料之保護層330。
適合保護層材料包括某些基於鈷及基於鎳之合金及超合金、碳化矽、碳化鎢(WC)、氮化矽及其組合。如本文所用,術語「超合金(superalloy)」係指具有面心立方體(奧氏體(austenitic))結構之基於鎳或基於鈷之合金。在某些具體實例中,適合保護層為基於鈷之合金或超合金、基於鎳之合金或超合金,或其任何組合。
理想地,保護層在流體化床反應器之操作條件下不會釋放(例如經由侵蝕或擴散)大量可污染產品顆粒之金屬。當製造經矽塗佈之顆粒時,不希望產品受諸如鋁、砷、硼或磷之電子供體及/或電子受體污染(例如千分率含量)。在一些具體實例中,保護層在反應器操作條件下之硬度及/或抗腐蝕性足以最小化或防止鋁、砷、硼或磷自保護層釋放。在某些具體實例中,保護層材料不包含鋁、砷、硼或磷,或者不包含超過痕量(例如2%或1%)之鋁、砷、硼或磷。
在一些具體實例中,保護層材料為包含以下之基於鈷之合金:25-35% Cr、10% W、10% Ni、5% Mo、3% Fe、2% Si、2% C、1.5% Mn、1% B、0.05% P及0.05% S,且其餘(30.5-75%)為鈷。在一些具體實例中,保護層材料為具有包含以下之組成的基於鎳之合金:4-30% Mo、 5-25% Cr、2-15% Co、2% Fe、3.5% Ti、2% Al、1% Mn、1% Si、0.5% Cu、0.1% C、0.1% Zr及0.01% B,其餘(23.4-89%)為鎳。
在一個具體實例中,保護層材料為具有包含以下之組成的鈷合金:26-33% Cr、7-9.5% W、7% Ni、2.5% Fe、2% Si、1.1-1.9% C、0.5-1.5% Mn、0.1-1.5% Mo、1% B、0.03% P及0.03% S,其餘(約60%)為鈷(例如Stellite® 12合金,可購自Kennametal Stellite,Goshen,IN)。在另一具體實例中,保護層材料為具有包含以下之組成的鈷超合金:26% Cr、9% Ni、5% Mo、3% Fe及2% W,其餘(約55%)為鈷(例如Ultimet®合金,可購自Haynes International公司,Kokomo,IN)。
在一個具體實例中,保護層材料為具有包含以下之組成的基於鎳之超合金:20% Cr、10% Co、8.5% Mo、2.1% Ti、1.5% Al、1.5% Fe、0.3% Mn、0.15% Si、0.06% C及0.005% B,其餘(約57%)為鎳(例如Haynes® 282®合金,可購自Haynes International公司,Kokomo,IN)。在另一具體實例中,保護層材料為具有包含以下之組成的基於鎳之超合金:24-26% Mo、7-9% Cr、2.5% Co、0.8% Mn、0.8% Si、0.5% Al、0.5% Cu、0.03% C及0.006% B,其餘(約65%)為鎳(例如Haynes® 242®合金,可購自Haynes International公司,Kokomo,IN)。