TWI609173B - Heat flux sensor manufacturing method and heat flow generation device therefor - Google Patents

Heat flux sensor manufacturing method and heat flow generation device therefor Download PDF

Info

Publication number
TWI609173B
TWI609173B TW105113831A TW105113831A TWI609173B TW I609173 B TWI609173 B TW I609173B TW 105113831 A TW105113831 A TW 105113831A TW 105113831 A TW105113831 A TW 105113831A TW I609173 B TWI609173 B TW I609173B
Authority
TW
Taiwan
Prior art keywords
heat
flux sensor
heat flux
heating
heating plate
Prior art date
Application number
TW105113831A
Other languages
English (en)
Other versions
TW201710653A (zh
Inventor
Norio Gouko
Atusi Sakaida
Keiji Okamoto
Yoshihiko Shiraishi
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of TW201710653A publication Critical patent/TW201710653A/zh
Application granted granted Critical
Publication of TWI609173B publication Critical patent/TWI609173B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0205Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K19/00Testing or calibrating calorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

熱通量感測器之製造方法及其所用之熱流產生裝置
本揭示,係關於熱通量之檢測所用之熱通量感測器(熱流感測器)之製造方法及其所用之熱流產生裝置。
以往,係在熱通量感測器的檢查工程中,測定將預定熱流施加至熱通量感測器時的感測器輸出,並根據測定結果,進行熱通量感測器的特性評估。具體而言,係實施根據如下述之判定結果的檢查工程:施加預定熱流而產生之熱流量與感測器輸出(例如輸出電壓)的關係是否成為所期望的關係。關於該特性評估的方法,參閱圖19進行說明。
如圖19所示,以往的方法,係準備一種長方體塊,即在由外表面經絕緣塗敷的護套加熱器等所構成之加熱體J1的周圍,以銅(Cu)等之熱傳導率良好的電熱材J2來包圍。而且,在該長方體塊的上面,配置作為測定對象的熱通量感測器J3。又,在夾著熱通量感測器J3而與長方體塊相反之側,配置泊耳帖元件或可藉由使冷卻液流 通來進行冷卻的冷卻部J4。而且,以熱通量感測器J3,測定藉由加熱體J1所致之加熱及冷卻部J4所致之冷卻而產生的熱通量。其結果,對於在加熱體J1所產生的熱流量,根據熱通量感測器J3的測定結果即輸出電壓是否滿足所期望之關係的判定結果,實施上述檢查工程。
在使用像這樣的長方體塊時,係從長方體塊的面中除了配置有熱通量感測器J3之一面以外的側面或底面洩漏熱,在加熱體J1所產生的熱流量全部皆不會傳遞至熱通量感測器J3。因此,傳遞至熱通量感測器J3的熱流量,係不會與在加熱體J1所產生的熱流量相等。其結果,在加熱體J1所產生之熱流量與熱通量感測器J3之輸出電壓的關係不會成為所期望的關係,從而無法實施正確的檢查工程。
因此,如圖19所示,以往的方法,係在長方體塊的側面及底面配置隔熱材料J5,抑制來自與配置有熱通量感測器J3的一面不同之面的熱洩漏。
[先前技術文獻] [非專利文獻]
[非專利文獻1]JISA1412-1、熱絕緣材料之熱阻抗及熱傳導率之測定方法-第1部:保護熱板法(GHP法)、日本工業規格、1999年04月20日
然而,在如上述的方法中,係即便配置隔熱材料J5,亦無法完全防止熱洩漏。因此,無法正確地實施熱通量感測器J3的檢查工程。
對此,考慮如下述的方法。具體而言,除了隔熱材料J5以外,更在長方體塊的側面及底面配置熱流計。而且,藉由所配置的熱流計,測定側面及底面的洩漏熱流量,並根據測定到的洩漏熱流量,修正在加熱體J1所產生之熱流量與熱通量感測器J3之輸出電壓的關係。而且,在長方體塊的側面及底面配置次加熱器。而且,藉由所配置之次加熱器的加熱,消除加熱體J1與隔熱材料J5的溫度差而防止熱洩漏。藉由像這樣的方法,可抑制熱洩漏。
然而,在進行熱通量感測器J3的檢查時,重要的是使流通於熱通量感測器J3的熱流成為固定狀態。因此,必須使加熱體J1或隔熱材料J5的溫度穩定,為了使溫度穩定,而需要長時間。例如,在進行75[mm□(square millimeters)]之熱通量感測器J3的檢查時,係因環境溫度或來來自加熱器之熱洩漏等的影響,對於使加熱體J1或隔熱材料J5的溫度穩定化而言,需花費4小時左右。而且,由於該時間,係在每1次測定時花費,因此,在以複數個點測定熱通量與輸出電壓的關係時,將導致測定點耗時。因此,如上述般的方法,係在熱通量感測器J3的檢查工程中時間花費過多,因而有難以量產熱通量感測 器J3的問題。
本揭示,係以提供一種可在短時間內進行熱通量感測器之檢查工程的熱通量感測器之製造方法及其所用之熱流產生裝置為目的。
在本揭示之一態樣之熱通量感測器之製造方法中,係具有包含如下述者之檢查工程:第1工程,準備薄膜狀的熱通量感測器;第2工程,準備具有加熱部與冷卻部的熱流產生裝置,該加熱部,係具有:薄膜狀之加熱板,具有發熱電阻體;及散熱測定用工件,配置於前述加熱板的一面側,測定來自前述一面側的熱洩漏,該冷卻部,係配置於前述加熱板的另一面側;及第3工程,於將前述熱通量感測器夾在前述加熱部與前述冷卻部之間的狀態下,進行前述加熱板所致之發熱及前述冷卻部所致之冷卻,藉此,產生通過前述熱通量感測器的熱流,對檢測到前述散熱測定用工件未熱洩漏時之前述熱通量感測器的輸出電壓進行測定,根據測定結果,檢查表示前述加熱板產生的熱流量與前述熱通量感測器的輸出電壓之關係的特性。
如此一來,本揭示之熱通量感測器之製造方法,係以被夾在加熱部的加熱板與冷卻部之間的方式,配置熱通量感測器。而且,本揭示之製造方法,係在熱通量感測器的一面側配置加熱板,另一面側配置冷卻部。又, 本揭示之製造方法,係在加熱板的面中與配置有熱通量感測器的面相反之側的面配置散熱測定用工件。
上述構成,係只要在製造方法的檢查工程中,以使加熱板成為環境溫度的方式,控制加熱板的溫度即可(只要進行溫度之穩定化控制即可)。藉此,本揭示之製造方法,係例如在將加熱板加熱至不同於環境溫度的溫度時等,必須使加熱板之溫度穩定的情形下,所要花費的時間在短時間內完成直至使溫度穩定為止。亦即,上述構成,係在製造方法的檢查工程中,即便加熱板的溫度稍微上升,亦只要可進行以環境溫度作為基準之溫度的穩定化控制即可(以較小的溫度即可)。因此,本揭示之製造方法,係相較於以與環境溫度不同之高溫使加熱板穩定化的情形,可在短時間內使溫度穩定。因此,本揭示之製造方法,係可在短時間內進行熱通量感測器的檢查工程。
又,本揭示之加熱板,係由薄膜狀所構成。藉此,加熱板的熱容量變小,本揭示之製造方法,係可實現所要花費的時間之縮短化直至使溫度穩定。又,由於加熱板較薄,因此,亦可不用考慮關於來自加熱板之外緣的熱洩漏。
藉此,只要僅在加熱板的面中與配置有熱通量感測器的面相反之側的面配置散熱測定用工件即可,本揭示之製造方法,係不必在加熱板之外緣的各邊配置隔熱材料。
10‧‧‧熱通量感測器
100‧‧‧絕緣基材
110‧‧‧背面保護構件
120‧‧‧表面保護構件
130‧‧‧第1層間連接構件
140‧‧‧第2層間連接構件
20‧‧‧熱流產生裝置
200‧‧‧加熱部
203,204‧‧‧彈性板
205‧‧‧散熱測定用工件
206‧‧‧加熱板
206a‧‧‧樹脂薄膜
206b‧‧‧發熱電阻體
210‧‧‧冷卻部
220‧‧‧冷卻風扇
