TWI600062B - 離子植入方法、使用此方法的裝置及執行此方法的物件 - Google Patents

離子植入方法、使用此方法的裝置及執行此方法的物件 Download PDF

Info

Publication number
TWI600062B
TWI600062B TW101104406A TW101104406A TWI600062B TW I600062 B TWI600062 B TW I600062B TW 101104406 A TW101104406 A TW 101104406A TW 101104406 A TW101104406 A TW 101104406A TW I600062 B TWI600062 B TW I600062B
Authority
TW
Taiwan
Prior art keywords
plasma
workpiece
power level
power
duty cycle
Prior art date
Application number
TW101104406A
Other languages
English (en)
Other versions
TW201239956A (en
Inventor
克里斯多夫J 里維特
盧多維克 葛特
提摩太J 米勒
Original Assignee
瓦里安半導體設備公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瓦里安半導體設備公司 filed Critical 瓦里安半導體設備公司
Publication of TW201239956A publication Critical patent/TW201239956A/zh
Application granted granted Critical
Publication of TWI600062B publication Critical patent/TWI600062B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • H01J37/3172Maskless patterned ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32412Plasma immersion ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • H01J2237/31706Ion implantation characterised by the area treated
    • H01J2237/3171Ion implantation characterised by the area treated patterned
    • H01J2237/31711Ion implantation characterised by the area treated patterned using mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32366Localised processing
    • H01J37/32376Scanning across large workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means