在又一具體實例中,保護層材料為具有包含以下之組成的基於鎳之超合金:18-21% Cr、12-15% Co、3.5-5% Mo、2.75-3.25% Ti、1.2-1.6% Al、0.03-0.1% C、0.02-0.08% Zr、0.003-0.01% B、2% Fe、0.15% Si、0.1% Cu、0.1% Mn、0.015% P及0.015% S,其餘為鎳(例如Haynes®沃斯帕洛伊合金(Haynes® Waspaloy alloy),可購自Haynes International公司,Kokomo,IN)。
當在製造經矽塗佈之顆粒的流體化床反應器中使用時,所揭示保護層之具體實例會降低經矽塗佈之顆粒中的金屬污染。在一些具體實例中,與曝露之金屬表面未經塗佈之反應器中製造的經矽塗佈之顆粒相比,用所揭示保護層之一具體實例塗佈曝露之金屬表面使經矽塗佈之顆粒的金屬污染降低至少70%、至少80%、至少90%或至少95%。在一個實例中,與包括未經塗佈之304H不鏽鋼探針總成之反應器中產生的顆粒相比,用基於鈷之超合金塗佈304H不鏽鋼探針總成使金屬污染降低90%以上。另外,在使用50天之後,經塗佈探針總成展示無磨損。
在一些具體實例中,保護層材料為粉末,諸如粉末合金或以足以形成所需合金之比率提供的非合金粉末之混合物,且該粉末藉由包括以下之任何適合方法塗覆於所需表面:澆鑄、鑄造、浸漬、噴塗或旋塗之後熱熔。粉末可在塗覆於表面之前進行熔融。
在其他具體實例中,保護層藉由諸如火焰噴塗(例如高速火焰噴塗)之熱方法或藉由電漿轉移弧焊接(plasma-transferred arc welding)進行塗覆。當使用熱方法塗覆保護層時,保護層材料可呈粉末合金、線合金、電極或塗覆於表面時經組合形成所需合金的兩種或兩種以上具有不同化學組成之材料(例如粉末、線或電極)的形式。
實施例
Stellite® 12合金之保護層藉由電漿轉移塗覆於包含304H不鏽鋼基質之頂部探針總成。保護層之平均厚度為0.020吋(0.5mm)。由304H製成之探針在製造經矽塗佈之顆粒的流體化床反應器中使用約90天會磨破。除保護層以外,反應器材料不含鈷。
將經塗佈總成置於流體化床反應器中且在兩次測試運作期間運作約50天。在探針或保護層上未見磨損。顆粒狀矽產品之分析展示在第一次測試運作期間鈷之穩態含量為約1.5ppbw(以重量計十億分率)。在第二次運作期間鈷含量下降至約0.5ppbw。探針使用之前的鈷分析展示約0.3ppbw。估計裸304H探針之侵蝕對顆粒產品污染貢獻25ppbw以上總金屬。相反,Stellite® 12保護層提供最少污染。
經第二次測試運作,追蹤鎢且觀測到低於0.1ppbw之偵測極限之穩態。偵測到低個位數ppbw之鉻,但咸信來自於反應器內其他曝露之不鏽鋼表面。
降低或消除經矽塗佈之顆粒由於在流體化床反應器中與表面接觸產生之污染的方法包含(i)在流體化床反應器中設置在流體化床反應器操作期間表面面對經矽塗佈之顆粒的流體化床反應器組件,其中該表面包含至少部分塗有包含在650℃下極限抗拉強度為至少700MPa之材料的保護層之金屬;及(ii)操作該流體化床反應器以製造經矽塗佈之顆粒。在一些具體實例中,至少95%之表面塗有保護層。
