TWI612662B - 半導體裝置及其製造方法 - Google Patents

半導體裝置及其製造方法 Download PDF

Info

Publication number
TWI612662B
TWI612662B TW106100636A TW106100636A TWI612662B TW I612662 B TWI612662 B TW I612662B TW 106100636 A TW106100636 A TW 106100636A TW 106100636 A TW106100636 A TW 106100636A TW I612662 B TWI612662 B TW I612662B
Authority
TW
Taiwan
Prior art keywords
layer
disposed
strain
type nitride
substrate
Prior art date
Application number
TW106100636A
Other languages
English (en)
Other versions
TW201826538A (zh
Inventor
鄭淳護
張俊彥
邱于建
Original Assignee
國立臺灣師範大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣師範大學 filed Critical 國立臺灣師範大學
Priority to TW106100636A priority Critical patent/TWI612662B/zh
Priority to US15/464,319 priority patent/US9871112B1/en
Application granted granted Critical
Publication of TWI612662B publication Critical patent/TWI612662B/zh
Publication of TW201826538A publication Critical patent/TW201826538A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一種半導體裝置,包含基材、通道層、阻障層、源極/汲極、p型氮化物層及應變閘極。通道層配置於基材上。阻障層配置於通道層上。源極及汲極分別配置於阻障層之兩側。p型氮化物層配置於阻障層上。應變閘極配置於p型氮化物層上,應變閘極用於調整通道層的第一應變與阻障層的第二應變。

