TWI599823B - Manufacturing system, manufacturing method and recording medium for optical member laminated body - Google Patents

Manufacturing system, manufacturing method and recording medium for optical member laminated body Download PDF

Info

Publication number
TWI599823B
TWI599823B TW103116962A TW103116962A TWI599823B TW I599823 B TWI599823 B TW I599823B TW 103116962 A TW103116962 A TW 103116962A TW 103116962 A TW103116962 A TW 103116962A TW I599823 B TWI599823 B TW I599823B
Authority
TW
Taiwan
Prior art keywords
optical component
optical
bonding
component layer
layer
Prior art date
Application number
TW103116962A
Other languages
Chinese (zh)
Other versions
TW201508390A (en
Inventor
藤井幹士
土岡達也
Original Assignee
住友化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化學股份有限公司 filed Critical 住友化學股份有限公司
Publication of TW201508390A publication Critical patent/TW201508390A/en
Application granted granted Critical
Publication of TWI599823B publication Critical patent/TWI599823B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing

Description

光學組件貼合體之製造系統、製造方法及儲存媒體 Manufacturing system, manufacturing method and storage medium of optical component bonding body

本發明係關於一種將光學組件貼合至光學顯示部件的光學組件貼合體之製造系統、製造方法及儲存媒體。 The present invention relates to a manufacturing system, a manufacturing method, and a storage medium for an optical component bonding body in which an optical component is bonded to an optical display component.

本發明係根據2013年5月16日於日本提出申請之特願第2013-104151號而主張其優先權,並引用其內容。 The present invention claims priority based on Japanese Patent Application No. 2013-104151, filed on Jan.

傳統上,已知液晶顯示器等光學顯示設備的生產系統。該生產系統將貼合至液晶面板(光學顯示部件)的偏光板等光學組件,從長條薄膜切割出符合液晶面板之顯示區域尺寸的層片。其後,將光學組件貼合至液晶面板(例如,參考專利文獻1)。 Conventionally, a production system of an optical display device such as a liquid crystal display is known. This production system is to be bonded to an optical component such as a polarizing plate of a liquid crystal panel (optical display member), and a laminate which conforms to the size of the display region of the liquid crystal panel is cut out from the long film. Thereafter, the optical component is attached to the liquid crystal panel (for example, refer to Patent Document 1).

專利文獻1:日本專利特開第2003-255132號公報。 Patent Document 1: Japanese Patent Laid-Open No. 2003-255132.

一般而言,上述長條薄膜(光學薄膜)係將浸漬有二色性(dichroism)色素之樹脂薄膜朝一方向延伸所製造。該長條薄膜之光學軸方向與該樹脂薄膜之延伸方向概略一致。因此,傳統上係以該延伸方向為基準來設計 長條薄膜的切斷角度。 In general, the above-mentioned long film (optical film) is produced by extending a resin film impregnated with a dichroism dye in one direction. The optical axis direction of the long film is substantially the same as the extending direction of the resin film. Therefore, it is traditionally designed based on the extension direction. The cutting angle of the long film.

但是,關於長條薄膜之光學軸,於長條薄膜整體並非相同,於長條薄膜面內具有若干差異。因此,從長條薄膜切割出偏光板(光學組件)的情況,因該長條薄膜面內之光學軸差異的影響,所切割出的偏光板之光學軸將產生偏差。 However, the optical axis of the long film is not the same in the whole of the long film, and there are some differences in the surface of the long film. Therefore, in the case where the polarizing plate (optical module) is cut out from the long film, the optical axis of the cut polarizing plate is deviated due to the influence of the optical axis difference in the surface of the long film.

將薄膜狀光學組件貼合至光學顯示部件的情況亦同樣會生產上述光學軸差異。因此,需要提升相對光學顯示部件的光學組件之光學軸方向的精度。 The above optical axis difference is also produced in the case where the film-shaped optical component is bonded to the optical display component. Therefore, there is a need to improve the accuracy of the optical axis direction of the optical components of the optical display member.

本發明有鑑於上述事項,提供一種可提升貼合至光學顯示部件的光學薄膜之光學軸方向精度的光學組件貼合體之製造系統、製造方法及儲存媒體。 In view of the above, the present invention provides a manufacturing system, a manufacturing method, and a storage medium for an optical component bonding body which can improve the optical axis direction accuracy of an optical film bonded to an optical display member.

(1)關於本發明的一形態之光學組件貼合體的製造系統,具備:控制裝置,根據顯示較光學顯示部件之顯示區域大的光學組件層之光學軸方向的檢查資料,決定該光學顯示部件及該光學組件層的相對貼合位置;校準裝置,根據該控制裝置所決定之相對貼合位置,進行相對該光學組件層之光學顯示部件的校準;貼合裝置,將該光學組件層貼合至由該校準裝置校準好之光學顯示部件;檢測裝置,於該貼合裝置所貼合之光學組件層中,檢測該光學組件層及該光學顯示部件之貼合面的外周緣;以及切斷裝置,沿著該貼合面的外周緣,切斷該檢測裝置所檢測之光學組件層的區域中對應該光學組件層之貼合面區域的第一區域與該光學組件層之第一區域外側區域的第二區域。 (1) A manufacturing system for an optical component bonding body according to one aspect of the present invention includes: a control device that determines the optical display component based on inspection data indicating an optical axis direction of an optical component layer that is larger than a display region of the optical display component And a relative bonding position of the optical component layer; the calibration device performs calibration with respect to the optical display component of the optical component layer according to the relative bonding position determined by the control device; and a bonding device that laminates the optical component layer An optical display component calibrated to the calibration device; the detecting device detects an outer periphery of the bonding surface of the optical component layer and the optical display component in the optical component layer to which the bonding device is attached; and cuts a device, along the outer periphery of the bonding surface, cutting a first region of the region of the optical component layer corresponding to the optical component layer detected by the detecting device and a first region of the optical component layer The second area of the area.

另外,上述結構中的「光學顯示部件及光學組件層之貼合面」係指,對向光學顯示部件的光學組件層之面;「貼合面的外周緣」具體而言係指,於光學顯示部件中,貼合有光學組件層之側的基板之外周緣。 In the above configuration, the "bonding surface of the optical display member and the optical component layer" means the surface of the optical component layer facing the optical display member; the "outer peripheral edge of the bonding surface" means, in particular, optical In the display member, the outer periphery of the substrate on the side of the optical component layer is bonded.

而且,光學組件層的「第一區域(對應貼合面區域)」係指,於光學組件層中,較光學組件層及對向的光學顯示部件之顯示區域大並較光學顯示部件的外形(平面視圖中之輪廓外形)小的區域,且為於光學顯示部件中避開了電子部件 安裝部等功能部分的區域。 Further, the "first region (corresponding to the bonding surface region)" of the optical component layer means that the optical component layer is larger than the display region of the optical component layer and the opposite optical display component and is larger than the outer shape of the optical display component ( a small area in the outline view in plan view, and avoiding electronic components in the optical display part The area of the functional part such as the installation section.

(2)於上述(1)之形態中,該切斷裝置較佳從該光學組件層切割出對應該貼合面大小的光學組件層,藉以切割出包含該光學顯示部件及該光學組件層的光學組件貼合體。 (2) In the aspect of the above (1), the cutting device preferably cuts an optical component layer corresponding to the size of the bonding surface from the optical component layer, thereby cutting the optical display component and the optical component layer. Optical component bonding body.

此外,上述結構中的「對應貼合面大小」係指,較光學顯示部件之顯示區域大並較光學顯示部件之外形(平面視圖中之輪廓外形)小的區域。 Further, the "corresponding bonding surface size" in the above structure means a region which is larger than the display region of the optical display member and smaller than the outer shape of the optical display member (the contour shape in the plan view).

(3)於上述(1)之形態中,該控制裝置較佳讓該光學顯示部件之基準軸與該檢查資料所示之光學組件層的光學軸方向呈平行,以決定該相對貼合位置。 (3) In the aspect of the above (1), the control device preferably has a reference axis of the optical display member parallel to an optical axis direction of the optical component layer indicated by the inspection material to determine the relative bonding position.

(4)於上述(3)之形態中,該控制裝置較佳使用通過該光學顯示部件之平面中心的長邊方向軸來作為該基準軸。 (4) In the aspect of the above (3), the control device preferably uses the long-axis direction axis passing through the center of the plane of the optical display member as the reference axis.

(5)於上述(1)之形態中,該校準裝置較佳讓該光學組件層與該光學顯示部件配置至該控制裝置所決定的相對貼合位置,以進行該光學顯示部件的校準。 (5) In the aspect of (1) above, the calibration device preferably arranges the optical component layer and the optical display component to a relative bonding position determined by the control device to perform calibration of the optical display component.

(6)於上述(1)之形態中,該校準裝置較佳由該第一搬送裝置朝該光學顯示部件的搬送方向之垂直方向移動、及由該第一搬送裝置繞該光學顯示部件的搬送方向之垂直軸迴轉,以將該光學顯示部件搬送至該相對貼合位置。 (6) In the aspect of the above (1), preferably, the calibration device is moved by the first transfer device in a direction perpendicular to a direction in which the optical display member is transported, and the first transfer device is transported around the optical display member. The vertical axis of the direction is rotated to transport the optical display member to the relative bonding position.

(7)於上述(1)之形態中,該校準裝置較佳於將該光學顯示部件反轉後,根據該控制裝置所決定之相對貼合位置,進行相對該光學組件層之光學顯示部件的校準。 (7) In the aspect of the above (1), the calibration device preferably performs the optical display member reversely, and performs an optical display member with respect to the optical component layer according to the relative bonding position determined by the control device. calibration.

(8)於上述(1)之形態中,該貼合裝置較佳使用較該顯示區域大且較該光學顯示部件的外形小之區域來作為該第一區域。 (8) In the aspect of the above (1), the bonding apparatus preferably uses, as the first region, a region larger than the display region and smaller than the outer shape of the optical display member.

(9)於上述(1)之形態中,該切斷裝置較佳使用雷射來切斷該光學組件層。 (9) In the aspect of the above (1), the cutting device preferably uses a laser to cut the optical component layer.

(10)於上述(1)之形態中,較佳更具備攝影裝置,拍攝該光學顯示部件之位置;其中該控制裝置根據該檢查資料與該攝影裝置所拍攝之光學顯示部件的位置,決定該相對貼合位置。 (10) In the above aspect (1), preferably, the photographing device is further provided to photograph the position of the optical display member; wherein the control device determines the position based on the inspection data and the position of the optical display member photographed by the photographing device Relatively fitting position.

(11)於上述(1)之形態中,較佳更具備第一搬送裝置,將該光學顯示部件以該校準裝置、該貼合裝置及該切斷裝置之順序進行搬送。 (11) In the aspect of the above (1), preferably, the first transport device is further provided, and the optical display member is transported in the order of the calibration device, the bonding device, and the cutting device.

(12)於上述(1)之形態中,較佳更具備第二搬送裝置,將該光學組件層搬送至該貼合裝置。 (12) In the aspect of the above (1), preferably, the second transfer device is further provided, and the optical component layer is transported to the bonding device.

(13)於上述(12)之形態中,該第二搬送裝置較佳具備回收部,回收該切斷裝置所切斷之剩餘部分。 (13) In the aspect of the above (12), the second conveying device preferably includes a collecting portion that collects the remaining portion cut by the cutting device.

(14)關於本發明的一形態之光學組件貼合體的製造方法,包含:根據顯示較光學顯示部件之顯示區域大的光學組件層之光學軸方向的檢查資料,決定該光學顯示部件及該光學組件層的相對貼合位置;根據決定之相對貼合位置,進行相對該光學組件層之光學顯示部件的校準;將該光學組件層貼合至校準好之光學顯示部件;於所貼合之光學組件層中,檢測該光學組件層及該光學顯示部件之貼合面的外周緣;以及沿著該貼合面的外周緣,切斷所檢測之光學組件層的區域中對應該光學組件層之貼合面區域的第一區域與該光學組件層之第一區域外側區域的第二區域。 (14) A method of manufacturing an optical component bonding body according to one aspect of the present invention, comprising: determining an optical display component and the optical based on inspection data indicating an optical axis direction of an optical component layer larger than a display region of the optical display component a relative bonding position of the component layer; performing calibration of the optical display component relative to the optical component layer according to the determined relative bonding position; bonding the optical component layer to the calibrated optical display component; In the component layer, detecting an outer peripheral edge of the optical component layer and the bonding surface of the optical display component; and cutting the corresponding optical component layer in the region of the detected optical component layer along the outer peripheral edge of the bonding surface a first region of the mating face region and a second region of the outer region of the first region of the optical component layer.

(15)關於本發明的一形態之電腦可讀式儲存媒體,儲存有執行下述動作的程式:根據顯示較光學顯示部件之顯示區域大的光學組件層之光學軸方向的檢查資料,決定該光學顯示部件及該光學組件層的相對貼合位置;根據所決定之相對貼合位置,進行相對該光學組件層之光學顯示部件的校準;將該光學組件層貼合至校準好之光學顯示部件;於所貼合之光學組件層中,檢測該光學組件層及該光學顯示部件之貼合面的外周緣;以及沿著該貼合面的外周緣,切斷所檢測之光學組件層的區域中對應該光學組件層之貼合面區域的第一 區域與該光學組件層之第一區域外側區域的第二區域。 (15) A computer-readable storage medium according to one aspect of the present invention, wherein a program for performing an operation of determining an optical data axis direction of an optical component layer larger than a display area of the optical display component is stored The optical display member and the relative bonding position of the optical component layer; performing calibration of the optical display component relative to the optical component layer according to the determined relative bonding position; bonding the optical component layer to the calibrated optical display component Detecting an outer peripheral edge of the optical component layer and the bonding surface of the optical display component in the bonded optical component layer; and cutting the region of the detected optical component layer along the outer peripheral edge of the bonding surface The first of the matching surface areas of the optical component layer a second region of the region and the outer region of the first region of the optical component layer.

而且,關於本發明的一形態係於將光學組件貼合於光學顯示部件以形成光學組件貼合體的製造方法中,包含:貼合光學組件層的製程,將較該光學顯示部件之顯示區域大的光學組件層貼合至該光學顯示部件,以形成貼合層;決定相對貼合位置的製程,於該光學組件層貼合至該光學顯示部件前,根據該光學組件層之光學軸方向的檢查資料,決定該光學顯示部件及該光學組件層的相對貼合位置;校準製程,於該光學組件層貼合至該光學顯示部件前,根據該控制裝置所決定之相對貼合位置,進行相對該光學組件層之光學顯示部件的校準;以及切割製程,於該光學組件層貼合至該光學顯示部件後,於該貼合層中,檢測該光學組件層及該光學顯示部件之貼合面的外周緣,並於該貼合層中,沿著該貼合面的外周緣,切斷對應該光學組件層之貼合面部分及其外側的剩餘部分,從該光學組件層切割出對應該貼合面大小的光學組件,藉以從該貼合層切割出包含單一個光學顯示部件及與其重疊之光學組件的光學組件貼合體。 Further, an aspect of the present invention is directed to a method of manufacturing an optical component by bonding an optical component to an optical display component, comprising: a process of bonding the optical component layer, which is larger than a display area of the optical display component The optical component layer is bonded to the optical display component to form a bonding layer; the process of determining the relative bonding position is performed according to the optical axis direction of the optical component layer before the optical component layer is bonded to the optical component component Checking the data to determine the relative bonding position of the optical display component and the optical component layer; and the calibration process, before the optical component layer is attached to the optical display component, according to the relative bonding position determined by the control device, Aligning the optical display component of the optical component layer; and cutting the process, after bonding the optical component layer to the optical display component, detecting the bonding surface of the optical component layer and the optical display component in the bonding layer The outer periphery, and in the bonding layer, along the outer periphery of the bonding surface, the portion of the bonding surface corresponding to the optical component layer and the outer side thereof are cut The remaining portion, the cutting out of the optical element layer to be attached to the optical assembly bonding surface size, thereby cutting out of the bonding layer comprises a single optical display assembly components of the optical assembly and overlaps the bonded body.

從關於本發明的形態可知,根據顯示光學組件層之光學軸方向的檢查資料而進行校準之後,將光學組件層貼合至光學顯示部件。藉此,即使是光學軸方向因光學組件層之位置而改變的情況,可配合該光學軸方向來校準光學顯示部件,並貼合至光學組件層。藉此,可提升相對於光學顯示部件的光學組件之光學軸方向的精度。而且,可改善光學顯示設備的色彩度及對比度。而且,亦可對應具任意光學軸方向的光學組件貼合體之製造。 As is apparent from the aspect of the present invention, after the calibration is performed based on the inspection data indicating the optical axis direction of the optical component layer, the optical component layer is bonded to the optical display member. Thereby, even if the optical axis direction changes due to the position of the optical component layer, the optical display member can be aligned with the optical axis direction and bonded to the optical component layer. Thereby, the accuracy with respect to the optical axis direction of the optical component of the optical display member can be improved. Moreover, the color and contrast of the optical display device can be improved. Moreover, it is also possible to manufacture an optical component bonding body having an arbitrary optical axis direction.