230‧‧‧線性導件
240‧‧‧汽缸
250‧‧‧移送機構
260‧‧‧支撐盤
圖1,係從背面保護構件側觀看進行使用了第1實施形態之熱流產生裝置之檢查工程的對象之熱通量感測器的平面圖。
圖2,係從表面保護構件側觀看如圖1所示之熱通量感測器的平面圖。
圖3,係如圖1及2所示之III-III線的剖面圖。
圖4,係如圖1及2所示之IV-IV線的剖面圖。
圖5,係熱流產生裝置的正視圖。
圖6,係如圖5所示之熱流產生裝置的側視圖。
圖7,係如圖5所示之熱流產生裝置的VII-VII線剖面箭視圖。
圖8,係相當於如圖7所示之VIII-VIII線剖面之加熱部的放大剖面圖。
圖9,係加熱板的上視圖。
圖10,係表示使用熱流產生裝置實施檢查工程時之控制功能的構成例。
圖11,係使用了熱流產生裝置之檢查工程的流程圖。
圖12,係表示計測藉由加熱板改變熱流量時之加熱板與環境溫度之溫度差之結果的圖。
圖13,係從表面保護構件側觀看進行使用了第2實施形態之熱流產生裝置之檢查工程的對象之熱通量感測器的平面圖。
圖14,係表示發熱電阻體與第1及第2層間連接構件之位置關係的佈置圖。
圖15,係表示進行洩漏熱流量之測定時之加熱板之控制功能之構成例的圖。
圖16,係表示進行洩漏熱流量之測定時之散熱測定用工件之控制功能之構成例的圖。
圖17,係表示其他實施形態之加熱板的圖。
圖18,係表示其他實施形態之加熱板的放大剖面圖。
圖19,係以往之熱流產生裝置的剖面圖。
以下,根據圖面說明本發明的實施形態。另外,在以下的各實施形態中,彼此相同或均等的部分,係於圖中賦予相同符號,關於相同符號的部分則沿用該說明。
(第1實施形態)
說明本揭示之第1實施形態。具體而言,係參閱圖面,說明關於藉由本揭示之一實施形態之製造方法所製造之熱通量感測器的構成,及在製造方法之檢查工程中所用 之熱流產生裝置的構成。首先,參閱圖1~圖4,說明關於本實施形態之熱通量感測器的構造。
熱通量感測器10,係檢測橫跨單位面積之每單位時間的熱流量即熱通量並予以輸出。熱通量感測器10,係例如藉由將熱通量作為電壓而輸出的熱電元件所構成,產生因應於熱通量的輸出電壓。本實施形態,係熱通量感測器10構成為薄膜狀。如圖1~圖4所示,熱通量感測器10,係絕緣基材100、背面保護構件110、表面保護構件120構成為一體化。而且,熱通量感測器10,係在該一體化的構件內部中,第1及第2層間連接構件130,140構成為交錯地連接成直列。另外,在圖1,2中,係為了容易理解熱通量感測器10的構造,而如下述般地表示構成構件。在圖1中,係省略背面保護構件110來表示,在圖2中,係省略表面保護構件120來表示,在圖1、圖2中,係對第1及第2層間連接構件130,140施予陰影線。
絕緣基材100,係例如藉由以聚醚醚酮(PEEK)、聚醚醯亞胺(PEI)及液晶聚合物(LCP)等為代表之平面呈矩形的熱可塑性樹脂薄膜來構成。而且,在絕緣基材100中,貫通於厚度方向之複數個第1及第2導孔101,102,係以彼此相異的方式,由交錯圖案來形成。
另外,本實施形態之第1及第2導孔101,102,雖係孔徑從表面100a朝向背面100b成為固定的圓筒狀(參閱圖3,圖4),但並不限於此。第1及第2導孔 101,102,係例如亦可為孔徑從表面100a朝向背面100b變小的錐狀。又,亦可為孔徑從背面100b朝向表面100a變小的錐狀。又,不僅錐狀,亦可為方筒狀。
而且,在第1導孔101,係配置有第1層間連接構件130,在第2導孔102,係配置有第2層間連接構件140。亦即,在絕緣基材100,係第1及第2層間連接構件130,140以成為彼此相異的方式而配置。
第1及第2層間連接構件130,140,係藉由彼此不同的金屬來構成,以發揮席比克效應。第1層間連接構件130,係由固相燒結而成的金屬化合物(燒結合金)所構成,使得構成P型之Bi-Sb-Te合金的粉末維持在燒結前之複數個金屬原子的結晶構造。又,第2層間連接構件140,係由固相燒結而成的金屬化合物(燒結合金)所構成,使得構成N型之Bi-Te合金的粉末維持在燒結前之複數個金屬原子的結晶構造。如此一來,本實施形態,係以維持預定之結晶構造的方式,將固相燒結而成的金屬化合物使用作為第1、第2層間連接構件130,140,藉此,可使電動勢變大。
在絕緣基材100的背面100b,係配置有背面保護構件110,該背面保護構件110,係藉由以聚醚醚酮(PEEK)、聚醚醯亞胺(PEI)及液晶聚合物(LCP)等為代表之平面呈矩形的熱可塑性樹脂薄膜來構成。背面保護構件110,係平面形狀的大小與絕緣基材100相同。又,背面保護構件110,係在與絕緣基材100對向之一面110a 側,以彼此分離的方式,形成有銅箔等被圖案化而成的複數個背面圖案111。而且,各背面圖案111,係分別與第1、第2層間連接構件130,140電性連接。
具體而言,係如圖3所示,將相鄰接的1個第1層間連接構件130與1個第2層間連接構件140作成為組150時,各組150的第1、第2層間連接構件130,140,係與相同的背面圖案111連接。亦即,各組150的第1及第2層間連接構件130,140,係經由背面圖案111而電性連接。另外,本實施形態,係將沿著絕緣基材100之長邊方向(圖1,圖3所示的X方向)相鄰接的1個第1層間連接構件130與1個第2層間連接構件140設成為組150。
在絕緣基材100的表面100a,係配置有表面保護構件120,該表面保護構件120,係藉由以聚醚醚酮(PEEK)、聚醚醯亞胺(PEI)及液晶聚合物(LCP)等為代表之平面呈矩形的熱可塑性樹脂薄膜來構成。表面保護構件120,係與背面保護構件110相同地,平面形狀的大小與絕緣基材100相同。又,表面保護構件120,係在與絕緣基材100對向之一面120a側,以彼此分離的方式,形成有銅箔等被圖案化而成的複數個表面圖案121及2個連接圖案122。而且,各表面圖案121及2個連接圖案122,係分別與第1、第2層間連接構件130,140電性連接。
具體而言,係如圖2,圖3所示,在相鄰接於絕緣基材100之長邊方向(X方向)的組150中,一方之組 150的第1層間連接構件130與另一方之組150的第2層間連接構件140,係與相同的表面圖案121連接。亦即,不同之組150的第1及第2層間連接構件130,140,係經由相同的表面圖案121而電性連接。
又,如圖2,圖4所示,在絕緣基材100的外緣,沿著與長邊方向正交之方向(如圖2,圖4所示的Y方向)相鄰接的第1及第2層間連接構件130,140,係與相同的表面圖案121連接。具體而言,如圖2所示,第1及第2層間連接構件130,140,係經由表面圖案121及背面圖案111,於絕緣基材100的長邊方向連接成直列,而形成直列部。直列部,係於絕緣基材100上形成有複數個,複數個直列部,係形成為彼此平行。而且,在長邊方向,位於直列部之左端部La/右端部Ra的第1層間連接構件130與位於相鄰接之其他直列部之左端部Lb/右端部Rb的第2層間連接構件140,係與相同的表面圖案121連接。又,相鄰的2個直列部,係左右兩端部經由表面圖案121交錯地連接。如此一來,第1及第2層間連接構件130,140於長邊方向連接成直列的複數個直列部,係以左右折返的方式連接。
而且,如圖2,圖3所示,位於上述直列部之端部R1,R2的第1及第2層間連接構件130,140,係與連接圖案122。另外,熱通量感測器10,係在熱通量感測器10上配置有傳熱元件等(未圖示),藉由從傳熱元件等產生之熱流傳遞至熱通量感測器10的方式,進行熱通量 的測定。另外,於圖1,圖2,係在熱通量感測器10中,將與傳熱元件等對向的部分表示為區域A。
2個連接圖案122,係與連接至第1及第2層間連接構件130,140的側相反之側的端部被引出至區域A的外側。而且,如圖3所示,在表面保護構件120,係形成有使被引出至區域A的外側之連接圖案122之端部露出的接觸孔160。藉由像這樣的構成,熱通量感測器10,係可經由接觸孔160,與外部所具備的控制部(控制單元等)電性連接。
另外,熱通量感測器10,係在對應於後述之加熱部所具備之定位銷的位置,形成有定位孔170。藉此,本實施形態,係將定位銷插入至定位孔170,並將熱通量感測器10搭載於加熱部,藉此,決定相對於構成加熱部的各部件之熱通量感測器10之平面方向中的位置。
以上,係本實施形態之熱通量感測器10的構成。像這樣所構成的熱通量感測器10,係當在該感測器之厚度方向通過的熱通量產生變化時,則藉由交錯地直列連接之第1及第2層間連接構件130,140所產生的電動勢會產生變化。因此,本實施形態之熱通量感測器10,係將產生變化的電壓輸出為檢測訊號,根據輸出的檢測訊號,測定傳遞至熱通量感測器10的熱通量。