Description

半導體裝置及其製造方法
本發明係有關一種半導體裝置及其製造方法,特別是關於一種高電子遷移率電晶體。
在半導體技術中,III-V族半導體化合物可用於形成各種積體電路裝置,例如高功率場效電晶體、高頻電晶體或高電子遷移率電晶體(High electron mobility transistor,HEMT),此III-V族半導體化合物具有取代傳統矽電晶體之潛力。
然而,當III-V族半導體化合物為氮化鎵或氧化鎵時,通道將呈現常開型(normally-on)的狀態,由於常開模式之電晶體其臨界電壓(threshold voltage)為負值,即電晶體在零閘極偏壓時,電晶體仍會導通電流並形成額外之功率損耗。目前,解決此問題之方法,例如減薄氮化鎵層、離子佈植或利用p型氧化鎵使其臨界電壓大於0V。在使用p型氮化物層閘極時,雖然能將臨界電壓調變成正值以形成常關閉型元件,然而p型氮化物層閘極會與下方之阻障層的晶格錯配,因此易造成元件產生較大的閘極漏電 流及導通電阻、關閉電流、低電流開關比等問題。這些問題將限制了氮化鎵元件在高壓或高頻領域之應用。
根據本發明之多個實施方式,係提供一種半導體裝置,包含基材、通道層、阻障層、源極/汲極、p型氮化物層及應變閘極。通道層配置於基材上。阻障層配置於通道層上。源極及汲極分別配置於阻障層之兩側。p型氮化物層配置於阻障層上。應變閘極配置於p型氮化物層上,應變閘極用於調整通道層的第一應變與阻障層的第二應變。
在某些實施方式中,應變閘極包含氮化金屬、碳化金屬或鋁合金。
在某些實施方式中,半導體裝置更包含鐵電材料層配置於p型氮化物層和應變閘極之間。
在某些實施方式中,基材包含基板、晶種層及緩衝層。晶種層配置於基板上。緩衝層配置於晶種層上。
在某些實施方式中,鐵電材料層包含鋯鈦酸鉛、鈦酸鋇鍶、鉭酸鍶鉍、鋯鈦酸鉛鑭或經摻雜之氧化鉿。
在某些實施方式中,經摻雜之氧化鉿包含摻質,摻質包含Zr、Al、Si、Y、Gd、Sr或La,其中各摻質的含量Zr介於20%-75%、Al介於1-20%、Si介於1-10%、Y介於1-20%、Gd介於1-10%、Sr介於1-10%及La介於 1-10%。
在某些實施方式中,鐵電材料層的晶系為斜方晶系(orthorhombic system)。
本發明之多個實施方式,係提供一種製造半導體裝置的方法,包含:提供基材;形成通道層於基材上;形成阻障層於通道層上;分別形成源極和汲極於阻障層之兩側;形成p型氮化物層於阻障層上;以及形成應變閘極於p型氮化物層上方。
在某些實施方式中,形成應變閘極的方法包含提供至少一金屬氣體、氬氣或氮氣以形成氮化金屬層,其中氬氣:氮氣介於100:5~100:15。
在某些實施方式中,在形成應變閘極於鐵電材料層上後,應變閘極施加應力於鐵電材料層,此應力介於17.3~24.95Gpa。
在某些實施方式中,在形成p型氮化物層於該阻障層上後,更包含形成鐵電材料層於p型氮化物層上,其中鐵電材料層配置於p型氮化物層及應變閘極之間
為使本發明之上述及其他目的、特徵和優點更明顯易懂,下文特舉出較佳實施例,並配合所附圖示詳細說明如下。
10‧‧‧方法
11、12、13、14、15、16、17‧‧‧步驟
210‧‧‧基材
212‧‧‧基板
214‧‧‧晶種層
216‧‧‧緩衝層
310‧‧‧通道層
410‧‧‧阻障層
510‧‧‧p型氮化層
610‧‧‧鐵電材料層
710‧‧‧應變閘極
D‧‧‧汲極
S‧‧‧源極
第1圖為根據某些實施方式之一種半導體裝置之製造方法的流程圖。
第2、3、4、5、6、7、8A及8B圖係繪示依照本發明各種實施方式之一種半導體裝置之製造方法之各製程階段的剖面示意圖。
第9A-9E圖為根據本發明某些實施方式之半導體裝置的實驗圖或模擬圖。
以下將詳細討論本實施例的製造與使用,然而,應瞭解到,本發明提供實務的創新概念,其中可以用廣泛的各種特定內容呈現。下文敘述的實施方式或實施例僅為說明,並不能限制本發明的範圍。
此外,在本文中,為了易於描述圖式所繪的某個元件或特徵和其他元件或特徵的關係,可能會使用空間相對術語,例如「在...下方」、「在...下」、「低於」、「在...上方」、「高於」和類似用語。這些空間相對術語意欲涵蓋元件使用或操作時的所有不同方向,不只限於圖式所繪的方向而已。裝置可以其他方式定向(旋轉90度或定於另一方向),而本文使用的空間相對描述語則可相應地進行解讀。