5‧‧‧滾筒搬送機 5‧‧‧Roller conveyor

11‧‧‧第一校準裝置 11‧‧‧First calibration device

12‧‧‧第一貼合裝置 12‧‧‧First bonding device

12’‧‧‧第一貼合裝置 12’‧‧‧First bonding device

12a‧‧‧搬送裝置 12a‧‧‧Transporting device

12a’‧‧‧搬送裝置 12a’‧‧‧Transporting device

12b‧‧‧夾壓滾筒 12b‧‧‧ pinch roller

12c‧‧‧滾筒保持部 12c‧‧‧Roller Keeping Department

12d‧‧‧保護薄膜回收部 12d‧‧‧Protective film recycling department

12c‧‧‧第一回收部 12c‧‧‧First Recycling Department

13‧‧‧第一切斷裝置 13‧‧‧First cutting device

13’‧‧‧第一切斷裝置 13’‧‧‧First cut-off device

14‧‧‧第二校準裝置 14‧‧‧Second calibration device

15‧‧‧第二貼合裝置 15‧‧‧Second laminating device

15a‧‧‧搬送裝置 15a‧‧‧Transporting device

15b‧‧‧夾壓滾筒 15b‧‧‧ pinch roller

15c‧‧‧滾筒保持部 15c‧‧‧Roller Keeping Department

15d‧‧‧第二回收部 15d‧‧‧Second Recycling Department

16‧‧‧第二切斷裝置 16‧‧‧Second cutting device

17‧‧‧第三校準裝置 17‧‧‧ Third calibration device

17’‧‧‧第三校準裝置 17'‧‧‧ third calibration device

18‧‧‧第三貼合裝置 18‧‧‧ Third bonding device

18’‧‧‧第三貼合裝置 18’‧‧‧ Third bonding device

18a‧‧‧搬送裝置 18a‧‧‧Transporting device

18b‧‧‧夾壓滾筒 18b‧‧‧ pinch roller

18c‧‧‧滾筒保持部 18c‧‧‧Roller Keeping Department

18d‧‧‧第三回收部 18d‧‧‧ Third Recycling Department

19‧‧‧第三切斷裝置 19‧‧‧ Third cutting device

20‧‧‧控制裝置 20‧‧‧Control device

41‧‧‧第一檢測裝置 41‧‧‧First detection device

42‧‧‧第二檢測裝置 42‧‧‧Second detection device

43‧‧‧攝影裝置 43‧‧‧Photographing device

43a‧‧‧拍攝面 43a‧‧‧Photographing surface

44‧‧‧照明光源 44‧‧‧Light source

45‧‧‧控制部 45‧‧‧Control Department

C‧‧‧攝影機 C‧‧‧ camera

CA‧‧‧檢查區域 CA‧‧‧ inspection area

ED‧‧‧外周緣 ED‧‧‧ outer periphery

F1‧‧‧第一光學組件層 F1‧‧‧First optical component layer

F2‧‧‧第二光學組件層 F2‧‧‧Second optical component layer

F3‧‧‧第三光學組件層 F3‧‧‧ third optical component layer

F11‧‧‧第一光學組件 F11‧‧‧First optical component

F12‧‧‧第二光學組件 F12‧‧‧Second optical component

F13‧‧‧第三光學組件 F13‧‧‧ Third optical component

F1S‧‧‧層片 F1S‧‧‧ layer

F21‧‧‧第一貼合層 F21‧‧‧ first bonding layer

F22‧‧‧第二貼合層 F22‧‧‧Second bonding layer

F23‧‧‧第三貼合層 F23‧‧‧ third bonding layer

FX‧‧‧光學組件層 FX‧‧‧ optical component layer

G‧‧‧邊框部 G‧‧‧Border Department

H‧‧‧高度 H‧‧‧ Height

H1‧‧‧高度 H1‧‧‧ Height

P‧‧‧液晶面板 P‧‧‧ LCD panel

P1‧‧‧第一基板 P1‧‧‧ first substrate

P2‧‧‧第二基板 P2‧‧‧second substrate

P3‧‧‧液晶層 P3‧‧‧ liquid crystal layer

P4‧‧‧顯示區域 P4‧‧‧ display area

P5‧‧‧電子部件安裝部 P5‧‧‧Electronic Component Installation Department

P11‧‧‧第一單面貼合面板 P11‧‧‧First single-sided fitting panel

P12‧‧‧第二單面貼合面板 P12‧‧‧Second single-sided fitting panel

P13‧‧‧雙面貼合面板 P13‧‧‧ double-sided fitting panel

pf‧‧‧保護薄膜 Pf‧‧‧protective film

pt1‧‧‧起點 Starting point of pt1‧‧

pt2‧‧‧終點 End point of pt2‧‧

PX‧‧‧光學顯示部件 PX‧‧‧Optical display parts

R1‧‧‧第一料捲滾筒 R1‧‧‧First roll drum

R2‧‧‧第二料捲滾筒 R2‧‧‧second roll drum

R3‧‧‧第三料捲滾筒 R3‧‧‧ third roll

SA1‧‧‧第一貼合面 SA1‧‧‧ first fit surface

SA2‧‧‧第二貼合面 SA2‧‧‧ second fit surface

t‧‧‧切斷端 T‧‧‧ cut end

θ‧‧‧傾斜角度 Θ‧‧‧ tilt angle

第1圖係本發明之實施形態中光學顯示設備之薄膜貼合系統的示意結構圖。 Fig. 1 is a schematic configuration diagram of a film bonding system of an optical display device in an embodiment of the present invention.

第2圖係上述薄膜貼合系統之第二貼合裝置周邊的立體圖。 Fig. 2 is a perspective view showing the periphery of a second bonding apparatus of the above film bonding system.

第3圖係顯示上述薄膜貼合系統之光學組件層的光學軸方向與其貼合之光學顯示部件的立體圖。 Fig. 3 is a perspective view showing an optical display member in which the optical axis direction of the optical component layer of the film bonding system is bonded thereto.

第4圖係上述薄膜貼合系統中第一貼合層的剖面圖。 Figure 4 is a cross-sectional view of the first bonding layer in the above film bonding system.

第5圖係上述薄膜貼合系統之第二切斷裝置中第二貼合層的剖面圖。 Fig. 5 is a cross-sectional view showing a second bonding layer in the second cutting device of the film bonding system.

第6圖係上述薄膜貼合系統之第三切斷裝置中第三貼合層的平面圖。 Fig. 6 is a plan view showing a third bonding layer in the third cutting device of the above film bonding system.

第7圖係第6圖之A-A線的剖面圖。 Figure 7 is a cross-sectional view taken along line A-A of Figure 6.

第8圖係通過上述薄膜貼合系統之雙面貼合面板的剖面圖。 Figure 8 is a cross-sectional view of the double-sided bonding panel through the above film bonding system.

第9圖係顯示已貼合至液晶面板的光學組件層之雷射切斷端的剖面圖。 Fig. 9 is a cross-sectional view showing the laser cut end of the optical component layer which has been bonded to the liquid crystal panel.

第10圖係顯示光學組件層單體之雷射切斷端的剖面圖。 Figure 10 is a cross-sectional view showing the laser cut end of the optical component layer unit.

第11圖係顯示上述薄膜貼合系統之第一貼合裝置周邊變形例的示意結構圖。 Fig. 11 is a schematic structural view showing a modification of the periphery of the first bonding apparatus of the above film bonding system.

第12圖係顯示上述薄膜貼合系統之第三貼合裝置周邊變形例的示意結構圖。 Fig. 12 is a schematic structural view showing a modification of the periphery of the third bonding apparatus of the above film bonding system.

第13圖係顯示檢測貼合面的外周緣之第一檢測裝置的示意圖。 Figure 13 is a schematic view showing the first detecting means for detecting the outer periphery of the bonding surface.

第14圖係顯示檢測貼合面的外周緣之第一檢測裝置變形例的示意圖。 Fig. 14 is a view showing a modification of the first detecting device for detecting the outer periphery of the bonding surface.

第15圖係顯示檢測貼合面的外周緣之位置的平面圖。 Fig. 15 is a plan view showing the position of the outer peripheral edge of the detecting bonding surface.

第16圖係顯示檢測貼合面的外周緣之第二檢測裝置的示意圖。 Figure 16 is a schematic view showing a second detecting means for detecting the outer periphery of the bonding surface.

以下,參考圖面說明本發明之實施形態。本實施形態中,說明包含光學組件貼合體之製造裝置的薄膜貼合系統。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a film bonding system including a manufacturing apparatus of an optical component bonding body will be described.

第1圖係顯示本實施形態之薄膜貼合系統1的示意結構。薄膜貼合系統1係例如將偏光薄膜或相位差薄膜、輝度增加薄膜等薄膜狀光學組件貼合至例如液晶面板或有機電致發光(OEL,Organic Electro-Luminescencc)面板等面板狀光學顯示部件。 Fig. 1 is a view showing a schematic configuration of a film bonding system 1 of the present embodiment. In the film bonding system 1 , for example, a film-shaped optical component such as a polarizing film, a retardation film, or a brightness-increasing film is bonded to a panel-shaped optical display member such as a liquid crystal panel or an organic electroluminescence (OEL) panel.

薄膜貼合系統係製造包含有該光學顯示部件及光學組件的光學組件貼合體。薄膜貼合系統1中,係使用液晶面板P作為該光學顯示部件。 The film bonding system manufactures an optical component bonding body including the optical display member and the optical component. In the film bonding system 1, a liquid crystal panel P is used as the optical display member.

薄膜貼合系統1之各部位係透過作為電子控制裝置的控制裝置20進行整體控制。 Each part of the film bonding system 1 is integrally controlled by a control device 20 as an electronic control unit.

薄膜貼合系統1係從貼合製程之起始位置到終點位置為止,使用例如驅動式之滾筒搬送機5來搬送液晶面板P,同時對液晶面板P依序施以特定處理。液晶面板P以其正/反面呈水平狀態下於滾筒搬送機5上進行搬送。 The film bonding system 1 transports the liquid crystal panel P from the start position to the end position of the bonding process, for example, by using the driving type drum conveyor 5, and sequentially applies specific processing to the liquid crystal panel P. The liquid crystal panel P is conveyed on the drum conveyor 5 with its front/reverse surface in a horizontal state.

此外,第1圖之紙面左側係顯示液晶面板P的搬送方向上游側(以下,稱作面板搬送上游側)。第1圖之紙面右側則顯示液晶面板P的搬送方向下游側(以下,稱作面板搬送下游側)。 In addition, the left side of the paper surface of the first drawing shows the upstream side in the conveyance direction of the liquid crystal panel P (hereinafter referred to as the panel conveyance upstream side). The right side of the paper surface of the first drawing shows the downstream side of the transport direction of the liquid crystal panel P (hereinafter referred to as the panel transport downstream side).

一併參考第6圖至第8圖進行說明。此外,第7圖以及第8圖中,液晶面板P之紙面上方側係為顯示面側,紙面下方側則為背光側。液晶面板P之平面視圖為長方形(參考第6圖)。從液晶面板P的外周緣距特定寬度之內側處,形成具有沿該外周緣形狀之顯示區域P4(參考第6圖)。於後述第二校準裝置14的面板搬送上游側時,使得顯示區域P4之短邊約略沿著搬送方向來搬送液晶面板P。於該第二校準裝置14的面板搬送下游側時,則使得顯示區域P4之長邊約略沿著搬送方向來搬送液晶面板P。 The description will be made with reference to Figs. 6 to 8. In addition, in FIG. 7 and FIG. 8, the upper side of the paper surface of the liquid crystal panel P is the display surface side, and the lower side of the paper surface is the backlight side. The plan view of the liquid crystal panel P is rectangular (refer to Fig. 6). A display region P4 having a shape along the outer periphery is formed from the outer periphery of the liquid crystal panel P from the inner side of the specific width (refer to Fig. 6). When the panel of the second calibration device 14 is transported to the upstream side, the short side of the display region P4 is transported about the transport panel in the transport direction. When the panel of the second calibration device 14 is transported to the downstream side, the long side of the display region P4 is caused to convey the liquid crystal panel P approximately along the transport direction.

針對該液晶面板P之正面與反面,將長條形之第一光學組件層F1、第二光學組件層F2及第三光學組件層F3所切割出的第一光學組件F11、第二光學組件F12及第三光學組件F13適當地貼合於液晶面板P(參考第8 圖)。本實施形態中,液晶面板P之背光側及顯示面側的雙面係各自貼合有作為偏光薄膜之第一光學組件F11及第三光學組件F13(參考第8圖)。液晶面板P之背光側一面進一步貼合有重疊於第一光學組件F11之作為輝度增加薄膜(參考第8圖)的第二光學組件F12。 The first optical component F11 and the second optical component F12 cut out by the elongated first optical component layer F1, the second optical component layer F2, and the third optical component layer F3 for the front and back surfaces of the liquid crystal panel P And the third optical component F13 is appropriately attached to the liquid crystal panel P (refer to the eighth Figure). In the present embodiment, the first optical component F11 and the third optical component F13 which are polarizing films are bonded to each other on both the backlight side and the display surface side of the liquid crystal panel P (refer to FIG. 8). On the side of the backlight side of the liquid crystal panel P, a second optical component F12 as a luminance increasing film (refer to FIG. 8) overlapping the first optical component F11 is further bonded.

如第1圖所示,薄膜貼合系統1具備第一校準裝置11、第一貼合裝置12、第一切斷裝置13及第二校準裝置14。 As shown in FIG. 1, the film bonding system 1 includes a first calibration device 11, a first bonding device 12, a first cutting device 13, and a second calibration device 14.

第一校準裝置11將液晶面板P從上游製程搬送至滾筒搬送機5之面板搬送上游側上,同時進行液晶面板P的校準。第一貼合裝置12設置於第一校準裝置11的面板搬送下游側。第一切斷裝置13設置於接近第一貼合裝置12處。第二校準裝置14設置於第一貼合裝置12及第一切斷裝置13的面板搬送下游側。 The first aligning device 11 transports the liquid crystal panel P from the upstream process to the panel transport upstream side of the drum conveyor 5, and simultaneously calibrates the liquid crystal panel P. The first bonding apparatus 12 is provided on the downstream side of the panel conveyance of the first calibration apparatus 11. The first cutting device 13 is disposed adjacent to the first bonding device 12. The second calibration device 14 is provided on the panel transfer downstream side of the first bonding device 12 and the first cutting device 13.

而且,薄膜貼合系統1具備第二貼合裝置15、第二切斷裝置16、第三校準裝置17、第三貼合裝置18及第三切斷裝置19。 Further, the film bonding system 1 includes a second bonding device 15, a second cutting device 16, a third calibration device 17, a third bonding device 18, and a third cutting device 19.

第二貼合裝置15設置於第二校準裝置14的面板搬送下游側。第二切斷裝置16設置於接近第二貼合裝置15處。第三校準裝置17設置於第二貼合裝置15及第二切斷裝置16的面板搬送下游側。 The second bonding device 15 is provided on the panel transport downstream side of the second calibration device 14. The second cutting device 16 is disposed adjacent to the second bonding device 15. The third calibration device 17 is provided on the panel transfer downstream side of the second bonding device 15 and the second cutting device 16.

第三貼合裝置18設置於第三校準裝置17的面板搬送下游側。 The third bonding device 18 is provided on the downstream side of the panel transport of the third calibration device 17.

第三切斷裝置19設置於接近第三貼合裝置18處。 The third cutting device 19 is disposed adjacent to the third bonding device 18.

而且,詳細內容於後述,於第二切斷裝置16的面板搬送上游側,設置檢測裝置,用以規定在第二切斷裝置16的切斷位置;於第三切斷裝置19的面板搬送上游側,設置檢測裝置,用以規定在第三切斷裝置19的切斷位置。 Further, as will be described later, on the panel transport upstream side of the second cutting device 16, a detecting device for defining a cutting position at the second cutting device 16 and a panel transporting upstream of the third cutting device 19 are provided. On the side, a detecting device is provided for specifying the cutting position of the third cutting device 19.

第一校準裝置11可保持液晶面板P並自由地朝垂直方向及水平方向進行搬送。而且,第一校準裝置11具有拍攝液晶面板P之面板搬送上 游側及下游側之端部的一對攝影機C(參考第3圖)。攝影機C的攝影資料傳送至控制裝置20。 The first calibration device 11 can hold the liquid crystal panel P and freely transport it in the vertical direction and the horizontal direction. Moreover, the first calibration device 11 has a panel for photographing the liquid crystal panel P. A pair of cameras C at the ends of the swim side and the downstream side (refer to Fig. 3). The photographic data of the camera C is transmitted to the control device 20.

控制裝置20根據該攝影資料與預先儲存之光學軸方向的檢查資料,啟動第一校準裝置11。不過,後述第二校準裝置14及第三校準裝置17亦同樣地具有攝影機C,並將該攝影機C之攝影資料用以進行校準。 The control device 20 activates the first calibration device 11 based on the photographic data and the inspection data in the optical axis direction stored in advance. However, the second calibration device 14 and the third calibration device 17 described later also have the camera C, and the photographic data of the camera C is used for calibration.

第一校準裝置11受控制裝置20之控制,進行相對第一貼合裝置12之液晶面板P的校準。此時,決定液晶面板P於垂直搬送方向之水平方向(以下稱作部件寬度方向)上的位置,及繞垂直軸之迴轉方向(以下稱作迴轉方向)上的位置。在此狀態下,將液晶面板P引導至第一貼合裝置12之貼合位置。 The first calibration device 11 is controlled by the control device 20 to perform calibration with respect to the liquid crystal panel P of the first bonding device 12. At this time, the position of the liquid crystal panel P in the horizontal direction (hereinafter referred to as the member width direction) in the vertical conveyance direction and the position in the rotation direction about the vertical axis (hereinafter referred to as the rotation direction) are determined. In this state, the liquid crystal panel P is guided to the bonding position of the first bonding apparatus 12.

第一貼合裝置12針對被引導至貼合位置的長條狀第一光學組件層F1之上側面,將沿其上方搬送之液晶面板P的下側面(背光側)進行貼合。第一貼合裝置12具備搬送裝置12a及夾壓滾筒12b。 The first bonding apparatus 12 bonds the lower side surface (backlight side) of the liquid crystal panel P that is transported along the upper side of the long first optical component layer F1 that is guided to the bonding position. The first bonding apparatus 12 includes a conveying device 12a and a nip roller 12b.