在任何或所有上述具體實例中,金屬具有熱膨脹係數TCE-1且保護層具有熱膨脹係數TCE-2,其中TCE-2及TCE-1可相差30%。在一些具體實例中,將熱膨脹係數TCE-3在TCE-1與TCE-2之間的中間塗層安置於金屬與保護層之間。
在任何或所有上述具體實例中,保護層之最小平均厚度為0.1mm。在一些具體實例中,保護層之厚度可橫跨表面之寬度及/或沿表面之長度變化。
在任何或所有上述具體實例中,一部分流體化床反應器組件可全部由化學組成與保護層實質上相同之材料構造。
在任何或所有上述具體實例中,流體化床反應器組件為注射噴嘴、流體化氣體入口管、晶種入口管、產品提取出口管、襯套、探針總成、取樣噴嘴、壓力噴嘴、熱電偶、內加熱器或消泡器。
在任何或所有上述具體實例中,保護層可包含基於鈷之合金、基於鎳之合金或其組合。在一些具體實例中,保護層為包含以下之基於鈷之合金:25-35% Cr、10% W、10% Ni、5% Mo、3% Fe、2% Si、2% C、1.5% Mn、1% B、0.05% P、0.05% S及30.5-75%鈷。在一些具體實例中,保護層為包含以下之基於鎳之超合金:4-30% Mo、5-25% Cr、2-15% Co、3.5% Ti、2% Fe、2% Al、1% Mn、1% Si、0.5%Cu、0.1%C、0.1% Zr、0.01% B及23.4-89%鎳。
製造多晶矽之流體化床反應器單元包含界定反應器腔室之反應器,及表面面對反應器腔室之一或多個反應器組件,該表面包含至少部分塗有在650℃下極限抗拉強度為至少700MPa之保護層的金屬。在一些具體實例中,一部分反應器組件完全由化學組成與保護層實質上相同之材料構造。
在任何或所有上述具體實例中,金屬具有第一熱膨脹係數(TCE-1)且保護層具有第二熱膨脹係數(TCE-2),該第二熱膨脹係數(TCE-2)與TCE-1可相差30%。在某些具體實例中,反應器組件另外包含熱膨脹係數TCE-3在TCE-1與TCE-2之間的中間塗層,其中該中間層置於金屬與保護層之間。
在任何或所有上述具體實例中,保護層之平均厚度可為0.1mm至1mm。在一些具體實例中,保護層之厚度可橫跨表面之寬度及/或沿表面之長度變化。
在任何或所有上述具體實例中,保護層可包含基於鈷之合金、基於鎳之合金或其組合。
製造顆粒狀多晶矽顆粒之方法包含使含有矽之氣體流經在由流體化床反應器界定之反應器腔室內含有晶種顆粒之流體化床反應器以實現將含有矽之氣體熱解且將多晶矽層沈積於晶種顆粒上形成經多晶矽塗佈之顆粒,其中該流體化床反應器包含反應器操作期間表面面對反應器腔室之一或多個反應器組件,該表面包含至少部分塗有在650℃下極限抗拉強度為至少700MPa之保護層的金屬。在一些具體實例中,至少95%之表面塗有保護層,從而降低或消除經多晶矽塗佈之顆粒與金屬的接觸且降低或消除多晶矽顆粒之金屬污染。
鑒於可應用本發明之原理的許多可能具體實例,應認識到,所說明之具體實例僅為本發明之較佳實施例且不應視作限制本發明之範疇。確切言之,本發明之範疇由隨附申請專利範圍界定。