Description

離子植入方法、使用此方法的裝置及執行此方法的物件
本發明關於工件的植入,且更特定地是關於一種工件可變植入的方法和裝置。
離子植入是用於引入可改變特性(property-altering)之雜質於基板的標準技術。所需的雜質材料於離子源中離子化後,加速離子以形成規定能量的離子束,而離子束直接衝向基板的表面。束流中具有能量的離子穿透基板材料的表面下且嵌入基板材料的晶格(crystalline lattice),以形成具有所需之傳導性或材料性質的區域。
高劑量的植入可容許離子植入機的最低擁有成本(cost-of-ownership)。對一些植入而言,局部或選擇性摻雜、或者局部或選擇性的材料改良是必要的。太陽能電池之製作呈現的一個實例中,需要高劑量植入及局部區域的選擇性摻雜。可改善太陽能電池效率的摻雜可用離子植入施行。圖1為一種選擇性射極太陽能電池(selective emitter solar cell)10的剖面圖。摻雜射極200並提供額外的摻質到接觸電極202下方的區域201,可增加太陽能電池的效率(光能轉換為電能的百分率)。較重地摻雜區域201會改善導電率,而於接觸電極202間較少地摻雜會改善電荷收集率(charge collection)。接觸電極202間可僅分開間隔大約2nm到3nm。區域201可僅大約100μm到300μm寬。太陽能電池10亦可包括抗反射(ARC)層22,其配置於射極 200和基材24上方,以及位於背面接觸電極(backside contact)26的上方。圖2為一種交指型背面接觸式(interdigitated back contact,IBC)太陽能電池20的剖面圖。在IBC太陽能電池20中,接面(junction)位於太陽能電池的背面。太陽能電池可具有抗反射層(ARC)27、鈍化層(passivating layer)28、以及N+表面電場30而與N型基材32鄰接形成一堆疊結構。在此特定的實例中,摻雜圖案可包括交錯的p型及n型摻質區域。可對p+射極203及n+背面電場204進行摻雜。此摻雜可使IBC太陽能電池的接面可以運作或具有增加的效能。接觸電極貫孔38形成於鈍化層40中,且可於接觸電極貫孔38中形成p型接觸指34及n型接觸指36。
在製造例如太陽能電池的物件中,使用例如微影之已知的圖案化製程結合植入,可能因為需要過多的步驟而具有過高的成本花費於執行選擇性區域的植入。
此種應用並未徹底地測試於電漿摻雜技術。直接曝露於電漿的中子,可造成工件的沉積或蝕刻且需要額外的清潔步驟。因此,本技術領域需要工件的改善植入法以及,更具體地說,需要不用罩幕之改良的圖案化工件植入的裝置及方法。
在一實施例中,離子植入系統中植入工件的方法包含提供萃取平板,其鄰近含有電漿的電漿腔室,其中萃取平板經組態以提供具有分佈於入射至工件之角度範圍之離子 的一離子束。此方法包括相對於萃取平板掃瞄工件,以及於掃瞄期間改變電漿之功率位準(power level)從第一功率位準到第二功率位準。其中在工件的表面上,在第一功率位準的第一束流寬大於在第二功率位準的第二束流寬。
在另一實施例中,離子植入裝置包含電漿源,其可被操作來改變電漿腔室中電漿的電漿功率,其中電漿含有用於植入進工件的離子。此裝置也包括萃取平板,其具有孔洞經組態以改變鄰近所述萃取平板端之電漿鞘(plasma sheath)的形狀,且萃取平板可於相對於工件的至少一第一方向上被掃瞄。所述裝置進一步包括含有工件的製程腔室(processing chamber),此工件可被操作以接收相對於電漿的偏壓,其中電漿源及萃取平板可互操作,以藉由改變電漿功率,而改變入射至基板之離子束的寬度。
本文將結合工件(基板)的植入以敘述系統及方法的實施例。舉例而言,在多種實施例中,舉例而言,此系統可以使用於太陽能電池基板、半導體基板、位元規則媒介(bit-patterned media)、固態電池、高分子材料、平面面板、氧化基板、以及包含絕緣材料的基板之中。因此,將不限制本發明於以下敘述之特定的實施例。
在多種實施例中,離子植入系統包括電漿源、電漿鞘修改器(plasma sheath modifier)(亦稱為萃取平板)、以及相對於工件掃瞄電漿源的機構。在一些實施例中,離子植入系統可被操作以改變萃取自電漿源並提供於工件之離子 束的離子束性質。在多種實施例中,當相對於離子束掃瞄工件時,離子束性質可藉重複的方式改變。在一些實施例中,電漿源可為RF源,RF源的供應功率位準(功率設定值)周期性地改變,並以此改良透過電漿鞘修改器萃取之離子束的性質
在多種實施例中,當相對於萃取平板以掃瞄工件時,藉由改變使用於引發電漿之RF源的功率設定值,可憑經植入之物質的不同寬度及不同位準的區域,將工件圖案化。其中,萃取平板在本文中亦稱為「電漿鞘修改器」,其萃取來自於電漿的離子束。
圖3為依據於本揭露之一實施例的電漿製程裝置的方塊圖。系統400包括電漿源401、萃取平板101(或鞘層工程平板,sheath engineering plate)、以及製程腔室402。氣體源404連接於電漿源401。電漿源401或系統400的其他部件亦可連接於例如渦輪泵(turbopump)的泵(未繪示)上。舉例而言,產生電漿140之電漿源401可為RF電漿源、感應耦合電漿(inductively-coupled plasma,ICP)源、間接加熱陰極(indirectly heated cathode,IHC)、或對本領域中具有知識者而言是已知的其他電漿源。在此特定的實施例中,電漿源401為RF電漿源,其具有RF源產生器(RF source generator)408及RF匹配網路(RF matching network)409。在此特定實施例中,電漿源401被外殼(enclosure)411所環繞,且DC中斷部(DC break)410將外殼411與製程腔室402分開。可將製程腔室402、電漿 源401、或平台403接地。
萃取平板101被用來萃取用於植入工件100之離子102。可冷卻或是加熱萃取平板101。可加偏壓於電漿源401,且可提供偏壓電源供應器(未繪示),以相對於電漿140而提供連續的偏壓或脈衝的偏壓於基板,藉以吸引離子406。
萃取平板101可具有至少一個孔洞(aperture)407,透過孔洞407以提供離子102到基板(工件)100。萃取平板101可用冷卻或是以其他具有熱特徵的方式控制。電漿源401中的壓力及裝程腔室402中的壓力可大致相等,而產生電弧作用(arcing)。