以下提供各種關於半導體裝置及其製作方法的實施例,其中詳細說明此半導體裝置的結構和性質以及此半導體裝置 的製備步驟或操作。
高電子遷移率電晶體(High electron mobility transistor,HEMT)由於具有高輸出功率、高崩潰電壓、耐高溫等優良特性,近年來已被廣泛應用於高功率電路系統中。而傳統之高電子遷移率電晶體由於結構中通道層和阻障層之間具大量極化電荷,這些極化電荷形成二維電子氣(two dimensional electron gas,2DEG),使電子具有高遷移率。此時電晶體在無施加閘極偏壓時,仍會導通電流,因此被稱為常開式(normally-on)電晶體。常開式電晶體的臨界電壓(threshold voltage)為負值,即電晶體在零閘極偏壓時,電晶體仍會導通電流,形成額外之功率損耗。因此本發明提供一種具有應變閘極的高電子遷移率電晶體裝置,能降低次臨界斜率、閘極漏電流,通道導通電阻(RON),進而提高驅動電流及電流開關比。
第1圖為根據某些實施方式,一種半導體裝置的製造方法的流程圖。如第1圖所示,方法10包含步驟11、步驟12、步驟13、步驟14、步驟15、步驟16及步驟17。可以理解的是,額外的步驟可以提供在方法10之前、期間或之後,而且某些下述之操作能被取代或刪除,作為方法的額外實施方式。
在步驟S11中,提供基材。在某些實施方式中,如第2圖所示,基材210包含基板212、晶種層214和緩衝層216。晶種層214配置於基板212上,且緩衝層216配置於晶種層214上。在某 些實施方式中,基材210只包含基板212。在某些實施例中,基板212為矽(Si)基板、碳化矽(SiC)基板、藍寶石(sapphire)基板、氮化鎵(GaN)基板、氮化鋁鎵(AlGaN)基板、氮化鋁(AlN)基板、磷化鎵(GaP)基板、砷化鎵(GaAs)基板、砷化鋁鎵(AlGaAs)基板或其他包含III-V族元素之化合物形成之基板。在某些實施例中,晶種層214有助於補償基板和緩衝層間晶格結構的錯配(mismatch)。在某些實施方式中,晶種層214包含單層或多層結構。在某些實施方式中,晶種層包含不同溫度形成的相同材料。舉例來說,晶種層214可包含兩層AlN,其中上層的AlN於高溫中形成。緩衝層216有助於減少晶種層214和後續形成的通道層之間的晶格錯配,以及解決磊晶成長時因熱膨脹係數不匹配而影響基板212上磊晶層厚度的問題。在某些實施方式中,緩衝層216包含GaN或p型摻質摻雜的GaN。可使用磊晶製程或其他適當的方法形成緩衝層216。在一實施例中,p型摻質包含碳、鐵、鎂、鋅或其他適當的p型摻質。
在步驟S12中,形成通道層於基材上。第3圖繪示根據本發明某些實施方式之形成通道層310於基材210上的剖面示意圖。在某些實施方式中,通道層310可為可為氮化鋁鎵(AlGaN)、氮化鎵(GaN)、氮化銦鎵(InGaN)、氮化鋁銦鎵(AlInGaN)、III-V族元素之化合物或經摻雜的III-V族元素之化合物。
在步驟S13中,形成阻障層於通道層上。第4圖繪示 根據本發明某些實施方式之形成阻障層410於通道層310上的剖面示意圖。在某些實施方式中,阻障層410為為氮化鋁(AlN)、氮化鋁銦(AlInN)、AlGaN、GaN、InGaN、AlInGaN或III-V族元素之化合物。通道層310之能隙小於阻障層410之能隙,且通道層310和阻障層410的組合和厚度必須能夠產生二維電子氣。在一實施方式中,通道層310或/及阻障層410可為多層結構。在另一實施方式中,可再形成其他層,例如在通道層310和阻障層410之間形成中間層(未繪示)、形成摻雜層(未繪示)於阻障層410上方以增加二維電子氣的電子或形成覆蓋層(未繪示)於阻障層410上以防止阻障層410氧化。
在步驟S14中,分別形成源極和汲極於阻障層之兩側。第5圖繪示根據本發明某些實施方式之形成源極S和汲極D於阻障層之兩側的剖面示意圖。在某些實施方式中,源極和汲極源極S和汲極D各自選於下列組合,包含但不限於銀(Ag)、銅(Cu)、鎢(W)、鈦(Ti)、鉭(Ta)、鋁(Al)、鎳(Ni)、釕(Ru)、鈀(Pd)、鉑(Pt)、錳(Mn)、氮化鎢(WN)、氮化鈦(TiN)、氮化鉭(TaN)、氮化鋁(AlN)、矽化鎢(WSi)、氮化鉬(MoN)、矽化鎳(Ni2Si)、矽化鈦(TiSi2)、鋁化鈦(TiAl)、砷(As)摻雜之多晶矽、氮化鋯(ZrN)、TaC、TaCN、TaSiN、TiAlN、矽化物或其任意之組合。可使用任何習知之製程形成源極S和汲極D。