搬送裝置12a從捲繞有第一光學組件層F1之第一料捲滾筒R1將第一光學組件層F1捲出,並沿其長邊方向搬送第一光學組件層F1。夾壓滾筒12b將滾筒搬送機5所搬送之液晶面板P的下側面貼合至搬送裝置12a所搬送之第一光學組件層F1的上側面。 The conveying device 12a winds the first optical module layer F1 from the first roll drum R1 around which the first optical component layer F1 is wound, and conveys the first optical component layer F1 in the longitudinal direction thereof. The nip roller 12b bonds the lower surface of the liquid crystal panel P conveyed by the roller conveyor 5 to the upper side surface of the 1st optical component layer F1 conveyed by the conveyance apparatus 12a.

搬送裝置12a具備滾筒保持部12c及保護薄膜回收部12d。滾筒保持部12c保持著捲繞有第一光學組件層F1之第一料捲滾筒R1,並沿其長邊方向捲出第一光學組件層F1。保護薄膜回收部12d將重疊於第一光學組件層F1的下側面而與第一光學組件層F1一併捲出的保護薄膜pf,在第一貼合裝置12之面板搬送下游側進行回收。 The conveying device 12a includes a drum holding portion 12c and a protective film collecting portion 12d. The roller holding portion 12c holds the first roll drum R1 around which the first optical component layer F1 is wound, and winds up the first optical component layer F1 in the longitudinal direction thereof. The protective film collecting portion 12d collects the protective film pf which is superposed on the lower side surface of the first optical component layer F1 and is unwound with the first optical component layer F1, and is collected on the downstream side of the panel transfer of the first bonding apparatus 12.

夾壓滾筒12b具有於軸線方向相互平行配置的一對貼合滾筒。一對貼合滾筒之間形成有特定間隙,該間隙內即為第一貼合裝置12的貼合位 置。將液晶面板P及第一光學組件層F1重合導入該間隙內。該等液晶面板P及第一光學組件層F1於該貼合滾筒之間受夾壓,並送往面板搬送下游側。藉此,便可形成將複數個液晶面板P相距特定間隔而連續貼合至長條狀第一光學組件層F1之上側面的第一貼合層F21。 The nip roller 12b has a pair of bonding drums arranged in parallel with each other in the axial direction. A specific gap is formed between the pair of bonding rollers, and the gap of the first bonding device 12 is the gap in the gap. Set. The liquid crystal panel P and the first optical component layer F1 are superposed into the gap. The liquid crystal panel P and the first optical component layer F1 are pinched between the bonding rollers and sent to the downstream side of the panel transport. Thereby, the first bonding layer F21 in which the plurality of liquid crystal panels P are continuously bonded to the upper surface of the elongated first optical component layer F1 at a predetermined interval can be formed.

一併參考第4圖以及第5圖進行說明。不過,第4圖以及第5圖中,液晶面板P之紙面上方側係為背光側,紙面下方側係為顯示面側。第一切斷裝置13位於保護薄膜回收部12d的面板搬送下游側。第一切斷裝置13於第一光學組件層F1之特定部位(沿搬送方向上並列的液晶面板P之間)處,沿該部件寬度方向將整個寬度切斷。藉此,第一切斷裝置13切斷第一貼合層F21之第一光學組件層F1,而作為較顯示區域P4大(本實施形態中較液晶面板P大)的層片F1S。不過,第一切斷裝置13較佳可使用切割刀片,亦可使用雷射切割機。透過該切斷,形成第一單面貼合面板P11,其係於液晶面板P的下側面貼合有較顯示區域P4大之層片F1S。 The description will be made with reference to Fig. 4 and Fig. 5 together. In the fourth and fifth figures, the upper side of the paper surface of the liquid crystal panel P is the backlight side, and the lower side of the paper surface is the display surface side. The first cutting device 13 is located on the downstream side of the panel conveyance of the protective film collecting portion 12d. The first cutting device 13 cuts off the entire width in the width direction of the member at a specific portion of the first optical component layer F1 (between the liquid crystal panels P arranged in the transport direction). Thereby, the first cutting device 13 cuts the first optical component layer F1 of the first bonding layer F21, and is a layer F1S which is larger than the display region P4 (larger than the liquid crystal panel P in the present embodiment). However, the first cutting device 13 preferably uses a cutting blade, and a laser cutting machine can also be used. By this cutting, the first single-sided bonding panel P11 is formed, and a layer sheet F1S larger than the display region P4 is bonded to the lower side surface of the liquid crystal panel P.

另外,於層片F1S中,突出於液晶面板P外側部分的大小(層片F1S的剩餘部分大小)因應液晶面板P的尺寸而適當設定。例如,層片F1S適用於5吋至10吋的中小型尺寸之液晶面板P的情況,於層片F1S的各側邊中,將層片F1S的一側邊及液晶面板P的一側邊之間的間隔設定為2mm-5mm範圍之長度。 Further, in the layer sheet F1S, the size of the outer portion of the liquid crystal panel P (the remaining portion of the layer F1S) is appropriately set in accordance with the size of the liquid crystal panel P. For example, when the layer F1S is applied to a small-sized and medium-sized liquid crystal panel P of 5 to 10 inches, one side of the layer F1S and one side of the liquid crystal panel P are formed on each side of the layer F1S. The interval between the two is set to a length ranging from 2 mm to 5 mm.

參考第1圖進行說明。第二校準裝置14係例如可保持滾筒搬送機5上的第一單面貼合面板P11並繞垂直軸迴轉90°。藉此,與顯示區域P4之短邊略呈平行而搬送的第一單面貼合面板P11係轉換方向為與顯示區域P4之長邊略呈平行而進行搬送。不過,前述迴轉係為當貼合至液晶面板P的其它光學組件層之光學軸方向相對第一光學組件層F1之光學軸方向配置呈直角的情況。 This will be described with reference to Fig. 1. The second aligning device 14 is, for example, capable of holding the first single-sided bonding panel P11 on the drum conveyor 5 and rotating it by 90° about the vertical axis. Thereby, the first single-sided bonding panel P11 conveyed in a direction slightly parallel to the short side of the display region P4 is conveyed in a direction slightly parallel to the long side of the display region P4. However, the above-described rotation is a case where the optical axis direction of the other optical component layer bonded to the liquid crystal panel P is disposed at a right angle with respect to the optical axis direction of the first optical component layer F1.

第二校準裝置14進行與該第一校準裝置11相同的校準。即,第二校準裝置14根據儲存於控制裝置20之光學軸方向的檢查資料及該攝影機C的攝影資料,決定相對第二貼合裝置15的第一單面貼合面板P11之部件寬度方向及迴轉方向的位置。在此狀態中,第一單面貼合面板P11被引導至第二貼合裝置15之貼合位置。 The second calibration device 14 performs the same calibration as the first calibration device 11. That is, the second calibration device 14 determines the width direction of the member of the first single-sided bonding panel P11 of the second bonding device 15 based on the inspection data stored in the optical axis direction of the control device 20 and the imaging data of the camera C. The position in the direction of rotation. In this state, the first single-sided bonding panel P11 is guided to the bonding position of the second bonding apparatus 15.

第二貼合裝置15針對被引導至貼合位置的長條狀第二光學組件層F2之上側面,將沿其上方搬送之第一單面貼合面板P11的下側面(液晶面板P之背光側)進行貼合。即,為了使貼合於第一單面貼合面板P11中液晶面板P的背光側之層片F1S及第二光學組件層F2接觸,而貼合第一單面貼合面板P11及第二光學組件層F2。 The second bonding apparatus 15 is directed to the upper side of the elongated second optical component layer F2 that is guided to the bonding position, and the lower side of the first single-sided bonding panel P11 that is carried along the upper side thereof (the backlight of the liquid crystal panel P) Side) for fitting. In other words, in order to bring the layer F1S and the second optical component layer F2 on the backlight side of the liquid crystal panel P bonded to the first single-sided bonding panel P11, the first single-sided bonding panel P11 and the second optical are bonded. Component layer F2.

第二貼合裝置15具備搬送裝置15a及夾壓滾筒15b。 The second bonding apparatus 15 includes a conveying device 15a and a nip roller 15b.

搬送裝置15a從捲繞有第二光學組件層F2之第二料捲滾筒R2將第二光學組件層F2捲出,並沿其長邊方向搬送第二光學組件層F2。夾壓滾筒15b將滾筒搬送機5所搬送之第一單面貼合面板P11的下側面貼合至搬送裝置15a所搬送之第二光學組件層F2的上側面。 The conveying device 15a winds up the second optical component layer F2 from the second reel roller R2 around which the second optical component layer F2 is wound, and conveys the second optical component layer F2 in the longitudinal direction thereof. The nip roller 15b bonds the lower surface of the first single-sided bonding panel P11 conveyed by the drum conveyor 5 to the upper surface of the second optical component layer F2 conveyed by the conveying device 15a.

搬送裝置15a具備滾筒保持部15c及第二回收部15d。 The conveying device 15a includes a drum holding portion 15c and a second collecting portion 15d.

滾筒保持部15c保持著捲繞有第二光學組件層F2之第二料捲滾筒R2,並沿其長邊方向捲出第二光學組件層F2。第二回收部15d將通過位於夾壓滾筒15b的面板搬送下游側之第二切斷裝置16後的第二光學組件層F2之剩餘部分回收。 The roller holding portion 15c holds the second take-up roll R2 around which the second optical component layer F2 is wound, and winds up the second optical component layer F2 in the longitudinal direction thereof. The second recovery unit 15d collects the remaining portion of the second optical module layer F2 after being transported by the second cutting device 16 on the downstream side of the panel of the nip roller 15b.

夾壓滾筒15b具有沿軸線方向相互平行配置的一對貼合滾筒。一對貼合滾筒之間形成有特定間隙,該間隙內即為第二貼合裝置15的貼合位置。將第一單面貼合面板P11及第二光學組件層F2重合導入該間隙內。該等第一單面貼合面板P11及第二光學組件層F2於該貼合滾筒之間受夾壓,並送 往面板搬送下游側。藉此,便可形成將複數個第一單面貼合面板P11相距特定間隔而連續貼合至長條狀第二光學組件層F2之上側面的第二貼合層F22。 The nip roller 15b has a pair of bonding drums arranged in parallel with each other in the axial direction. A specific gap is formed between the pair of bonding rollers, and the gap is the bonding position of the second bonding device 15. The first single-sided bonding panel P11 and the second optical component layer F2 are superposed and introduced into the gap. The first single-sided bonding panel P11 and the second optical component layer F2 are pinched between the bonding rollers, and are sent Carry the downstream side to the panel. Thereby, the second bonding layer F22 in which the plurality of first single-sided bonding panels P11 are continuously bonded to the upper surface of the elongated second optical component layer F2 at a predetermined interval can be formed.

一併參考第2圖以及第5圖進行說明。第二切斷裝置16位於夾壓滾筒15b的面板搬送下游側。第二切斷裝置16同時切斷第二光學組件層F2與貼合於其上側面的第一單面貼合面板P11之第一光學組件層F1之層片F1S。第二切斷裝置16例如為二氧化碳(CO2)雷射切割機。第二切斷裝置16沿層積體及液晶面板P的貼合面之外周緣(本實施形態中係沿液晶面板P之外周緣)不間斷地切斷第二光學組件層F2與第一光學組件層F1之層片F1S的層積體。將各光學組件層(第一光學組件層F1、第二光學組件層F2)貼合至液晶面板P後再一同進行切割,可提高各光學組件層(第一光學組件層F1、第二光學組件層F2)的光學軸方向之精度。而且,可消除各光學組件層(第一光學組件層F1、第二光學組件層F2)間的光學軸方向之偏差。再者,可簡化第一切斷裝置13中的切斷。 The description will be made with reference to Fig. 2 and Fig. 5 together. The second cutting device 16 is located on the downstream side of the panel conveyance of the nip roller 15b. The second cutting device 16 simultaneously cuts the second optical component layer F2 and the layer F1S of the first optical component layer F1 of the first single-sided bonding panel P11 attached to the upper side thereof. The second cutting device 16 is, for example, a carbon dioxide (CO 2 ) laser cutting machine. The second cutting device 16 cuts the second optical component layer F2 and the first optical unit continuously along the outer periphery of the bonding surface of the laminate and the liquid crystal panel P (in the present embodiment, along the outer periphery of the liquid crystal panel P). A laminate of the layer F1S of the component layer F1. After the optical component layers (the first optical component layer F1 and the second optical component layer F2) are bonded to the liquid crystal panel P and then cut together, the optical component layers (the first optical component layer F1 and the second optical component) can be improved. The accuracy of the optical axis direction of layer F2). Moreover, the deviation of the optical axis directions between the respective optical component layers (the first optical component layer F1 and the second optical component layer F2) can be eliminated. Furthermore, the cutting in the first cutting device 13 can be simplified.

藉由第二切斷裝置16的切斷,形成第二單面貼合面板P12,其係於液晶面板P的下側面重疊貼合有第一光學組件F11及第二光學組件F12(參考第7圖)。此時,使第二單面貼合面板P12與切除對應貼合面的部分(第一光學組件F11、第二光學組件F12)後殘餘呈框狀的各光學組件層(第一光學組件層F1、第二光學組件層F2)之剩餘部分能相互分離。 The second single-sided bonding panel P12 is formed by the cutting of the second cutting device 16, and the first optical component F11 and the second optical component F12 are laminated on the lower side of the liquid crystal panel P (refer to the seventh Figure). At this time, the second single-sided bonding panel P12 and the portions (the first optical component F11 and the second optical component F12) that are cut off corresponding to the bonding surface are left in a frame-like optical component layer (the first optical component layer F1). The remaining portions of the second optical component layer F2) can be separated from each other.

第二光學組件層F2之剩餘部分會成為複數相連的梯子狀。該剩餘部分與第一光學組件層F1之剩餘部分被共同捲取至第二回收部15d。 The remaining portion of the second optical component layer F2 may be in the form of a plurality of ladders connected. The remaining portion is co-wound with the remaining portion of the first optical component layer F1 to the second recovery portion 15d.

另外,關於對應貼合面的部分如後述。 In addition, the part corresponding to a bonding surface is mentioned later.

參考第1圖進行說明。第三校準裝置17將液晶面板P之顯示面側朝向上側面的第二單面貼合面板P12進行正/反反轉,使得液晶面板P之背光側朝向上側面。第三校準裝置17進行與該第一校準裝置11及第二校準裝置 14相同的校準。即,第三校準裝置17根據儲存於控制裝置20之光學軸方向檢查資料及該攝影機C的攝影資料,決定相對第三貼合裝置18的第二單面貼合面板P12之部件寬度方向及迴轉方向上的位置。在此狀態中,第二單面貼合面板P12被引導至第三貼合裝置18之貼合位置。 This will be described with reference to Fig. 1. The third calibration device 17 performs forward/reverse inversion of the second single-sided bonding panel P12 on the display surface side of the liquid crystal panel P toward the upper side, so that the backlight side of the liquid crystal panel P faces the upper side. The third calibration device 17 performs the first calibration device 11 and the second calibration device 14 same calibration. That is, the third calibration device 17 determines the width direction and the rotation of the member of the second single-sided bonding panel P12 with respect to the third bonding device 18 based on the optical axis direction inspection data stored in the control device 20 and the imaging data of the camera C. The position in the direction. In this state, the second single-sided bonding panel P12 is guided to the bonding position of the third bonding device 18.

第三貼合裝置18針對被引導至貼合位置的長條狀第三光學組件層F3之上側面,將沿其上方搬送之第二單面貼合面板P12的下側面(液晶面板P之顯示面側)進行貼合。第三貼合裝置18具備搬送裝置18a及夾壓滾筒18b。 The third bonding apparatus 18 is directed to the upper side of the elongated third optical component layer F3 that is guided to the bonding position, and the lower side of the second single-sided bonding panel P12 that is transported along the upper side thereof (the display of the liquid crystal panel P) Face side). The third bonding apparatus 18 includes a conveying device 18a and a nip roller 18b.

搬送裝置18a從捲繞有第三光學組件層F3之第三料捲滾筒R3將第三光學組件層F3捲出,並沿其長邊方向搬送第三光學組件層F3。夾壓滾筒18b將滾筒搬送機5所搬送之第二單面貼合面板P12的下側面貼合至搬送裝置18a所搬送之第三光學組件層F3的上側面。 The conveying device 18a winds up the third optical component layer F3 from the third winding drum R3 around which the third optical component layer F3 is wound, and conveys the third optical component layer F3 in the longitudinal direction thereof. The nip roller 18b bonds the lower surface of the second single-sided bonding panel P12 conveyed by the drum conveyor 5 to the upper side surface of the third optical component layer F3 conveyed by the conveying apparatus 18a.

搬送裝置18a具備滾筒保持部18c及第三回收部18d。 The conveying device 18a includes a drum holding portion 18c and a third collecting portion 18d.

滾筒保持部18c保持著捲繞有第三光學組件層F3之第三料捲滾筒R3,並沿其長邊方向捲出第三光學組件層F3。第三回收部18d將通過位於夾壓滾筒18b之面板搬送下游側之第三切斷裝置19後的第三光學組件層F3之剩餘部分回收。 The roller holding portion 18c holds the third roll drum R3 around which the third optical component layer F3 is wound, and winds up the third optical component layer F3 in the longitudinal direction thereof. The third recovery unit 18d collects the remaining portion of the third optical module layer F3 after passing through the third cutting device 19 on the downstream side of the panel of the nip roller 18b.

夾壓滾筒18b具有沿軸線方向相互平行配置的一對貼合滾筒。一對貼合滾筒之間形成有特定間隙,該間隙內即為第三貼合裝置18的貼合位置。將第二單面貼合面板P12及第三光學組件層F3重合導入該間隙內。該第二單面貼合面板P12及該第三光學組件層F3於該貼合滾筒之間受夾壓,並送往面板搬送下游側。藉此,便可形成將複數個第二單面貼合面板P12相距特定間隔而連續貼合至長條狀第三光學組件層F3上側面的第三貼合層F23。 The nip roller 18b has a pair of bonding rollers arranged parallel to each other in the axial direction. A specific gap is formed between the pair of bonding rollers, and the gap is the bonding position of the third bonding device 18. The second single-sided bonding panel P12 and the third optical component layer F3 are superposed into the gap. The second single-sided bonding panel P12 and the third optical component layer F3 are pinched between the bonding rollers and sent to the downstream side of the panel conveying. Thereby, the third bonding layer F23 in which the plurality of second single-sided bonding panels P12 are continuously bonded to the upper surface of the elongated third optical component layer F3 at a predetermined interval can be formed.