於製程腔室402中的平台403上可配置太陽能電池或其他元件之一個或多個工件100。可控制萃取平板101及工件100之間的距離,以補償萃取平板101任何的熱膨脹。工件100可配置於N個工件100寬及N個工件長的陣列或矩陣之中(在此,於寬度尺寸之“N”可變動而與長度尺寸中的“N”不同)。在圖3之中,繪示了1×3的工件矩陣。平台403可使用靜電夾持(electrostatic clamping)、機械式夾持(mechanical clamping)、或者靜電夾持及機械式夾持的組合以保持工件100。可使用平台403掃瞄工件100。在圖3的實施例中,平台403可以於方向405做掃描。然而,視工件100上所需的植入圖案,平台403不是執行一維(1D)就是執行二維(2D)的掃瞄。舉例而言,可執行2D掃瞄以於工件100中產生班點狀(spot-shaped)或圓點狀 (dot-shaped)的植入區域。在一交替的實施中,萃取平板101掃瞄固定的工件100。在一例子中,平台403可經組態以提供背部冷卻氣體給工件100。在使用平台403或一些其他裝置植入之前或於植入期間,可加熱或冷卻工件100至各種溫度。
以下進一步地詳敘,在多種實施例中,於萃取平板101及/或工件100相對於彼此掃瞄的期間,可執行電漿源401功率的改變及/或電漿140與基板100之間電壓偏壓的脈衝,以達成所需的劑量及工件100中離子的分佈。在一些實施例中,電壓偏壓的脈衝可配上電漿功率設定值的改變,以於基板之中製造所需的植入圖案。
如圖3所建議,透過萃取平板101所萃取的離子102可在一角度範圍內衝擊於工件100上,其角度範圍中全部離子束會聚焦至比可萃取出離子102之孔洞407還要小的寬度。根據多種實施例,可控制離子102的聚焦以改變工件100的植入條件。具體地說,可改變電漿源401的功率,以變更當離子102碰撞工件100時的離子102束流尺寸大小。
圖4為根據一實施例之電漿系統中萃取平板配置之細節的剖面圖。萃取平板101經組態以改良電漿鞘242中的電場,並藉以控制位於電漿140及電漿鞘242之間的邊界241的形狀。因此,由遍及電漿鞘242之電漿140中所萃取的離子102,其可以大範圍的入射角撞擊工件100。
可如上關於圖3的敘述產生電漿140。萃取平板101 可為具有孔隙的單一平板,或可為一對面板(例如面板212及面板214),其定義一個間隙,間隙間具有一個水平的間隔(G)。面板212可為絕緣體、半導體、或導體。在多種實施例中,萃取平板101可包括多數的間隙(未繪示)。平板101可位於垂直間隔(z)之中,垂直間隔(z)在藉由工件100表面所定義的平面151上方。
藉由不同的機制,可自電漿140中吸引離子102穿過電漿鞘242。在一例子中,施偏壓於工件100以吸引來自於穿過電漿鞘242之電漿140中的離子102。離子102可為p型摻質、n型摻質、氫、惰性氣體(noble gas)、或那些對本領域中具有知識者已知的其他物質。
有利之處在於,萃取平板101改良電漿鞘242中的電場,以控制位於電漿140及電漿鞘242之間邊界241的形狀。在一例子中,電漿140及電漿鞘242之間的邊界241,其可具有相對於平面151的凸形(covex shape)。舉例而言,當施加偏壓於工件100時,離子102被吸引而穿過電漿鞘242,並以大範圍的入射角穿過面板212和面板214之間的間隙。舉例來說,沿軌跡路徑(trajectory path)271而行的離子可以相對於平面151呈+θ°的角度來撞擊工件100。沿軌跡路徑270而行的離子可以相對於相同平面151呈約0°的角度來撞擊工件100。沿軌跡路徑269而行的離子可以相對於平面151呈-θ°的角度來撞擊工件100。因此,入射角的範圍可以約0°中心介於+θ°與-θ°之間。另外,一些離子軌跡路徑(例如軌跡路徑269和軌跡路徑271) 可相互交叉。視若干因素(包括但不限制於面板212與面板214之間的水平間距(G)、面板212和面板214在平面151上方的垂直間距(Z)、面板212和面板214的介電常數或電漿140的其他製程參數)而定,入射角(θ)的範圍可以0°為中心介於+60°與-60°之間。
在圖4描繪的實例中,透過萃取平板101萃取的離子在衝擊工件100之前可與交叉路徑上的離子匯集,且可互相發散。雖然如圖4描繪的離子穿透過焦點P,在一些實施例中,由萃取平板提供的離子不需要定義萃取焦點。然而,根據多種實施例,例如萃取平板101的萃取平板,會提供通常匯集的離子束。再次地參考圖3,根據一些實施例,且視電漿系統400所選擇的參數而定,離子束可顯示匯集的區域及/或衝擊基板之前的偏離。具體地說,多種實施例藉由控制電漿系統400中電漿的功率位準(功率設定值),以控制離子束匯集/發散(於本文中亦參照作離子束「聚焦」(focusing)/「焦聚」(focus))。當相對於萃取平板101掃瞄工件100時藉由改變離子束的焦聚,可於工件之不同區域中改變離子植入位準及對應於工件100中不同植入位準的植入寬度。
圖5描繪在一例示性方式中,作為電漿功率函數之電漿鞘邊界241的示範性形狀。舉例而言,曲線241a、241b、以及241c可分別地代表電漿140於低、中、高RF-功率的邊界。隨著功率下降,邊界241變成較大的曲率且進一步地向腔室402擴展,進入萃取平板101上方的區域中。邊 界241曲線及位置的改變會導致由邊界241向工件100行進之經加速離子的角度的整體分布之改變。
圖6a到圖6c根據本揭露之實施例分別描繪於不同的電漿位準時,示範性之離子剖面102a~102c。其中電漿位準用於加速由電漿140穿過萃取平板101的離子。如圖所示,離子剖面102a、102b以及102c可為電漿鞘邊界241a、241b以及241c的結果,其分別對應於低、中、高之電漿功率位準(如以上圖5所討論)。在低電漿功率配置中,離子102a匯集於基板100上方的焦點並在撞擊基板前發散。經植入的區域104a可於基板100上形成為具有寬W1的區域。在圖6b描繪的中功率位準配置中,相較於低功率而言離子剖面102b中離子的匯集更為漸進,例如離子的「聚焦平面」(未分別地繪示)更靠近基板100的位準。在這種方式下,藉由離子102b所定義之植入的區域104b更為窄小,且具有寬度W2。最後,在較高功率的配置時,離子102c的角度匯集仍然較小,導致相較於W2而言,植入的區域102c具有更為寬大的W3。
在一實例中,電漿140的功率位準可被安排以使植入的寬度W1等於W3。因此,藉由單調的方式將電漿功率從低功率位準改變到高功率位準,相對於基板100的平面而言,由電漿萃取之離子的聚焦平面可從過焦(overfocused)狀態改變為聚焦狀態、或為未聚焦狀態。在一組實例中,可配置0.5kW的電漿與具有1mm之孔洞寬的萃取平板,以製造過聚焦的離子束,用以於基板產生 約1mm的植入寬度;可配置2.2kW的電漿以製造具有植入寬度約0.1mm之聚焦的束流;以及可配置5kW的電漿以製造具有植入寬度約1mm之未聚焦的束流。
藉由改變電漿功率以改變基板上的植入寬度的能力,提供掃瞄基板時,藉由改變電漿功率以便利地在基板移植具有不同植入位準及不同寬的區域。在以上實施例中,舉例而言,可使用0.5kW的電漿以於基板上產生摻質物質之植入的總括位準或背景位準,其使用1mm寬的束流以掃瞄基板的寬區域。因為萃取自2.2kW電漿的離子通量(透過萃取平板101)實質上高於萃取自0.5kW電漿的離子通量,故可使用2.2kW的電漿以產生具有較高摻質濃度的選擇性區域。再者,因為束流寬可為約0.1mm,故2.2kW的設定值可便於在基板移植高摻質濃度的窄小條紋。因此,於植入製程區間中,可相對於萃取平板101而連續地掃瞄基板100,同時改變電漿功率。此製造流程可產生相對較高植入位準的一個或多個窄小基板區域,以及一個或多個具有相對較低植入位準之較寬的基板區域。
圖7a及圖7b根據一實施例,呈現示範性電漿功率曲線及其基板植入圖案的結果。在此實施例中,電漿功率曲線702代表所施加的電漿功率作為時間的函數。在啟始時間時T0,可藉由施加功率位準P1以啟始電漿。直到T1之前,維持功率位準P1;並當增加功率到位準P2後,持續一段時間直到T2;T2之後減少功率位準到P1。於T3及T4之間,再次增加功率位準到P2,T4之後維持位準P1直到 T5時將電漿熄滅。在一些實施例中,當施加功率曲線702於鄰近萃取平板的電漿時,可相對於萃取平板等速度地掃瞄基板。因此,用於描繪圖7a中時間的橫坐標,其亦可直接地正比於沿著基板的線性位置,其中基板接收萃取自萃取平板孔洞的離子。
圖7b描繪當施加電漿曲線702時,於萃取平板下掃瞄後,工件720中的植入區域。維持功率P1於區間704、區間706、以及區間708內,P1對應於離子植入的第一位準;且於上述區間中,植入分別形成寬的區域722、區域724、以及區域726。於增加功率到位準P2的期間,區間712與714對應於離子植入形成個別區域728與730的第二位準。
圖8a及圖8b根據另一實施例,呈現另一個示範性電漿功率曲線802及其基板植入圖案的結果。在啟始時間T0時,可藉由施加功率位準P3以啟始電漿。直到T1之前,維持功率位準P3;並當降低功率到位準P2後,持續一段時間直到T2;T2後增加功率位準到P3。於T3及T4之間,再次降低功率位準到P2,T4之後維持位準P3直到T5時將電漿熄滅。
如圖8b所示,於區間804、806及808內維持功率於P3,其對應於工件820的離子植入形成個別區域822、824及826的一第三位準。於區間810及區間812內,降低功率到P2,其可對應的離子植入位準類似於區域728及區域732的植入位準,從而分別形成區域828、區域830。
在圖7a及圖8a的電漿功率曲線702及802之多種實施例中,功率位準P2可對應於一功率,所述功率是相較於功率位準P1或P3而言,能讓萃取平板產生具有較小束流寬(且因此於工件中具有較小的植入寬度)的離子束。在一些實施例中,功率位準P2可產生一離子束,這個離子束之聚焦平面(亦即,其平面中的束流寬為最小束流寬)吻合於基板平面。因此,無論發送給功率源之對應於P2的電漿設定值為何,可於基板產生最小的束流寬。
因此,使用對應於P2的電漿源設定值以提供如下能力:選擇性地改變於區域728、區域730及區域828、區域830的植入位準;以及藉由選擇性離子植入以減小可圖案化之區域的最小尺寸。在電漿功率曲線702的實例中,使用較低的功率位準P1以圖案化較寬大的區域722~726,其中P1可於工件上產生較寬、非聚焦的束流,其可導致更多均勻的植入。在電漿功率曲線802的實例中,使用更高的功率位準P3以圖案化較大的區域822~826,其中P3亦可於工件產生較寬、非聚焦的束流。然而在後者的案例中,因為更大的電漿功率,於更寬大的區域822到區域826中的植入位準可為更高的植入位準(相較於區域722到區域726而言)。
因此,本實施例提供的是以不同的植入位準之多個區域,進行簡便地圖案化工件的系統和方法。可不需要罩幕就以工件之單一連續的掃瞄而製造多個區域。藉由依照用來植入寬區域所需的功率位準及依照聚焦束流的功率位 準,來增加或者降低電漿功率,以便於較寬且相對較均勻的植入區域之間夾雜相對較窄的植入區域。
在多種實施例中,當相對於萃取平板掃瞄工件時、以及當用於電漿的功率位準於所述掃瞄期間同時於不同的功率設定值之間改變時,可於工件及電漿之間施加連續的DC偏壓。藉由使用連續的DC偏壓,可改善植入區域的均勻性。然而,在一些實施例中,可於工件及電漿之間使用經脈衝DC偏壓。
雖然在一些實施例中,可以不需與電漿設定值之改變同步的於基板及電漿之間進行施加經脈衝DC偏壓,但是在其他實施例中,施加一個或多個經脈衝DC偏壓的方案可與電漿設定值方法(recipe)的一個或多個方案同步。在一些實施例中,DC脈衝可同步於電漿功率位準中的改變,其中電漿中第一及第二功率位準之間的轉變將發生於經脈衝DC電壓的關閉區間(off period)。此對於防止在不同束流尺寸及電漿會改變之不同功率位準之間的轉變期間之離子植入是有效益的。
在其他實施例中,可根據電漿功率的設定值以調整DC脈衝協定(DC pulsing protocol)。圖9a繪示一示範性電漿功率曲線,其所載方法用於周期性地改變功率於兩設定值之間。圖9b描繪示範的DC萃取電壓曲線,其可即時地與電漿功率曲線同步;而圖9c所示為一基板植入圖案的結果,其可根據圖9a及圖9b中所描繪之電漿功率及DC萃取電壓的同步化(synchronization)而製造。除了外加的區 間904外,電漿功率曲線902類似於曲線802,其中降低區間904的功率到位準P2,導致區間806細分為高電漿功率區間906及區間908。圖9b描繪一萃取電壓曲線912,其中施加於電漿及基板之間的DC電壓是一連串的脈衝或脈衝914到922的群組。電壓於固定的電壓和零電壓之間脈衝。舉例而言,當所需植入能量為30keV時,曲線912的電壓於0V的關閉狀態及30kV的開啟狀態(on state)之間脈衝。電壓脈衝區間可為數千赫或是更大的範圍內。因此,以1cm/sec的速度對100cm長的工件進行掃描期間,可發生數千的脈衝。
如圖9a及圖9b所描繪,高電漿功率設定值(P3)的區間804、906、908及808可同步化於窄電壓脈衝914、916及918的區間,其中「開啟」(on)區間(其可代表30kV的基板偏壓)可為數微秒到數百微秒。根據所需的植入位準,此種脈衝的工作周期(duty cycle)可為任何方便的值,例如5%、10%、或50%。此外,較低電漿功率設定值P2的區間812及區間814,可各自與DC萃取電壓脈衝920及脈衝922同步化。於全部的低電漿功率(P2)區間(T1及T2之間和T3及T4之間),電壓「脈衝」920及「脈衝」922可實際上地代表連續的經施加萃取電壓(舉例而言,30kV)。以下1cm/sec掃瞄速率的實例中,若較低的功率設定值P2製造0.1mm的束流且其植入寬度擬為0.2mm時,「脈衝」920及「脈衝」922的寬可為約20msec,而脈衝914~918的寬可於10μsec到100μsec的程度。
圖9a及圖9b所繪示為DC萃取電壓及電漿功率位準的同步化處理,其可促進更好的控制於高電漿功率區域及低電漿功率區域中的離子劑量。舉例而言,如上述所討論,功率位準P3的使用可製造具有較大束流寬的束流,適用於大區域的圖案化。較大之束流寬的使用,可減少發生在脈衝開關較窄束流之「條紋」(striping)的傾向。此外,藉由往上或往下調整脈衝914、916與918的工作周期,可簡便地調整在更寬大區域中的萃取植入劑量。再者,藉由於電漿功率位準為P2之短區間812和814內提供連續的萃取電壓(之前提及的「脈衝」920及922),可於較短的區間內植入相對較高劑量的離子。如以上所述,對應於功率位準P2的束流寬是在0.1mm的程度,以形成窄的植入區域。舉例而言,藉由提供較高的工作周期(亦即,實例中所示之100%)於窄區間812及814的DC萃取電壓,即便窄區間812及814內總電漿功率小於區間814及區間808的總電漿功率,仍可造成較高的植入劑量。
圖9c繪示一基板的實施例,其可分別源於示範性電漿功率與DC萃取的方法902及912。基板920含有對應於高電漿功率位準P3的數個寬區域922、924、926以及928,其分別以窄區域930、932以及934分開。如此實施例所示,窄區域930及區域934彼此類似,且可含有相對較高的植入位準,其事實上為施加連續的DC萃取電壓於個別的區間T1-T2及T3-T4的結果。另一方面,因為事實上於T6及T7之間的整個期間施加經脈衝DC電壓(以小於 100%的工作周期),所以對應於T6及T7之間較低電漿功率區間之窄區域932可具有較低的植入位準。
在一些實施例中,例如工件720、820或工件921之工件可為經植入的太陽能電池。藉由控制電漿功率及DC萃取電壓的脈衝,其可以使用連續的掃瞄製程以定做太陽能電池之選擇性地植入區域的寬度及劑量。相較於採用物理性罩幕及/或微影步驟以形成圖案化植入的製程,本實施例於摻雜太陽能電池或其他需要不同植入位準(包括窄寬度)之區域的基板,提供較為簡單及更有效率的方式。具體地說,在固定掃瞄速率下的單一掃瞄期間內,使用窄離子束寬形成的一個或多個窄植入區域,可移植於使用較寬的植入束寬形成的植入區域之間;期間可藉由調整基板之脈衝偏壓,來各自地調整窄及寬植入區域的植入程度。之前提及的實施例都不需要機械式的調整,例如改變物理孔洞尺寸、改變掃瞄速率、改變萃取平板及基板之間的分隔距離、或其他繁瑣及減少可靠度之機械式的調整。
舉例而言,本文所敘述之方法可藉由切實地體現電腦可讀儲存媒體上之指令的程式而自動化,且可藉由可施行此指令的機器以讀取電腦可讀儲存媒體。一般性通用的電腦可為此種機器的一個實例。適當的儲存媒體之非限制性的示範性清單為本技術領域已熟知,其包括此種裝置如可讀取或可寫入的CD、快閃記憶體晶片(以隨身碟(thumb drive)為例)、多種磁性儲存媒體、以及其相似物。
具體地說,可至少部分地藉由電子處理器、電腦可讀 取記憶體、及/或電腦可讀取程式的組合以執行用於改變電漿功率設定值的步驟及用於改變DC萃取電壓的步驟。電腦記憶體可進一步地經組態以接收、顯示及儲存關於電漿系統的製程歷史資訊,並藉由經儲存的電壓值將製程歷史資訊作為例證。
將不限制本揭露於本文所敘述之特定的實施例範疇內。事實上,除了本文中所敘述的那些實施例之外,對於那些對本領域中具有通常知識者而言,本揭露之其他多種實施例及改良方法,將顯而易見於前面的敘述及所附之圖示。具體地說,改變電漿功率於兩個以上的設定值(對應兩個以上的不同功率位準)之間的實施例是可能的。再者,使用脈衝電漿功率而非連續電漿功率的實施例亦是可能的。此外,擬想實施例中掃瞄速率的改變將結合任何之前提及之參數(例如基板經脈衝而具有偏壓及電漿功率設定值的改變)的改變。
因此,此種其他實施例及改良方法將傾向於落入本揭露的範疇內。更進一步地說,雖然本揭露已敘述於本文之用於特定目的之特定環境之特定落實方法的上下文中,對那些對本領域中具有通常知識者而言,將理解本發明的用處將不限制於此且本揭露可有效益地落實於任何數量之目的之任何數量的環境中。因此,應該以本文所敘述之本揭露的完整廣度及靈感的觀點來解釋以下闡述的申請專利範圍。
10、20‧‧‧太陽能電池
27、22‧‧‧ARC層
24‧‧‧基材
26‧‧‧背面接觸電極
28、40‧‧‧鈍化層
30‧‧‧N+表面電場
32‧‧‧N型基材
34、36‧‧‧接觸指
38‧‧‧貫孔
100、720、820、921‧‧‧工件
101‧‧‧萃取平板
102、102a、102b、102c‧‧‧離子
104a、104b、104c、201‧‧‧區域
140‧‧‧電漿
151‧‧‧平面
200、203‧‧‧射極
202‧‧‧接觸電極
204‧‧‧n+背面電場
212、214‧‧‧面板
241、241a、241b、241c‧‧‧邊界
242‧‧‧電漿鞘
269、270、271‧‧‧路徑
400‧‧‧系統
401‧‧‧電漿源
402‧‧‧腔室
403‧‧‧平台
404‧‧‧氣體源
405‧‧‧方向
407‧‧‧孔洞
408‧‧‧RF源產生器
409‧‧‧RF匹配網路
410‧‧‧DC中斷部
411‧‧‧外殼
702、802‧‧‧曲線
704、706、708、712、714‧‧‧區間
722、724、726、728、730‧‧‧區域
804、806、808、812、814‧‧‧區間
822、824、826、828、830‧‧‧區域
904、906、908‧‧‧區間
914、916、918、920、922‧‧‧脈衝
902、912‧‧‧方法
924、926、928、930、934‧‧‧區域
G‧‧‧水平間距
P1、P2、P3‧‧‧位準
T0、T1、T2、T3、T4、T5、T6、T7‧‧‧時間
W1、W2、W3‧‧‧寬
Z‧‧‧垂直間距
θ‧‧‧入射角
為了使本揭露的內容更好理解,以附圖作為參考,並將附圖以參考形式併入本文之中,以及其中:圖1為已知的選擇性射極太陽能電池的剖面圖。
圖2為已知的交指型背面接觸式太陽能電池的剖面圖。
圖3為依據本揭露之一實施例的電漿製程裝置的方塊圖。
圖4為一電漿系統中之示範性聚焦平板之配置的剖面圖。
圖5描繪在一例示性方式中,作為電漿功率函數之電漿鞘邊界的示範性形狀。
圖6a到圖6c描繪於不同的電漿位準時,實施例所示之示範性的離子剖面。
圖7a及圖7b根據一實施例,呈現一示範性電漿功率曲線及其基板植入圖案的結果。
圖8a及圖8b根據另一實施例,呈現另一示範性電漿功率曲線及其基板植入圖案的結果。
圖9a到圖9c根據一實施例,分別地繪示一示範性電漿功率曲線、其同步的DC萃取電壓曲線、以及其基板植入圖案的結果。
100‧‧‧工件
101‧‧‧萃取平板
102‧‧‧離子
140‧‧‧電漿
400‧‧‧系統
401‧‧‧電漿源
402‧‧‧腔室
403‧‧‧平台
404‧‧‧氣體源
405‧‧‧方向
407‧‧‧孔洞
408‧‧‧RF源產生器
409‧‧‧RF匹配網路
410‧‧‧DC中斷部
411‧‧‧外殼

Claims (11)

  1. 一種於離子植入系統植入工件的方法,包括:提供鄰近一電漿腔室的一萃取平板,所述電漿腔室包含電漿,所述萃取平板經組態以透過至少一個孔洞萃取來自所述電漿的多個離子並改良電漿鞘中的電場,藉以控制位於所述電漿及所述電漿鞘之間的邊界的形狀,以提供一離子束,所述離子束具有分佈於入射至所述工件之角度範圍的所述離子,其中藉由控制所述邊界的所述形狀而改變入射至所述工件的所述離子束的寬度;相對於所述萃取平板掃瞄所述工件;在所述掃瞄期間改變所述電漿的一功率位準從一第一功率位準到一第二功率位準,其中在所述工件的表面,在所述第一位準的一第一束流寬大於在所述第二位準的一第二束流寬;其中施加一萃取電壓作為所述電漿及所述工件之間的脈衝;其中在當施加所述電漿之所述第一功率位準時的期間,施加所述萃取電壓脈衝的一第一工作周期;以及其中在當施加所述電漿之所述第二功率位準時的期間,施加所述萃取電壓脈衝的一第二工作周期,所述第二工作周期不同於所述第一工作周期。
  2. 如申請專利範圍第1項所述之方法,其中所述改變所述功率位準於所述工件中產生多數個植入區域,且所述植入區域中至少一區域與所述工件中另一區域具有不同的 離子植入位準。
  3. 如申請專利範圍第1項所述之方法,包括施加所述第一功率位準一第一持續期間,所述第一持續期間對應於一第一植入區域寬;以及施加所述第二功率位準一第二持續時間,所述第二持續時間對應於一第二植入區域寬。
  4. 如申請專利範圍第3項所述之方法,包括周期性地交替所述第一功率位準之間的所述電漿的所述功率數次。
  5. 如申請專利範圍第1項所述之方法,所述第一功率位準高於所述第二功率位準。
  6. 如申請專利範圍第1項所述之方法,所述第一功率位準小於所述第二功率位準。
  7. 如申請專利範圍第1項所述之方法,包括於所述掃瞄期間改變所述電漿之一功率位準到一第三功率位準,其中於所述工件的表面,在所述第三功率位準之一第三束流寬不同於所述第一束流寬及所述第二束流寬。
  8. 如申請專利範圍第1項所述之方法,包括隨所述電漿之功率位準的改變同步化所述施加的萃取電壓,其中所述第一功率位準與所述第二功率位準之間的轉變發生於所述經脈衝的所述萃取電壓的一關閉區間。
  9. 如申請專利範圍第1項所述之方法,其包含:對所述第一工作周期的開啟區間設定一第一脈衝寬;以及對所述第二工作周期的開啟區間設定一第二脈衝寬。
  10. 一種用以執行一離子植入方法的物件,包括含有 多個指令的一電腦可讀儲存媒體,若藉由一處理器施行所述指令則能使一離子植入系統執行的步驟包括:相對於一萃取平板掃瞄一工件載台,所述萃取平板經配置以透過至少一個孔洞萃取來自一電漿的多個離子,以向所述工件提供一離子束並改良電漿鞘中的電場,藉以控制位於所述電漿及所述電漿鞘之間的邊界的形狀,其中藉由控制所述邊界的所述形狀而改變入射至所述工件的所述離子束的寬度;施加一萃取電壓於所述電漿及所述工件之間;以及於所述掃瞄期間改變所述電漿的一功率位準,同時維持掃描速率;其中施加一萃取電壓作為所述電漿及所述工件之間的脈衝;其中在當施加所述電漿之所述第一功率位準時的期間,施加所述萃取電壓脈衝的一第一工作周期;以及其中在當施加所述電漿之所述第二功率位準時的期間,施加所述萃取電壓脈衝的加一第二工作周期,所述第二工作周期不同於所述第一工作周期。
  11. 如申請專利範圍第10項所述之物件,包括含有多個指令的一電腦可讀儲存媒體,若藉由一處理器施行所述指令時,則能使一離子植入系統執行的步驟包括:施加所述萃取電壓作為於所述電漿及所述工件之間的DC脈衝,所述萃取電壓包含開啟區間及關閉區間,其中於所述關閉區間時,於所述電漿及所述工件之間無施加 萃取電壓;以及同步化所述電漿的所述第一及所述第二功率位準間的轉變與所述經脈衝萃取電壓的關閉區間。
TW101104406A 2011-03-11 2012-02-10 離子植入方法、使用此方法的裝置及執行此方法的物件 TWI600062B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/046,239 US8907307B2 (en) 2011-03-11 2011-03-11 Apparatus and method for maskless patterned implantation

Publications (2)

Publication Number Publication Date
TW201239956A TW201239956A (en) 2012-10-01
TWI600062B true TWI600062B (zh) 2017-09-21

Family

ID=45929596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101104406A TWI600062B (zh) 2011-03-11 2012-02-10 離子植入方法、使用此方法的裝置及執行此方法的物件

Country Status (5)

Country Link
US (1) US8907307B2 (zh)
KR (1) KR101611523B1 (zh)
CN (1) CN103493172B (zh)
TW (1) TWI600062B (zh)
WO (1) WO2012125285A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778603B2 (en) * 2010-03-15 2014-07-15 Varian Semiconductor Equipment Associates, Inc. Method and system for modifying substrate relief features using ion implantation
US8974683B2 (en) * 2011-09-09 2015-03-10 Varian Semiconductor Equipment Associates, Inc. Method and system for modifying resist openings using multiple angled ions
US8461554B1 (en) * 2011-12-07 2013-06-11 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for charge neutralization during processing of a workpiece
US9232628B2 (en) 2013-02-20 2016-01-05 Varian Semiconductor Equipment Associates, Inc. Method and system for plasma-assisted ion beam processing
US9269542B2 (en) 2013-11-01 2016-02-23 Varian Semiconductor Equipment Associates, Inc. Plasma cathode charged particle lithography system
US9514918B2 (en) * 2014-09-30 2016-12-06 Applied Materials, Inc. Guard aperture to control ion angular distribution in plasma processing
US20160111254A1 (en) * 2014-10-16 2016-04-21 Varian Semiconductor Equipment Associates, Inc. Workpiece Processing Method And Apparatus
WO2016068932A1 (en) * 2014-10-30 2016-05-06 Varian Semiconductor Equipment Associates, Inc. Plasma cathode charged particle lithography system
US20160172397A1 (en) * 2014-12-15 2016-06-16 Dartmouth College Solid State Image Sensor with Low Capacitance Floating Diffusion
WO2021158338A1 (en) * 2020-02-07 2021-08-12 Applied Materials, Inc. Etch improvement
US11669012B2 (en) 2020-02-21 2023-06-06 Applied Materials, Inc. Maskless lithography method to fabricate topographic substrate

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276137A (ja) * 1985-09-30 1987-04-08 Hitachi Ltd イオン源
US5504340A (en) * 1993-03-10 1996-04-02 Hitachi, Ltd. Process method and apparatus using focused ion beam generating means
US5825035A (en) * 1993-03-10 1998-10-20 Hitachi, Ltd. Processing method and apparatus using focused ion beam generating means
US6083363A (en) * 1997-07-02 2000-07-04 Tokyo Electron Limited Apparatus and method for uniform, low-damage anisotropic plasma processing
US6929727B2 (en) * 1999-04-12 2005-08-16 G & H Technologies, Llc Rectangular cathodic arc source and method of steering an arc spot
JP3692999B2 (ja) * 2001-10-26 2005-09-07 日新イオン機器株式会社 イオン注入方法およびその装置
JP3690517B2 (ja) * 2002-02-28 2005-08-31 住友イートンノバ株式会社 イオン注入方法及びイオン注入装置
US6686595B2 (en) * 2002-06-26 2004-02-03 Semequip Inc. Electron impact ion source
JP4374487B2 (ja) * 2003-06-06 2009-12-02 株式会社Sen イオン源装置およびそのクリーニング最適化方法
US7241361B2 (en) * 2004-02-20 2007-07-10 Fei Company Magnetically enhanced, inductively coupled plasma source for a focused ion beam system
US7541069B2 (en) * 2005-03-07 2009-06-02 Sub-One Technology, Inc. Method and system for coating internal surfaces using reverse-flow cycling
US20060289800A1 (en) * 2005-03-22 2006-12-28 Murrell Adrian J Implanting a substrate using an ion beam
US7601619B2 (en) * 2005-04-04 2009-10-13 Panasonic Corporation Method and apparatus for plasma processing
JP2006351887A (ja) * 2005-06-17 2006-12-28 Hitachi High-Technologies Corp プラズマ処理装置
KR100653999B1 (ko) * 2005-06-29 2006-12-06 주식회사 하이닉스반도체 와이드빔을 이용한 불균일 이온주입장치 및 이온주입방법
US7524743B2 (en) 2005-10-13 2009-04-28 Varian Semiconductor Equipment Associates, Inc. Conformal doping apparatus and method
JP4179337B2 (ja) * 2006-05-17 2008-11-12 日新イオン機器株式会社 イオン源およびその運転方法
GB2438893B (en) * 2006-06-09 2010-10-27 Applied Materials Inc Ion beams in an ion implanter
US7498592B2 (en) * 2006-06-28 2009-03-03 Wisconsin Alumni Research Foundation Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams
JP2008060429A (ja) * 2006-08-31 2008-03-13 Toshiba Corp 基板のプラズマ処理装置及びプラズマ処理方法
US7804068B2 (en) * 2006-11-15 2010-09-28 Alis Corporation Determining dopant information
US7750320B2 (en) * 2006-12-22 2010-07-06 Axcelis Technologies, Inc. System and method for two-dimensional beam scan across a workpiece of an ion implanter
US7820533B2 (en) * 2007-02-16 2010-10-26 Varian Semiconductor Equipment Associates, Inc. Multi-step plasma doping with improved dose control
TWI385699B (zh) * 2007-05-22 2013-02-11 Semequip Inc 用於自一離子源萃取離子之離子萃取系統
US9123509B2 (en) * 2007-06-29 2015-09-01 Varian Semiconductor Equipment Associates, Inc. Techniques for plasma processing a substrate
US20090004836A1 (en) 2007-06-29 2009-01-01 Varian Semiconductor Equipment Associates, Inc. Plasma doping with enhanced charge neutralization
JP4915671B2 (ja) * 2007-09-20 2012-04-11 日新イオン機器株式会社 イオン源、イオン注入装置およびイオン注入方法
US9039871B2 (en) * 2007-11-16 2015-05-26 Advanced Energy Industries, Inc. Methods and apparatus for applying periodic voltage using direct current
US7586100B2 (en) * 2008-02-12 2009-09-08 Varian Semiconductor Equipment Associates, Inc. Closed loop control and process optimization in plasma doping processes using a time of flight ion detector
US20090317937A1 (en) 2008-06-20 2009-12-24 Atul Gupta Maskless Doping Technique for Solar Cells
US7812321B2 (en) * 2008-06-11 2010-10-12 Varian Semiconductor Equipment Associates, Inc. Techniques for providing a multimode ion source
US8329055B2 (en) * 2008-10-02 2012-12-11 Varian Semiconductor Equipment Associates, Inc. Plasma uniformity control using biased array
EP2175469A1 (en) * 2008-10-09 2010-04-14 Danmarks Tekniske Universitet (DTU) Ion beam extraction by discrete ion focusing
US8237135B2 (en) * 2009-01-22 2012-08-07 Axcelis Technologies, Inc. Enhanced low energy ion beam transport in ion implantation
US8623171B2 (en) * 2009-04-03 2014-01-07 Varian Semiconductor Equipment Associates, Inc. Plasma processing apparatus
US8101510B2 (en) * 2009-04-03 2012-01-24 Varian Semiconductor Equipment Associates, Inc. Plasma processing apparatus
US20100303877A1 (en) * 2009-06-01 2010-12-02 Board Of Regents, The University Of Texas System Controlled Release Hydrogel Films
US8749053B2 (en) * 2009-06-23 2014-06-10 Intevac, Inc. Plasma grid implant system for use in solar cell fabrications
US8679960B2 (en) * 2009-10-14 2014-03-25 Varian Semiconductor Equipment Associates, Inc. Technique for processing a substrate having a non-planar surface
US8461030B2 (en) * 2009-11-17 2013-06-11 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for controllably implanting workpieces
WO2011097178A2 (en) * 2010-02-02 2011-08-11 Applied Materials, Inc. Methods for nitridation and oxidation
US9024273B2 (en) * 2010-04-20 2015-05-05 Varian Semiconductor Equipment Associates, Inc. Method to generate molecular ions from ions with a smaller atomic mass
US8320521B2 (en) * 2010-09-30 2012-11-27 General Electric Company Method and system for operating an electron beam system
US8742373B2 (en) * 2010-12-10 2014-06-03 Varian Semiconductor Equipment Associates, Inc. Method of ionization
US8288741B1 (en) * 2011-08-16 2012-10-16 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for three dimensional ion processing

Also Published As

Publication number Publication date
CN103493172A (zh) 2014-01-01
US20120228515A1 (en) 2012-09-13
WO2012125285A1 (en) 2012-09-20
KR101611523B1 (ko) 2016-04-11
TW201239956A (en) 2012-10-01
KR20140019791A (ko) 2014-02-17
CN103493172B (zh) 2016-07-06
US8907307B2 (en) 2014-12-09

Similar Documents

Publication Publication Date Title
TWI600062B (zh) 離子植入方法、使用此方法的裝置及執行此方法的物件
US8937004B2 (en) Apparatus and method for controllably implanting workpieces
TWI480933B (zh) 離子植入系統及基板處理方法
KR101937910B1 (ko) 작업물 처리 방법 및 플라즈마 프로세싱 시스템
US9288889B2 (en) Apparatus and techniques for energetic neutral beam processing
US20110192993A1 (en) Adjustable shadow mask assembly for use in solar cell fabrications
US20130287963A1 (en) Plasma Potential Modulated ION Implantation Apparatus
WO2011079040A2 (en) Workpiece patterning with plasma sheath modulation
TWI469368B (zh) 在太陽能電池製造中供固態磊晶成長之直流電離子注入
US8592230B2 (en) Method for patterning a substrate using ion assisted selective depostion
US9297063B2 (en) Plasma potential modulated ion implantation system
US6504159B1 (en) SOI plasma source ion implantation
TW201230159A (en) Method of ionization
Current Ion implantation for fabrication of semiconductor devices and materials
US8183546B2 (en) Ion implantation through laser fields
Seki et al. Threshold Energy for Generating Damage with Cluster Ion Irradiation