像這樣的熱通量感測器10,係藉由以PALAP(Patterned prepreg Lay-Up Process的簡稱;註冊商標)製法所製造的多層印刷基板來構成。亦即,上述製造方法, 係首先,在絕緣基材100形成第1及第2導孔101,102,並在所形成的第1及第2導孔101,102填充構成第1及第2層間連接構件130,140的導電塗料。其次,準備形成有背面圖案111的背面保護構件110與形成有表面圖案121及連接圖案122的表面保護構件120。而且,填充於第1及第2導孔101,102的導電塗料,係以與表面圖案121及背面圖案111接觸的方式,依序層積背面保護構件110、絕緣基材100、表面保護構件120。藉此,形成具有背面保護構件110、絕緣基材100、表面保護構件120的層積體。其後,一面加熱層積體,一面對層積方向加壓,使背面保護構件110、絕緣基材100、表面保護構件120一體化。同時,填充於第1及第2導孔101,102的導電塗料,係構成第1及第2層間連接構件130,140。如此一來,熱通量感測器10,係藉由上述製造方法來製造。
而且,以像這樣的方法所製造的熱通量感測器10,係如上述,由於以熱可塑性樹脂構成絕緣基材100、表面保護構件120及背面保護構件110,因此,具有可撓性。藉此,本實施形態,係在後述的熱流產生裝置中,可於實施熱通量感測器10的檢查工程之際,使熱通量感測器10無間隙地密合而設置於設置有檢查對象的設置面等。
接下來,參閱圖5~圖9,說明關於實施熱通量感測器10之檢查工程的熱流產生裝置(本實施形態之熱 流產生裝置)20。
如圖5~圖7所示,熱流產生裝置20,係形成為具有加熱部200、冷卻部210、冷卻風扇220、線性導件230、汽缸240、移送機構250及支撐盤260等的構成。
如圖8所示,加熱部200,係具有基台201,將熱通量感測器10載置於基台201,並對熱通量感測器10施加熱流,藉此,產生對應於熱通量的輸出電壓。具體而言,加熱部200,係形成為具有基台201、隔熱材料202、彈性板203,204、散熱測定用工件205及加熱板206等的構成。
如圖5,圖6所示,加熱部200,係搭載於後述之移送機構250所具備的移送台253上。
基台201,係固定於移送253的板狀構材。加熱部200,係藉由對像這樣的基台201搭載有隔熱材料202、彈性板203,204、散熱測定用工件205及加熱板206等之各部件的方式來構成。在基台201的預定位置,係豎立設置有定位銷201a。本實施形態,係將定位銷201a作為基準,決定構成加熱部200之各部件的位置或熱通量感測器10之平面方向的位置。
隔熱材料202,係抑制來自搭載於該隔熱材料202上之彈性板203,204或散熱測定用工件205等之各部件之下面側的散熱。藉此,本實施形態,係容易在下面側進行冷卻控制。隔熱材料202,係例如藉由隔熱樹脂材 料來構成,藉由熱傳導率低於彈性板203,204等的材料來構成。
彈性板203,204,係表背面呈平坦,藉由橡膠海綿等的彈性構件來構成。由於彈性板203,204,係藉由彈性構件來構成,因此,物體所接觸的表背面會因應於接觸之物體表面的凹凸而變形。藉此,本實施形態,係可在彈性板203,204的全面按壓物體。具體而言,本實施形態,係在彈性板203,204之間配置有散熱測定用工件205。因此,彈性板203,204,係因應於散熱測定用工件205之表背面的凹凸而變形,並以無間隙地密合的方式,夾住散熱測定用工件205而進行推壓。同樣地,本實施形態,係在彈性板204上配置有加熱板206。本實施形態,係在熱流產生裝置20,於實施熱通量感測器10的檢查工程之際,在像這樣構成的加熱部200上(加熱板206上)載置有熱通量感測器10。因此,本實施形態,係當藉由冷卻部210按下熱通量感測器10及加熱板206時,彈性板204便以無間隙進行密合的方式,推壓熱通量感測器10及加熱板206。
散熱測定用工件205,係測定來自加熱板206之背面,亦即與配置有熱通量感測器10的面相反之側的面的熱洩漏。本實施形態,係使用與上述熱通量感測器10相同之構成的散熱測定用工件205。
加熱板206,係對熱通量感測器10中形成有第1及第2層間連接構件130,140的區域整個區域進行 加熱。本實施形態,係例如於使用熱通量感測器10之際,對包含有配置傳熱元件之區域A的範圍進行加熱。又,本實施形態,係加熱板206構成為薄膜狀。
如圖9所示,加熱板206,係例如將藉由與絕緣基材100相同材料之熱可塑性樹脂所構成的樹脂薄膜206a使用作為表面保護構件120及背面保護構件110。而且,加熱板206,係藉由以樹脂薄膜206a夾住發熱電阻體206b的方式來構成。發熱電阻體206b,係例如藉由對金屬板施予蝕刻或雷射加工的方式形成圖案(對金屬板進行圖案加工而形成)。本實施形態,係例如使用由厚度0.1[mm]的不鏽鋼板所製造之在路徑長2[m]及路徑寬1[mm]具有約[Ω]之電阻值的發熱電阻體206b。像這樣所製造之發熱電阻體(本實施形態之發熱電阻體)206b的形狀,係具有如圖9所示的特徵。發熱電阻體206b,係以彼此並行的方式而排列成(條紋狀)的線狀部之兩端中的一端,係連接於相鄰之2個線狀部中的一方之線狀部的一端。又,線狀部之兩端中的另一端,係連接至相鄰之2個線狀部中的另一方之線狀部的另一端。如此一來,發熱電阻體206b,係相鄰之2個線狀部的兩端交錯地連接,以左右折返的方式形成為(蜿蜒狀)。具有像這樣的特徵之發熱電阻體206b,係例如當施加4[V]電壓時,形成為1[W]的發熱量。
又,發熱電阻體206b的兩端,係與引出配線206c連接。引出配線206c,係從樹脂薄膜206a被引出。 藉由像這樣的構成,發熱電阻體206b,係可經由引出配線206c,從外部供給電力。另外,在此,雖係進行說明關於將引出配線206c從樹脂薄膜206a引出,並可從外部對發熱電阻體206b供給電力的構成,但並不限於此。例如,作為其他構成,係亦可在樹脂薄膜206a的表面設置焊墊部而連接至發熱電阻體206b。
加熱板206,係與熱通量感測器10相同地,在對應於定位銷201a的位置形成有定位孔206d。藉此,本實施形態,係將定位銷201a插入至定位孔206d,並將加熱板206搭載於加熱部,藉此,決定相對於構成加熱部200的各部件之加熱板206之平面方向中的位置。
又,關於加熱板206,亦與熱通量感測器10相同地,可藉由PALAP製法來製造。加熱板206,係可藉由以PALAP製法來製造的方式,使板體的厚度變薄。而且,可成為能變形的構成。藉此,本實施形態,係可於熱流產生裝置20中,使加熱板206無間隙地密合而設置於熱通量感測器10或彈性板204(設置有加熱板206的設置面)的表面等。
熱流產生裝置20,係當對加熱板206進行加熱時,藉由加熱板206與冷卻部210的溫度差,加熱板206的熱被冷卻部210所吸收。其結果,產生從加熱板206側往冷卻部210側的熱流。熱流產生裝置20,係以熱通量感測器10檢測此時產生之熱流的熱通量(熱流量)。而且,熱流產生裝置20,係根據藉由加熱板206之加熱 所產生的熱流量與熱通量感測器10之檢測結果即輸出電壓的關係是否滿足所期望之關係的判定結果,實施熱通量感測器10的檢查工程。
冷卻部210,係例如藉由使用泊耳帖元件的構造或使冷卻液流通的構造來進行冷卻。冷卻部210,係配置於加熱部200的上方,從上方冷卻載置於加熱部200上的熱通量感測器10。亦即,冷卻部210,係相對於加熱部200夾著熱通量感測器10且位於相反側,與加熱部200一起配置於夾著熱通量感測器10的位置。因此,本實施形態,係可在熱流產生裝置20,一面藉由加熱部200來加熱熱通量感測器10之一方的面,一面藉由冷卻部210來冷卻熱通量感測器10之另一方的面(對於加熱面為相反側的面)。藉此,本實施形態,係藉由加熱部200與冷卻部210的溫度差,在加熱部200而產生的熱被冷卻部210所吸收,產生從加熱部200側往冷卻部210側的熱流。本實施形態,係使所產生之熱流的熱通量通過載置於加熱部200上的熱通量感測器10。
冷卻部210,係例如呈矩形板狀的形狀,藉由固定螺絲等固定於冷卻風扇220。藉此,冷卻部210,係與冷卻風扇220呈一體化,配置於加熱部200的上方,且搭載於熱流產生裝置20。冷卻部210,係對向於加熱部200的下面形成為平坦面,該下面被推壓至加熱部200的對向面。
冷卻風扇220,係抵接於冷卻部210,從冷卻 部210的面中對於被推壓至加熱部200之對向面的面為相反側的面進行散熱。具體而言,冷卻風扇200,係設成為具有大致立方體形狀的散熱塊221與風扇部222。