第三切斷裝置19位於夾壓滾筒18b之面板搬送下游側,切斷 第三光學組件層F3。第三切斷裝置19具有與第二切斷裝置16相同的雷射加工機,沿第三光學組件層F3及液晶面板P之貼合面的外周緣(例如,沿液晶面板P之外周緣)不間斷地切斷第三光學組件層F3。 The third cutting device 19 is located on the downstream side of the panel conveyance of the nip roller 18b, and is cut off. The third optical component layer F3. The third cutting device 19 has the same laser processing machine as the second cutting device 16, and the outer peripheral edge of the bonding surface along the third optical component layer F3 and the liquid crystal panel P (for example, along the outer periphery of the liquid crystal panel P) The third optical component layer F3 is cut without interruption.

藉由第三切斷裝置19的切斷,形成雙面貼合面板P13,其係於第二單片貼合面板P12的下側面貼合有第三光學組件F13(參考第8圖)。此時,使雙面貼合面板P13與切除對應貼合面的部分(第三光學組件F13)後殘餘呈框狀的第三光學組件層F3之剩餘部分能相互分離。第三光學組件層F3之剩餘部分會與第二光學組件層F2之剩餘部分同樣地成為複數相連的梯子狀(參考第2圖)。該剩餘部分被捲取至第三回收部18d。 By the cutting of the third cutting device 19, the double-sided bonding panel P13 is formed, and the third optical component F13 is attached to the lower side surface of the second single-piece bonding panel P12 (refer to Fig. 8). At this time, the remaining portions of the third optical component layer F3, which has a frame shape after the double-sided bonding panel P13 and the portion (the third optical component F13) from which the corresponding bonding surface is cut, can be separated from each other. The remaining portion of the third optical component layer F3 is in the form of a ladder connected in plural as in the remaining portion of the second optical component layer F2 (refer to FIG. 2). This remaining portion is taken up to the third recovery portion 18d.

雙面貼合面板P13通過圖中未顯示之缺陷檢查裝置,檢查是否有缺陷(貼合不良等)後,搬送至下游製程進行其它處理。 The double-sided bonding panel P13 is inspected by a defect inspection device (not shown) to check whether there is a defect (a poor bonding or the like), and then transferred to a downstream process for other processing.

此處,一般的長條狀光學薄膜(相當於各光學組件層(第一光學組件層F1、第二光學組件層F2、第三光學組件層F3))係將經二色性色素進行染色之樹脂薄膜朝一軸延伸而製造,光學薄膜的光學軸方向與樹脂薄膜的延伸方向大略一致。但是,由於光學薄膜整體並非相同,故光學薄膜的光學軸在光學薄膜的寬度方向會有些許偏差。 Here, a general elongated optical film (corresponding to each optical component layer (first optical component layer F1, second optical component layer F2, third optical component layer F3)) is dyed by a dichroic dye. The resin film is produced by extending to one axis, and the optical axis direction of the optical film substantially coincides with the extending direction of the resin film. However, since the entire optical film is not the same, the optical axis of the optical film may be slightly different in the width direction of the optical film.

為此,冀望在其寬度方向將複數個光學顯示部件貼合至光學薄膜的情況中,配合光學薄膜的光學軸方向進行光學顯示部件的校準。 For this reason, in the case where a plurality of optical display members are attached to the optical film in the width direction thereof, the alignment of the optical display member is performed in accordance with the optical axis direction of the optical film.

藉此,對於抑制光學顯示設備單元之光學軸偏差,來改善色彩度及對比度是有效的。 Thereby, it is effective to suppress the optical axis deviation of the optical display device unit to improve the chromaticity and contrast.

作為偏光薄膜之光學薄膜為了遮斷沿一方向上振動之光線以外的光線,係以例如碘或二色性染料等進行染色。不過,光學薄膜處亦可進一步層積有剝離薄膜或保護薄膜。 The optical film as a polarizing film is dyed with, for example, iodine or a dichroic dye in order to block light other than the light that vibrates in one direction. However, a peeling film or a protective film may be further laminated on the optical film.

檢查光學薄膜之光學軸方向的檢查裝置具備光源及分析儀。 The inspection device for inspecting the optical axis direction of the optical film includes a light source and an analyzer.

光源配置於光學薄膜之正/反面的一側。分析儀則配置於光學薄膜之正/反面的另一側。分析儀接收自光源照射並透射光學薄膜的光線,檢測出該光線強度,藉以檢測出光學薄膜之光學軸。分析儀例如可於光學薄膜之寬度方向上移動。檢查裝置使分析儀於光學薄膜之寬度方向移動的同時,藉由此分析儀檢測光學薄膜之光學軸。藉此,檢查裝置在光學薄膜的寬度方向之複數檢查位置上檢查光學薄膜之光學軸。另外,不一定要為使該分析儀於光學薄膜之寬度方向移動的結構,亦可為於光學薄膜之寬度方向具備複數分析儀的結構。 The light source is disposed on one side of the front/back side of the optical film. The analyzer is placed on the other side of the front/back of the optical film. The analyzer receives light that is irradiated from the light source and transmitted through the optical film, and detects the intensity of the light to thereby detect the optical axis of the optical film. The analyzer can be moved, for example, in the width direction of the optical film. The inspection device detects the optical axis of the optical film by the analyzer while moving the analyzer in the width direction of the optical film. Thereby, the inspection device inspects the optical axis of the optical film at a plurality of inspection positions in the width direction of the optical film. Further, the configuration in which the analyzer is moved in the width direction of the optical film is not necessarily required, and the configuration may be such that a plurality of analyzers are provided in the width direction of the optical film.

該光學薄膜之寬度方向上設定有複數個檢查點,該分析儀可沿該等複數個檢查點之排列方向移動。檢查裝置搬送光學薄膜,同時移動分析儀,以於該各檢查點檢查光學軸方向。檢查裝置所檢測之光學薄膜的光學軸資料係與光學薄膜的位置(光學薄膜之長邊方向的位置以及寬度方向的位置)資料連結地儲存於儲存裝置。經檢查裝置檢查後的光學薄膜捲取成滾筒狀,以形成料捲滾筒。 A plurality of checkpoints are set in the width direction of the optical film, and the analyzer is movable in the direction in which the plurality of checkpoints are arranged. The inspection device transports the optical film while moving the analyzer to check the optical axis direction at each of the inspection points. The optical axis data of the optical film detected by the inspection device is stored in the storage device in association with the position of the optical film (the position in the longitudinal direction of the optical film and the position in the width direction). The optical film inspected by the inspection device is taken up in a roll shape to form a roll drum.

本實施形態的情況中,該檢查裝置所獲得之各光學組件層(第一光學組件層F1、第二光學組件層F2、第三光學組件層F3)之光學軸方向的檢查資料係與各光學組件層(第一光學組件層F1、第二光學組件層F2、第三光學組件層F3)之長邊方向位置與寬度方向位置資料連結地儲存於控制裝置20之記憶體。此檢查之後,各自捲取各光學組件層(第一光學組件層F1、第二光學組件層F2、第三光學組件層F3),以形成各料捲滾筒(第一料捲滾筒R1、第二料捲滾筒R2、第三料捲滾筒R3)。 In the case of the present embodiment, the inspection data of each optical component layer (the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3) obtained by the inspection apparatus is optical and axial. The longitudinal direction position and the width direction position of the component layers (the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3) are stored in the memory of the control device 20. After this inspection, each of the optical component layers (the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3) is taken up to form each of the roll rolls (the first roll roll R1, the second roll) Roller drum R2, third roll drum R3).

以下,各光學組件層(第一光學組件層F1、第二光學組件層F2、第三光學組件層F3)可統稱為光學組件層FX,貼合至各光學組件層(第一光學組件層F1、第二光學組件層F2、第三光學組件層F3)的液晶面板P、第一單面貼合面板P11及第二單面貼合面板P12可統稱為光學顯示部件PX。 Hereinafter, each of the optical component layers (the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3) may be collectively referred to as an optical component layer FX, and is bonded to each optical component layer (first optical component layer F1) The liquid crystal panel P, the first single-sided bonding panel P11, and the second single-sided bonding panel P12 of the second optical component layer F2 and the third optical component layer F3) may be collectively referred to as an optical display component PX.

此處,構成光學組件層FX之偏光薄膜係例如經二色性色素進行染色之聚乙烯醇(PVA)薄膜,並朝一軸延伸所形成。由於偏光薄膜於延伸時會有PVA薄膜厚度之不均勻或二色性色素染色不均勻等問題,亦造成光學組件層FX之寬度方向內側與寬度方向外側之光學軸方向相異的問題。 Here, the polarizing film constituting the optical component layer FX is formed, for example, by a polyvinyl alcohol (PVA) film dyed with a dichroic dye and extended toward one axis. The problem that the thickness of the PVA film is uneven or the dyeing of the dichroic dye is uneven during the stretching of the polarizing film causes a problem that the optical axis direction of the optical component layer FX in the width direction and the width direction are different.

該處,本實施形態中,根據預先儲存於控制裝置20之光學組件層FX各部位中的光學軸面內分佈檢查資料,決定相對光學組件層FX的光學顯示部件PX之貼合位置(相對貼合位置)。然後,本實施形態中,配合此貼合位置,在進行相對光學組件層FX之光學顯示部件PX的校準後,將光學顯示部件PX貼合至光學組件層FX。 In this embodiment, the inspection position data is distributed in the optical axis plane in each of the optical component layers FX of the control device 20, and the bonding position of the optical display member PX with respect to the optical component layer FX is determined. Position)). Then, in the present embodiment, after the alignment of the optical display member PX with respect to the optical component layer FX is performed, the optical display member PX is bonded to the optical component layer FX.

具體而言,首先,求得於光學組件層FX之部件寬度方向上並列的光學顯示部件PX的基準軸(例如,通過平面視圖形狀之中心位置的長邊方向軸等)。 Specifically, first, the reference axis of the optical display member PX aligned in the member width direction of the optical component layer FX (for example, the longitudinal direction axis passing through the center position of the plan view shape) is obtained.

其次,根據該面內分佈資料經適當校正處理等,估計出與光學組件層FX中光學顯示部件PX之基準軸重疊位置的光學軸方向。 Then, the optical axis direction at a position overlapping with the reference axis of the optical display member PX in the optical component layer FX is estimated based on the in-plane distribution data by appropriate correction processing or the like.

接著,根據所估計出之光學軸方向,修正光學顯示部件PX之貼合位置,以決定光學顯示部件PX與光學組件層FX的相對貼合位置。其後,進行光學顯示部件PX之校準。 Next, the bonding position of the optical display member PX is corrected based on the estimated optical axis direction to determine the relative bonding position of the optical display member PX and the optical component layer FX. Thereafter, the calibration of the optical display part PX is performed.

藉此,即使是在光學組件層FX之寬度方向上相異位置處貼合光學顯示部件PX的情況,可抑制相對光學顯示部件PX之基準位置的光學組件層FX之光學軸方向偏差。根據本實施形態,光學軸公差可幾乎為0°(容許公差為±0.25°)。 Thereby, even when the optical display member PX is bonded to the position different from the width direction of the optical component layer FX, the optical axis direction deviation of the optical component layer FX with respect to the reference position of the optical display component PX can be suppressed. According to the present embodiment, the optical axis tolerance can be almost 0 (the tolerance is ±0.25).

不過,亦可於捲出光學組件層FX的同時檢測出光學軸方向,並根據該檢測資料進行光學顯示部件PX之校準。而且,前述各種校準方式不限定於光學組件層FX之光學軸方向為0°及90°的情況,亦可適用於任意角度的 情況。 However, the optical axis direction can also be detected while the optical component layer FX is being unwound, and the optical display component PX can be calibrated based on the detection data. Further, the above various calibration methods are not limited to the case where the optical axis direction of the optical component layer FX is 0° and 90°, and may be applied to any angle. Happening.

第3圖係於較寬的光學組件層FX之寬度方向上並列貼合有三個光學顯示部件PX的範例。但是,本發明並不限定於此,亦可於光學組件層FX之寬度方向上並列貼合有二個以下或四個以上的光學顯示部件PX。而且,亦可將較窄的光學組件層FX沿寬度方向排列複數個,並各自貼合光學顯示部件PX。 Fig. 3 is an example in which three optical display members PX are juxtaposed in the width direction of the wider optical component layer FX. However, the present invention is not limited thereto, and two or less or four or more optical display members PX may be laminated in parallel in the width direction of the optical module layer FX. Further, a plurality of narrow optical component layers FX may be arranged in a plurality of width directions, and each of the optical display members PX may be attached.

參考第4圖進行說明。液晶面板P具備第一基板P1、第二基板P2及液晶層P3。 This will be explained with reference to Fig. 4. The liquid crystal panel P includes a first substrate P1, a second substrate P2, and a liquid crystal layer P3.

第一基板P1係例如薄膜電晶體(TFT,Thin Film Transistor)基板所構成的長方形基板。第二基板P2係對向第一基板P1配置的長方形基板。液晶層P3係封入第一基板P1與第二基板P2之間。不過,為了圖示方便起見,省略剖面圖中的各層剖面線。 The first substrate P1 is a rectangular substrate made of, for example, a thin film transistor (TFT) substrate. The second substrate P2 is a rectangular substrate that is disposed on the first substrate P1. The liquid crystal layer P3 is sealed between the first substrate P1 and the second substrate P2. However, for convenience of illustration, the cross-sectional lines of the respective layers in the cross-sectional view are omitted.

參考第6圖以及第7圖進行說明。第一基板P1外周緣之三側邊係沿著第二基板P2相對應之三側邊配置,外周緣剩餘之一側邊則延伸至第二基板P2相對應之一側邊的外側。藉此,於第一基板P1之一側邊處設置有延伸至第二基板P2外側的電子部件安裝部P5。 Description will be made with reference to Fig. 6 and Fig. 7. The three sides of the outer periphery of the first substrate P1 are disposed along three sides corresponding to the second substrate P2, and one of the remaining sides of the outer periphery extends to the outer side of one side of the second substrate P2. Thereby, an electronic component mounting portion P5 that extends to the outside of the second substrate P2 is provided at one side of the first substrate P1.

參考第5圖以及第7圖進行說明。第二切斷裝置16以後述的檢測裝置檢測後,沿著第二光學組件層F2與層片F1S的層積體以及液晶面板P之貼合面的外周緣,切斷第一光學組件層F1及第二光學組件層F2。於第5圖中,係顯示構成檢測裝置的攝影裝置43。而且,第三切斷裝置19以後述的檢測裝置檢測後,沿著第三光學組件層F3及液晶面板P之貼合面的外周緣,切斷第三光學組件層F3。於第7圖中,係顯示構成檢測裝置的攝影裝置43。顯示區域P4之外側處設置有將第一基板P1及第二基板P2接合之密封劑等設置用特定寬度之邊框部G。於該邊框部G之寬度內以第二切斷裝置16及第三 切斷裝置19進行雷射切割。 Description will be made with reference to Fig. 5 and Fig. 7. After the second cutting device 16 detects the detecting device described later, the first optical component layer F1 is cut along the outer peripheral edge of the bonding surface of the second optical component layer F2 and the layer F1S and the bonding surface of the liquid crystal panel P. And a second optical component layer F2. In Fig. 5, the photographing device 43 constituting the detecting device is displayed. After the third cutting device 19 detects the detecting device described later, the third optical component layer F3 is cut along the outer peripheral edge of the bonding surface of the third optical component layer F3 and the liquid crystal panel P. In Fig. 7, the photographing device 43 constituting the detecting device is shown. A frame portion G having a specific width for the sealant or the like that joins the first substrate P1 and the second substrate P2 is provided on the outer side of the display region P4. Within the width of the frame portion G, the second cutting device 16 and the third The cutting device 19 performs laser cutting.

貼合面之外周緣的檢測及藉由切斷裝置的切斷,詳細敘述如下。 The detection of the outer periphery of the bonding surface and the cutting of the cutting device will be described in detail below.

第13圖係顯示檢測貼合面之外周緣的第一檢測裝置41之示意圖。於第13圖中,為了方便,以液晶面板P之貼合有層片F1S之側為上側,第一檢測裝置41之結構係顯示為上下相反。 Figure 13 is a schematic view showing the first detecting means 41 for detecting the outer periphery of the bonding surface. In Fig. 13, for convenience, the side of the liquid crystal panel P to which the layer sheet F1S is bonded is the upper side, and the structure of the first detecting device 41 is shown as being vertically opposite.

本實施形態的薄膜貼合系統1所具備的第一檢測裝置41具有:攝影裝置43,拍攝第二貼合層片F22中液晶面板P及層片F1S之貼合面(以下,稱為第一貼合面SA1)的外周緣ED之畫面;照明光源44,照亮外周緣ED;以及控制部45,儲存攝影裝置43所拍攝之畫面,或根據畫面進行檢測出外周緣ED用的演算。 The first detecting device 41 included in the film bonding system 1 of the present embodiment includes an imaging device 43 that captures a bonding surface of the liquid crystal panel P and the layer F1S in the second bonding layer sheet F22 (hereinafter referred to as first The screen of the outer peripheral edge ED of the bonding surface SA1); the illumination light source 44 illuminates the outer peripheral edge ED; and the control unit 45 stores the image captured by the imaging device 43 or the calculation for detecting the outer peripheral edge ED based on the screen.

此種第一檢測裝置41設置於第1圖中第二切斷裝置16之面板搬送上游側的夾壓滾筒15b與第二切斷裝置16之間。 The first detecting device 41 is disposed between the nip roller 15b on the upstream side of the panel transporting of the second cutting device 16 in the first drawing and the second cutting device 16.

攝影裝置43固定並配置於外周緣ED之第一貼合面SA1的內側,呈傾斜狀態,使第一貼合面SA1的法線與攝影裝置43之拍攝面43a的法線夾有角度θ(以下,稱為攝影裝置43之傾斜角度θ)。攝影裝置43使拍攝面43a朝向外周緣ED,從第二貼合層F22中貼合有層片F1S之側拍攝外周緣ED的畫面。 The photographing device 43 is fixed and disposed on the inner side of the first bonding surface SA1 of the outer peripheral edge ED, and is inclined so that the normal line of the first bonding surface SA1 is at an angle θ with the normal line of the imaging surface 43a of the photographing device 43 ( Hereinafter, it is referred to as an inclination angle θ) of the photographing device 43. The photographing device 43 faces the outer peripheral edge ED with the imaging surface 43a, and photographs the outer peripheral edge ED from the side of the second bonding layer F22 where the layer sheet F1S is bonded.

攝影裝置43之傾斜角度θ設定為能確實地拍攝構成第一貼合面SA1的第一基板P1之外周緣。例如,液晶面板P係將主板分割成複數個液晶面板,係所謂形成多層面板的情況,構成液晶面板P的第一基板P1與第二基板P2之外周緣處係產生有偏差,第二基板P2之端面偏移至第一基板P1端面的外側。前述情況中,攝影裝置43之傾斜角度θ可設定為讓第二基板P2外周緣不進入攝影裝置43之拍攝視野內。 The inclination angle θ of the photographing device 43 is set so that the outer periphery of the first substrate P1 constituting the first bonding surface SA1 can be surely captured. For example, the liquid crystal panel P divides the main board into a plurality of liquid crystal panels, which is a case where a multi-layered panel is formed, and a deviation occurs in the outer periphery of the first substrate P1 and the second substrate P2 constituting the liquid crystal panel P, and the second substrate P2 The end faces are offset to the outside of the end faces of the first substrate P1. In the above case, the inclination angle θ of the photographing device 43 can be set such that the outer periphery of the second substrate P2 does not enter the photographing field of view of the photographing device 43.

前述情況中,攝影裝置43之傾斜角度θ可配合第一貼合面SA1與攝影裝置43之拍攝面43a中心之間的距離H(以下,稱為攝影裝置43之高度H)地進行設定。例如,攝影裝置43之高度H為50mm以上,100mm以下的情況中,攝影裝置43之傾斜角度θ可設定於5°以上,20°以下之範圍的角度。但是,依經驗已知偏差量的情況中,可根據其偏差量求得攝影裝置43之高度H及攝影裝置43之傾斜角度θ。本實施形態中,攝影裝置43之高度H設定為78mm,攝影裝置43之傾斜角度θ設定10°。 In the above case, the inclination angle θ of the imaging device 43 can be set in accordance with the distance H between the first bonding surface SA1 and the center of the imaging surface 43a of the imaging device 43 (hereinafter referred to as the height H of the imaging device 43). For example, when the height H of the imaging device 43 is 50 mm or more and 100 mm or less, the inclination angle θ of the imaging device 43 can be set to an angle of 5° or more and 20° or less. However, in the case where the amount of deviation is known empirically, the height H of the photographing device 43 and the tilt angle θ of the photographing device 43 can be obtained from the amount of deviation. In the present embodiment, the height H of the imaging device 43 is set to 78 mm, and the inclination angle θ of the imaging device 43 is set to 10°.

攝影裝置43之傾斜角度θ亦可為0°。第14圖係顯示第一檢測裝置41變形例的示意圖,係攝影裝置43之傾斜角度θ為0°的情況例示。即使於第14圖中,為了方便,以液晶面板P之貼合有層片F1S之側為上側,第一檢測裝置41之結構係顯示為上下相反。如第14圖所示,攝影裝置43及照明光源44可各別配置在沿著第一貼合面SA1之法線方向而重疊於外周緣ED的位置處。 The tilt angle θ of the photographing device 43 may also be 0°. Fig. 14 is a view showing a modification of the first detecting device 41, and is an example in which the inclination angle θ of the photographing device 43 is 0°. In the case of Fig. 14, for the sake of convenience, the side of the liquid crystal panel P to which the layer sheet F1S is bonded is the upper side, and the structure of the first detecting device 41 is displayed upside down. As shown in Fig. 14, the photographing device 43 and the illumination light source 44 can be disposed at positions overlapping the outer peripheral edge ED along the normal direction of the first bonding surface SA1.

第一貼合面SA1與攝影裝置43之拍攝面43a中心之間的距離H1(以下,稱為攝影裝置43之高度H1)可設定為易於檢測出第一貼合面SA1之外周緣ED的位置。例如,攝影裝置43之高度H1可設定於50mm以上,150mm以下之範圍。 The distance H1 between the first bonding surface SA1 and the center of the imaging surface 43a of the imaging device 43 (hereinafter referred to as the height H1 of the imaging device 43) can be set to easily detect the position of the periphery ED outside the first bonding surface SA1. . For example, the height H1 of the photographing device 43 can be set in a range of 50 mm or more and 150 mm or less.

照明光源44固定並配置於第二貼合層F22中貼合有層片F1S之側的相反側。照明光源44以傾斜的姿勢配置於第一貼合面SA1外側,其係較相對第一貼合面SA1之法線方向的外周緣ED更外側。於本實施形態中,照明光源44之光軸與攝影裝置43之拍攝面43a的法線係呈平行。 The illumination light source 44 is fixed and disposed on the opposite side of the side of the second bonding layer F22 to which the layer sheet F1S is bonded. The illumination light source 44 is disposed outside the first bonding surface SA1 in an inclined posture, and is located outside the outer peripheral edge ED of the first bonding surface SA1 in the normal direction. In the present embodiment, the optical axis of the illumination light source 44 is parallel to the normal line of the imaging surface 43a of the imaging device 43.

此外,照明光源44亦可配置於第二貼合層F22中貼合有層片F1S之側(即,與攝影裝置43同一側)。 Further, the illumination light source 44 may be disposed on the side of the second bonding layer F22 to which the layer sheet F1S is bonded (that is, on the same side as the photographing device 43).

而且,只要能藉由照明光源44放射出的照明光線,照亮攝影 裝置43所拍攝之外周緣ED,照明光源44之光軸與攝影裝置43之拍攝面43a的法線亦可相互交叉。 Moreover, as long as the illumination light emitted by the illumination source 44 can be illuminated, the illumination is illuminated. The peripheral edge ED of the device 43 is photographed, and the optical axis of the illumination light source 44 and the normal line of the imaging surface 43a of the imaging device 43 may also intersect each other.

第15圖係顯示檢測出貼合面外周緣之位置的平面圖。在如第15圖所示之第二貼合層F22的搬送路線上,設定有檢查區域CA。檢查區域CA係設定於被搬送之液晶面板P上,對應第一貼合面SA1之外周緣ED的位置。第15圖中,檢查區域CA係設定在對應平面視圖呈矩形之第一貼合面SA1之四個角部的四個位置處,以檢測出第一貼合面SA1之角部(即外周緣ED)的結構。第15圖中,於第一貼合面SA1之外周緣中,對應角部之鉤狀部分係顯示為外周緣ED。 Fig. 15 is a plan view showing the position at which the outer periphery of the bonding surface is detected. An inspection area CA is set on the conveyance path of the second bonding layer F22 as shown in Fig. 15 . The inspection area CA is set on the liquid crystal panel P to be conveyed, and corresponds to the position of the outer periphery ED of the first bonding surface SA1. In Fig. 15, the inspection area CA is set at four positions corresponding to the four corner portions of the first bonding surface SA1 having a rectangular shape in plan view to detect the corner portion of the first bonding surface SA1 (i.e., the outer circumference) The structure of ED). In Fig. 15, in the outer periphery of the first bonding surface SA1, the hook portion of the corresponding corner portion is shown as the outer peripheral edge ED.

第13圖之第一檢測裝置41於四個位置處之檢查區域CA中檢測出外周緣ED。 The first detecting means 41 of Fig. 13 detects the outer peripheral edge ED in the inspection area CA at four positions.

具體而言,各檢查區域CA各自配置有攝影裝置43及照明光源44,第一檢測裝置41拍攝每一個被搬送之液晶面板P的第一貼合面SA1之角部,根據攝影資料檢測出外周緣ED。所檢測之外周緣ED的資料儲存於第13圖所示之控制部45。 Specifically, each of the inspection areas CA is provided with an imaging device 43 and an illumination light source 44, and the first detection device 41 captures a corner portion of the first bonding surface SA1 of each of the liquid crystal panels P that are transported, and detects the outer circumference based on the image data. Edge ED. The data of the detected peripheral ED is stored in the control unit 45 shown in Fig. 13.

此外,只要能檢測出第一貼合面SA1之外周緣,則檢查區域CA之設定位置不限定於此。例如,各檢查區域CA亦可配置於對應第一貼合面SA1之各側邊一部分(例如各側邊之中央部)的位置。此情況中,係檢測出第一貼合面SA1之各側邊(四個側邊,即外周緣)的結構。 Further, as long as the outer periphery of the first bonding surface SA1 can be detected, the setting position of the inspection region CA is not limited thereto. For example, each inspection area CA may be disposed at a position corresponding to a part of each side of the first bonding surface SA1 (for example, a central portion of each side). In this case, the structure of each side (four sides, that is, the outer circumference) of the first bonding surface SA1 is detected.

而且,攝影裝置43及照明光源44不限定為配置在各檢查區域CA的結構,亦可為能沿著第一貼合面SA1之外周緣ED設定之移動路線上進行移動之結構。此情況中,只要各設置一組攝影裝置43與照明光源44即可。 Further, the photographing device 43 and the illumination light source 44 are not limited to being disposed in each of the inspection regions CA, and may be configured to be movable along a movement route set by the outer periphery ED of the first bonding surface SA1. In this case, a set of the imaging device 43 and the illumination light source 44 may be provided.

第二切斷裝置16的層片F1S及第二光學組件層F2之切斷位置根據第一貼合面SA1之外周緣ED的檢測結果來調整。如第14圖所示之控制 部45根據儲存之第一貼合面SA1之外周緣ED的資料,設定層片F1S及第二光學組件層F2之切斷位置,使第一光學組件F11形成不會突出液晶面板P外側(第一貼合面SA1外側)的大小。第二切斷裝置16於藉由控制部45所決定的切斷位置,切斷層片F1S及第二光學組件層F2。 The cutting position of the layer F1S and the second optical component layer F2 of the second cutting device 16 is adjusted based on the detection result of the outer periphery ED of the first bonding surface SA1. Control as shown in Figure 14 The portion 45 sets the cutting position of the layer F1S and the second optical component layer F2 based on the data of the outer peripheral edge ED of the first bonding surface SA1 stored, so that the first optical component F11 is formed so as not to protrude outside the liquid crystal panel P (the The size of the outer surface of a fitting surface SA1). The second cutting device 16 cuts the layer sheet F1S and the second optical module layer F2 at the cutting position determined by the control unit 45.

回到第1圖,第二切斷裝置16設置於第一檢測裝置41之面板搬送下游側。第二切斷裝置16沿著所檢測之外周緣ED,切斷貼合至液晶面板P之層片F1S及第二光學組件層F2中對應第一貼合面SA1的部分、與其外側的剩餘部分,藉以切割出對應第一貼合面SA1大小的第一光學組件F11及第二光學組件F12(參考第8圖)。藉此,形成於液晶面板P之上側面重疊貼合有第一光學組件F11及第二光學組件F12的第二單面貼合面板P12。 Returning to Fig. 1, the second cutting device 16 is provided on the downstream side of the panel conveyance of the first detecting device 41. The second cutting device 16 cuts the portion of the layer F1S and the second optical component layer F2 that are bonded to the liquid crystal panel P corresponding to the first bonding surface SA1 along the outer periphery ED, and the remaining portion thereof The first optical component F11 and the second optical component F12 corresponding to the size of the first bonding surface SA1 are cut out (refer to FIG. 8). Thereby, the second single-sided bonding panel P12 in which the first optical component F11 and the second optical component F12 are bonded to each other on the upper surface of the liquid crystal panel P is formed.

此處,該「對應第一貼合面SA1的部分」係指,在層片F1S及第二光學組件層F2中,較對向液晶面板P之顯示區域大並較液晶面板P之外形(平面視圖中之輪廓外形)小的區域,且為於液晶面板P中避開了電子部件安裝部等功能部分的區域。 Here, the "portion corresponding to the first bonding surface SA1" means that the display area of the opposite liquid crystal panel P is larger than that of the liquid crystal panel P in the layer F1S and the second optical component layer F2 (planar) The outline of the outline in the view is a small area, and is an area in the liquid crystal panel P that avoids a functional part such as an electronic component mounting portion.

本實施形態中,於平面視圖為矩狀外形之液晶面板P中除了該功能部分之外的三個側邊處,沿液晶面板P之外周緣以雷射切斷剩餘部分,而相當於該功能部分的一側邊,則從液晶面板P之外周緣朝顯示區域P4側適當深入的位置處以雷射切斷剩餘部分。例如,第一基板P1為薄膜電晶體(TFT,Thin Film Transistor)基板的情況中,在相當於功能部分的一側邊中,除了功能部分之外,於從液晶面板P之外周緣朝顯示區域P4側偏移特定量的位置進行切斷。 In the present embodiment, in the liquid crystal panel P having a rectangular outer shape in plan view, the remaining portions are cut off by laser along the outer periphery of the liquid crystal panel P at three sides except the functional portion, which is equivalent to the function. On one side of the portion, the remaining portion is cut by laser from a position outside the outer periphery of the liquid crystal panel P toward the display region P4 side. For example, in the case where the first substrate P1 is a thin film transistor (TFT) substrate, in a side opposite to the functional portion, in addition to the functional portion, from the periphery of the liquid crystal panel P toward the display region The P4 side is offset by a certain amount of position.

第16圖係顯示檢測貼合面之外周緣的第二檢測裝置42之示意圖。於第16圖中,為了方便,以液晶面板P之貼合有第三光學組件層F3之側為上側,第二檢測裝置42之結構係顯示為上下相反。本實施形態之薄膜貼合 系統1所具備的第二檢測裝置42具有:攝影裝置43,拍攝第三貼合層F23中的液晶面板P與第三光學組件層F3之貼合面(以下,稱為第二貼合面SA2)的外周緣ED之畫面;照明光源44,照亮外周緣ED;以及控制部45,儲存攝影裝置43所拍攝之畫面,根據畫面進行檢測出外周緣ED用的演算。第二檢測裝置42具有與上述第一檢測裝置41相同之結構。 Figure 16 is a schematic view showing the second detecting means 42 for detecting the outer periphery of the bonding surface. In Fig. 16, for the sake of convenience, the side of the liquid crystal panel P to which the third optical component layer F3 is attached is the upper side, and the structure of the second detecting device 42 is shown to be vertically opposite. Film bonding of this embodiment The second detecting device 42 included in the system 1 includes an imaging device 43 that captures a bonding surface of the liquid crystal panel P and the third optical component layer F3 in the third bonding layer F23 (hereinafter referred to as a second bonding surface SA2). The screen of the outer peripheral edge ED; the illumination light source 44 illuminates the outer peripheral edge ED; and the control unit 45 stores the screen imaged by the photographing device 43, and detects the calculation for the outer peripheral edge ED based on the screen. The second detecting device 42 has the same structure as the above-described first detecting device 41.

這樣的第二檢測裝置42設置於第1圖中第三切斷裝置19之面板搬送上游側的夾壓滾筒18b與第三切斷裝置19之間。第二檢測裝置42於第三貼合層F23的搬送路線上所設定之檢查區域處,與上述第一檢測裝置41相同地,檢測出第二貼合面SA2之外周緣ED。 Such a second detecting device 42 is provided between the nip roller 18b on the upstream side of the panel transporting of the third cutting device 19 in the first drawing and the third cutting device 19. The second detecting device 42 detects the outer peripheral edge ED of the second bonding surface SA2 in the same manner as the first detecting device 41 in the inspection region set on the transport path of the third bonding layer F23.

第三切斷裝置19的第三光學組件層F3之切斷位置根據第二貼合面SA2之外周緣ED的檢測結果來調整。如第13圖所示之控制部45根據所儲存的第二貼合面SA2之外周緣ED的資料,設定第三光學組件層F3之切斷位置,使第三光學組件F13形成不會突出液晶面板P外側(第二貼合面SA2外側)的大小。第三切斷裝置19於藉由控制部45所決定的切斷位置,切斷第三光學組件層F3。 The cutting position of the third optical component layer F3 of the third cutting device 19 is adjusted in accordance with the detection result of the outer peripheral edge ED of the second bonding surface SA2. The control unit 45 as shown in FIG. 13 sets the cutting position of the third optical component layer F3 based on the stored data of the outer peripheral edge ED of the second bonding surface SA2, so that the third optical component F13 is formed not to protrude from the liquid crystal. The size of the outer side of the panel P (outside of the second bonding surface SA2). The third cutting device 19 cuts the third optical module layer F3 at the cutting position determined by the control unit 45.

第三切斷裝置19沿著所檢測之外周緣ED,切斷貼合至液晶面板P之第三光學組件層F3中對應第二貼合面SA2的部分、與其外側的剩餘部分,藉以切割出對應第二貼合面SA2大小的第三光學組件F13(參考第8圖)。藉此,形成雙面貼合面板P13,其係於第二單面貼合面板P12之上側面貼合有第三光學組件F13。 The third cutting device 19 cuts off the portion of the third optical component layer F3 of the liquid crystal panel P corresponding to the second bonding surface SA2 and the remaining portion thereof along the detected outer peripheral edge ED, thereby cutting out The third optical component F13 corresponding to the size of the second bonding surface SA2 (refer to FIG. 8). Thereby, the double-sided bonding panel P13 is formed, and the third optical component F13 is attached to the upper surface of the second single-sided bonding panel P12.