Claims (16)

  1. 一種降低或消除經矽塗佈之顆粒由於在流體化床反應器中與表面接觸產生之污染的方法,該方法包含:在流體化床反應器中設置在該流體化床反應器操作期間表面面對經矽塗佈之顆粒的流體化床反應器組件,其中該表面包含至少部分塗有包含在650℃下極限抗拉強度為至少700MPa之材料的保護層之金屬,其中該保護層為:包含以下之基於鈷之合金:25-35% Cr、10% W、10% Ni、5% Mo、3% Fe、2% Si、2% C、1.5% Mn、1% B、0.05% P、0.05% S及30.5-75%鈷,或包含以下之基於鎳之超合金:4-30% Mo、5-25% Cr、2-15% Co、3.5% Ti、2% Fe、2% Al、1% Mn、1% Si、0.5% Cu、0.1% C、0.1% Zr、0.01% B及23.4-89%鎳;及操作該流體化床反應器以製造經矽塗佈之顆粒。
  2. 如申請專利範圍第1項之方法,其中至少95%該表面塗有該保護層。
  3. 如申請專利範圍第1項之方法,其中該金屬具有熱膨脹係數TCE-1,且該保護層具有熱膨脹係數TCE-2,其中TCE-2與TCE-1相差30%。
  4. 如申請專利範圍第3項之方法,其中將熱膨脹係數TCE-3在TCE-1與TCE-2之間的中間塗層安置於該金屬與該保護層之間。
  5. 如申請專利範圍第1項之方法,其中該保護層之最小平均厚度為0.1mm。
  6. 如申請專利範圍第5項之方法,其中該保護層之厚度可橫跨該表面之寬度及/或沿該表面之長度變化。
  7. 如申請專利範圍第1項之方法,其中一部分該流體化床反應器組件完全由化學組成與該保護層實質上相同之材料構造。
  8. 如申請專利範圍第1項之方法,其中該流體化床反應器組件為注射噴嘴、流體化氣體入口管、晶種入口管、產品提取出口管、襯套、探針總成、取樣噴嘴、壓力噴嘴、熱電偶、內加熱器或消泡器。
  9. 一種製造多晶矽之流體化床反應器單元,該單元包含:界定反應器腔室之反應器;及表面面對該反應器腔室之一或多個反應器組件,該表面包含至少部分塗有在650℃下極限抗拉強度為至少700MPa之保護層的金屬,其中該保護層為:包含以下之基於鈷之合金:25-35% Cr、10% W、10% Ni、5% Mo、3% Fe、2% Si、2% C、1.5% Mn、1% B、0.05% P、0.05% S及30.5-75%鈷,或包含以下之基於鎳之超合金:4-30% Mo、5-25% Cr、2-15% Co、3.5% Ti、2% Fe、2% Al、1% Mn、1% Si、0.5% Cu、0.1% C、0.1% Zr、0.01% B及23.4-89%鎳。
  10. 如申請專利範圍第9項之流體化床反應器單元,其中該金屬具有第一熱膨脹係數(TCE-1)且該保護層具有第二熱膨脹係數(TCE-2),該第二熱膨脹係數(TCE-2)與TCE-1相差30%。
  11. 如申請專利範圍第10項之流體化床反應器單元,其中該反應器組件另外包含熱膨脹係數TCE-3在TCE-1與TCE-2之間的中間塗層,其中該中間層置於該金屬與該保護層之間。
  12. 如申請專利範圍第9項之流體化床反應器單元,其中該保護層之平均厚度為0.1mm至1mm。
  13. 如申請專利範圍第12項之流體化床反應器單元,其中該保護層之厚度可橫跨該表面之寬度及/或沿該表面之長度變化。
  14. 如申請專利範圍第9項之流體化床反應器單元,其中一部分該反應器組件完全由化學組成與該保護層實質上相同之材料構造。
  15. 一種製造顆粒狀多晶矽顆粒之方法,該方法包含使含有矽之氣體流經在由流體化床反應器界定之反應器腔室內含有晶種顆粒之該流體化床反應器以實現將該含有矽之氣體熱解且將多晶矽層沈積於該晶種顆粒上形成經多晶矽塗佈之顆粒,其中該流體化床反應器包含在反應器操作期間表面面對該反應器腔室之一或多個反應器組件,該表面包含至少部分塗有在650℃下極限抗拉強度為至少700MPa之保護層的金屬,其中該保護層為:包含以下之基於鈷之合金:25-35% Cr、10% W、10% Ni、5% Mo、3% Fe、2% Si、2% C、1.5% Mn、1% B、0.05% P、0.05% S及30.5-75%鈷,或包含以下之基於鎳之超合金:4-30% Mo、5-25% Cr、2-15% Co、3.5% Ti、2% Fe、2% Al、1% Mn、1% Si、0.5% Cu、0.1% C、0.1% Zr、0.01% B及23.4-89%鎳。
  16. 如申請專利範圍第15項之方法,其中至少95%該表面塗有該保護層,從而降低或消除該經多晶矽塗佈之顆粒與該金屬之接觸且降低或消除該多晶矽顆粒之金屬污染。
TW102140019A 2012-11-06 2013-11-05 降低流體化床反應器中顆粒污染的方法及裝置 TWI623420B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/670,200 2012-11-06
US13/670,200 US9587993B2 (en) 2012-11-06 2012-11-06 Probe assembly for a fluid bed reactor
US13/939,067 US9212421B2 (en) 2013-07-10 2013-07-10 Method and apparatus to reduce contamination of particles in a fluidized bed reactor
US13/939,067 2013-07-10