散熱塊221,係藉由熱傳導率高之鋁等的金屬來構成。在散熱塊221的內部,係形成有空氣通路221a,該空氣通路221a,係沿著伴隨風扇部222的動作而產生之氣流的方向形成開口。而且,為了提高散熱效率,而沿著空氣通路221a配置有複數個散熱片221b。本實施形態,係使用延伸設置於縱方向的縱向散熱片作為散熱片221b。
風扇部222,係在散熱塊221中,支撐於與空氣通路221a對向的位置。風扇部222,係藉由經由預定之電氣配線所供給的電力來驅動,從空氣通路221a吸入周圍的空氣,朝向與散熱塊221相反之側排出。藉此,冷卻部210,係在通過空氣通路221a內的空氣與散熱塊221之間進行熱交換,而進行來自散熱塊221的散熱。本實施形態,係像這樣藉由冷卻部210進行散熱。
線性導件230,係使冷卻部210及冷卻風扇220上下移動的移動機構。熱流產生裝置20,係藉由線性導件230,使冷卻部210及冷卻風扇220上下移動。藉此,本實施形態,係在熱流產生裝置20,將冷卻部210推壓至載置於加熱部200上的熱通量感測器10,夾入加熱部200與冷卻部210之間。
具體而言,線性導件230,係設成為具有上板 231、下板232及支撐軸233的構成。
上板231,係上面由長方形狀的板狀構材來構成。在上板231,係固定有冷卻風扇220。冷卻風扇220,係以散熱塊221的面中對於固定有冷卻部210之面為相反側的面所接觸的方式,被固定於上板231。本實施形態,係藉由螺絲234來固定上板231與冷卻風扇220。又,上板231,係經由螺絲231a,固定於支撐軸233之兩端中位於上方的一端。
下板232,係呈與上板231相同的形狀。下板232,係固定於支撐軸233之兩端中位於下方的另一端(與固定有上板231之前端相反之側的前端)。
支撐軸233,係圓柱狀的構件,且具備有4根。支撐軸233,係支撐上板231及下板232的4個角落,且使冷卻部210及冷卻風扇220與上板231一起上下移動的機構。支撐軸233,係構成為可藉由插通至用以貫通後述之支撐盤260的滑動筒261內,並在滑動筒261內滑動的方式上下移動。
如此一來,線性導件230,係如圖5所示,藉由上板231、下板232及支撐軸233來構成為長方形的框體形狀。藉此,本實施形態,係在熱流產生裝置20,於框體形狀的狀態下,線性導件230可上下地移動。
汽缸240,係將可上下移動的線性導件230推彈至下方。藉此,汽缸240,係產生將與線性導件230一起上下移動之冷卻部210的一面推壓至加熱部200之對向 面的力。例如,在汽缸240,係使用氣缸。而且,桿241,係一端內置於汽缸240,另一端固定於下板232。本實施形態,係在像這樣的構成,對汽缸240內施加空氣壓,其結果,桿241被推彈至下方。藉此,本實施形態,係經由固定於下板232的支撐軸233及固定於該支撐軸233的上板231,冷卻部210會被推彈至下方。如此一來,本實施形態,係在熱流產生裝置20,產生汽缸240將冷卻部210推壓至加熱部200側的力。
另外,汽缸240,係在對該汽缸240施加空氣壓的期間,持續地產生將冷卻部210推壓至加熱部200側的力。因此,熱流產生裝置20,係可在熱通量感測器10之檢查工程的期間中,持續地於將熱通量感測器10推壓至加熱部200側的狀態下實施檢查。
移送機構250,係位於支撐盤260上。移送機構250,係例如如圖6的箭頭M所示,將加熱部200從熱流產生裝置20中的預定位置移送至冷卻部210或冷卻風扇220之下方位置的機構。熱流產生裝置20,係首先,在加熱部200位於從冷卻部210或冷卻風扇220之下方位置偏移預定量的地點時,將熱通量感測器10搭載於該加熱部200上。而且,熱流產生裝置20,係移送機構250,將搭載了熱通量感測器10的加熱部200移送至冷卻部210或冷卻風扇220的下方位置。藉此,本實施形態,係可在熱流產生裝置20,於將檢查對象之熱通量感測器10搭載於加熱部200上的狀態下,配置於冷卻部210或冷卻 風扇220的下方位置。
本實施形態,係藉由線性運動導件來構成移送機構250。具體而言,移送機構250,係設成為具有導軌251、滑動器252、移送台253及電纜載體(註冊商標)254的構成。
導軌251,係沿著加熱部200的移送方向(如圖6所示的M方向)延伸設置,固定於支撐盤260上。滑動器252,係可在導軌251上滑動的滑動機構。在滑動器252的內部,係具備有例如滾珠等的滾動體,可在導軌251上以少的滑動阻力滑動。又,滑動器252,係具備有複數個,在複數個滑動器252上搭載有移送台253。移送台253,係搭載於滑動器252上,與滑動器252一起在導軌251上滑動。加熱部200,係像這樣固定於可滑動的移送台253上。電纜載體254,係設置為連結支撐盤260與移送台253。在電纜載體254的內部,係收容有用以在加熱部200進行電力供給的配線,或用以從熱通量感測器10及散熱測定用工件205取得輸出電壓的配線等。
支撐盤260,係支撐如上述所構成之各部件的台。支撐盤260,係由上面呈平坦面的板狀構材來構成。支撐盤260,係在像這樣的上面延伸設置導軌251,並設置有各部件。在支撐盤260,係於對應於支撐軸233或汽缸240的位置形成有貫穿孔262,263。而且,形成於對應於支撐軸233之位置的貫穿孔262,係其周圍被滑動筒261包圍。在滑動筒261的內部,係插通有支撐軸233。 在滑動筒261的內部,係具備有例如滾珠等的滾動體,支撐軸233可在滑動筒261內以少的滑動阻力滑動。又,在形成於對應於汽缸240之位置的貫穿孔263,係插通有桿241。桿241,係藉由通過貫穿孔263而移動至下方的方式,將下板232推彈至下方。
本實施形態之熱流產生裝置20,係藉由如以上的各部件來構成。其次,說明使用了像這樣之構成的熱流產生裝置20之熱通量感測器10的檢查工程。另外,使用了本實施形態之熱流產生裝置20之熱通量感測器10的檢查工程,係熱通量感測器10之製造方法中的1工程,且為準備上述構成之熱流產生裝置20及熱通量感測器10後所實施的工程。另外,本檢查工程,係以使檢查對象之熱通量感測器10形成為作為感測器之較理想之特性(以下,為了方便起見,稱為「所期望之特性」)的方式,進行校正(以下,為了方便起見,稱為「特性之校正」)。而且,本檢查工程,係進行是否可獲得所期望之特性的判定(以下,為了方便起見,稱為「良品/不良品判定」)。
另外,在此所謂所期望之特性,係意味著對於藉由加熱而產生的熱流量,熱通量感測器10之測定結果即輸出電壓滿足所期望的關係。又,所謂特性之校正,係意味著對於假定之所期望之特性(熱流量與輸出電壓的關係),在實際之製品的特性產生偏差時,將加上其偏差之特性作為實際的特性,校正(修正)判定為良品之所期望之特性。對於此時之所期望的特性,係設有加上製品間之 差異的預定範圍。另一方面,良品/不良品判定,係將可獲得校正後之所期望之特性的製品判定為良品,將無法獲得的製品判定為不良品。其結果,本檢查工程,係根據良品/不良品判定的結果,從生產線取下判定為不良品的製品,藉此,防止不良品作為製品而出貨。另外,作為不良品,係例如相當於如絕緣基材100、背面保護構件110、或表面保護構件120的破裂等之構成熱通量感測器10之電路內發生斷線的製品。
本檢查工程,係首先,準備熱流產生裝置20及熱通量感測器10(相當於第1及第2工程)。而且,本檢查工程,係如圖10所示,將熱流產生裝置20之一部分構成部件及熱通量感測器10連接至檢查用的各種機器。本檢查工程,係藉由控制該些機器的方式,實施使用了熱流產生裝置20之熱通量感測器10的檢查。另外,圖10,雖係表示加熱板206與散熱測定用工件205直接接觸的構成,但此為用以將說明簡略化之為了方便起見的表現。如圖8所示,本實施形態,係在加熱板206與散熱測定用工件205之間設置有彈性板204。另外,彈性板204,係用以使散熱測定用工件205與加熱板206密合的構件。因此,作為本實施形態之熱流產生裝置20所具有之加熱部200的構件並非必需。因此,如圖10所示,本實施形態,係亦可設成為加熱板206與散熱測定用工件205直接接觸的構成。
以下,詳述關於本檢查工程。在冷卻部210, 係連接有冷卻控制器300。冷卻控制器300,係進行冷卻部210所致之吸熱量的調整。又,在熱通量感測器10及散熱測定用工件205,係連接有電壓計310,320。電壓計310,320,係測定來自藉由加熱板206而產生熱流時之熱通量感測器10及散熱測定用工件205的輸出電壓。而且,加熱板206,係連接有電力調整器330。電力調整器330,係調整施加至加熱板206的電壓及電流。本檢查工程,係藉由將施加至加熱板206的電壓及電流反饋至電力調整器330的方式,算出加熱板206的消耗電力。其結果,本檢查工程,係根據算出結果(消耗電力),控制加熱板206的加熱量。而且,本檢查工程,係執行如圖11所示的處理。