此處,該「對應第二貼合面SA2的部分」係指,在第三光學組件層F3中,較對向液晶面板P之顯示區域大並較液晶面板P之外形(平面視圖中之輪廓外形)小的區域,且為於液晶面板P中避開了電子部件安裝部等功能部分的區域。 Here, the "portion corresponding to the second bonding surface SA2" means that in the third optical component layer F3, the display area of the opposite liquid crystal panel P is larger than the liquid crystal panel P (the outline in the plan view) The area of the liquid crystal panel P is a region that avoids a functional portion such as an electronic component mounting portion.

如第10圖所示,單獨對樹脂製的光學組件層FX進行雷射切割時,其切斷端t可能因熱變形而膨脹或呈波浪形。因此,將雷射切割後之光學組件層FX貼合至光學顯示部件PX的情況,光學組件層FX處易產生空氣混入或變形等貼合不良問題。 As shown in Fig. 10, when the optical component layer FX made of resin is subjected to laser cutting alone, the cut end t may be expanded or wavy due to thermal deformation. Therefore, in the case where the laser-cut optical component layer FX is bonded to the optical display member PX, the optical component layer FX is liable to cause a problem of poor adhesion such as air incorporation or deformation.

另一方面,本實施形態中,如第9圖所示,於液晶面板P貼合好光學組件層FX之後,以雷射切斷光學組件層FX。本實施形態中,光學組件層FX之切斷端t會受到液晶面板P之玻璃表面支撐。因此,光學組件層FX之切斷端t不會產生膨脹或波浪形,且於液晶面板P之貼合後進行故不會有前述貼合不良。 On the other hand, in the present embodiment, as shown in FIG. 9, after the optical component layer FX is bonded to the liquid crystal panel P, the optical component layer FX is cut by laser. In the present embodiment, the cut end t of the optical component layer FX is supported by the glass surface of the liquid crystal panel P. Therefore, the cut end t of the optical component layer FX does not swell or wavy, and after the liquid crystal panel P is bonded, the bonding failure does not occur.

雷射加工機之切割線的振動幅度(公差)係較切割刀片之公差更小。因此本實施形態中,與使用切割刀片切斷光學組件層FX的情況相比,可使得該邊框部G的寬度更窄。而且,可達到液晶面板P之小型化及/或顯示區域P4之大型化。這可應用於近年來之智慧型手機或平板電腦終端等,需要在機殼尺寸之限制下將顯示畫面放大的高機能行動裝置。 The vibration amplitude (tolerance) of the cutting line of the laser processing machine is smaller than that of the cutting blade. Therefore, in the present embodiment, the width of the frame portion G can be made narrower than in the case where the optical module layer FX is cut by the dicing blade. Further, the size of the liquid crystal panel P and/or the enlargement of the display region P4 can be achieved. This can be applied to a high-performance mobile device that needs to enlarge a display screen under the limitation of the size of the casing, such as a smart phone or a tablet terminal in recent years.

而且,對將光學組件層FX整合於液晶面板P之顯示區域P4的層片進行切割之後,貼合至液晶面板P的情況中,該層片及液晶面板P各自的尺寸公差,以及該等之相對貼合位置的尺寸公差會疊加。因此,液晶面板P之邊框部G的寬度難以縮小。換言之,顯示區域難以擴大。 Further, in the case where the layer of the display unit P4 of the liquid crystal panel P is diced after the optical component layer FX is diced, the dimensional tolerance of each of the layer and the liquid crystal panel P, and the like The dimensional tolerances of the relative fit positions are superimposed. Therefore, it is difficult to reduce the width of the frame portion G of the liquid crystal panel P. In other words, the display area is difficult to expand.

另一方面,將光學組件層FX貼合至液晶面板P之後,依據顯示區域P4進行切割的情況中,僅須考慮切斷線之振動公差。因此,可縮小邊框部G之寬度的公差(±0.1mm以下)。此特點亦可使得液晶面板P之邊框部G的寬度變窄(可使得顯示區域擴大)。 On the other hand, in the case where the optical component layer FX is bonded to the liquid crystal panel P and the cutting is performed in accordance with the display region P4, only the vibration tolerance of the cutting line must be considered. Therefore, the tolerance (±0.1 mm or less) of the width of the frame portion G can be reduced. This feature also makes it possible to narrow the width of the frame portion G of the liquid crystal panel P (which can enlarge the display area).

再者,以非利刃的雷射來切斷光學組件層FX,切斷時不會有作用力施加至液晶面板P,因此液晶面板P之基板的端緣不易產生裂痕或破 裂,提升對於熱循環等的耐久性。同樣地,由於不接觸液晶面板P,對於電子部件安裝部P5的損傷亦較少。 Furthermore, the optical component layer FX is cut by a non-profit laser, and no force is applied to the liquid crystal panel P during the cutting, so that the edge of the substrate of the liquid crystal panel P is less likely to be cracked or broken. Cracking, improving durability against thermal cycling and the like. Similarly, since the liquid crystal panel P is not touched, damage to the electronic component mounting portion P5 is also small.

另外,以雷射切斷光學組件層FX的情況,雷射照射之每單位長度的能量較佳需考慮液晶面板P或光學組件層FX的厚度結構來決定。 Further, in the case where the optical component layer FX is cut by laser, the energy per unit length of the laser irradiation is preferably determined in consideration of the thickness structure of the liquid crystal panel P or the optical component layer FX.

本實施形態中,以雷射切斷光學組件層FX的情況,每單位長度的能量較佳在0.01~0.11(J/mm)的範圍內進行雷射照射。於雷射照射中,每單位長度的能量過大時,以雷射切斷光學組件層FX的情況,光學組件層FX將有可能受到損傷。但是,因為每單位長度的能量在0.01~0.11(J/mm)的範圍內進行雷射照射,可防止光學組件層FX受到損傷。 In the present embodiment, in the case where the optical component layer FX is cut by laser, the energy per unit length is preferably irradiated in a range of 0.01 to 0.11 (J/mm). In the case of laser irradiation, when the energy per unit length is excessively large, the optical component layer FX may be damaged by the laser cutting of the optical component layer FX. However, since the energy per unit length is laser-irradiated in the range of 0.01 to 0.11 (J/mm), the optical component layer FX can be prevented from being damaged.

如第6圖所示,以雷射切斷光學組件層FX(第6圖中之第三光學組件層F3)的情況,例如於顯示區域P4之一長邊的延長上設定為雷射切割的起點pt1。接著,從該起點pt1先開始進行該一長邊的切斷動作。雷射切割之終點pt2係設定於雷射環繞顯示區域P4一圈後,到達顯示區域P4之起點側短邊的延長上之位置。起點pt1及終點pt2係設定使得光學組件層FX之剩餘部分仍會剩餘特定接續部分,而能承受捲取光學組件層FX時的張力。 As shown in Fig. 6, in the case where the optical component layer FX (the third optical component layer F3 in Fig. 6) is cut by laser, for example, the extension of the long side of one of the display regions P4 is set as laser cutting. Starting point pt1. Next, the cutting operation of the long side is started from the starting point pt1. The end point pt2 of the laser cutting is set to a position on the extension of the short side of the starting point side of the display area P4 after the laser surrounds the display area P4 one turn. The starting point pt1 and the end point pt2 are set such that the remaining portion of the optical component layer FX still retains a specific splicing portion and can withstand the tension when the optical component layer FX is taken up.

如以上說明,上述實施形態中光學組件貼合體之製造系統,於將光學組件(第一光學組件F11、第二光學組件F12)貼合至液晶面板P而形成第二單面貼合面板P12之製造系統中,具備:控制裝置20,根據顯示較該液晶面板P之顯示區域P4大的光學組件層(第一光學組件層F1、第二光學組件層F2)之光學軸方向的檢查資料,決定該液晶面板P與該光學組件層(第一光學組件層F1、第二光學組件層F2)的相對貼合位置;校準裝置(第一校準裝置11、第二校準裝置14),根據該控制裝置20所決定之相對貼合位置,進行相對該光學組件層(第一光學組件層F1、第二光學組件層F2)之液晶面板P的校準;貼合裝置(第一貼合裝置12、第二貼合裝置15),將該光學組件層(第一光學組件層F1、 第二光學組件層F2)依序貼合至根據該校準裝置(第一校準裝置11、第二校準裝置14)校準好之光學顯示部件,以作為第二貼合層F22;檢測裝置(第一檢測裝置41),於該貼合裝置(第一貼合裝置12、第二貼合裝置15)所貼合之光學組件層(第一光學組件層F1、第二光學組件層F2)中,檢測該光學組件層(第一光學組件層F1)及該液晶面板P之第一貼合面SA1的外周緣;以及切斷裝置(第一切斷裝置16),沿著該第一貼合面SA1的外周緣,切斷該檢測裝置(第一檢測裝置41)所檢測之光學組件層(第一光學組件層F1、第二光學組件層F2)的區域中對應該光學組件層(第一光學組件層F1)之第一貼合面SA1區域的第一區域與該光學組件層之第一區域外側區域的第二區域。 As described above, in the manufacturing system of the optical component bonding body of the above embodiment, the optical component (the first optical component F11 and the second optical component F12) is bonded to the liquid crystal panel P to form the second single-sided bonding panel P12. In the manufacturing system, the control device 20 is configured to determine the optical axis direction of the optical component layer (the first optical component layer F1 and the second optical component layer F2) which is larger than the display region P4 of the liquid crystal panel P. The relative position of the liquid crystal panel P and the optical component layer (the first optical component layer F1 and the second optical component layer F2); the calibration device (the first calibration device 11 and the second calibration device 14) according to the control device Aligning the liquid crystal panel P with respect to the optical component layer (the first optical component layer F1 and the second optical component layer F2) with respect to the relative bonding position determined by 20; the bonding device (the first bonding device 12, the second Fitting device 15), the optical component layer (first optical component layer F1 The second optical component layer F2) is sequentially attached to the optical display component calibrated according to the calibration device (the first calibration device 11 and the second calibration device 14) as the second bonding layer F22; the detecting device (first The detecting device 41) detects the optical component layer (the first optical component layer F1 and the second optical component layer F2) to which the bonding device (the first bonding device 12 and the second bonding device 15) is attached The optical component layer (first optical component layer F1) and an outer peripheral edge of the first bonding surface SA1 of the liquid crystal panel P; and a cutting device (first cutting device 16) along the first bonding surface SA1 The outer periphery of the optical component layer (the first optical component layer F1 and the second optical component layer F2) detected by the detecting device (the first detecting device 41) corresponds to the optical component layer (the first optical component) a first region of the first bonding surface SA1 of the layer F1) and a second region of the outer region of the first region of the optical component layer.

同樣地,上述實施形態中光學組件貼合體之製造系統,於將光學組件(第三光學組件F13)貼合至第二單面貼合面板P12而形成雙面貼合面板P13之製造系統中,具備:貼合裝置(第三貼合裝置18),將較該液晶面板P之顯示區域P4大的光學組件層(第三光學組件層F3)貼合至該第二單面貼合面板P12之光學組件(第一光學組件F11、第二光學組件F12)的相反側之面,來作為第三貼合層F23;控制裝置20,於該光學組件層(第三光學組件層F3)貼合至該第二單面貼合面板P12前,根據該光學組件層(第三光學組件層F3)之光學軸方向的檢查資料,決定該液晶面板P及該第二單面貼合面板P12的相對貼合位置;校準裝置(第三校準裝置17),於該光學組件層(第三光學組件層F3)貼合至該第二單面貼合面板P12前,根據該控制裝置20所決定之相對貼合位置,進行相對該光學組件層(第三光學組件層F3)之第二單面貼合面板P12的校準;檢測裝置(第二檢測裝置42),於該光學組件層(第三光學組件層F3)貼合至該第二單面貼合面板P12後,於該貼合裝置(第三貼合裝置18)所貼合之光學組件層(第三光學組件層F3)中,檢測該光學組件層(第三光學組件層F3)及該液晶面板P之第二貼合面SA2的外周緣;以及切斷裝置(第三切斷裝置19),沿著該第二貼 合面SA2之外周緣,切斷該檢測裝置(第二檢測裝置42)所檢測之光學組件層(第三光學組件層F3)的區域中對應該光學組件層(第三光學組件層F3)之第二貼合面SA2區域的第一區域與該光學組件層(第三光學組件層F3)之第一區域外側區域的第二區域,從該光學組件層(第三光學組件層F3)切割出對應該第二貼合面SA2大小的光學組件(第三光學組件F13),藉以從該第三貼合層F23切割出包含單一個液晶面板P及與其重疊之光學組件(第三光學組件F13)的雙面貼合面板P13。 Similarly, in the manufacturing system of the optical component bonding body in the above embodiment, in the manufacturing system in which the optical component (third optical component F13) is bonded to the second single-sided bonding panel P12 to form the double-sided bonding panel P13, A bonding device (third bonding device 18) is provided, and an optical component layer (third optical component layer F3) larger than a display region P4 of the liquid crystal panel P is bonded to the second single-sided bonding panel P12. The opposite side of the optical component (the first optical component F11, the second optical component F12) serves as the third bonding layer F23; the control device 20 is bonded to the optical component layer (the third optical component layer F3) to Before the second single-sided bonding panel P12, the relative stickers of the liquid crystal panel P and the second single-sided bonding panel P12 are determined according to the inspection data of the optical axis direction of the optical component layer (the third optical component layer F3). a positional alignment device (third calibration device 17), before the optical component layer (third optical component layer F3) is attached to the second single-sided bonding panel P12, according to the relative sticker determined by the control device 20 Positioning with respect to the optical component layer (third optical component layer F3) The calibration of the two single-sided bonding panel P12; the detecting device (the second detecting device 42) is attached to the second single-sided bonding panel P12 after the optical component layer (the third optical component layer F3) is attached to the sticker In the optical component layer (third optical component layer F3) to which the bonding device (third bonding device 18) is attached, the optical component layer (third optical component layer F3) and the second bonding of the liquid crystal panel P are detected. The outer periphery of the surface SA2; and the cutting device (the third cutting device 19) along the second sticker The outer periphery of the joint surface SA2 cuts off the optical component layer (third optical component layer F3) in the region of the optical component layer (third optical component layer F3) detected by the detecting device (second detecting device 42). a first region of the second bonding surface SA2 region and a second region of the outer region of the first region of the optical component layer (third optical component layer F3) are cut out from the optical component layer (third optical component layer F3) An optical component (third optical component F13) corresponding to the size of the second bonding surface SA2, thereby cutting out a single liquid crystal panel P and an optical component (the third optical component F13) overlapping the same from the third bonding layer F23 Double-sided fitting panel P13.

本實施形態中,如上所述,該切斷裝置(第二切斷裝置16)較佳係從該光學組件層(第一光學組件層F1、第二光學組件層F2)切割出對應該第一貼合面SA1大小的光學組件層(第一光學組件層F1、第二光學組件層F2),藉以切割出包含該液晶面板P及該光學組件層(第一光學組件層F1、第二光學組件層F2)的第二貼合層F22(光學組件貼合體)。 In this embodiment, as described above, the cutting device (second cutting device 16) is preferably cut out from the optical component layer (the first optical component layer F1 and the second optical component layer F2). The optical component layer (the first optical component layer F1 and the second optical component layer F2) of the size of the bonding surface SA1 is formed to cut the liquid crystal panel P and the optical component layer (the first optical component layer F1 and the second optical component) The second bonding layer F22 (optical component bonding body) of the layer F2).

而且,本實施形態中,該控制裝置20較佳係讓該液晶面板P之基準軸與由該檢查資料所示之光學組件層(第一光學組件層F1、第二光學組件層F2)的光學軸方向呈平行,以決定該相對貼合位置。 Moreover, in the present embodiment, the control device 20 preferably optically controls the reference axis of the liquid crystal panel P and the optical component layer (the first optical component layer F1 and the second optical component layer F2) indicated by the inspection material. The axial directions are parallel to determine the relative fit position.

而且,本實施形態中,如上所述,該控制裝置20較佳係使用通過該液晶面板P之平面中心的長邊方向軸來作為該基準軸。 Further, in the present embodiment, as described above, the control device 20 preferably uses the longitudinal axis of the center of the plane of the liquid crystal panel P as the reference axis.

而且,本實施形態中,該校準裝置(第一校準裝置11、第二校準裝置14)較佳係讓該光學組件層(第一光學組件層F1、第二光學組件層F2)與該液晶面板P配置至該控制裝置20所決定的相對貼合位置,以進行該液晶面板P的校準。 Moreover, in the embodiment, the calibration device (the first calibration device 11 and the second calibration device 14) preferably has the optical component layer (the first optical component layer F1 and the second optical component layer F2) and the liquid crystal panel. P is disposed to the relative bonding position determined by the control device 20 to perform calibration of the liquid crystal panel P.

而且,本實施形態中,如上所述,該校準裝置(第一校準裝置11、第二校準裝置14)較佳係由該滾筒搬送機5(第一搬送裝置)朝該液晶面板P搬送方向之垂直方向移動、及由該滾筒搬送機5繞該液晶面板P搬送方向之垂直軸迴轉,藉以將該液晶面板P搬送至該相對貼合位置。 Further, in the present embodiment, as described above, the calibration device (the first calibration device 11 and the second calibration device 14) is preferably conveyed toward the liquid crystal panel P by the roller conveyor 5 (first conveying device). The liquid crystal panel P is transported to the relative bonding position by moving in the vertical direction and by the roller conveyor 5 rotating about the vertical axis of the liquid crystal panel P conveyance direction.

而且,本實施形態中,如上所述,該校準裝置(第一校準裝置11、第二校準裝置14)較佳係於將該液晶面板P反轉後,根據該控制裝置20所決定之相對貼合位置,進行相對該光學組件層(第一光學組件層F1、第二光學組件層F2)之液晶面板P的校準。 Further, in the present embodiment, as described above, the calibration device (the first calibration device 11 and the second calibration device 14) is preferably a relative sticker determined by the control device 20 after the liquid crystal panel P is inverted. At the position, the alignment of the liquid crystal panel P with respect to the optical component layer (the first optical component layer F1 and the second optical component layer F2) is performed.

而且,本實施形態中,如上所述,該貼合裝置(第一貼合裝置12、第二貼合裝置15)較佳係以較該顯示區域大且較該液晶面板P的外形小的區域來作為該第一區域。 Further, in the present embodiment, as described above, the bonding apparatus (the first bonding apparatus 12 and the second bonding apparatus 15) is preferably a region larger than the display area and smaller than the outer shape of the liquid crystal panel P. Come as the first area.

而且,本實施形態中,如上所述,該切斷裝置(第二切斷裝置16)較佳係使用雷射來切斷該光學組件層(第一光學組件層F1、第二光學組件層F2)。 Further, in the present embodiment, as described above, the cutting device (second cutting device 16) preferably uses a laser to cut the optical component layer (first optical component layer F1, second optical component layer F2) ).

而且,本實施形態中,如上所述,較佳係更具備攝影機C(攝影裝置),拍攝該液晶面板P之位置,其中該控制裝置20根據該檢查資料與該攝影機C所拍攝之液晶面板P的位置,決定該相對貼合位置。 Further, in the present embodiment, as described above, it is preferable to further include a camera C (photographing device) that captures the position of the liquid crystal panel P, wherein the control device 20 and the liquid crystal panel P photographed by the camera C based on the inspection data The position determines the relative fit position.

而且,本實施形態中,如上所述,較佳係更具備滾筒搬送機5(第一搬送裝置),將該液晶面板P以該校準裝置(第一校準裝置11、第二校準裝置14)、該貼合裝置(第一貼合裝置12、第二貼合裝置15)及該切斷裝置(第二切斷裝置16)之順序進行搬送。 Further, in the present embodiment, as described above, it is preferable to further include the drum conveyor 5 (first conveying device), and the liquid crystal panel P is used as the calibration device (the first calibration device 11 and the second calibration device 14). The bonding device (the first bonding device 12 and the second bonding device 15) and the cutting device (the second cutting device 16) are sequentially transported.

而且,本實施形態中,如上所述,較佳係更具備搬送裝置12a(第二搬送裝置),將該光學組件層(第一光學組件層F1、第二光學組件層F2)搬送至該貼合裝置(第一貼合裝置12、第二貼合裝置15)。 Further, in the present embodiment, as described above, it is preferable to further include the transport device 12a (second transport device), and transport the optical component layer (the first optical component layer F1 and the second optical component layer F2) to the sticker. The device (the first bonding device 12 and the second bonding device 15).

而且,本實施形態中,如上所述,該搬送裝置12a較佳係具備第二回收部15d,回收由該第二切斷裝置16所切斷之光學組件層(第一光學組件層F1、第二光學組件層F2)的第二區域。 Further, in the present embodiment, as described above, the conveying device 12a preferably includes the second collecting portion 15d, and collects the optical component layer (the first optical component layer F1, which is cut by the second cutting device 16) A second region of the second optical component layer F2).

此結構中,根據光學組件層(第一光學組件層F1、第二光學組 件層F2、第三光學組件層F3)之光學軸方向的檢查資料進行校準之後,貼合至液晶面板P。藉此,即使是因應光學組件層(第一光學組件層F1、第二光學組件層F2、第三光學組件層F3)之位置而改變其光學軸方向的情況,可依據該光學軸方向校準液晶面板P並貼合。藉此,可提升相對於液晶面板P的光學組件(第一光學組件F11、第二光學組件F12、第三光學組件F13)之光學軸方向的精度,可改善光學顯示設備的色彩度及對比度。而且,亦可對應具有任意之光學軸方向的光學組件貼合體之製造。 In this structure, according to the optical component layer (first optical component layer F1, second optical group) The inspection data of the optical axis direction of the member layer F2 and the third optical component layer F3) are calibrated, and then bonded to the liquid crystal panel P. Thereby, even if the optical axis direction is changed in response to the position of the optical component layer (the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3), the liquid crystal can be calibrated according to the optical axis direction. Panel P fits together. Thereby, the accuracy of the optical axis direction of the optical components (the first optical component F11, the second optical component F12, and the third optical component F13) with respect to the liquid crystal panel P can be improved, and the color and contrast of the optical display device can be improved. Moreover, it is also possible to manufacture an optical component bonding body having an arbitrary optical axis direction.

另外,上述實施形態的薄膜貼合系統中,使用檢測裝置檢測複數個液晶面板P的每一者之貼合面的外周緣,依據所檢測之外周緣,可設定貼合於各個液晶面板P的光學組件層之切斷位置。藉此,無論液晶面板P或光學組件層大小的個體差異,皆可切斷所需大小的光學組件,因沒有因液晶面板P或光學組件層大小的個體差異所造成之品質差異,故可縮小顯示區域周邊之邊框部,以達成顯示區域之擴大及機器之小型化目的。 Further, in the film bonding system of the above-described embodiment, the outer peripheral edge of the bonding surface of each of the plurality of liquid crystal panels P is detected by the detecting device, and the outer peripheral edge of the plurality of liquid crystal panels P can be set to be bonded to each of the liquid crystal panels P. The cutting position of the optical component layer. Thereby, regardless of the individual difference in the size of the liquid crystal panel P or the optical component layer, the optical component of the required size can be cut, and the quality difference due to the individual difference in the size of the liquid crystal panel P or the optical component layer can be reduced. The frame portion around the display area is displayed to achieve the expansion of the display area and the miniaturization of the machine.

此處,上述實施形態中光學組件貼合體之製造方法,根據顯示較該液晶面板P之顯示區域P4大的光學組件層(第一光學組件層F1、第二光學組件層F2)之光學軸方向的檢查資料,決定該液晶面板P及該光學組件層(第一光學組件層F1、第二光學組件層F2)之相對貼合位置;根據所決定之相對貼合位置,進行相對該光學組件層(第一光學組件層F1、該第二光學組件層F2)之液晶面板P的校準;將該光學組件層(第一光學組件層F1、第二光學組件層F2)依序貼合於校準好之光學顯示部件,以作為第二貼合層F22,於該第二貼合層F22中,檢測該光學組件層(第一光學組件層F1)與該液晶面板P之第一貼合面SA1的外周緣,然後於該第二貼合層F22中,沿著該第一貼合面SA1的外周緣,切斷對應該光學組件層(第一光學組件層F1)之第一貼合面SA1區域的第一區域與該光學組件層(第一光學組件層F1)之第一區域外側區域的第二區域。 Here, in the method of manufacturing the optical module bonding body according to the above embodiment, the optical axis direction of the optical component layer (the first optical component layer F1 and the second optical component layer F2) which is larger than the display region P4 of the liquid crystal panel P is displayed. Checking the data, determining the relative bonding position of the liquid crystal panel P and the optical component layer (the first optical component layer F1 and the second optical component layer F2); and performing the relative optical component layer according to the determined relative bonding position Calibration of the liquid crystal panel P of the first optical component layer F1 and the second optical component layer F2; the optical component layer (the first optical component layer F1 and the second optical component layer F2) is sequentially attached to the calibration The optical display member is used as the second bonding layer F22, and the optical component layer (the first optical component layer F1) and the first bonding surface SA1 of the liquid crystal panel P are detected in the second bonding layer F22. In the outer peripheral edge, in the second bonding layer F22, along the outer peripheral edge of the first bonding surface SA1, the first bonding surface SA1 region corresponding to the optical component layer (first optical component layer F1) is cut. First region and the optical component layer (first optical component layer F1) A first region of the outer region.

同樣地,上述實施形態中的光學組件貼合體之製造方法,包含:貼合第三光學組件層F3的製程,將較該第二單面貼合面板P12之顯示區域P4大的第三光學組件層F3貼合至該第二單面貼合面板P12的光學組件(第一光學組件F11、第二光學組件F12)之相反側的面,以作為第三貼合層F23;決定相對貼合位置的製程,於該光學組件層(第三光學組件層F3)貼合至該第二單面貼合面板P12前,根據該光學組件層(第三光學組件層F3)之光學軸方向的檢查資料,決定該液晶面板P及該第二單面貼合面板P12的相對貼合位置;校準製程,於該光學組件層(第三光學組件層F3)貼合至該第二單面貼合面板P12前,根據該控制裝置20所決定的相對貼合位置,進行相對該光學組件層(第三光學組件層F3)之第二單面貼合面板P12的校準;檢測製程,於該光學組件層(第三光學組件層F3)貼合至該第二單面貼合面板P12後,於該貼合裝置(第三貼合裝置18)所貼合之光學組件層(第三光學組件層F3)中,檢測該光學組件層(第三光學組件層F3)及該液晶面板P之第二貼合面SA2的外周緣;以及切割製程,沿著該第二貼合面SA2的外周緣,切斷所檢測之光學組件層(第三光學組件層F3)的區域中對應該光學組件層(第三光學組件層F3)之第二貼合面SA2區域的第一區域與該光學組件層(第三光學組件層F3)之第一區域外側區域的第二區域,從該光學組件層(第三光學組件層F3)切割出對應該第二貼合面SA2大小的光學組件(第三光學組件F13),藉以從該第三貼合層F23切割出包含單一個液晶面板P及與其重疊之光學組件(第三光學組件F13)的雙面貼合面板P13。 Similarly, the manufacturing method of the optical component bonding body in the above embodiment includes a process of bonding the third optical component layer F3 and a third optical component larger than the display region P4 of the second single-sided bonding panel P12. The layer F3 is bonded to the surface on the opposite side of the optical component (the first optical component F11 and the second optical component F12) of the second single-sided bonding panel P12 as the third bonding layer F23; the relative bonding position is determined. And the inspection data according to the optical axis direction of the optical component layer (third optical component layer F3) before the optical component layer (third optical component layer F3) is attached to the second single-sided bonding panel P12 Determining a relative bonding position of the liquid crystal panel P and the second single-sided bonding panel P12; and aligning the optical component layer (the third optical component layer F3) to the second single-sided bonding panel P12 Pre-alignment of the second single-sided bonding panel P12 with respect to the optical component layer (third optical component layer F3) according to the relative bonding position determined by the control device 20; the detection process is performed on the optical component layer ( The third optical component layer F3) is attached to the second single-sided bonding After the panel P12, the optical component layer (third optical component layer F3) and the liquid crystal are detected in the optical component layer (third optical component layer F3) to which the bonding apparatus (third bonding apparatus 18) is attached. The outer peripheral edge of the second bonding surface SA2 of the panel P; and the cutting process, along the outer peripheral edge of the second bonding surface SA2, cut the area of the detected optical component layer (third optical component layer F3) a first region of the second bonding surface SA2 region of the optical component layer (third optical component layer F3) and a second region of the outer region of the first region of the optical component layer (third optical component layer F3), The optical component layer (third optical component layer F3) cuts an optical component (third optical component F13) corresponding to the size of the second bonding surface SA2, thereby cutting out a single liquid crystal panel P from the third bonding layer F23 And a double-sided bonding panel P13 of the optical component (third optical component F13) overlapping therewith.

另外,第11圖係顯示薄膜貼合系統1的變形例。相較於第1圖的結構,具有以第一貼合裝置12’代替該第一貼合裝置12,及以第一切斷裝置13’代替該第一切斷裝置13的相異點。其它部分,與前述實施形態相同結構者則賦予相同元件符號並省略詳細說明。 In addition, Fig. 11 shows a modification of the film bonding system 1. In contrast to the configuration of Fig. 1, there is a difference between the first bonding device 12' in place of the first bonding device 12 and the first cutting device 13' in place of the first cutting device 13. In the other portions, the same components as those in the above-described embodiments are denoted by the same reference numerals, and their detailed description is omitted.

第一貼合裝置12’具備搬送裝置12a’以代替該搬送裝置12a。搬 送裝置12a’與該搬送裝置12a相比,除了滾筒保持部12c及保護薄膜回收部12d之外,更具有第一回收部12e。第一回收部12e捲取通過第一切斷裝置13’而被切割殘餘呈梯子狀的第一光學組件層F1之剩餘部分。 The first bonding apparatus 12' is provided with a conveying apparatus 12a' instead of the conveying apparatus 12a. move The feeding device 12a' has a first collecting portion 12e in addition to the roller holding portion 12c and the protective film collecting portion 12d as compared with the conveying device 12a. The first collecting portion 12e winds up the remaining portion of the first optical component layer F1 which is cut by the first cutting device 13' and which is cut into a ladder shape.

第一切斷裝置13’位於保護薄膜回收部12d之面板搬送下游側,並位於第一回收部12e之面板搬送上游側。第一切斷裝置13’為了從第一光學組件層F1切割出較顯示區域P4大的層片,切斷第一光學組件層F1。第一切斷裝置13’具有與該第二切斷裝置16及該第三切斷裝置19相同的雷射加工機。第一切斷裝置13’沿顯示區域P4外側之特定邊線不間斷地切斷第一光學組件層F1。 The first cutting device 13' is located on the panel transport downstream side of the protective film collecting portion 12d, and is located on the panel transport upstream side of the first collecting portion 12e. The first cutting device 13' cuts the first optical component layer F1 in order to cut a layer larger than the display region P4 from the first optical component layer F1. The first cutting device 13' has the same laser processing machine as the second cutting device 16 and the third cutting device 19. The first cutting device 13' cuts the first optical component layer F1 uninterrupted along a specific side line outside the display region P4.

藉由第一切斷裝置13’的切斷,形成第一單面貼合面板P11’,其係於液晶面板P的下側面貼合有較顯示區域P4大的第一光學組件層F1之層片。此時,第一單面貼合面板P11’與切割殘餘呈梯子狀的第一光學組件層F1之剩餘部分相互分離,第一光學組件層F1之剩餘部分被捲取至第一回收部12e。 The first single-sided bonding panel P11' is formed by cutting the first cutting device 13', and is attached to the lower surface of the liquid crystal panel P with a layer of the first optical component layer F1 larger than the display region P4. sheet. At this time, the first single-sided bonding panel P11' is separated from the remaining portion of the first optical component layer F1 in which the cutting residual is ladder-shaped, and the remaining portion of the first optical component layer F1 is taken up to the first collecting portion 12e.

第12圖係顯示薄膜貼合系統1的其它變形例。相較於第1圖的結構,具有以第三校準裝置17’及第三貼合裝置18’代替該第三校準裝置17及第三貼合裝置18的相異點。其它部分,與前述實施形態相同結構者則賦予相同元件符號並省略詳細說明。 Fig. 12 shows another modification of the film bonding system 1. In contrast to the configuration of Fig. 1, there is a difference between the third calibration device 17' and the third bonding device 18' in place of the third calibration device 17 and the third bonding device 18. In the other portions, the same components as those in the above-described embodiments are denoted by the same reference numerals, and their detailed description is omitted.

第三校準裝置17’與該第三校準裝置17相比,為較簡單的結構,沒有面板正/反反轉功能,僅具有與該第一校準裝置11及第二校準裝置14相同的校準功能。即,第三校準裝置17’根據儲存於控制裝置20之光學軸方向的檢查資料及該攝影機C之攝影資料,決定相對第三貼合裝置18’之第二單面貼合面板P12的部件寬度方向及迴轉方向上之位置。在此狀態中,第二單面貼合面板P12被引導至第三貼合裝置18’之貼合位置。 Compared with the third calibration device 17, the third calibration device 17' has a simpler structure, has no panel forward/reverse rotation function, and has only the same calibration function as the first calibration device 11 and the second calibration device 14. . That is, the third calibration device 17' determines the component width of the second single-sided bonding panel P12 with respect to the third bonding device 18' based on the inspection data stored in the optical axis direction of the control device 20 and the photographic data of the camera C. Position in the direction and direction of rotation. In this state, the second single-sided bonding panel P12 is guided to the bonding position of the third bonding device 18'.

第三貼合裝置18’與該第三貼合裝置18相比,係針對被引導至貼合位置的長條狀第三光學組件層F3下側面,將沿其下方搬送之第二單面貼合面板P12上側面(液晶面板P之顯示面側)進行貼合。第三貼合裝置18’具有該搬送裝置18a及夾壓滾筒18b上下顛倒的結構。藉此,第三光學組件層F3之貼合面變成朝下貼合,可抑制對此貼合面的刮痕或灰塵等異物之附著。 Compared with the third bonding device 18, the third bonding device 18' is attached to the lower side of the elongated third optical component layer F3 that is guided to the bonding position, and the second single-sided sticker that is transported along the lower side thereof The upper side of the panel P12 (the display surface side of the liquid crystal panel P) is bonded. The third bonding apparatus 18' has a structure in which the conveying device 18a and the nip roller 18b are turned upside down. Thereby, the bonding surface of the third optical component layer F3 is bonded downward, and adhesion of foreign matter such as scratches or dust on the bonding surface can be suppressed.

另外,本發明不限定於上述實施形態及變形例,例如與該第三貼合裝置18’相同地,第一貼合裝置12及第二貼合裝置15亦可上下顛倒。而且,亦可將該等上下顛倒之各貼合裝置與該第一貼合裝置12’及第一切斷裝置13’進行適當組合。 Further, the present invention is not limited to the above-described embodiments and modifications. For example, similarly to the third bonding apparatus 18', the first bonding apparatus 12 and the second bonding apparatus 15 may be turned upside down. Further, the respective bonding devices that are upside down may be combined with the first bonding device 12' and the first cutting device 13' as appropriate.

而且,除了將光學顯示部件貼合至從料捲滾筒捲出之光學組件層的結構之外,亦可將複數個光學顯示部件適當地貼合至大尺寸光學組件層的結構。 Further, in addition to the structure in which the optical display member is attached to the optical component layer that is unwound from the roll, a plurality of optical display members may be appropriately bonded to the structure of the large-sized optical component layer.

接著,上述實施形態及變形例中之結構僅為本發明之一例,於不偏離該發明之要旨的範圍內各種變化皆為可能。 The configurations of the above-described embodiments and modifications are merely examples of the invention, and various changes are possible without departing from the scope of the invention.

上述控制裝置20於內部具有電腦系統。接著,上述各裝置之動作係以程式形式儲存於電腦可讀取的儲存媒體,以電腦執行讀出的程式,以進行上述處理。此處,電腦可讀取的儲存媒體係指磁碟、磁光碟、CD-ROM、DVD-ROM、半導體記憶體等。而且,較佳亦可藉由通訊線路將該電腦程式傳送至電腦,由接受到該傳送資料的電腦執行該程式。 The above control device 20 has a computer system inside. Then, the operations of the above devices are stored in a computer-readable storage medium in a program format, and the read program is executed by the computer to perform the above processing. Here, the computer readable storage medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Moreover, it is preferable that the computer program is transmitted to the computer via a communication line, and the program is executed by the computer that receives the data.

而且,上述程式,較佳亦可為用以實現前述一部分功能者。 Moreover, the above program may preferably be used to implement some of the aforementioned functions.

再者,較佳亦可藉由將已儲存於電腦系統中的程式進行組合以達成前述功能,即所謂的差別檔案(difference file;差別程式)。 Furthermore, it is preferable to combine the programs already stored in the computer system to achieve the aforementioned functions, that is, a so-called difference file.

本發明係可適用於,一種可提升貼合至光學顯示部件的光學薄膜之光學軸方向精度的光學組件貼合體之製造系統、製造方法及儲存媒體等。 The present invention is applicable to a manufacturing system, a manufacturing method, a storage medium, and the like of an optical component bonding body which can improve the optical axis direction accuracy of an optical film bonded to an optical display member.

5‧‧‧滾筒搬送機 5‧‧‧Roller conveyor

11‧‧‧第一校準裝置 11‧‧‧First calibration device

12‧‧‧第一貼合裝置 12‧‧‧First bonding device

12a‧‧‧搬送裝置 12a‧‧‧Transporting device

12b‧‧‧夾壓滾筒 12b‧‧‧ pinch roller

12c‧‧‧滾筒保持部 12c‧‧‧Roller Keeping Department

12d‧‧‧保護薄膜回收部 12d‧‧‧Protective film recycling department

13‧‧‧第一切斷裝置 13‧‧‧First cutting device

14‧‧‧第二校準裝置 14‧‧‧Second calibration device

15‧‧‧第二貼合裝置 15‧‧‧Second laminating device

15a‧‧‧搬送裝置 15a‧‧‧Transporting device

15b‧‧‧夾壓滾筒 15b‧‧‧ pinch roller

15c‧‧‧滾筒保持部 15c‧‧‧Roller Keeping Department

15d‧‧‧第二回收部 15d‧‧‧Second Recycling Department

16‧‧‧第二切斷裝置 16‧‧‧Second cutting device

17‧‧‧第三校準裝置 17‧‧‧ Third calibration device

18‧‧‧第三貼合裝置 18‧‧‧ Third bonding device

18a‧‧‧搬送裝置 18a‧‧‧Transporting device

18b‧‧‧夾壓滾筒 18b‧‧‧ pinch roller

18c‧‧‧滾筒保持部 18c‧‧‧Roller Keeping Department

18d‧‧‧第三回收部 18d‧‧‧ Third Recycling Department

19‧‧‧第三切斷裝置 19‧‧‧ Third cutting device

20‧‧‧控制裝置 20‧‧‧Control device

F1‧‧‧第一光學組件層 F1‧‧‧First optical component layer

F2‧‧‧第二光學組件層 F2‧‧‧Second optical component layer

F3‧‧‧第三光學組件層 F3‧‧‧ third optical component layer

F21‧‧‧第一貼合層 F21‧‧‧ first bonding layer

F22‧‧‧第二貼合層 F22‧‧‧Second bonding layer

F23‧‧‧第三貼合層 F23‧‧‧ third bonding layer

P‧‧‧液晶面板 P‧‧‧ LCD panel

P11‧‧‧第一單面貼合面板 P11‧‧‧First single-sided fitting panel

P12‧‧‧第二單面貼合面板 P12‧‧‧Second single-sided fitting panel

P13‧‧‧雙面貼合面板 P13‧‧‧ double-sided fitting panel

pf‧‧‧保護薄膜 Pf‧‧‧protective film

R1‧‧‧第一料捲滾筒 R1‧‧‧First roll drum

R2‧‧‧第二料捲滾筒 R2‧‧‧second roll drum

R3‧‧‧第三料捲滾筒 R3‧‧‧ third roll

Claims (14)

一種光學組件貼合體的製造系統,具備:控制裝置,根據顯示較光學顯示部件之顯示區域大的光學組件層之光學軸方向的檢查資料,決定該光學顯示部件及該光學組件層的相對貼合位置;校準裝置,根據該控制裝置所決定之相對貼合位置,進行相對該光學組件層之光學顯示部件的校準;貼合裝置,將該光學組件層貼合至由該校準裝置校準好之光學顯示部件;檢測裝置,於該貼合裝置所貼合之光學組件層中,檢測該光學組件層及該光學顯示部件之貼合面的外周緣;以及切斷裝置,沿著該貼合面的外周緣,切斷該檢測裝置所檢測之光學組件層的區域中對應該光學組件層之貼合面區域的第一區域與該光學組件層之第一區域外側區域的第二區域。 A manufacturing system for an optical component bonding body, comprising: a control device that determines a relative fit of the optical display component and the optical component layer based on inspection data indicating an optical axis direction of the optical component layer that is larger than a display area of the optical display component; a calibration device that aligns with the optical display component of the optical component layer according to the relative bonding position determined by the control device; a bonding device that bonds the optical component layer to the optical device calibrated by the calibration device a display unit; the detecting device detects an outer peripheral edge of the bonding surface of the optical component layer and the optical display component in the optical component layer to which the bonding device is attached; and a cutting device along the bonding surface The outer periphery cuts a first region of the region of the bonding surface region corresponding to the optical component layer and a second region of the outer region of the first region of the optical component layer in the region of the optical component layer detected by the detecting device. 如申請專利範圍第1項所述之光學組件貼合體的製造系統,其中該切斷裝置從該光學組件層切割出對應該貼合面大小的光學組件層,藉以切割出包含該光學顯示部件及該光學組件層的光學組件貼合體。 The manufacturing system of the optical component bonding body according to the first aspect of the invention, wherein the cutting device cuts an optical component layer corresponding to the size of the bonding surface from the optical component layer, thereby cutting the optical display component and The optical component of the optical component layer is bonded to the body. 如申請專利範圍第1項所述之光學組件貼合體的製造系統,其中該控制裝置讓該光學顯示部件之基準軸與該檢查資料所示之光學組件層的光學軸方向呈平行,以決定該相對貼合位置。 The manufacturing system of the optical component bonding body according to claim 1, wherein the control device makes the reference axis of the optical display component parallel to the optical axis direction of the optical component layer indicated by the inspection data to determine the Relatively fitting position. 如申請專利範圍第3項所述之光學組件貼合體的製造系統,其中該控制裝置使用通過該光學顯示部件之平面中心的長邊方向軸來作為該基準軸。 The manufacturing system of the optical component bonding body according to claim 3, wherein the control device uses the long-axis direction axis passing through the center of the plane of the optical display member as the reference axis. 如申請專利範圍第1項所述之光學組件貼合體的製造系統,其中該校準裝置讓該光學組件層與該光學顯示部件配置至該控制裝置所決定的相對貼合位置,以進行該光學顯示部件的校準。 The manufacturing system of the optical component bonding body according to claim 1, wherein the calibration device arranges the optical component layer and the optical display component to a relative bonding position determined by the control device to perform the optical display. Calibration of the components. 如申請專利範圍第1項所述之光學組件貼合體的製造系統,其中該校準裝置於將該光學顯示部件反轉後,根據該控制裝置所決定之相對貼合位置,進行相對該光學組件層之光學顯示部件的校準。 The manufacturing system of the optical component bonding body according to the first aspect of the invention, wherein the calibration device performs the relative optical component on the optical component, and the optical component layer is opposite to the bonding position determined by the control device. Calibration of the optical display components. 如申請專利範圍第1項所述之光學組件貼合體的製造系統,其中該貼合裝置使用較該顯示區域大且較該光學顯示部件的外形小之區域來作為該第一區域。 The manufacturing system of the optical component bonding body according to the first aspect of the invention, wherein the bonding device uses a region larger than the display region and smaller than an outer shape of the optical display member as the first region. 如申請專利範圍第1項所述之光學組件貼合體的製造系統,其中該切斷裝置使用雷射來切斷該光學組件層。 The manufacturing system of the optical component bonding body according to the first aspect of the invention, wherein the cutting device uses a laser to cut the optical component layer. 如申請專利範圍第1項所述之光學組件貼合體的製造系統,更具備攝影裝置,拍攝該光學顯示部件之位置;其中該控制裝置根據該檢查資料及該攝影裝置所拍攝之光學顯示部件的位置,決定該相對貼合位置。 The manufacturing system of the optical component bonding body according to claim 1, further comprising a photographing device for photographing the position of the optical display component; wherein the control device is based on the inspection data and the optical display component photographed by the photographing device Position determines the relative fit position. 如申請專利範圍第1項所述之光學組件貼合體的製造系統,更具備第一搬送裝置,將該光學顯示部件以該校準裝置、該貼合裝置及該切斷裝置之順序進行搬送。 The manufacturing system of the optical component bonding body according to the first aspect of the invention is further provided with a first conveying device, and the optical display member is conveyed in the order of the calibration device, the bonding device, and the cutting device. 如申請專利範圍第1項所述之光學組件貼合體的製造系統,其中更具備第二搬送裝置,將該光學組件層搬送至該貼合裝置。 A manufacturing system of an optical component bonding body according to the first aspect of the invention, further comprising a second conveying device, wherein the optical component layer is conveyed to the bonding device. 如申請專利範圍第11項所述之光學組件貼合體的製造系統,其中該第二搬送裝置具備回收部,回收該切斷裝置所切斷之剩餘部分。 The manufacturing system of the optical component bonding body as described in claim 11, wherein the second conveying device includes a collecting portion, and the remaining portion cut by the cutting device is recovered. 一種光學組件貼合體的製造方法,包含: 根據顯示較光學顯示部件之顯示區域大的光學組件層之光學軸方向的檢查資料,決定該光學顯示部件與該光學組件層的相對貼合位置;根據所決定之相對貼合位置,進行相對該光學組件層之光學顯示部件的校準;將該光學組件層貼合至校準好之光學顯示部件;於所貼合之光學組件層中,檢測該光學組件層及該光學顯示部件之貼合面的外周緣;以及沿著該貼合面的外周緣,切斷所檢測之光學組件層的區域中對應該光學組件層之貼合面區域的第一區域與該光學組件層之第一區域外側區域的第二區域。 A method for manufacturing an optical component bonding body, comprising: Determining a relative bonding position of the optical display member and the optical component layer according to inspection data showing an optical axis direction of the optical component layer larger than a display area of the optical display component; and performing relative positioning according to the determined relative bonding position Aligning the optical display component of the optical component layer; bonding the optical component layer to the calibrated optical display component; detecting the bonding surface of the optical component layer and the optical display component in the bonded optical component layer a peripheral edge; and an outer peripheral edge of the bonding surface, the first region of the region of the optical component layer corresponding to the optical component layer and the outer region of the first region of the optical component layer in the region of the detected optical component layer The second area. 一種電腦可讀式儲存媒體,儲存有執行下述動作的程式:根據顯示較光學顯示部件之顯示區域大的光學組件層之光學軸方向的檢查資料,決定該光學顯示部件及該光學組件層的相對貼合位置;根據所決定之相對貼合位置,進行相對該光學組件層之光學顯示部件的校準;將該光學組件層貼合至校準好之光學顯示部件;於所貼合之光學組件層中,檢測該光學組件層及該光學顯示部件之貼合面的外周緣;以及沿著該貼合面的外周緣,切斷所檢測之光學組件層的區域中對應該光學組件層之貼合面區域的第一區域與該光學組件層之第一區域外側區域的第二區域。 A computer readable storage medium storing a program for performing an operation of determining an optical display component and an optical component layer according to inspection data indicating an optical axis direction of an optical component layer larger than a display area of the optical display component a relative bonding position; performing calibration of the optical display member relative to the optical component layer according to the determined relative bonding position; bonding the optical component layer to the calibrated optical display component; and bonding the optical component layer Detecting an outer peripheral edge of the bonding surface of the optical component layer and the optical display component; and cutting the corresponding optical component layer in the region of the detected optical component layer along the outer peripheral edge of the bonding surface a first region of the face region and a second region of the outer region of the first region of the optical component layer.
TW103116962A 2013-05-16 2014-05-14 Manufacturing system, manufacturing method and recording medium for optical member laminated body TWI599823B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013104151A JP5724146B2 (en) 2013-05-16 2013-05-16 Manufacturing system, manufacturing method and recording medium for optical member bonded body

Publications (2)

Publication Number Publication Date
TW201508390A TW201508390A (en) 2015-03-01
TWI599823B true TWI599823B (en) 2017-09-21

Family

ID=51898081

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103116962A TWI599823B (en) 2013-05-16 2014-05-14 Manufacturing system, manufacturing method and recording medium for optical member laminated body

Country Status (5)

Country Link
JP (1) JP5724146B2 (en)
KR (1) KR102066770B1 (en)
CN (1) CN105190735B (en)
TW (1) TWI599823B (en)
WO (1) WO2014185093A1 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08262384A (en) * 1995-03-18 1996-10-11 New Oji Paper Co Ltd Optically anisotropic sheet supplying device
JP3616866B2 (en) * 1997-09-19 2005-02-02 住友化学株式会社 Manufacturing method of optical film bonded substrate
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP2003255132A (en) 2002-03-05 2003-09-10 Sumitomo Chem Co Ltd Manufacturing method for optical film chip
JP4376558B2 (en) * 2002-07-04 2009-12-02 富士フイルム株式会社 Polarizing plate bonding method and apparatus
JP4342851B2 (en) * 2002-07-04 2009-10-14 富士フイルム株式会社 Polarizing plate bonding method and apparatus
JP4371709B2 (en) * 2003-06-05 2009-11-25 富士フイルム株式会社 Optical film sticking apparatus and method
JP2006259542A (en) * 2005-03-18 2006-09-28 Sharp Corp Method for manufacturing liquid crystal display panel
WO2006129523A1 (en) * 2005-05-30 2006-12-07 Sharp Kabushiki Kaisha Liquid crystal display device manufacturing method and liquid crystal display device manufacturing device
JP2007212690A (en) * 2006-02-08 2007-08-23 Toshiba Matsushita Display Technology Co Ltd Inspection apparatus for liquid crystal panel and its inspection method
JP4855493B2 (en) * 2008-04-14 2012-01-18 日東電工株式会社 Optical display device manufacturing system and optical display device manufacturing method
JP2010113109A (en) * 2008-11-06 2010-05-20 Seiko Epson Corp Method for manufacturing electrooptical device
JP5407527B2 (en) * 2009-04-28 2014-02-05 住友化学株式会社 Manufacturing method of optical display panel
JP4774123B1 (en) * 2010-03-18 2011-09-14 住友化学株式会社 Method for inspecting bonding accuracy of polarizing plate and apparatus for inspecting bonding accuracy
JP4981944B2 (en) * 2010-03-26 2012-07-25 三星ダイヤモンド工業株式会社 Method for manufacturing liquid crystal display cell
JP4644755B1 (en) * 2010-06-10 2011-03-02 日東電工株式会社 Method for aligning film sheet and rectangular panel in display panel manufacturing apparatus
JP4977257B2 (en) * 2010-06-24 2012-07-18 日東電工株式会社 Liquid crystal panel manufacturing method and manufacturing system
JP5243514B2 (en) * 2010-11-12 2013-07-24 日東電工株式会社 Manufacturing method of liquid crystal display device

Also Published As

Publication number Publication date
KR20160009553A (en) 2016-01-26
KR102066770B1 (en) 2020-01-15
WO2014185093A1 (en) 2014-11-20
JP5724146B2 (en) 2015-05-27
CN105190735B (en) 2017-12-08
TW201508390A (en) 2015-03-01
CN105190735A (en) 2015-12-23
JP2014224913A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
TWI425260B (en) Manufacturing system of optical component pasted material, manufacturing method and computer-readable recording medium
TWI441703B (en) Manufacturing system of optical component pasted material, manufacturing method and computer-readable recording medium
US8016965B2 (en) Information storing, readout and calculation system for use in a system for continuously manufacturing liquid-crystal display elements, and method for producing the same
US9573356B2 (en) Information storage/readout device for use in continuously manufacturing system for liquid-crystal display elements, and method and system for producing the same
TWI574082B (en) Production apparatus for optical member affixed body
JP6127707B2 (en) Optical display device production system and production method
TWI614200B (en) Production system and production method of optical display device
KR20160045727A (en) Apparatus and method for manufacturing optical member-bonded body
TWI600544B (en) Optical display device production system
TW201518811A (en) Optical member affixed body production method
TW201328855A (en) Manufacturing system and manufacturing method of optical display device
TWI599428B (en) Production method for optical display device and production system for optical display device
TW201522932A (en) Optical member affixed body production method
TW201512711A (en) Apparatus and method of manufacturing optical-member-attached body
TWI599823B (en) Manufacturing system, manufacturing method and recording medium for optical member laminated body
TWI582492B (en) Detecting apparatus and production apparatus for optical member affixed body
KR101896141B1 (en) Production system and production method for optical display device
JP6227279B2 (en) Manufacturing apparatus and manufacturing method of optical member bonded body
TW201506502A (en) Manufacturing system, manufacturing method and recording medium for optical member laminated body
TW201518812A (en) Optical member affixed body production method
JP2014224912A (en) Optical display device production system, and production method
TW201516447A (en) Optical member affixed body production method