在步驟S15中,形成p型氮化物層於阻障層上。第6圖繪示根據本發明某些實施方式之形成p型氮化物層510於阻障 層410上的剖面示意圖。在某些實施方式中,p型氮化物層510包含p型氮化鎵(p-GaN)層、p型氮化鋁鎵(p-AlGaN)層、p型III族氮化物層或其他適當的p型氮化物金屬層。在形成p型氮化物層510時,因晶格錯配使底下的阻障層410和通道層310產生應變,藉此減弱二維電子氣通道而將臨界電壓調變成正值以形成常關型(Normally-off)元件。在某些實施方式中,可使用磊晶生長製程形成p型氮化物層510,例如分子束磊晶製程(molecular beam epitaxial,MBE)、金屬有機化學氣相沉積(metal-organic chemical vapor deposition,MOCVD)製程、及/或其他適當的磊晶生長製程。
在步驟S16中,形成鐵電材料層於p型氮化物層上。第7圖繪示根據本發明某些實施方式之形成鐵電材料層610於p型氮化物層510上的剖面示意圖。鐵電材料層610具有負電容(negative capacitance)的特性,使用具有負電容的鐵電材料的電晶體能降低次臨界擺幅(subthreshold swing,SS)。次臨界擺幅代表開關(on-off)電晶體電流的容易度,也是決定電晶體裝置開關轉換速度的指標,使電晶體可以在更小的偏壓操作下去開啟元件。因此,和傳統的電晶體裝置相比,低次臨界擺幅的電晶體具有較快的開關轉換速度。在某些實施方式中,鐵電材料層610包含鋯鈦酸鉛、鈦酸鋇鍶、鉭酸鍶鉍、鋯鈦酸鉛鑭或經摻雜之氧化鉿。在某些實施例中,摻雜氧化鉿的摻質包含Zr、Al、Si、Y、Gd、Sr或La,其中各摻質的含量Zr介於20%-75%,例如30%、40%、50%、 60%或70%,較佳為30-70%;Al介於1-20%,例如3%、5%、7%、10%或15%,較佳為2-12%;Si介於1-10%,例如3%、5%、7%或9%,較佳為2-5%;Y介於1-20%,例如3%、7%、10%、13%或17%,較佳為2-12%;Gd介於1-10%,例如3%、5%或8%,較佳為2-6%;Sr介於1-10%,例如3%、5%或8%,較佳為2-6%;La介於1-10%,例如3%、5%或8%,較佳為3-6%。在此摻質含量以外的摻雜氧化鉿不具有鐵電效應,在較佳摻質含量範圍中的摻雜氧化鉿會具有較強的鐵電效應。在某些實施方式中,形成之鐵電材料層的晶體結構為斜方晶系(Orthohombic)。在某些實施方式中,形成鐵電材料層610的方法可為電漿輔助原子層沉積、有機金屬化學氣相沉積、化學氣相沉積、物理氣相沉積、濺鍍或脈衝雷射蒸鍍。氧化鉿或經摻雜之氧化鉿只有當晶體結構為斜方晶系(Orthohombic)時才具有鐵電效應。鐵電效應係指當施加外電場時,會使電偶極順著電場方向排列,而在電場移去後,仍能保持極化方向的殘留極化(remnant polarization,Pr)。
在步驟S17中,形成應變閘極於鐵電材料層上。第8A圖繪示根據本發明某些實施方式之形成應變閘極710於鐵電材料層610上的剖面示意圖。在各種實施方式中,應變閘極710用於調整通道層310的應變與阻障層410的應變,以便調整臨界電壓值往正值方向移動,並減少因形成p型氮化物層510時所造成的原生介面缺陷。在某些實施方式中,應變閘極710包含氮化金屬,例如TiN、TiC、TiAlC、 TaN、TaCN、WN或TiWN。在某些實施方式中,應變閘極包含碳化金屬,例如TaC、TaAlC或NbAlC。在某些實施方式中,應變閘極包含鋁合金,例如TiAl或TaAl。在某些實施方式中,形成應變閘極的方式包含但不限於電漿輔助原子層沉積、有機金屬化學氣相沉積、化學氣相沉積、物理氣相沉積、濺鍍或脈衝雷射蒸鍍。在一實施例中,在形成氮化金屬的製程中,提供的氣體包含至少一種金屬氣體、氬氣及氮氣以形成氮化金屬於鐵電材料層610上,氬氣:氮氣的比例介於100:5~100:15,例如100:7、100:10或100:12。在另一實施例中,在形成碳化金屬的製程中,提供的氣體包含至少一種金屬氣體、氬氣及烴類氣體以形成碳化金屬於鐵電材料層上,烴類氣體包含具有兩個碳原子之碳氫化合物,氬氣:烴類氣體的比例介於100:5~100:15,例如100:7、100:10或100:12。當氮氣或烴類氣體的供給比例太低時,形成的應變閘極710使下方鐵電材料層610、阻障層410和通道層310產生的應變會不足。而當供給比例過高時,會影響應變閘極710的導電度。在某些實施方式中,形成應變閘極710於鐵電材料層610上之後,因為晶格失配,所以應變閘極710會施加應力於鐵電材料層610,使此鐵電材料層610從單斜晶系(Monoclinic)轉變成斜方晶系(Orthohombic),此應力介於17.3~24.95Gpa。此外,應變閘極710也能調整通道層310和阻障層410的應變,用以 調整臨界電壓,並減少因形成p型氮化物層510時所造成的原生介面缺陷。
在某些實施方式之中,應變閘極710可以直接形成於p型氮化物層510上,且此半導體裝置不包含鐵電材料層610。第8B圖繪示根據本發明某些實施方式之形成應變閘極710於p型氮化物層510上的剖面示意圖。在第8B圖繪示的實施方式中,此裝置包含基材210、通道層310、阻障層410、源極/汲極S/D、p型氮化物層510及應變閘極710。通道層310配置於基材210上。阻障層410配置於通道層310上。源極/汲極S/D配置於通道層310上及阻障層410的兩側。p型氮化物層510配置於阻障層410上。應變閘極710配置於p型氮化物層510上。在某些實施方式中,基材210可包含基板212、晶種層214、緩衝層216。應變閘極710也能調整通道層310和阻障層410的應變,用以調整臨界電壓,並減少因形成p型氮化物層510時所造成的原生介面缺陷。
第9A圖為根據本發明某些實施方式具有鐵電材料層610之NMOS元件的IDVG曲線。在第9A圖中,橫軸為閘極電壓VG(V),縱軸為輸出電流ID(A/μm),從圖中可得知臨界電壓(Vth)為正值,因此為常關型裝置。內嵌圖顯示鐵電負電容材料可降低元件的次臨界擺幅至約51mV/decade,突破傳統電晶體的次臨界擺幅極限60mV/decade,其中低於60mV/decade的範圍為4個decade。第9B圖為第9A圖IDVG曲線的模擬圖,得到表面電位(surface potential)大於1,證明此電晶體具備負電容效應,也因表 面電位大於1,所以可使增益電流變大。
在第9C圖中,橫軸為應變(%),縱軸為能隙(eV)。不同的晶相具有的晶格常數不同,當晶體在相轉變的過程中晶格內部會產生應變,相對地,施加應力於晶體使其產生應變也能加速相轉換。如第9C圖所示,3%的壓縮應變能加速介穩(metastable)狀態的氧化鉿從單斜晶系M轉變成斜方晶系O,而氧化鉿中3%的壓縮應變對應所需施加於晶體的應力為17.3~24.95Gpa。
第9D圖為根據本發明某些實施方式鐵電材料層(氧化鋯鉿)的X光粉末繞射圖。實施例A為應變閘極形成於鐵電材料層的過程中,供給的氬氣:氮氣比例為100:4。實施例B中氬氣:氮氣比例為100:7。實施例C中氬氣:氮氣比例為100:10。隨著形成應變閘極時供應的氮氣比例增加,鐵電材料層中晶體結構為斜方晶系的氧化鋯鉿比例也隨之增加。
在第9E圖中,橫軸為時間(T),縱軸分別為閘極電壓和汲極電流。此外,第9E圖中左方為具有鐵電材料的電晶體,右方則為不具有鐵電材料的電晶體。具有負電容效應的鐵電材料的電晶體具有很快速的操作速度,而快速的電流反應(Current response)證明了電晶體之鐵電-反鐵電相轉換(FE-AFE transition)僅需10奈秒(nano-seconds,ns)即可完成。
綜上所述,本發明之各實施例提供一種半導體裝置,利用應變閘極調整阻障層和通道層的應變,進而調變臨界電壓並減少形成p型氮化物層時所造成的原生介面缺 陷。在某些實施方式中,本發明的半導體裝置更包含鐵電材料層,鐵電材料層配置於應變閘極及p型氮化物層之間。鐵電材料層具有負電容特性,可降低次臨界斜率、閘極漏電流,通道導通電阻(RON),進而提高驅動電流及電流開關比。
上文概述若干實施例之特徵結構,使得熟習此項技術者可更好地理解本發明之態樣。熟習此項技術者應瞭解,可輕易使用本發明作為設計或修改其他製程及結構的基礎,以便實施本文所介紹之實施例的相同目的及/或實現相同優勢。熟習此項技術者亦應認識到,此類等效結構並未脫離本發明之精神及範疇,且可在不脫離本發明之精神及範疇的情況下做出對本發明的各種變化、替代及更改。
210‧‧‧基材
212‧‧‧基板
214‧‧‧晶種層
216‧‧‧緩衝層
310‧‧‧通道層
410‧‧‧阻障層
510‧‧‧p型氮化層
710‧‧‧應變閘極
D‧‧‧汲極
S‧‧‧源極

Claims (9)

  1. 一種半導體裝置,包含:一基材,該基材包含:一基板;一晶種層,配置於該基板上;以及一緩衝層,配置於該晶種層上;一通道層,配置於該緩衝層上;一阻障層,配置於該通道層上;一源極及一汲極分別配置於該阻障層之兩側;一p型氮化物層,配置於該阻障層上;以及一應變閘極,配置於該p型氮化物層上,該應變閘極用於調整該通道層的一第一應變與該阻障層的一第二應變。
  2. 如請求項1所述之半導體裝置,其中該應變閘極包含氮化金屬、碳化金屬或鋁合金。
  3. 如請求項1所述之半導體裝置,更包含一鐵電材料層配置於該p型氮化物層和該應變閘極之間。
  4. 如請求項3所述之半導體裝置,其中該鐵電材料層包含鋯鈦酸鉛、鈦酸鋇鍶、鉭酸鍶鉍、鋯鈦酸鉛鑭或經摻雜之氧化鉿。
  5. 如請求項4所述之半導體裝置,其中該經摻雜之氧化鉿包含一摻質,該摻質包含Zr、Al、Si、Y、Gd、Sr或La,其中各該摻質的含量Zr介於20%-75%、Al介於1-20%、Si介於1-10%、Y介於1-20%、Gd介於1-10%、Sr介於1-10%及La介於1-10%。
  6. 如請求項5所述之半導體裝置,其中該鐵電材料層的晶系為斜方晶系(orthorhombic system)。
  7. 一種製造半導體裝置的方法,包含:提供一基材,該基材包含:一基板;一晶種層,配置於該基板上;以及一緩衝層,配置於該晶種層上;形成一通道層於該緩衝層上;形成一阻障層於該通道層上;分別形成一源極和一汲極於該阻障層之兩側;形成一p型氮化物層於該阻障層上;以及 形成一應變閘極於該p型氮化物層上方。
  8. 如請求項7所述之方法,其中形成該應變閘極的方法包含提供至少一金屬氣體、氬氣或氮氣以形成一氮化金屬層,其中氬氣:氮氣介於100:5~100:15。
  9. 如請求項7所述之方法,在形成該p型氮化物層於該阻障層上後,更包含形成一鐵電材料層於該p型氮化物層上,其中該鐵電材料層配置於該p型氮化物層及該應變閘極之間。
TW106100636A 2017-01-09 2017-01-09 半導體裝置及其製造方法 TWI612662B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106100636A TWI612662B (zh) 2017-01-09 2017-01-09 半導體裝置及其製造方法
US15/464,319 US9871112B1 (en) 2017-01-09 2017-03-20 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106100636A TWI612662B (zh) 2017-01-09 2017-01-09 半導體裝置及其製造方法