首先,本檢查工程,係首先,藉由電力調整器330,將加熱板206設成為預定的發熱量(S100)。此時,電力調整器330,係藉由進行電力供給的方式,對加熱板206進行加熱,以控制為使加熱板206成為預定的發熱量。而且,本檢查工程,係判定散熱測定用工件205的輸出電壓是否未滿熱通量感測器10之輸出電壓的誤差(S110)。另外,所謂散熱測定用工件205之輸出電壓未滿熱通量感測器10之輸出電壓的誤差之狀態,係意味著藉由散熱測定用工件205未測定到熱通量。另外,本實施形態,係將散熱測定用工件205設成為與熱通量感測器10相同的構成。因此,在散熱測定用工件205之輸出電壓未滿熱通量感測器10之輸出電壓的誤差(誤差之範圍內) 時,散熱測定用工件205之輸出電壓的值,係可視為熱流未通過散熱測定用工件205時的值。如此一來,散熱測定用工件205之輸出電壓為熱通量感測器10之輸出電壓的誤差之範圍內的狀態,係意味著從加熱板206的背面(與配置有熱通量感測器10的面相反之側的面)未洩漏熱的狀況(未產生熱洩漏之狀態)。
在此,說明關於進行上述S110之判定處理的理由。散熱測定用工件205,係相對於加熱板206而位於熱通量感測器10的相反側。另一方面,相對於加熱板206,在熱通量感測器10側,係配置有冷卻部210。藉此,於加熱板206產生的熱,係傳遞至冷卻部210側。其結果,於加熱板206產生之熱流的熱通量,係通過熱通量感測器10。此時,相對於加熱板206,熱亦傳遞至熱通量感測器10之相反側的面。
然而,即便加熱板206產生熱,亦藉由冷卻部210之冷卻,加熱板206的溫度與環境溫度(例如25[℃]程度的室溫)相等時,係不會產生從加熱板206往散熱測定用工件205側的熱流。
因此,吾人認為,輸出相當於在散熱測定用工件205未測定到熱通量時的電壓值的情況下,係加熱板206的溫度與環境溫度相等。而且,在該情況下,係可說從加熱板206,於熱通量感測器10側產生所有的熱流,於散熱測定用工件205側不會產生。
由此可知,本檢查工程,係判定散熱測定用 工件205之輸出電壓是否未滿熱通量感測器10的輸出電壓(誤差之範圍內)(S110)。而且,本檢查工程,係在散熱測定用工件205之輸出電壓被判定為未滿熱通量感測器10的輸出電壓時(誤差之範圍內)(S110:YES),判定為未產生熱洩漏,並測定熱通量感測器10的輸出電壓(S120)。藉此,本檢查工程,係於加熱板206所產生之熱流的所有熱通量通過熱通量感測器10的狀況下,測定熱通量感測器10的輸出電壓。其結果,本檢查工程,係不會受到從加熱板206往散熱測定用工件205側之熱洩漏的影響,可進行熱通量感測器10之輸出電壓的測定。本檢查工程,係根據上述測定結果(熱通量感測器10之輸出電壓),檢查表示加熱板206所產生之熱流量與熱通量感測器10之輸出電壓之關係的特性(相當於第3工程)。因此,本檢查工程,係可精度良好地獲得對應於加熱板206之發熱量的熱流量與相對於該熱流量之熱通量感測器10的測定結果即輸出電壓的關係。而且,本檢查工程,係根據所獲得的關係,進行熱通量感測器10之特性的校正及良品/不良品判定。藉此,本檢查工程,係不會受到熱洩漏的影響,可進行熱通量感測器10之特性的校正及良品/不良品判定。
另一方面,本檢查工程,係在散熱測定用工件205之輸出電壓被判定為大於熱通量感測器10的輸出電壓時(誤差之範圍外)(S110:NO),判定為產生熱洩漏,並判定流過散熱測定用工件205的熱流是否為散熱方向 (S130)。在此所謂熱流為散熱方向時,係意味著加熱板206之溫度高於環境溫度,且伴隨加熱板206的發熱所致之熱流產生於通過散熱測定用工件205而傳遞至周圍之方向的情形。相反地,所謂熱流並非為散熱方向時,係意味著加熱板206之溫度低於環境溫度,熱板206受到環境溫度而加溫,熱流產生於通過散熱測定用工件205之方向的情形。
熱流為散熱方向時,係熱從加熱板206往散熱測定用工件205側洩漏的狀況(產生熱洩漏之狀況)。亦即,為冷卻部210所致之吸熱不充分的狀況。因此,本檢查工程,係在流過散熱測定用工件205的熱流被判定為散熱方向時(S130:YES),進行使冷卻部210之吸熱量上升的控制(S140)。具體而言,冷卻控制器300,係以加強冷卻的方式,控制冷卻部210。另一方面,熱流並非為散熱方向時,係加熱板206受到環境溫度而加溫的狀況。亦即,為冷卻部210所致之吸熱過多的狀況。因此,本檢查工程,係在流過散熱測定用工件205的熱流被判定為並非散熱方向時(S130:NO),進行使冷卻部210之吸熱量降低的控制(S150)。具體而言,冷卻控制器300,係以減弱冷卻的方式,控制冷卻部210。而且,本檢查工程,係在進行該些控制後,移行至S110之判定處理。如此一來,本檢查工程,係進行冷卻部210的上述控制,使散熱測定用工件205之輸出電壓趨近於在S110之判定處理中判定為肯定的狀態。而且,本檢查工程,係可進行熱通量感測器 10之輸出電壓的測定。
如以上所說明,本揭示之熱通量感測器10之製造方法,係在熱流產生裝置20,以被夾在加熱板206與冷卻部210之間的方式,配置熱通量感測器10。而且,本製造方法,係在熱通量感測器10的一面側配置加熱板206,另一面側配置冷卻部210。又,本製造方法,係在加熱板206的面中與配置有熱通量感測器10的面相反之側的面,配置散熱測定用工件205。
上述構成,係只要在本製造方法的檢查工程中,以使加熱板206成為環境溫度的方式,控制溫度即可(只要進行溫度之穩定化控制即可)。藉此,本製造方法,係例如在將加熱板206加熱至不同於環境溫度的溫度時等,必須使溫度穩定的情形下,所要花費的時間在短時間內完成直至使溫度穩定為止。亦即,上述構成,係在本製造方法的檢查工程中,即便加熱板206的溫度稍微上升,亦只要可進行以環境溫度作為基準之溫度的穩定化控制即可(以較小的溫度即可)。因此,本製造方法,係相較於以比環境溫度更高溫來使加熱板206穩定化的情形,可在短時間內使溫度穩定。因此,本製造方法,係可在短時間內進行熱通量感測器10的檢查工程。
又,本實施形態之加熱板206,係由薄膜狀所構成。藉此,加熱板206的熱容量變小,本製造方法,係可實現所要花費的時間之縮短化直至使溫度穩定。又,由於加熱板206較薄,因此,亦可不用考慮關於來自加熱板 206之外緣的熱洩漏。藉此,只要僅在加熱板206的面中與配置有熱通量感測器10的面相反之側的面,配置散熱測定用工件即可,本製造方法,係不必在加熱板206之外緣的各邊配置隔熱材料。
本發明者,係在實際上實施如上述般的本檢查工程時(使用本實施形態之熱流產生裝置20來實施熱通量感測器10的檢查工程時),進行確認加熱板206之溫度是否成為環境溫度的試驗(參考檢驗)。具體而言,本試驗,係計測藉由加熱板206之加熱而使熱流量變化為1~5[kW/m2]時之加熱板206之溫度與環境溫度的溫度差。在圖12表示其結果。
如圖12所示,本試驗的結果,係隨著藉由加熱板206之加熱而熱流量變大,加熱板206之溫度與環境溫度的溫度差變大。這是因為,熱流量越大,則越難以進行使加熱板206之溫度趨近於環境溫度的控制。因此,吾人認為,隨著熱流量變大,溫度差亦變大。而且,熱流量為5[kW/m2]時,係溫度差成為約5[℃]。
此時的洩漏熱流量,係如下進行計算。首先,使位於熱洩漏的方向之隔熱材料202的熱傳導率成為0.25[W/mK],厚度成為10[mm]。在該情況下,每隔熱材料202之厚度1[m]的熱傳導率,係可由下述式(1)進行計算。
0.25/0.01=25[W/m2K]…(1) 又,空氣的熱傳導率,係約5[W/m2K]。因此,隔熱材料202與空氣之合計的熱傳導率,係可由下述式(2)進行計算。
1/(1/5+1/25)=4.2[W/m2K]…(2)在此,加熱板206之溫度與環境溫度的溫度差,係5[℃]。藉此,洩漏熱流量,係可由下述式(3)進行計算。
5×4.2=21[W/m2]…(3)該洩漏熱流量(21[W/m2]),係如下述式(4)所示,為加熱板206之熱流量(5[kW/m2])的0.4[%]。
21/5000=0.004…(4)該值,係滿足所要求的校正精度(例如2[%]以內),可說為足夠小的值。如此一來,從本試驗的結果可知,加熱板206的溫度被控制為洩漏熱流量收斂於誤差之範圍的程度。因此,本檢查工程,係在洩漏熱流量為誤差的範圍內,以使加熱板206之溫度趨近於環境溫度的方式進行控制。
(第2實施形態)
說明關於本揭示之第2實施形態。本實施形態,係熱通量感測器的構成與第1實施形態不同。關於其他構成,係與第1實施形態相同。因此,以後的說明,係僅說明關於與第1實施形態不同的部分。