Publications (2)

Publication Number Publication Date
TW201434618A TW201434618A (zh) 2014-09-16
TWI623420B true TWI623420B (zh) 2018-05-11

Family

ID=50685110

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102140019A TWI623420B (zh) 2012-11-06 2013-11-05 降低流體化床反應器中顆粒污染的方法及裝置

Country Status (7)

Country Link
JP (1) JP2016503377A (zh)
KR (1) KR20150082349A (zh)
CN (2) CN109453729A (zh)
DE (1) DE112013005298T5 (zh)
SA (1) SA515360365B1 (zh)
TW (1) TWI623420B (zh)
WO (1) WO2014074510A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238211B1 (en) 2014-08-15 2016-01-19 Rec Silicon Inc Segmented silicon carbide liner
US9446367B2 (en) 2014-08-15 2016-09-20 Rec Silicon Inc Joint design for segmented silicon carbide liner in a fluidized bed reactor
US20160045881A1 (en) * 2014-08-15 2016-02-18 Rec Silicon Inc High-purity silicon to form silicon carbide for use in a fluidized bed reactor
US9662628B2 (en) * 2014-08-15 2017-05-30 Rec Silicon Inc Non-contaminating bonding material for segmented silicon carbide liner in a fluidized bed reactor
US9404177B2 (en) * 2014-08-18 2016-08-02 Rec Silicon Inc Obstructing member for a fluidized bed reactor
DE102014221928A1 (de) * 2014-10-28 2016-04-28 Wacker Chemie Ag Wirbelschichtreaktor und Verfahren zur Herstellung von polykristallinem Siliciumgranulat
CN105568254B (zh) * 2016-02-24 2018-10-30 清华大学 一种用于流化床化学气相沉积反应器的气体入口设备
DE102016203082A1 (de) * 2016-02-26 2017-08-31 Wacker Chemie Ag Verfahren zur Abscheidung einer In Situ-Beschichtung auf thermisch und chemisch beanspruchten Bauteilen eines Wirbelschichtreaktors zur Herstellung von hochreinem Polysilicium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201129421A (en) * 2009-11-18 2011-09-01 Rec Silicon Inc Fluid bed reactor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127916A (ja) * 1992-10-16 1994-05-10 Tonen Chem Corp 真球状高純度多結晶シリコンの製造方法
DE19735378A1 (de) * 1997-08-14 1999-02-18 Wacker Chemie Gmbh Verfahren zur Herstellung von hochreinem Siliciumgranulat
KR100756310B1 (ko) * 2006-02-07 2007-09-07 한국화학연구원 입자형 다결정실리콘 제조용 고압 유동층반응기
US8168123B2 (en) * 2009-02-26 2012-05-01 Siliken Chemicals, S.L. Fluidized bed reactor for production of high purity silicon
US8622029B2 (en) * 2009-09-30 2014-01-07 Babcock & Wilcox Power Generation Group, Inc. Circulating fluidized bed (CFB) with in-furnace secondary air nozzles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201129421A (en) * 2009-11-18 2011-09-01 Rec Silicon Inc Fluid bed reactor

Also Published As

Publication number Publication date
DE112013005298T5 (de) 2015-07-23
KR20150082349A (ko) 2015-07-15
TW201434618A (zh) 2014-09-16
SA515360365B1 (ar) 2017-10-31
WO2014074510A8 (en) 2015-05-14
WO2014074510A1 (en) 2014-05-15
CN103945932A (zh) 2014-07-23
JP2016503377A (ja) 2016-02-04
CN109453729A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
TWI623420B (zh) 降低流體化床反應器中顆粒污染的方法及裝置
TWI623645B (zh) 用於流體化床反應器設備之高溫等級鋼
TWI513506B (zh) 流體床反應器
TWI498165B (zh) 具有經矽化物塗覆的金屬表面之反應器
US4239819A (en) Deposition method and products
KR100783667B1 (ko) 입자형 다결정 실리콘의 제조방법 및 제조장치
TW201034757A (en) Fluidized bed reactor for production high purity silicon
EP2479143B1 (en) Reactor for producing polycrystalline silicon, system for producing polycrystalline silicon, and process for producing polycrystalline silicon
TWI638902B (zh) 用於流體床反應器的探測器裝配
US9212421B2 (en) Method and apparatus to reduce contamination of particles in a fluidized bed reactor
US9254470B1 (en) Segmented liner and transition support ring for use in a fluidized bed reactor
TW201113391A (en) Silicide-coated metal surfaces and methods of utilizing same
TW201605542A (zh) 高純度矽以形成用於流體化床反應器之碳化矽
US9962672B1 (en) Reactor component placement inside liner wall
JP2024104002A (ja) 炭化タンタル被覆炭素材料の製造方法及び化合物半導体成長装置
TW201607890A (zh) 用於流體化床反應器之阻絕構件