Publications (2)

Publication Number Publication Date
TWI612662B true TWI612662B (zh) 2018-01-21
TW201826538A TW201826538A (zh) 2018-07-16

Family

ID=60935058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106100636A TWI612662B (zh) 2017-01-09 2017-01-09 半導體裝置及其製造方法

Country Status (2)

Country Link
US (1) US9871112B1 (zh)
TW (1) TWI612662B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107919B2 (en) * 2017-08-31 2021-08-31 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor device including ferroelectric layer having columnar-shaped crystals
US10490631B2 (en) 2017-11-24 2019-11-26 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and fabricating method thereof
KR20210143046A (ko) * 2020-05-19 2021-11-26 삼성전자주식회사 산화물 반도체 트랜지스터

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201301400A (zh) * 2011-06-29 2013-01-01 Ind Tech Res Inst 電晶體元件及其製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755961B2 (ja) * 2006-09-29 2011-08-24 パナソニック株式会社 窒化物半導体装置及びその製造方法
TWI512831B (zh) 2007-06-01 2015-12-11 Univ California 氮化鎵p型/氮化鋁鎵/氮化鋁/氮化鎵增強型場效電晶體
CN102365745B (zh) * 2009-04-08 2015-04-08 宜普电源转换公司 反向扩散抑制结构
JP2011029247A (ja) * 2009-07-22 2011-02-10 Panasonic Corp 窒化物半導体装置及びその製造方法
WO2011100304A1 (en) 2010-02-09 2011-08-18 Massachusetts Institute Of Technology Dual-gate normally-off nitride transistors
US8604486B2 (en) * 2011-06-10 2013-12-10 International Rectifier Corporation Enhancement mode group III-V high electron mobility transistor (HEMT) and method for fabrication
EP2848000B1 (en) 2012-05-11 2018-09-19 Intel Corporation Systems and methods for row causal scan-order optimization stereo matching
CN103500763B (zh) * 2013-10-15 2017-03-15 苏州晶湛半导体有限公司 Ⅲ族氮化物半导体器件及其制造方法
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201301400A (zh) * 2011-06-29 2013-01-01 Ind Tech Res Inst 電晶體元件及其製造方法

Also Published As

Publication number Publication date
US9871112B1 (en) 2018-01-16
TW201826538A (zh) 2018-07-16

Similar Documents

Publication Publication Date Title
JP5036767B2 (ja) 電界効果型トランジスタ
CN108231863B (zh) 半导体装置及其制造方法
JP6054070B2 (ja) Hemt装置を製造するcmosコンパチブルな方法とそのhemt装置
US11502176B2 (en) Semiconductor device with ferroelectric aluminum nitride
US11670699B2 (en) Semiconductor device and method of manufacturing the same
TW201030968A (en) Semiconductor device, method for making a semiconductor device, semiconductor substrate, and method for making a semiconductor substrate
CN110660850A (zh) 高电子移动率晶体管及其制造方法
TWI612662B (zh) 半導體裝置及其製造方法
CN111834435A (zh) 高电子迁移率晶体管
US20070138506A1 (en) Nitride metal oxide semiconductor integrated transistor devices
US8748900B1 (en) Re-silicide gate electrode for III-N device on Si substrate
US20220376096A1 (en) Semiconductor device structures and methods of manufacturing the same
JP4745652B2 (ja) 半導体装置
TWI608607B (zh) 採用對準式背向閘極及負電容鐵電介電質之多閘極高電子遷移率場效電晶體及其製造方法
US20240105827A1 (en) Semiconductor structure
Ha et al. Performance Enhancement of Normally-Off Plasma-Assisted Atomic Layer Deposited Al2O3/GaN Metal–Oxide–Semiconductor Field-Effect Transistor with Postdeposition Annealing
TW202310058A (zh) 半導體結構及其製造方法
JP2009212375A (ja) ZnO系トランジスタ
CN117936575A (zh) 半导体结构
CN115440578A (zh) 具有铝酸镧系介电层的iii-v族半导体元件及其制造方法
KR20140065829A (ko) Rf 스퍼터링을 이용한 질화물계 반도체 소자의 제조 방법