上述第1實施形態,係表示藉由直列地連接有第1及第2層間連接構件130,140之1個熱電元件來構成熱通量感測器10的例子。對此,本實施形態,係設成為熱通量感測器10具備有複數個熱電元件的構成。具體而言,如圖13之一點鏈線所示,在區劃成複數個的區域B1~B6中,直列地連接第1及第2層間連接構件130,140,並於每一區域構成不同的熱電元件。在區域B1~B6的各熱電元件,係設置有2個連接圖案122。因此,區域B1~B6的各熱電元件,係可經由分別設置的連接圖案122,各自地與外部電性連接。藉此,本實施形態之熱通量感測器10,係從每一區域所具備的熱電元件輸出因應於通過各區域B1~B6之熱通量的電壓值(測定結果)。
如以上說明,熱通量感測器10,係可藉由複數個熱電元件來構成。像這樣之構成的熱通量感測器10,係例如亦可應用作為可檢測各區域B1~B6之熱通量的單一感測器。又,亦可在各區域B1~B6切斷熱通量感測器10而設成為複數個感測器。
另外,即便是具備有複數個熱電元件之熱通量感測器10的情形,熱通量感測器10,亦佈置為使如圖13所示之區域A與如圖9所示之加熱板206中的區域A 一致。亦即,佈置為使熱通量感測器10所具備的所有熱電元件與加熱板206所具備的發熱電阻體206b重疊。更具體而言,如圖14所示,佈置為使加熱板206所具備之發熱電阻體206b的圖案與熱通量感測器10所具備之第1及第2層間連接構件130,140重疊為較佳。熱通量感測器10,係如上述進行佈置,藉此,以避免偏離從加熱板206之發熱電阻體206b往冷卻部210側之熱流的主流,配置有構成熱電元件的第1及第2層間連接構件130,140。藉此,可對本實施形態之熱通量感測器10實施更正確的檢查工程。
(第3實施形態)
說明關於本揭示之第3實施形態。本實施形態,係加熱板的構成及熱通量感測器的檢查工程與第2實施形態不同。關於其他構成,係與第2實施形態相同。因此,以後的說明,係僅說明關於與第2實施形態不同的部分。
本實施形態之散熱測定用工件205,係設成為與具備有複數個熱電元件之熱通量感測器10相同的構成。本實施形態,係使用像這樣之構成的散熱測定用工件205,檢測熱通量感測器10之每一區域的洩漏熱流量。具體而言,係如圖15所示,可在熱通量感測器10之各區域C1~C6的檢查工程中,測定每一區域的洩漏熱流量。因此,本實施形態,係可測定伴隨加熱板206之發熱而產生於各區域C1~C6的熱流量。而且,本實施形態,係可藉 由散熱測定用工件205,檢測各區域B1~B6的熱電元件。另外,本實施形態之散熱測定用工件205,係與第2實施形態中已進行說明之熱通量感測器10相同的構造。因此,在表示本實施形態之散熱測定用工件205的圖16中,係使用與如圖13所示之第2實施形態之熱通量感測器10相同的符號。
如圖15所示,在進行洩漏熱流量之測定時的加熱板206,係相對於以左右折返之方式形成為(蜿蜒狀)的發熱電阻體206b,等間隔地設置有複數個引出配線206ca~206cg。本實施形態,係將複數個引出配線206ca~206cg中設置於發熱電阻體206b之蜿蜒狀圖案之一端的引出配線206ca設成為GND引出配線。而且,本實施形態,係從GND引出配線206ca依序設置有引出配線206cb~206cg。本實施形態,係藉由電流計400計測流通於發熱電阻體206b的電流,並藉由電壓計401~405計測各引出配線206cb~206cg與引出配線206ca之間的電位差VA~VE。而且,本實施形態,係藉由電力調整器406,進行施加至加熱板206之電壓及電流的調整。
另一方面,如圖16所示,在進行洩漏熱流量之測定時的散熱測定用工件205,係對於構成各區域B1~B6之熱電元件的第1層間連接構件130或第2層間連接構件140,設置有複數個連接圖案122a~122m。本實施形態,係將複數個連接圖案122a~122m中位於最外端的連接圖案122a設成為基準連接圖案。而且,本實施形 態,係從基準連接圖案122a依序設置有連接圖案122b~122m。又,本實施形態,係在相鄰之區域的熱電元件彼此(例如區域B1的熱電元件與區域B2的熱電元件),以相同之配線連接相鄰的連接圖案彼此(例如連接圖案122b與連接圖案122c)。本實施形態,係藉由電壓計501~506,計測像這樣連接的各配線與基準連接圖案122a之間的電壓MA~MF
而且,本實施形態,係使散熱測定用工件205所具備的所有熱電元件與加熱板206所具備的發熱電阻體206b疊合(以使如圖15所示之區域A與如圖16所示之區域A一致的方式疊合)。於該狀態下,本實施形態,係對於發熱電阻體206b供給電力,使加熱板206發熱。
在下述中,以區域B1為例,說明關於熱通量感測器10中之每一區域之熱電元件的檢查工程。例如,關於加熱板206的區域B1,係藉由電流計400及電壓計401,測定該區域B1的發熱量(發熱電阻體206b所產生的熱流量)。又,藉由電壓計501,測定此時的洩漏熱流量。本實施形態,係根據像這樣測定到之區域B1的發熱量及洩漏熱流量,進行加熱板206的溫度控制。藉此,本實施形態,係可實施熱通量感測器10中對應於區域B1之大小之熱電元件的檢查工程。關於加熱板206的各區域B2~B6,亦使用相同的手法,藉此,可實施熱通量感測器10中對應於各區域B2~B6之大小之熱電元件的檢查工程。
(其他實施形態)
本發明,係不限定於上述實施形態的內容。本發明,係可在不脫離本揭示之技術性意旨的範圍內,進行適當變更。
上述本實施形態,雖係將散熱測定用工件205設成為與熱通量感測器10相同的構成,但不受此限。散熱測定用工件205,係只要為可測定來自加熱板206的面中與配置有熱通量感測器10的面相反之側的面之熱洩漏的構成即可。但是,檢查工程,係使用與熱通量感測器10相同之構成的散熱測定用工件205,藉此,可輕易地測定熱洩漏。更具體而言,係可由僅判定散熱測定用工件205之輸出電壓是否未滿熱通量感測器10之輸出電壓的誤差(誤差之範圍內),測定熱洩漏。因此,散熱測定用工件205,係與熱通量感測器10相同之構成者比不同的構成為佳。
上述實施形態,雖係以25[℃]左右的一般室溫為例子並進行說明關於環境溫度,但不受此限。作為其他例,係環境溫度亦可為上述一般室溫以外的溫度。在將25[℃]左右的一般室溫使用作為環境溫度時,係對於實施熱通量感測器10的檢查工程方面,不需具備有用以使環境溫度改變的冷卻機構或加熱機構。又,包含有加熱板206的熱流產生裝置20難以成為高溫或低溫。如此一來,在將25[℃]左右的一般室溫使用作為環境溫度時,係 具有測試員處理變得容易之特徵。對此,在將25[℃]左右的一般室溫以外的溫度使用作為環境溫度時,係可列舉出如下述般的例子。例如,有在冷溫室內實施熱通量感測器10之檢查工程的情形。在該情形下,係可藉由將冷溫室內之溫度使用作為環境溫度的方式,檢查低溫條件下之熱通量感測器10的特性。相同地,有在高溫室內實施熱通量感測器10之檢查工程的情形。在該情形下,係可藉由將高溫室內之溫度使用作為環境溫度的方式,檢查高溫條件下之熱通量感測器10的特性。如此一來,本揭示之熱流產生裝置20及使用了該熱流產生裝置20的檢查工程,係可在各種環境溫度,檢查熱通量感測器10的特性。
上述實施形態,係設成為使冷卻部210相對於加熱部200進行相對移動,將冷卻部210之一面推壓至加熱部200之對向面的構成。藉此,上述實施形態,雖係設成為可在冷卻部210與加熱部200之間夾住熱通量感測器10的構成,但不受此限。作為其他例子,係亦可設成為使加熱部200相對於冷卻部210進行相對移動的構成。抑或,亦可設成為加熱部200及冷卻部210兩者可進行移動的構成。
上述實施形態,雖係設成為在散熱測定用工件205與加熱板206之間配置彈性板204的構成,但不受此限。作為其他例子,係亦可設成為在散熱測定用工件205與加熱板206之間什麼也不配置的構成。在該情形下,係例如如圖18所示,亦可使散熱測定用工件205與 加熱板206疊合而成為一體構成。亦即,只要是散熱測定用工件205與加熱板206所密合的構成即可。只要是像這樣的構成,則本揭示之熱流產生裝置20及使用了該熱流產生裝置20的檢查工程,係在洩漏熱流量的測定,可意圖提高可靠性。
上述實施形態,雖係進行說明關於熱通量感測器10、散熱測定用工件205及加熱板206之構成部件的形成圖案,但並不限於此。由上述實施形態所示之構成部件的形成圖案,係只不過為一例,亦可進行適當變更。作為加熱板206的其他例子,係例如如圖17所示,亦可折彎發熱電阻體206b之直線部的中央位置,以形成蜿蜒狀圖案。
10‧‧‧熱通量感測器
205‧‧‧散熱測定用工件
206‧‧‧加熱板
210‧‧‧冷卻部
300‧‧‧冷卻控制器
310‧‧‧電壓計
320‧‧‧電壓計
330‧‧‧電力調整器

Claims (8)

  1. 一種熱通量感測器之製造方法,其特徵係,具有包含如下述者之檢查工程:第1工程,準備薄膜狀的熱通量感測器(10);第2工程,準備具有加熱部(200)與冷卻部(210)的熱流產生裝置(20),該加熱部(200),係具有:薄膜狀之加熱板(206),具有發熱電阻體(206b);及散熱測定用工件(205),配置於前述加熱板的一面側,測定來自前述一面側的熱洩漏,該冷卻部(210),係配置於前述加熱板的另一面側,因應於前述熱通量感測器的輸出控制吸熱量,藉此而進行冷卻;及第3工程,於將前述熱通量感測器夾在前述加熱部與前述冷卻部之間的狀態下,進行前述加熱板所致之發熱及前述冷卻部所致之冷卻,藉此,產生通過前述熱通量感測器的熱流,吸收熱洩漏,檢測前述散熱測定用工件未熱洩漏之情形,測定前述加熱板的溫度與環境溫度相等時之前述熱通量感測器的輸出電壓,根據測定結果,檢查表示前述加熱板產生的熱流量與前述熱通量感測器的輸出電壓之關係的特性。
  2. 如申請專利範圍第1項之熱通量感測器之製造方法,其中,前述第2工程,係使用與前述熱通量感測器相同之構成的前述散熱測定用工件。
  3. 如申請專利範圍第2項之熱通量感測器之製造方 法,其中,前述第3工程,係將前述散熱測定用工件之輸出電壓為前述熱通量感測器之輸出電壓的誤差範圍內時判定為未熱洩漏。
  4. 如申請專利範圍第1項之熱通量感測器之製造方法,其中,前述第2工程,係使用前述加熱板,該前述加熱板,係以藉由熱可塑性樹脂所構成之樹脂薄膜(206a),夾住對金屬板進行加工而形成圖案的前述發熱電阻體。
  5. 如申請專利範圍第1項之熱通量感測器之製造方法,其中,前述第3工程,係在前述加熱板與前述散熱測定用工件之間夾有彈性板(204)。
  6. 如申請專利範圍第1項之熱通量感測器之製造方法,其中,前述第1工程,係於區劃成複數個之區域(B1~B6)的每一區域,準備不同之熱電元件所具備的前述熱通量感測器,前述第2工程,係準備測定前述熱通量感測器之前述每一區域之熱洩漏的前述散熱測定用工件,前述第3工程,係於前述熱通量感測器的前述每一區域,測定前述發熱電阻體產生的熱流量,並同時測定洩漏熱流量,藉此,檢測前述特性。
  7. 一種熱流產生裝置,其特徵係,具備有: 加熱部(200),具有:薄膜狀之加熱板(206),具有發熱電阻體(206b);及散熱測定用工件(205),配置於前述加熱板的面中與配置有熱通量感測器(10)的面相反之側的面,測定來自前述加熱板的熱洩漏;冷卻部(210),相對於前述加熱板,與前述熱通量感測器夾著而配置於相反側,因應於前述熱通量感測器的輸出控制吸熱量,藉此而進行冷卻;及線性導件(230),使前述冷卻部及前述加熱部的至少一方移動,藉由前述線性導件,使前述冷卻部及前述加熱部的至少一方移動,在前述冷卻部及前述加熱部之間,推壓前述熱通量感測器。
  8. 如申請專利範圍第7項之熱流產生裝置,其中,具有使前述冷卻部及加熱部之至少一方移動的線性導件(230),藉由前述線性導件,使前述冷卻部及前述加熱部的至少一方移動,在前述冷卻部與前述加熱部之間推壓前述熱通量感測器。
TW105113831A 2015-05-11 2016-05-04 Heat flux sensor manufacturing method and heat flow generation device therefor TWI609173B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096562A JP6451484B2 (ja) 2015-05-11 2015-05-11 熱流束センサの製造方法およびそれに用いる熱流発生装置

Publications (2)

Publication Number Publication Date
TW201710653A TW201710653A (zh) 2017-03-16
TWI609173B true TWI609173B (zh) 2017-12-21

Family

ID=57248987

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105113831A TWI609173B (zh) 2015-05-11 2016-05-04 Heat flux sensor manufacturing method and heat flow generation device therefor

Country Status (7)

Country Link
US (1) US10408690B2 (zh)
EP (1) EP3296711B1 (zh)
JP (1) JP6451484B2 (zh)
KR (1) KR101968120B1 (zh)
CN (1) CN107615029B (zh)
TW (1) TWI609173B (zh)
WO (1) WO2016181777A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358234B2 (ja) * 2015-11-12 2018-07-18 株式会社デンソー 稼働状態の診断装置
JP6358233B2 (ja) * 2015-11-12 2018-07-18 株式会社デンソー 組付状態の診断装置
JP6256454B2 (ja) 2015-11-30 2018-01-10 株式会社デンソー ヒータプレート、このヒータプレートを用いる熱流束センサの製造装置、このヒータプレートの製造方法、及び、このヒータプレートの製造装置
JP7462559B2 (ja) 2017-08-31 2024-04-05 ハーフ ムーン メディカル インコーポレイテッド 人工弁尖器具
EP3911273A1 (en) 2019-01-16 2021-11-24 Half Moon Medical, Inc. Implantable coaptation assist devices with sensors and associated systems and methods
WO2020186106A1 (en) 2019-03-12 2020-09-17 Half Moon Medical, Inc. Cardiac valve repair devices with annuloplasty features and associated systems and methods
US20220246820A1 (en) 2019-04-26 2022-08-04 The University Of Tokyo Thermoelectric conversion element and thermoelectric conversion device
WO2021055983A1 (en) * 2019-09-19 2021-03-25 Half Moon Medical, Inc. Valve repair devices with coaptation structures and multiple leaflet capture clips
EP4141976A1 (en) 2020-04-23 2023-03-01 The University of Tokyo Thermoelectric conversion element and thermoelectric conversion device
CN113063527A (zh) * 2021-04-08 2021-07-02 无锡科技职业学院 一种柔性薄膜温度传感器检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174851A (ja) * 2010-02-25 2011-09-08 Isuzu Motors Ltd 熱流束計の校正装置
JP2012042304A (ja) * 2010-08-18 2012-03-01 Etou Denki Kk 熱流センサ
TW201504603A (zh) * 2013-05-30 2015-02-01 Kla Tencor Corp 用以量測熱通量之方法及系統

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925438A (en) * 1957-02-01 1960-02-16 Herbert C Brown Method of converting unsaturated organic compounds to organoboron compounds
JPS59106031U (ja) * 1982-12-30 1984-07-17 株式会社フジクラ 長軸発熱体の発生熱量測定装置
DE3707819A1 (de) * 1987-03-11 1988-09-22 Budapesti Mueszaki Egyetem Verfahren und vorrichtung zur bestimmung von fuer den energietransport charakteristischen waermephysikalischen kenngroessen
JP3311159B2 (ja) 1994-08-18 2002-08-05 京都電子工業株式会社 熱流センサの校正方法及びその装置
JP3222073B2 (ja) 1996-10-31 2001-10-22 東芝テック株式会社 熱定着装置
CA2309160A1 (en) * 1997-12-02 1999-06-10 Allan L. Smith Mass and heat flow measurement sensor
US7211784B2 (en) 2004-03-16 2007-05-01 Kabushiki Kaisha Toshiba Photo-detection device and temperature distribution detection device using the same
JP2005337739A (ja) 2004-05-24 2005-12-08 Toshiba Corp 熱分布測定装置
JP4439319B2 (ja) * 2004-04-14 2010-03-24 株式会社リコー 液体吐出ヘッド、液体カートリッジ、液体吐出装置及び画像形成装置
KR100690926B1 (ko) * 2006-02-03 2007-03-09 삼성전자주식회사 마이크로 열유속 센서 어레이
FR2925438A1 (fr) * 2008-04-14 2009-06-26 Valeo Systemes Dessuyage Dispositif de chauffage de liquide pour vehicule automobile
KR101053490B1 (ko) 2009-04-02 2011-08-03 광주과학기술원 열유속 센서의 분해능을 측정하는 시스템 및 그 방법
JP5911218B2 (ja) * 2011-06-30 2016-04-27 ニチアス株式会社 熱伝導率測定方法及び熱伝導率測定装置
JP5376087B1 (ja) 2012-05-30 2013-12-25 株式会社デンソー 熱電変換装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174851A (ja) * 2010-02-25 2011-09-08 Isuzu Motors Ltd 熱流束計の校正装置
JP2012042304A (ja) * 2010-08-18 2012-03-01 Etou Denki Kk 熱流センサ
TW201504603A (zh) * 2013-05-30 2015-02-01 Kla Tencor Corp 用以量測熱通量之方法及系統

Also Published As

Publication number Publication date
EP3296711B1 (en) 2020-02-12
EP3296711A1 (en) 2018-03-21
JP2016211991A (ja) 2016-12-15
US10408690B2 (en) 2019-09-10
KR20170128778A (ko) 2017-11-23
US20180143087A1 (en) 2018-05-24
TW201710653A (zh) 2017-03-16
EP3296711A4 (en) 2018-04-11
KR101968120B1 (ko) 2019-04-11
JP6451484B2 (ja) 2019-01-16
CN107615029A (zh) 2018-01-19
CN107615029B (zh) 2019-12-27
WO2016181777A1 (ja) 2016-11-17

Similar Documents

Publication Publication Date Title
TWI609173B (zh) Heat flux sensor manufacturing method and heat flow generation device therefor
EP3362769B1 (en) Thin film based thermal reference source
KR101902828B1 (ko) 열식 유량 센서
KR101833278B1 (ko) 열류 분포 측정 장치
WO2009107209A1 (ja) ヒータ装置及び測定装置並びに熱伝導率推定方法
US10775329B2 (en) Thermal conductivity measurement device and thermal conductivity measurement method
KR101895302B1 (ko) 풍향계, 풍향 풍량계 및 이동 방향 측정계
JP2019215229A (ja) 熱流センサの校正装置
KR102032190B1 (ko) 히터 플레이트, 이 히터 플레이트를 이용하는 열유속 센서의 제조 장치, 이 히터 플레이트의 제조 방법 및 이 히터 플레이트의 제조 장치
TW201518712A (zh) 接觸式試驗裝置及環境試驗方法
JP5862510B2 (ja) 半導体装置の評価システム及び評価方法
JP2016023971A (ja) 電子部品搬送装置および電子部品検査装置
US8814425B1 (en) Power measurement transducer
CN105659831B (zh) 高精度热屏等温型热流计
CN106017713A (zh) 一种测温电阻
JP2009097968A (ja) 温度特性計測装置および温度特性計測方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees