TWI599017B - Light emitting diode array on wafer level and method of forming the same - Google Patents
Light emitting diode array on wafer level and method of forming the same Download PDFInfo
- Publication number
- TWI599017B TWI599017B TW102128317A TW102128317A TWI599017B TW I599017 B TWI599017 B TW I599017B TW 102128317 A TW102128317 A TW 102128317A TW 102128317 A TW102128317 A TW 102128317A TW I599017 B TWI599017 B TW I599017B
- Authority
- TW
- Taiwan
- Prior art keywords
- light emitting
- emitting diode
- semiconductor layer
- interlayer insulating
- layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 40
- 239000010410 layer Substances 0.000 claims description 311
- 239000004065 semiconductor Substances 0.000 claims description 149
- 239000011229 interlayer Substances 0.000 claims description 82
- 239000000758 substrate Substances 0.000 claims description 50
- 239000004020 conductor Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052703 rhodium Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 106
- 230000008569 process Effects 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000005530 etching Methods 0.000 description 14
- 235000012431 wafers Nutrition 0.000 description 12
- 230000004888 barrier function Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 238000009413 insulation Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910008599 TiW Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- H01L27/156—
-
- H01L33/38—
Landscapes
- Led Devices (AREA)
- Led Device Packages (AREA)
Description
本發明是有關於一種發光二極體陣列,且特別是有關於一種具有經由導線連接且形成為覆晶型的多個發光二極體的發光二極體陣列、以及其形成方法。 The present invention relates to an array of light-emitting diodes, and more particularly to a light-emitting diode array having a plurality of light-emitting diodes connected via wires and formed into a flip chip type, and a method of forming the same.
發光二極體是當對其陽極端及陰極端施加開啟電壓或更高的電壓時進行發光操作的元件。通常來說,用來使發光二極體發光的開啟電壓的值遠低於一般電源的電壓。因此,發光二極體的缺點為其不可以直接在110V或220V的一般AC電源下使用。使用一般AC電源的發光二極體的操作需要用於降低所供應的AC電壓的電壓轉換器。因此,應該要提供用於發光二極體的驅動電路,其變成造成包括發光二極體的照明設備的製造成本增加的一個因素。由於應該要提供分離的驅動電路,故照明設備的體積增加且產生不必要的熱。此外,存在有例如是改善所供應電源的功率因子(power factor)的問題。 The light-emitting diode is an element that performs a light-emitting operation when a turn-on voltage or a higher voltage is applied to the anode terminal and the cathode terminal. Generally, the value of the turn-on voltage used to illuminate the light-emitting diode is much lower than the voltage of a general power source. Therefore, the disadvantage of the light-emitting diode is that it cannot be used directly under a general AC power source of 110V or 220V. The operation of a light-emitting diode using a general AC power source requires a voltage converter for reducing the supplied AC voltage. Therefore, it is necessary to provide a driving circuit for a light-emitting diode which becomes a factor that causes an increase in manufacturing cost of a lighting device including a light-emitting diode. Since a separate drive circuit should be provided, the volume of the illumination device is increased and unnecessary heat is generated. In addition, there is a problem such as an improvement in the power factor of the supplied power source.
為了在排除分離的電壓轉換工具的狀態下使用一般AC電源,已存在有藉由將多個發光二極體晶片彼此串聯來構成陣列的方法。為了實現將發光二極體做為陣列,應當將發光二極體晶片形成為個別的封裝。因此,需要基板分離處理、用於分離的發光二極體晶片的封裝處理、以及相似處理,且另外需要在陣列基板上配置封裝的裝載處理及用於在封裝的電極之間形成導線的配線處理。因此,存在有構成陣列的處理時間增加、及陣列的製造成本增加的問題。 In order to use a general AC power source in a state in which a separate voltage conversion tool is excluded, there has been a method of forming an array by connecting a plurality of light-emitting diode wafers in series with each other. In order to realize the use of the light-emitting diodes as an array, the light-emitting diode wafers should be formed into individual packages. Therefore, a substrate separation process, a package process for a separate light-emitting diode wafer, and the like are required, and additionally, a load process of arranging a package on the array substrate and wiring processing for forming a wire between the electrodes of the package are required. . Therefore, there is a problem that the processing time constituting the array increases and the manufacturing cost of the array increases.
再者,使用打線接合於形成陣列的配線處理,且在陣列的整個表面上另外形成保護接合導線的模封層(molding layer)。因此,存在有另外需要形成模封層的模製處理的問題,因此增加處理的複雜性。特別地說,在應用具有橫向結構的晶片類型的案例中,由於熱的產生,將降低發光二極體晶片的發光效能,並劣化發光二極體的品質。 Further, wire bonding is performed using wire bonding to form an array, and a molding layer for protecting the bonding wires is additionally formed on the entire surface of the array. Therefore, there is a problem of a molding process which additionally requires the formation of a mold layer, thus increasing the complexity of the process. In particular, in the case of applying a wafer type having a lateral structure, the light-emitting efficiency of the light-emitting diode wafer is lowered due to the generation of heat, and the quality of the light-emitting diode is deteriorated.
為了解決以上提到的問題,已提出將陣列中包括多個發光二極體晶片的發光二極體晶片陣列製造為單一封裝的提案。 In order to solve the above-mentioned problems, proposals have been made to manufacture a light-emitting diode wafer array including a plurality of light-emitting diode wafers in an array as a single package.
在韓國專利特許公開案第2007-0035745號中,多個橫向型發光二極體晶片經由使用空橋處理(air bridge process)而形成的金屬導線在單一基板上電性連接。根據此特許公開案,存在有對個別晶片的每一者來說不需要分離封裝處理的優點,且陣列是在晶圓等級上形成。然而,空橋連接結構造成弱的耐久性,且橫向型造成發光效能或熱耗散效能劣化的問題。 In the Korean Patent Laid-Open Publication No. 2007-0035745, a plurality of lateral-type light-emitting diode wafers are electrically connected to each other via a metal wire formed using an air bridge process on a single substrate. According to this patent publication, there is an advantage that separate packaging processing is not required for each of the individual wafers, and the array is formed at the wafer level. However, the empty bridge connection structure causes weak durability, and the lateral type causes a problem of deterioration in luminous efficiency or heat dissipation efficiency.
在美國專利第6,573,537號中,在單一基板上形成多個覆晶型發光二極體。然而,發光二極體的每一者的n型及p型電極在n型及p型電極彼此分開的狀態下被暴露在外。因此,為了使用單一電源,應當增加將多個電極彼此連接的配線處理。為此,在美國專利中使用副載基板(submount substrate)。亦即,為了在電極之間配線,覆晶型發光二極體應當被裝載在分離的副載基板上。用來與另一基板電性連接的至少兩個電極應當形成在副載基板的背面上。在此美國專利中,由於使用覆晶型發光二極體,存在有改善發光效能及熱耗散效能的優點。相反地,副載基板的使用造成最終產品的厚度及製造成本兩者的增加。此外,更存在有需要用於副載基板的另外的配線處理及在新的基板上裝載副載基板的另外處理的缺點。 In U.S. Patent No. 6,573,537, a plurality of flip-chip light-emitting diodes are formed on a single substrate. However, the n-type and p-type electrodes of each of the light-emitting diodes are exposed in a state in which the n-type and p-type electrodes are separated from each other. Therefore, in order to use a single power source, wiring processing in which a plurality of electrodes are connected to each other should be added. To this end, a submount substrate is used in the U.S. patent. That is, in order to wire between the electrodes, the flip-chip type light emitting diode should be mounted on the separated sub-mount substrate. At least two electrodes for electrically connecting to another substrate should be formed on the back surface of the sub-substrate. In this U.S. patent, there is an advantage of improving the luminous efficacy and heat dissipation efficiency due to the use of a flip-chip type light emitting diode. Conversely, the use of a sub-substrate causes an increase in both the thickness of the final product and the manufacturing cost. Further, there is a disadvantage in that it requires additional wiring processing for the sub-substrate and additional processing for loading the sub-substrate on a new substrate.
韓國專利特許公開案第2008-0002161號揭露覆晶型發光二極體彼此串聯連接的設置。根據此特許專利公開案,在晶片基底上的封裝處理是不需要的,且覆晶型發光二極體的使用展現改善發光效能及熱耗散效能的效果。然而,除了n型及p型半導體層之間的配線之外,還使用分離反射層,且在n型電極上使用互連導線(interconnection wiring)。因此,應當形成多個經圖案化的金屬層。為此,應當使用多種類型的罩幕,而其成為問題。此外,由於n型電極及互連電極之間的熱擴散係數不同或相似情形而發生脫落或破裂,且因此存在有其之間的電連接開路(open)的問題。 Korean Patent Laid-Open Publication No. 2008-0002161 discloses an arrangement in which flip-chip type light-emitting diodes are connected in series to each other. According to this patent publication, the encapsulation process on the wafer substrate is not required, and the use of the flip-chip type light-emitting diode exhibits an effect of improving luminous efficacy and heat dissipation efficiency. However, in addition to the wiring between the n-type and p-type semiconductor layers, a separate reflective layer is used, and an interconnection wiring is used on the n-type electrode. Therefore, a plurality of patterned metal layers should be formed. For this reason, many types of masks should be used, which is a problem. Further, detachment or cracking occurs due to a difference in thermal diffusion coefficient between the n-type electrode and the interconnection electrode or the like, and thus there is a problem that the electrical connection between them is open.
本發明的目的是提供一種具有經改善結構的覆晶型發光二極體陣列及其形成方法。 It is an object of the present invention to provide a flip-chip type light emitting diode array having an improved structure and a method of forming the same.
本發明的另一目的是提供一種發光二極體陣列及其形成方法,所述發光二極體陣列可不具有任何副載基板而使用。 Another object of the present invention is to provide an array of light-emitting diodes and a method of forming the same, which can be used without any sub-substrate.
本發明的再一目的是提供一種覆晶型發光二極體陣列及其形成方法,所述覆晶型發光二極體陣列除了可不使用用於連接多個發光二極體的導線之外,還可不使用分離反射金屬層,以防止光損耗。 Still another object of the present invention is to provide a flip-chip type light-emitting diode array and a method of forming the same, which can be used in addition to wires for connecting a plurality of light-emitting diodes, A separate reflective metal layer may not be used to prevent light loss.
本發明的又一目的是提供一種發光二極體陣列及其形成方法,所述覆晶型發光二極體陣列可藉由減少光損耗而改善光提取效率。 It is still another object of the present invention to provide an array of light-emitting diodes and a method of forming the same, which can improve light extraction efficiency by reducing optical loss.
從以下描述將使本發明的其他特徵及優點顯而易見且更易於理解。 Other features and advantages of the invention will be apparent from the
根據本發明態樣的發光二極體陣列包括:成長基板;配置在基板上的多個發光二極體,其中所述多個發光二極體的每一者具有第一半導體層、主動層及第二半導體層;以及配置在所述多個發光二極體上且由相同材料形成的多個上電極,其中所述多個上電極的每一者電性連接至發光二極體的相應一者的第一半導體層。上電極中的至少一者電性連接至發光二極體的鄰近一者的第二半導體層,上電極中的另一者與發光二極體的鄰近一者的第 二半導體層絕緣。 A light emitting diode array according to an aspect of the present invention includes: a growth substrate; a plurality of light emitting diodes disposed on the substrate, wherein each of the plurality of light emitting diodes has a first semiconductor layer, an active layer, and a second semiconductor layer; and a plurality of upper electrodes disposed on the plurality of light emitting diodes and formed of the same material, wherein each of the plurality of upper electrodes is electrically connected to a corresponding one of the light emitting diodes The first semiconductor layer. At least one of the upper electrodes is electrically connected to the second semiconductor layer adjacent to one of the light emitting diodes, and the other of the upper electrodes is adjacent to the one of the light emitting diodes Two semiconductor layers are insulated.
因此,不使用任何副載基板而提供可在高電壓下驅動的覆晶型發光二極體陣列且簡化其形成處理是可能的。 Therefore, it is possible to provide a flip-chip type light-emitting diode array which can be driven at a high voltage without using any sub-substrate and to simplify the formation process thereof.
上電極可包括與第一半導體層歐姆接觸的歐姆接觸層。由於上電極包括歐姆接觸層,其不需要藉由使用個別罩幕來形成歐姆接觸層及上電極,且因此可更簡化形成處理。 The upper electrode may include an ohmic contact layer in ohmic contact with the first semiconductor layer. Since the upper electrode includes an ohmic contact layer, it is not necessary to form the ohmic contact layer and the upper electrode by using individual masks, and thus the formation process can be more simplified.
歐姆接觸層可包括:Cr、Ni、Ti、Rh或Al的金屬材料、或ITO。 The ohmic contact layer may include a metal material of Cr, Ni, Ti, Rh, or Al, or ITO.
上電極可包括反射導體層。反射導體層可位於歐姆接觸層上。反射導體層可包括Al、Ag、Rh或Pt。此外,上電極可更包括用於保護反射導體層的阻障層。阻障層可形成為單層或多層結構,且厚度為300nm至5000nm。 The upper electrode may include a reflective conductor layer. The reflective conductor layer can be on the ohmic contact layer. The reflective conductor layer may include Al, Ag, Rh, or Pt. Further, the upper electrode may further include a barrier layer for protecting the reflective conductor layer. The barrier layer may be formed in a single layer or a multilayer structure and has a thickness of 300 nm to 5000 nm.
發光二極體陣列可更包括配置在發光二極體與上電極之間的第一層間絕緣層。上電極可藉由第一層間絕緣層與發光二極體的側面絕緣。第一層間絕緣層可覆蓋發光二極體的側面及發光二極體之間的區域。上電極可位於第一層間絕緣層上,且可覆蓋發光二極體之間大部分的區域。在使用線形導線的習知案例中,導線幾乎不覆蓋發光二極體之間的區域。相反地,上電極可覆蓋發光二極體之間的區域的至少30%、至少50%或甚至至少90%。然而,由於上電極彼此分開,因此上電極覆蓋小於100%的發光二極體之間的區域。 The light emitting diode array may further include a first interlayer insulating layer disposed between the light emitting diode and the upper electrode. The upper electrode may be insulated from the side surface of the light emitting diode by the first interlayer insulating layer. The first interlayer insulating layer may cover a side surface of the light emitting diode and a region between the light emitting diodes. The upper electrode may be located on the first interlayer insulating layer and may cover a large portion of the area between the light emitting diodes. In the conventional case of using a linear wire, the wire hardly covers the area between the light-emitting diodes. Conversely, the upper electrode may cover at least 30%, at least 50%, or even at least 90% of the area between the light emitting diodes. However, since the upper electrodes are separated from each other, the upper electrode covers a region between the light emitting diodes of less than 100%.
為了減少由上電極造成的阻抗,上電極可經形成以具有 相對大的面積。因此,促進電流分佈及降低發光二極體陣列的正向電壓是可能的。 In order to reduce the impedance caused by the upper electrode, the upper electrode may be formed to have Relatively large area. Therefore, it is possible to promote current distribution and reduce the forward voltage of the light emitting diode array.
此外,上電極可與第一層間絕緣層一起構成全向反射器(omni-directional reflector)。或者,第一層間絕緣層可包括分散式布拉格反射器(distributed Bragg reflector)。因此,全向反射器或分散式布拉格反射器可進一步增強光的反射率。 Further, the upper electrode may constitute an omni-directional reflector together with the first interlayer insulating layer. Alternatively, the first interlayer insulating layer may include a distributed Bragg reflector. Therefore, an omnidirectional reflector or a distributed Bragg reflector can further enhance the reflectance of light.
發光二極體陣列可更包括分別配置在發光二極體的第二半導體層上的下電極。第一層間絕緣層可暴露出發光二極體的每一者上的下電極的一部分。電性連接至鄰近發光二極體的第二半導體層的上電極可經由第一層間絕緣層連接至的下電極的暴露部分。下電極的每一者可包括反射層。 The light emitting diode array may further include a lower electrode respectively disposed on the second semiconductor layer of the light emitting diode. The first interlayer insulating layer may expose a portion of the lower electrode on each of the light emitting diodes. The upper electrode electrically connected to the second semiconductor layer adjacent to the light emitting diode may be connected to the exposed portion of the lower electrode via the first interlayer insulating layer. Each of the lower electrodes may include a reflective layer.
發光二極體陣列可更包括覆蓋上電極的第二層間絕緣層。第二層間絕緣層可暴露出下電極中的一者及與鄰近發光二極體的第二半導體層絕緣之上電極。 The light emitting diode array may further include a second interlayer insulating layer covering the upper electrode. The second interlayer insulating layer may expose one of the lower electrodes and the upper semiconductor layer adjacent to the light emitting diodes.
再者,發光二極體可藉由上電極串聯連接。同時,第二層間絕緣層在串聯連接的發光二極體兩端處可暴露出對應於發光二極體的下電極及上電極。 Furthermore, the light emitting diodes can be connected in series by the upper electrodes. Meanwhile, the second interlayer insulating layer may expose the lower electrode and the upper electrode corresponding to the light emitting diode at both ends of the LEDs connected in series.
發光二極體陣列可更包括位於第二層間絕緣層上的第一接墊(pad)及第二接墊。第一接墊可連接至經由第二層間絕緣層暴露的下電極,且第二接墊可連接至經由第二層間絕緣層暴露的上電極。因此,使用第一接墊及第二接墊提供可裝載在印刷電路板或相似物上的覆晶型發光二極體陣列是可能的。 The LED array may further include a first pad and a second pad on the second interlayer insulating layer. The first pad may be connected to the lower electrode exposed through the second interlayer insulating layer, and the second pad may be connected to the upper electrode exposed via the second interlayer insulating layer. Therefore, it is possible to provide a flip-chip type light-emitting diode array that can be mounted on a printed circuit board or the like using the first pad and the second pad.
在一些實施例中,發光二極體的每一者可具有穿過第二半導體層及主動層而暴露出第一半導體層的介層窗孔(via hole)。上電極的每一者可經由介層窗孔連接至發光二極體中的對應一者的第一半導體層。 In some embodiments, each of the light emitting diodes can have a via hole that exposes the first semiconductor layer through the second semiconductor layer and the active layer. Each of the upper electrodes may be connected to a first semiconductor layer of a corresponding one of the light emitting diodes via a via.
同時,上電極可佔據發光二極體陣列的整體面積的至少30%且小於100%。 At the same time, the upper electrode can occupy at least 30% and less than 100% of the overall area of the array of light emitting diodes.
上電極的每一者可為廣寬比(breadth to width)於1:3至3:1範圍中的板或片的形式。不同於習知的線形導線,由於上電極為板或片的形式,因此促進電流分佈及降低發光二極體陣列的正向電壓是可能的。 Each of the upper electrodes may be in the form of a plate or sheet having a breadth to width in the range of 1:3 to 3:1. Unlike conventional linear wires, since the upper electrode is in the form of a plate or a sheet, it is possible to promote current distribution and reduce the forward voltage of the light emitting diode array.
上電極中的至少一者的廣度或寬度可大於發光二極體中的對應一者的廣度或寬度。因此,上電極可覆蓋發光二極體之間的區域,且可朝基板反射在主動層中產生的光。 The breadth or width of at least one of the upper electrodes may be greater than the breadth or width of a corresponding one of the light emitting diodes. Therefore, the upper electrode can cover a region between the light emitting diodes, and can reflect light generated in the active layer toward the substrate.
根據本發明另一態樣的發光二極體陣列之形成方法包括形成多個發光二極體,其中所述多個發光二極體的每一者具有在成長基板上的第一半導體層、主動層及第二半導體層。所述多個發光二極體的每一者具有藉由移除第二半導體層及主動層而暴露出來的第一半導體層。之後,形成用於覆蓋發光二極體的第一層間絕緣層。第一層間絕緣層暴露出經暴露的第一半導體層,且具有位於發光二極體的每一者的第二半導體層上的開口。此外,在第一層間絕緣層上用相同材料形成多個上電極。上電極的每一者連接至發光二極體的相應一者的第一半導體層。再者,上電極中 的至少一者經由第一層間絕緣層的開口電性連接至發光二極體中的鄰近一者的第二半導體層,且上電極中的另一者與發光二極體中的鄰近一者的第二半導體絕緣。 A method of forming a light emitting diode array according to another aspect of the present invention includes forming a plurality of light emitting diodes, wherein each of the plurality of light emitting diodes has a first semiconductor layer on a growth substrate, and an active a layer and a second semiconductor layer. Each of the plurality of light emitting diodes has a first semiconductor layer exposed by removing the second semiconductor layer and the active layer. Thereafter, a first interlayer insulating layer for covering the light emitting diode is formed. The first interlayer insulating layer exposes the exposed first semiconductor layer and has openings on the second semiconductor layer of each of the light emitting diodes. Further, a plurality of upper electrodes are formed of the same material on the first interlayer insulating layer. Each of the upper electrodes is connected to a first semiconductor layer of a corresponding one of the light emitting diodes. Furthermore, in the upper electrode At least one of the first interlayer insulating layer is electrically connected to the second semiconductor layer adjacent to one of the light emitting diodes, and the other of the upper electrodes and the adjacent one of the light emitting diodes The second semiconductor insulation.
因此,形成可使用上電極將發光二極體電性連接的覆晶型發光二極體陣列是可能的。因此,不需要使用副載基板。上電極可包括歐姆接觸層,而因此不需要在發光二極體的每一者的第一半導體層上形成分離的歐姆接觸層。 Therefore, it is possible to form a flip-chip type light-emitting diode array which can electrically connect the light-emitting diodes using the upper electrode. Therefore, it is not necessary to use a sub-substrate. The upper electrode may include an ohmic contact layer, and thus it is not necessary to form a separate ohmic contact layer on the first semiconductor layer of each of the light emitting diodes.
此外,上電極的每一者可包括反射導體層。由於上電極包括反射導體層,因此減少發光二極體陣列的光損耗是可能的。 Further, each of the upper electrodes may include a reflective conductor layer. Since the upper electrode includes a reflective conductor layer, it is possible to reduce the light loss of the light emitting diode array.
上述方法可更包括在上電極上形成第二層間絕緣層。第二層間絕緣層可暴露出下電極中的一者及與鄰近的發光二極體的第二半導體層絕緣的其他的上電極。 The above method may further include forming a second interlayer insulating layer on the upper electrode. The second interlayer insulating layer may expose one of the lower electrodes and other upper electrodes insulated from the second semiconductor layer of the adjacent light emitting diode.
上述方法可更包括在第二層間絕緣層上形成第一接墊及第二接墊。第一接墊可連接至下電極,且第二接墊可連接至上電極。 The above method may further include forming a first pad and a second pad on the second interlayer insulating layer. The first pad can be connected to the lower electrode and the second pad can be connected to the upper electrode.
同時,上述方法可更包括將成長基板切割成個別單元。上電極佔據經切割的個別單元的每一者的發光二極體陣列的面積的至少30%且小於100%。 Meanwhile, the above method may further include cutting the growth substrate into individual units. The upper electrode occupies at least 30% and less than 100% of the area of the array of light emitting diodes of each of the individual cells that are cut.
在一些實施例中,第一層間絕緣層可形成為分散式布拉格反射器。在其他實施例中,第一層間絕緣層可與上電極一起構成全向反射器。 In some embodiments, the first interlayer insulating layer can be formed as a distributed Bragg reflector. In other embodiments, the first interlayer insulating layer may form an omnidirectional reflector together with the upper electrode.
根據本發明實施例,提供具有改善結構的覆晶型發光二極體陣列是可能的。特定言之,提供可在高電壓下驅動的晶圓等級之發光二極體陣列是可能的。此外,發光二極體陣列可不需要副載基板。由於上電極可包括歐姆接觸層,因此其不需要形成分離的歐姆接觸層。 According to an embodiment of the present invention, it is possible to provide a flip-chip type light emitting diode array having an improved structure. In particular, it is possible to provide wafer level LED arrays that can be driven at high voltages. In addition, the array of light emitting diodes may not require a submount substrate. Since the upper electrode may include an ohmic contact layer, it does not need to form a separate ohmic contact layer.
此外,上電極包括反射導體層。此外,由於上電極覆蓋發光二極體的側面及發光二極體之間大部分的區域,因此上電極可經使用以反射光。因此,減少在發光二極體之間的區域中產生的光的損耗是可能的。此外,除了上電極(導線)之外,其不需要另外形成用來反射光的分離反射金屬層。 Further, the upper electrode includes a reflective conductor layer. In addition, since the upper electrode covers most of the area between the side of the light-emitting diode and the light-emitting diode, the upper electrode can be used to reflect light. Therefore, it is possible to reduce the loss of light generated in the region between the light emitting diodes. Further, apart from the upper electrode (wire), it is not necessary to additionally form a separate reflective metal layer for reflecting light.
再者,將上電極製造為具有寬面積的板或片的形式,從而在使用相同數量的發光二極體時,在相同電流下,改善電流分佈效能及降低正向電壓。 Furthermore, the upper electrode is fabricated in the form of a plate or sheet having a wide area, thereby improving current distribution efficiency and reducing forward voltage at the same current when the same number of light-emitting diodes are used.
再者,由於第一接墊及第二接墊佔據相對大的面積,因使簡單地且穩固地將發光二極體陣列裝載在印刷電路板或相似物上是可能的。 Moreover, since the first pads and the second pads occupy a relatively large area, it is possible to simply and stably mount the array of light emitting diodes on a printed circuit board or the like.
100‧‧‧基板 100‧‧‧Substrate
110、111、112、113、114‧‧‧第一半導體層 110, 111, 112, 113, 114‧‧‧ first semiconductor layer
120、121、122、123、124‧‧‧主動層 120, 121, 122, 123, 124‧‧‧ active layers
130、131、132、133、134‧‧‧第二半導體層 130, 131, 132, 133, 134‧‧‧ second semiconductor layer
140‧‧‧介層窗孔 140‧‧‧layer window
151、152、153、154‧‧‧下電極 151, 152, 153, 154‧‧‧ lower electrode
161、162、163、164、301~310、401~408‧‧‧單元區 161, 162, 163, 164, 301~310, 401~408‧‧‧ unit area
170‧‧‧第一層間絕緣層 170‧‧‧First interlayer insulation
180a‧‧‧歐姆接觸層 180a‧‧‧ohm contact layer
180b‧‧‧反射導體層 180b‧‧‧reflective conductor layer
180c‧‧‧阻障層 180c‧‧‧Barrier layer
181、182、183、184、185、186、187、188、189、189'‧‧‧上電極 181, 182, 183, 184, 185, 186, 187, 188, 189, 189' ‧ ‧ upper electrode
190‧‧‧第二層間絕緣層 190‧‧‧Second interlayer insulation
210、320、410、220、330、420‧‧‧接墊 210, 320, 410, 220, 330, 420‧‧‧ pads
A1-A2、B1-B2、C1-C1、D1-D2、E1-E2‧‧‧線 A1-A2, B1-B2, C1-C1, D1-D2, E1-E2‧‧‧ lines
D1~D10‧‧‧發光二極體 D1~D10‧‧‧Light Emitting Diode
L‧‧‧光 L‧‧‧Light
V+‧‧‧正電壓 V+‧‧‧ positive voltage
V-‧‧‧負電壓 V-‧‧‧negative voltage
圖1及圖2是表示在根據本發明的實施例的疊層結構中形成多個介層窗孔的平面圖及截面圖。 1 and 2 are a plan view and a cross-sectional view showing the formation of a plurality of via holes in a laminated structure according to an embodiment of the present invention.
圖3及圖4是表示在圖1的第二半導體層上形成下電極的平 面圖及截面圖。 3 and 4 are diagrams showing the formation of a lower electrode on the second semiconductor layer of FIG. Surface and cross-section.
圖5是表示相對於圖3的結構而言單元區為分開的狀態的平面圖。 Fig. 5 is a plan view showing a state in which the unit regions are separated from the structure of Fig. 3.
圖6是在圖5的平面圖中沿線A1-A2所取的截面圖。 Figure 6 is a cross-sectional view taken along line A1-A2 in the plan view of Figure 5.
圖7是在圖5的平面圖中的結構的透視圖。 Figure 7 is a perspective view of the structure in the plan view of Figure 5.
圖8是表示在圖5至圖7的結構的整體表面上形成第一層間絕緣層的平面圖,且在單元區的每一者中暴露第一半導體層及下電極的部分。 8 is a plan view showing formation of a first interlayer insulating layer on the entire surface of the structure of FIGS. 5 to 7, and exposing portions of the first semiconductor layer and the lower electrode in each of the unit regions.
圖9至圖12是在圖8的平面圖中的沿特定線所取的截面圖。 9 to 12 are cross-sectional views taken along a specific line in the plan view of Fig. 8.
圖13是表示在圖8至圖12繪示的結構上形成上電極的平面圖。 Figure 13 is a plan view showing the formation of an upper electrode on the structure shown in Figures 8 to 12 .
圖14至圖17是在圖13的平面圖中沿特定線所取的截面圖。 14 to 17 are cross-sectional views taken along a specific line in the plan view of Fig. 13.
圖18是圖13的平面圖中的結構的透視圖。 Figure 18 is a perspective view of the structure in the plan view of Figure 13.
圖19是根據本發明實施例藉由以圖13至圖18的結構為模型所得到的等效電路圖。 Figure 19 is an equivalent circuit diagram obtained by modeling the structures of Figures 13 through 18 in accordance with an embodiment of the present invention.
圖20是表示在圖13的結構的整體表面上塗佈第二層間絕緣層的平面圖,在第一單元區中的第一電極的一部分經暴露,且在第四單元區中的第四下電極的一部分經暴露。 20 is a plan view showing application of a second interlayer insulating layer on the entire surface of the structure of FIG. 13, a portion of the first electrode in the first cell region is exposed, and a fourth lower electrode in the fourth cell region Part of it is exposed.
圖21至圖24是在圖20的平面圖中沿特定線所取的截面圖。 21 to 24 are cross-sectional views taken along a specific line in the plan view of Fig. 20.
圖25是表示在圖20的結構中形成第一接墊及第二接墊的平面圖。 Figure 25 is a plan view showing the formation of a first pad and a second pad in the structure of Figure 20;
圖26至圖29是在圖25的平面圖中沿特定線所取的截面圖。 26 to 29 are cross-sectional views taken along a specific line in the plan view of Fig. 25.
圖30是在圖25的平面圖中沿線C2-C3所取的透視圖。 Figure 30 is a perspective view taken along line C2-C3 in the plan view of Figure 25.
圖31是以根據本發明的實施例串聯的十個發光二極體的連接為模型所得到的電路圖。 Figure 31 is a circuit diagram obtained by modeling a connection of ten light-emitting diodes connected in series according to an embodiment of the present invention.
圖32是以根據本發明的實施例的具有串聯/並聯連接的發光二極體的陣列為模型所得到的電路圖。 32 is a circuit diagram obtained by modeling an array of light-emitting diodes connected in series/parallel according to an embodiment of the present invention.
下文中,為了更完整地描述本發明,將參照附圖更詳細地描述本發明的較佳實施例。然而,本發明並不受限於以下實施例,但可以其他形式實現。 Hereinafter, in order to more fully describe the present invention, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the following embodiments, but may be implemented in other forms.
在這些實施例中,將理解的是詞彙「第一」、「第二」、「第三」或相似詞彙不對組件強加任何限制,而僅是使用於區分組件。 In these embodiments, it will be understood that the terms "first," "second," "third," or similar terms do not impose any limitation on the component, but are merely used to distinguish components.
圖1及圖2是表示在根據本發明的實施例的疊層結構中形成多個介層窗孔的平面圖及截面圖。 1 and 2 are a plan view and a cross-sectional view showing the formation of a plurality of via holes in a laminated structure according to an embodiment of the present invention.
特別地說,圖2是圖1的平面圖中沿線A1-A2所取的截面圖。 In particular, Figure 2 is a cross-sectional view taken along line A1-A2 of the plan view of Figure 1.
請參照圖1及圖2,在基板100上形成第一半導體層110、主動層120及第二半導體層130,且介層窗孔140經形成以使得半導體層110的表面經介層窗孔140而暴露出來。 Referring to FIGS. 1 and 2 , a first semiconductor layer 110 , an active layer 120 , and a second semiconductor layer 130 are formed on the substrate 100 , and the vias 140 are formed such that the surface of the semiconductor layer 110 passes through the vias 140 . And exposed.
基板100包括例如是藍寶石、碳化矽或GaN的材料。可將任意材料使用於基板100,只要其可促使將在基板100上形成的薄膜的成長。第一半導體層110可具有n型導電性。主動層120 可具有多個量子井結構,且在主動層120上形成第二半導體層130。當第一半導體層110具有n型導電性時,第二半導體層130具有p型導電性。可進一步地在基板100與第一半導體層110之間形成緩衝層(未繪示),以促進第一半導體層110的單晶成長。 The substrate 100 includes a material such as sapphire, tantalum carbide or GaN. Any material may be used for the substrate 100 as long as it promotes the growth of a film to be formed on the substrate 100. The first semiconductor layer 110 may have n-type conductivity. Active layer 120 There may be a plurality of quantum well structures, and a second semiconductor layer 130 is formed on the active layer 120. When the first semiconductor layer 110 has n-type conductivity, the second semiconductor layer 130 has p-type conductivity. A buffer layer (not shown) may be further formed between the substrate 100 and the first semiconductor layer 110 to promote single crystal growth of the first semiconductor layer 110.
繼之,對上至第二半導體層130所形成的結構進行選擇性蝕刻,並形成多個介層窗孔140。經由介層窗孔140暴露較低的部分第一半導體層110。可經由習知的蝕刻處理形成介層窗孔140。舉例而言,塗佈光阻,並接著經由習知的圖案化處理來移除在將要形成介層窗孔的區域上的部分光阻以形成光阻圖案。此後,藉由使用光阻圖案做為蝕刻罩幕進行蝕刻處理。進行蝕刻處理直到暴露部分第一半導體層110。蝕刻處理後,移除剩餘的光阻圖案。 Next, the structure formed up to the second semiconductor layer 130 is selectively etched, and a plurality of via holes 140 are formed. The lower portion of the first semiconductor layer 110 is exposed through the via hole 140. The vias 140 can be formed by conventional etching processes. For example, the photoresist is coated and then a portion of the photoresist on the region where the via is to be formed is removed via a conventional patterning process to form a photoresist pattern. Thereafter, an etching process is performed by using a photoresist pattern as an etching mask. An etching process is performed until a portion of the first semiconductor layer 110 is exposed. After the etching process, the remaining photoresist pattern is removed.
可多樣地改變介層窗孔140的形狀及數量。 The shape and number of the vias 140 can be varied variously.
圖3及圖4是表示在圖1的第二半導體層上形成下電極的平面圖及截面圖。特別地說,圖4是圖3的平面圖沿線A1-A2所取的截面圖。 3 and 4 are a plan view and a cross-sectional view showing the formation of a lower electrode on the second semiconductor layer of Fig. 1. In particular, Figure 4 is a cross-sectional view of the plan view of Figure 3 taken along line A1-A2.
請參照圖3及圖4,在除了介層窗孔140的區域中形成下電極151、152、153及154,且可藉由形成下電極151、152、153及154定義多個單元區161、162、163及164。可藉由採用在形成金屬電極之後所使用的剝離處理來形成下電極151、152、153及154。舉例而言,在虛擬單元區161、162、163及164之外的分離區域中以及在介層窗孔140形成的區域中形成光阻,然後經由習 知的熱沈積或相似處理形成金屬層。接著,移除光阻,從而在第二半導體層130上形成下電極151、152、153及154。可採用任意材料於下電極151、152、153及154,只要其為能夠與第二半導體層130歐姆接觸的金屬材料即可。下電極151、152、153及154可包括材料例如是Al、Ag、Rh或Pt的反射層。舉例而言,下電極151、152、153及154可包括Ni、Cr或Ti,,且可由Ti/Al/Ni/Au的複合金屬層組成。 Referring to FIG. 3 and FIG. 4, the lower electrodes 151, 152, 153 and 154 are formed in the region except the via hole 140, and a plurality of cell regions 161 can be defined by forming the lower electrodes 151, 152, 153 and 154, 162, 163 and 164. The lower electrodes 151, 152, 153, and 154 can be formed by using a lift-off process used after forming the metal electrodes. For example, a photoresist is formed in a separate region other than the dummy cell regions 161, 162, 163, and 164 and in a region formed by the via hole 140, and then A known thermal deposition or similar treatment forms a metal layer. Next, the photoresist is removed to form the lower electrodes 151, 152, 153, and 154 on the second semiconductor layer 130. Any material may be employed for the lower electrodes 151, 152, 153, and 154 as long as it is a metal material capable of ohmic contact with the second semiconductor layer 130. The lower electrodes 151, 152, 153, and 154 may include a reflective layer of a material such as Al, Ag, Rh, or Pt. For example, the lower electrodes 151, 152, 153, and 154 may include Ni, Cr, or Ti, and may be composed of a composite metal layer of Ti/Al/Ni/Au.
在圖3及圖4中,形成有四個下電極151、152、153及154的區域分別定義四個單元區161、162、163及164。第二半導體層130暴露在單元區161、162、163及164之間的間隙中。單元區的數量可對應於將形成的包括於陣列中的發光二極體的數量。因此,可多樣地改變單元區的數量。 In FIGS. 3 and 4, the regions in which the four lower electrodes 151, 152, 153, and 154 are formed define four unit regions 161, 162, 163, and 164, respectively. The second semiconductor layer 130 is exposed in a gap between the cell regions 161, 162, 163, and 164. The number of cell regions may correspond to the number of light emitting diodes to be formed included in the array. Therefore, the number of unit areas can be varied variously.
雖然圖4表示下電極151、152、153或154在相同的單元區161、162、163或164中分開,但是此為在橫跨介層窗孔140的線A1-A2所發生的現象。如圖3中可見得,在相同的單元區161、162、163或164中形成的下電極151、152、153或154區是實際上連續的。因此,即使其中形成有介層窗孔140,在相同單元區中形成的下電極151、152、153或154仍是電性短路(electrically short-circuited)狀態。 Although FIG. 4 shows that the lower electrodes 151, 152, 153 or 154 are separated in the same unit region 161, 162, 163 or 164, this is a phenomenon occurring in the line A1-A2 across the via hole 140. As can be seen in Figure 3, the regions of the lower electrodes 151, 152, 153 or 154 formed in the same cell region 161, 162, 163 or 164 are substantially continuous. Therefore, even if the via hole 140 is formed therein, the lower electrode 151, 152, 153 or 154 formed in the same cell region is still in an electrically short-circuited state.
圖5是表示相對於圖3的結構而言單元區為分開的狀態的平面圖,圖6是在圖5的平面圖中沿線A1-A2所取的截面圖,而圖7是在圖5的平面圖中的結構的透視圖。 Figure 5 is a plan view showing a state in which the unit regions are separated with respect to the structure of Figure 3, Figure 6 is a cross-sectional view taken along line A1-A2 in the plan view of Figure 5, and Figure 7 is in the plan view of Figure 5 Perspective view of the structure.
請參照圖5、圖6及圖7,經由用於四個單元區161、162、163及164之間的間隙的台面蝕刻形成經台面蝕刻區。基板100經暴露在經由台面蝕刻形成的經台面蝕刻區中。因此,四個單元區161、162、163及164彼此完全電性分離。若在圖1至圖4的基板100與第一半導體層110之間插置緩衝層,則即使是在單元區161、162、163及164的分離處理中仍可保留緩衝層。然而,為了將單元區161、162、163及164彼此完全分離,可經由台面蝕刻移除單元區161、162、163及164中相鄰者之間的緩衝層。 Referring to FIGS. 5, 6, and 7, a mesa etching region is formed via mesa etching for a gap between the four unit regions 161, 162, 163, and 164. Substrate 100 is exposed to a mesa etched region formed via mesa etching. Therefore, the four unit regions 161, 162, 163, and 164 are completely electrically separated from each other. If a buffer layer is interposed between the substrate 100 of FIGS. 1 to 4 and the first semiconductor layer 110, the buffer layer can be retained even in the separation process of the cell regions 161, 162, 163, and 164. However, in order to completely separate the cell regions 161, 162, 163, and 164 from each other, the buffer layer between adjacent ones of the cell regions 161, 162, 163, and 164 may be removed via mesa etching.
隨著單元區161、162、163及164中相鄰者之間的分離處理,第一半導體層111、112、113及114、主動層121、122、123及124、第二半導體層131、132、133及134以及下電極151、152、153及154分別獨立地形成在單元區161、162、163及164中。因此,第一下電極151暴露在第一單元區161中,且第一半導體層111經由介層窗孔140而暴露出來。第二下電極152暴露在第二單元區162中,且第一半導體層112經由介層窗孔140而暴露出來。相似地,第三下電極153及第一半導體層113暴露在第三單元區163中,且第四下電極154及第一半導體層114暴露在第四單元區164中。 With the separation process between adjacent ones of the cell regions 161, 162, 163, and 164, the first semiconductor layers 111, 112, 113, and 114, the active layers 121, 122, 123, and 124, and the second semiconductor layers 131, 132 The 133 and 134 and the lower electrodes 151, 152, 153, and 154 are independently formed in the cell regions 161, 162, 163, and 164, respectively. Therefore, the first lower electrode 151 is exposed in the first unit region 161, and the first semiconductor layer 111 is exposed through the via hole 140. The second lower electrode 152 is exposed in the second cell region 162, and the first semiconductor layer 112 is exposed through the via hole 140. Similarly, the third lower electrode 153 and the first semiconductor layer 113 are exposed in the third cell region 163, and the fourth lower electrode 154 and the first semiconductor layer 114 are exposed in the fourth cell region 164.
在本發明中,發光二極體是指其中的第一半導體層111、112、113或114、主動層121、122、123或124及第二半導體層131、132、133或134分別疊層的結構。因此,一個單元區中形成一個發光二極體。當發光二極體經成型以使得第一半導體層111、 112、113或114具有n型導電性且第二半導體層131、132、133或134具有p型導電性時,形成在第二半導體層131、132、133或134上的下電極151、152、153或154可做為發光二極體的陽極電極。 In the present invention, the light emitting diode means that the first semiconductor layer 111, 112, 113 or 114, the active layer 121, 122, 123 or 124 and the second semiconductor layer 131, 132, 133 or 134 are laminated, respectively. structure. Therefore, one light emitting diode is formed in one unit region. When the light emitting diode is shaped such that the first semiconductor layer 111, When 112, 113 or 114 has n-type conductivity and the second semiconductor layer 131, 132, 133 or 134 has p-type conductivity, the lower electrodes 151, 152 formed on the second semiconductor layer 131, 132, 133 or 134, 153 or 154 can be used as the anode electrode of the light-emitting diode.
圖8是表示在圖5至圖7的結構的整體表面上形成第一層間絕緣層的平面圖,且在單元區的每一者中暴露第一半導體層及下電極的部分。 8 is a plan view showing formation of a first interlayer insulating layer on the entire surface of the structure of FIGS. 5 to 7, and exposing portions of the first semiconductor layer and the lower electrode in each of the unit regions.
再者,圖9至圖12是在圖8的平面圖中沿特定線所取的截面圖。特別地說,圖9是在圖8的平面圖中沿線B1-B2所取的截面圖,圖10是在圖8的平面圖中沿線C1-C2所取的截面圖,圖11是在圖8的平面圖中沿線D1-D2所取的截面圖,而圖12是在圖8的平面圖中沿線E1-E2所取的截面圖。 9 to 12 are cross-sectional views taken along a specific line in the plan view of Fig. 8. In particular, FIG. 9 is a cross-sectional view taken along line B1-B2 in the plan view of FIG. 8, FIG. 10 is a cross-sectional view taken along line C1-C2 in the plan view of FIG. 8, and FIG. 11 is a plan view of FIG. A cross-sectional view taken along line D1-D2 in the middle, and FIG. 12 is a cross-sectional view taken along line E1-E2 in the plan view of FIG.
首先,對於圖5至圖7的結構形成第一層間絕緣層170。再者,藉由圖案化的方法暴露出下電極151、152、153及154的部分及在介層窗孔下的第一半導體層111、112、113及114的部分。 First, a first interlayer insulating layer 170 is formed for the structures of FIGS. 5 to 7. Further, portions of the lower electrodes 151, 152, 153, and 154 and portions of the first semiconductor layers 111, 112, 113, and 114 under the via holes are exposed by a patterning method.
舉例而言,在第一單元區161中,打開兩個預形成的介層窗孔,因此暴露出第一半導體層111的部分,且暴露出在預形成的第二半導體層131上形成的第一下電極151的部分。在第二單元區162中,經由預形成的介層窗孔暴露出第一半導體層112的部分,且藉由蝕刻第一層間絕緣層170的部分的方法暴露出第二下電極152的部分。在第三單元區163中,經由介層窗孔暴露出第一半導體層113的部分,且藉由蝕刻第一層間絕緣層170的 部分的方法暴露出第三下電極153的部分。在第四單元區164中,經由介層窗孔暴露出第一半導體層114的部分,且藉由蝕刻第一層間絕緣層170的部分的方法暴露出第四下電極154的部分。 For example, in the first cell region 161, two pre-formed via holes are opened, thereby exposing portions of the first semiconductor layer 111, and exposing a portion formed on the pre-formed second semiconductor layer 131 The portion of the electrode 151 is lowered. In the second cell region 162, a portion of the first semiconductor layer 112 is exposed via a pre-formed via hole, and a portion of the second lower electrode 152 is exposed by etching a portion of the first interlayer insulating layer 170 . In the third cell region 163, a portion of the first semiconductor layer 113 is exposed through the via hole, and by etching the first interlayer insulating layer 170 Part of the method exposes a portion of the third lower electrode 153. In the fourth cell region 164, a portion of the first semiconductor layer 114 is exposed through the via hole, and a portion of the fourth lower electrode 154 is exposed by etching a portion of the first interlayer insulating layer 170.
因此,在圖8至圖12中,在基板的整體表面上形成第一層間絕緣層170,且藉由選擇性蝕刻的方法在單元區161、162、163及164的每一者中暴露出第一半導體層111、112、113及114在介層窗孔下的部分及在第二半導體層131、132、133及134上的下電極151、152、153及154的部分。亦即,在各個單元區161、162、163及164中,經由在之前的處理中預先形成的介層窗孔暴露第一半導體層111、112、113及114的部分,且亦暴露下電極151、152、153及154的部分。藉由第一層間絕緣層170屏蔽剩下的區域。第一層間絕緣層170可由具有光穿透性的絕緣材料形成。舉例而言,第一層間絕緣層可包括SiO2。或者,第一層間絕緣層170可形成為分散式布拉格反射器,其中材料層具有不同的反射係數且經疊層。舉例而言,可藉由重複地疊置SiO2/TiO2來形成第一層間絕緣層170,從而反射由主動層產生的光。 Therefore, in FIGS. 8 to 12, the first interlayer insulating layer 170 is formed on the entire surface of the substrate, and is exposed in each of the cell regions 161, 162, 163, and 164 by selective etching. Portions of the first semiconductor layers 111, 112, 113, and 114 under the via holes and portions of the lower electrodes 151, 152, 153, and 154 on the second semiconductor layers 131, 132, 133, and 134. That is, in each of the unit regions 161, 162, 163, and 164, the portions of the first semiconductor layers 111, 112, 113, and 114 are exposed through the via holes formed in advance in the previous process, and the lower electrodes 151 are also exposed. Sections 152, 153 and 154. The remaining area is shielded by the first interlayer insulating layer 170. The first interlayer insulating layer 170 may be formed of an insulating material having light transparency. For example, the first interlayer insulating layer may include SiO 2 . Alternatively, the first interlayer insulating layer 170 may be formed as a distributed Bragg reflector in which the material layers have different reflection coefficients and are laminated. For example, the first interlayer insulating layer 170 may be formed by repeatedly stacking SiO 2 /TiO 2 to reflect light generated by the active layer.
圖13是表示在圖8至圖12繪示的結構上形成上電極的平面圖,而圖14至圖17是在圖13的平面圖中沿特定線所取的截面圖。特別地說,圖14是在圖13的平面圖中沿線B1-B2所取的截面圖,圖15是在圖13的平面圖中沿線C1-C2所取的截面圖,圖16是在圖13的平面圖中沿線D1-D2所取的截面圖,而圖17是在圖13的平面圖中沿線E1-E2所取的截面圖。 13 is a plan view showing the upper electrode formed on the structure shown in FIGS. 8 to 12, and FIGS. 14 to 17 are cross-sectional views taken along a specific line in the plan view of FIG. In particular, FIG. 14 is a cross-sectional view taken along line B1-B2 in the plan view of FIG. 13, FIG. 15 is a cross-sectional view taken along line C1-C2 in the plan view of FIG. 13, and FIG. 16 is a plan view of FIG. A cross-sectional view taken along the line D1-D2, and FIG. 17 is a cross-sectional view taken along line E1-E2 in the plan view of FIG.
請參照圖13,形成上電極181、182、183及184。上電極181、182、183及184形成為四個分離區域。舉例而言,在第一單元區161及部分的第二單元區162上方形成第一上電極181。在部分的第二單元區162及部分的第三單元區163上方形成第二上電極182。在部分的第三單元區163及部分的第四單元區164上方形成第三上電極183。在部分的第四單元區164中形成第四上電極184。因此,形成上電極181、182、183及184的每一者,且同時屏蔽單元區中相鄰者之間的間隙。上電極181、182、183及184可覆蓋不小於30%(甚至不小於50%,或不小於90%)的單元區中相鄰者之間的間隙。然而,由於上電極181、182、183及184彼此分開,因此上電極181、182、183及184覆蓋小於100%的發光二極體中相鄰者之間的區域。 Referring to FIG. 13, upper electrodes 181, 182, 183, and 184 are formed. The upper electrodes 181, 182, 183, and 184 are formed as four separate regions. For example, a first upper electrode 181 is formed over the first cell region 161 and a portion of the second cell region 162. A second upper electrode 182 is formed over a portion of the second cell region 162 and a portion of the third cell region 163. A third upper electrode 183 is formed over a portion of the third cell region 163 and a portion of the fourth cell region 164. A fourth upper electrode 184 is formed in a portion of the fourth unit region 164. Thus, each of the upper electrodes 181, 182, 183, and 184 is formed while shielding the gap between adjacent ones in the cell region. The upper electrodes 181, 182, 183, and 184 may cover a gap between adjacent ones of the unit regions of not less than 30% (or not less than 50%, or not less than 90%). However, since the upper electrodes 181, 182, 183, and 184 are separated from each other, the upper electrodes 181, 182, 183, and 184 cover a region between adjacent ones of the light-emitting diodes of less than 100%.
整個上電極181、182、183及184可佔據不小於30%(不小於50%,不小於70%,不小於80%或不小於90%)的發光二極體陣列的整體面積。然而,由於上電極181、182、183及184彼此分開,因此他們佔據小於100%的發光二極體陣列的整體面積。上電極181、182、183及184的每一者為廣寬比於1:3至3:1範圍中的板或片的形狀。此外,上電極181、182、183及184中的至少一者的廣度或寬度大於相對應的發光二極體(單元區)的廣度或寬度。 The entire upper electrodes 181, 182, 183, and 184 may occupy an overall area of the light emitting diode array of not less than 30% (not less than 50%, not less than 70%, not less than 80%, or not less than 90%). However, since the upper electrodes 181, 182, 183, and 184 are separated from each other, they occupy less than 100% of the entire area of the array of light emitting diodes. Each of the upper electrodes 181, 182, 183, and 184 is in the shape of a plate or sheet having a wide aspect ratio in the range of 1:3 to 3:1. Further, the breadth or width of at least one of the upper electrodes 181, 182, 183, and 184 is greater than the breadth or width of the corresponding light-emitting diode (cell region).
請參照圖14,在第一單元區161中的第一層間絕緣層170上形成第一上電極181,且在經由介層窗孔打開的第一半導體層 111的部分上形成第一上電極181。此外,第一上電極181使得第一下電極151的部分被打開在第一單元區161中,且形成在暴露在第二單元區162中的第二下電極152的部分上。 Referring to FIG. 14, a first upper electrode 181 is formed on the first interlayer insulating layer 170 in the first cell region 161, and the first semiconductor layer is opened through the via hole. A first upper electrode 181 is formed on a portion of 111. Further, the first upper electrode 181 causes a portion of the first lower electrode 151 to be opened in the first unit region 161 and formed on a portion of the second lower electrode 152 exposed in the second unit region 162.
在第二單元區162中經由介層窗孔而暴露的第一半導體層112的部分上形成第二上電極182,其中第二上電極182與第一上電極181是實際上分開的狀態。此外,在第一層間絕緣層170上形成第二上電極182。 A second upper electrode 182 is formed on a portion of the first semiconductor layer 112 exposed through the via hole in the second cell region 162, wherein the second upper electrode 182 and the first upper electrode 181 are in a state of being substantially separated. Further, a second upper electrode 182 is formed on the first interlayer insulating layer 170.
在圖14中,第一上電極181將第一單元區161中的第一半導體層111電性連接至第二單元區162中的第二半導體層132。儘管存在有介層窗孔,第二單元區162中的第二下電極152在一個單元區中仍是全面電性短路的狀態。因此,第一單元區161中的第一半導體層111經由第二下電極152電性連接至第二單元區162中的第二半導體層132。 In FIG. 14, the first upper electrode 181 electrically connects the first semiconductor layer 111 in the first cell region 161 to the second semiconductor layer 132 in the second cell region 162. Although there is a via hole, the second lower electrode 152 in the second cell region 162 is still in a state of being fully electrically short-circuited in one cell region. Therefore, the first semiconductor layer 111 in the first cell region 161 is electrically connected to the second semiconductor layer 132 in the second cell region 162 via the second lower electrode 152.
在圖15中,在第二單元區162中經由介層窗孔暴露的第一半導體層112的部分上形成第二上電極182,且第二上電極182經形成以延伸至第三單元區163中的第三下電極153。亦在第三單元區163中經由介層窗孔暴露的第一半導體層113的部分上形成與第二上電極182實際上分開的第三上電極183。 In FIG. 15, a second upper electrode 182 is formed on a portion of the first semiconductor layer 112 exposed through the via hole in the second cell region 162, and the second upper electrode 182 is formed to extend to the third cell region 163. The third lower electrode 153. A third upper electrode 183 which is substantially separated from the second upper electrode 182 is also formed on a portion of the first semiconductor layer 113 exposed through the via hole in the third cell region 163.
在圖15中,第二上電極182經由第二單元區162中的介層窗孔電性連接至第一半導體層112,且第二上電極182電性連接至第三單元區163中的第三下電極153。因此,第二單元區162中的第一半導體層112可保持與第三單元區163中的第二半導體 層113相同的電位。 In FIG. 15 , the second upper electrode 182 is electrically connected to the first semiconductor layer 112 via a via hole in the second cell region 162 , and the second upper electrode 182 is electrically connected to the third cell region 163 . Three lower electrodes 153. Therefore, the first semiconductor layer 112 in the second cell region 162 can remain with the second semiconductor in the third cell region 163 Layer 113 has the same potential.
請參照圖16,在第三單元區163中經由介層窗孔暴露的第一半導體層113的部分上形成第三上電極183,且第三上電極183經形成以延伸至第四單元區164中的第四下電極154。因此,第三單元區163中的第一半導體層113電性連接至第四單元區164中的第二半導體層134。與第三上電極183實際上分離的第四上電極184電性連接至在第四單元區164中經由介層窗孔暴露的第一半導體層114的部分。 Referring to FIG. 16, a third upper electrode 183 is formed on a portion of the first semiconductor layer 113 exposed through the via hole in the third cell region 163, and the third upper electrode 183 is formed to extend to the fourth cell region 164. The fourth lower electrode 154 in the middle. Therefore, the first semiconductor layer 113 in the third cell region 163 is electrically connected to the second semiconductor layer 134 in the fourth cell region 164. The fourth upper electrode 184, which is substantially separated from the third upper electrode 183, is electrically connected to a portion of the first semiconductor layer 114 exposed through the via hole in the fourth cell region 164.
請參照圖17,在第四單元區164中經由介層窗孔暴露的第一半導體層114的部分上形成第四上電極184。在第一單元區161中經由介層窗孔暴露的第一半導體層111的部分上形成與第四上電極184實際上分離的第一上電極181,且第一上電極181使得第一下電極151的部分暴露在第一單元區161中。 Referring to FIG. 17, a fourth upper electrode 184 is formed on a portion of the first semiconductor layer 114 exposed through the via hole in the fourth cell region 164. A first upper electrode 181 that is substantially separated from the fourth upper electrode 184 is formed on a portion of the first semiconductor layer 111 exposed through the via hole in the first cell region 161, and the first upper electrode 181 makes the first lower electrode A portion of 151 is exposed in the first unit area 161.
以下將總結圖13至圖17揭露的內容。第一單元區161中的第一半導體層111及第二單元區162中的第二半導體層132經由第一上電極181建立相同的電位。第二單元區162中的第一半導體層112及第三單元區163中的第二半導體層133經由第二上電極182建立相同的電位。第三單元區163中的第一半導體層113經由第三上電極183建立與第四單元區164中的第二半導體層134相同的電位。電性連接至第一單元區161中的第二半導體層131的第一下電極151被暴露出來。 The contents disclosed in FIGS. 13 to 17 will be summarized below. The first semiconductor layer 111 in the first cell region 161 and the second semiconductor layer 132 in the second cell region 162 establish the same potential via the first upper electrode 181. The first semiconductor layer 112 in the second cell region 162 and the second semiconductor layer 133 in the third cell region 163 establish the same potential via the second upper electrode 182. The first semiconductor layer 113 in the third cell region 163 establishes the same potential as the second semiconductor layer 134 in the fourth cell region 164 via the third upper electrode 183. The first lower electrode 151 electrically connected to the second semiconductor layer 131 in the first unit region 161 is exposed.
當然,相同電位是在忽略上電極181、182、183及184 的阻抗及上電極181、182、183及184與下電極151、152、153及154之間的接觸阻抗的狀態下藉由假設的理想電性連接而建立。因此,在真實元件的操作中,某些時候上電極181、182、183及184及下電極151、152、153及154的阻抗組件(其為各種金屬導線)可能會造成電壓下降。 Of course, the same potential is ignoring the upper electrodes 181, 182, 183, and 184. The impedance and the state of the contact impedance between the upper electrodes 181, 182, 183, and 184 and the lower electrodes 151, 152, 153, and 154 are established by a hypothetical ideal electrical connection. Therefore, in the operation of the real element, sometimes the impedance components of the upper electrodes 181, 182, 183, and 184 and the lower electrodes 151, 152, 153, and 154, which are various metal wires, may cause a voltage drop.
同時,上電極181、182、183及184可包括反射導體層180b。反射導體層180b可包括Al、Ag、Rh、Pt或其組合。包括反射導體層180b的上電極181、182、183及184可朝基板100反射光,光是由在各個單元區161、162、163及164中的主動層121、122、123及124產生。此外,上電極181、182、183及184可與第一層間絕緣層170一起構成全向反射器。同時,即使當第一層間絕緣層170形成為分散式布拉格反射器時,包括反射導體層180b的上電極181、182、183及184也可以改善光反射率。 Meanwhile, the upper electrodes 181, 182, 183, and 184 may include a reflective conductor layer 180b. The reflective conductor layer 180b may include Al, Ag, Rh, Pt, or a combination thereof. The upper electrodes 181, 182, 183, and 184 including the reflective conductor layer 180b can reflect light toward the substrate 100, and light is generated by the active layers 121, 122, 123, and 124 in the respective unit regions 161, 162, 163, and 164. Further, the upper electrodes 181, 182, 183, and 184 may constitute an omnidirectional reflector together with the first interlayer insulating layer 170. Meanwhile, even when the first interlayer insulating layer 170 is formed as a distributed Bragg reflector, the upper electrodes 181, 182, 183, and 184 including the reflective conductor layer 180b can improve the light reflectance.
上電極181、182、183及184亦可包括歐姆接觸層180a。反射導體層180b可位於歐姆接觸層180a上。歐姆接觸層180a包括可與第一半導體層111、112、113及114及下電極151、152、153及154歐姆接觸的例如是Ni、Cr、Ti、Rh、Al或其組合的材料。然而,歐姆接觸層180a不受限於此,且可使用任意材料於歐姆接觸層180a,只要其為可與由金屬材料製成的下電極151、152、153及154歐姆接觸同時與第一半導體層111、112、113及114歐姆接觸的材料。可使用例如是ITO的導電氧化物(conductive oxide)的膜層。 The upper electrodes 181, 182, 183, and 184 may also include an ohmic contact layer 180a. The reflective conductor layer 180b may be located on the ohmic contact layer 180a. The ohmic contact layer 180a includes a material such as Ni, Cr, Ti, Rh, Al, or a combination thereof that can be in ohmic contact with the first semiconductor layers 111, 112, 113, and 114 and the lower electrodes 151, 152, 153, and 154. However, the ohmic contact layer 180a is not limited thereto, and any material may be used for the ohmic contact layer 180a as long as it is in ohmic contact with the lower electrodes 151, 152, 153, and 154 made of a metal material while being in contact with the first semiconductor The layers 111, 112, 113 and 114 are in ohmic contact material. A film layer of, for example, a conductive oxide of ITO can be used.
可從下電極151、152、153及154朝向基板100反射由在各個單元區161、162、163及164中的主動層121、122、123及124所產生的光。此外,藉由屏蔽單元區161、162、163及164中相鄰者之間的間隙的第一層間絕緣層170及/或上電極181、182、183及184反射經由單元區161、162、163及164中相鄰者之間的間隙傳送的光。藉由配置在介層窗孔或間隙的側壁上的第一層間絕緣層170及/或藉由具有反射導體層180b的上電極181、182、183及184反射由主動層121、122、123及124產生且被導向至介層窗孔或單元區161、162、163及164中相鄰者之間的間隙的光L,因此光可經由基板100被提取至外側。因此,減少光損耗是可能的,從而改善光提取效率。 Light generated by the active layers 121, 122, 123, and 124 in the respective unit regions 161, 162, 163, and 164 can be reflected from the lower electrodes 151, 152, 153, and 154 toward the substrate 100. In addition, the first interlayer insulating layer 170 and/or the upper electrodes 181, 182, 183, and 184, which are separated by gaps between adjacent ones of the cell regions 161, 162, 163, and 164, are reflected via the cell regions 161, 162, Light transmitted by the gap between adjacent ones of 163 and 164. The active layer 121, 122, 123 is reflected by the first interlayer insulating layer 170 disposed on the sidewall of the via or the via and/or by the upper electrodes 181, 182, 183 and 184 having the reflective conductor layer 180b. And 124 light L that is generated and directed to the gap between the vias or adjacent ones of the cell regions 161, 162, 163, and 164, and thus light can be extracted to the outside via the substrate 100. Therefore, it is possible to reduce the light loss, thereby improving the light extraction efficiency.
為此,較佳為上電極181、182、183及184佔據發光二極體陣列中的大面積。舉例而言,上電極181、182、183及184可覆蓋發光二極體陣列的整體面積不小於70%、不小於80%或甚至不小於90%。上電極181、182、183及184之間的間隔可為約1μm至100μm的範圍內。更佳地說,上電極181、182、183及184之間的間隔可為5μm至15μm。因此,防止介層窗孔或單元區161、162、163及164中相鄰者之間的間隙中的光漏(light leakage)是可能的。 For this reason, it is preferable that the upper electrodes 181, 182, 183, and 184 occupy a large area in the array of light emitting diodes. For example, the upper electrodes 181, 182, 183, and 184 may cover the entire area of the light emitting diode array of not less than 70%, not less than 80%, or even not less than 90%. The interval between the upper electrodes 181, 182, 183, and 184 may be in the range of about 1 μm to 100 μm. More preferably, the interval between the upper electrodes 181, 182, 183, and 184 may be 5 μm to 15 μm. Therefore, it is possible to prevent light leakage in the gap between the vias or adjacent ones of the cell regions 161, 162, 163, and 164.
上電極181、182、183及184可更包括配置在反射導體層180b上的阻障層180c。阻障層180c可包括Ti、Ni、Cr、Pt、TiW、W、Mo或其組合。在後續的蝕刻或清洗處理中,阻障層180c 可防止反射導體層180b受到損害。阻障層180c可形成為單層或多層結構,且厚度範圍為300nm至5000nm。 The upper electrodes 181, 182, 183, and 184 may further include a barrier layer 180c disposed on the reflective conductor layer 180b. The barrier layer 180c may include Ti, Ni, Cr, Pt, TiW, W, Mo, or a combination thereof. In a subsequent etching or cleaning process, the barrier layer 180c The reflective conductor layer 180b can be prevented from being damaged. The barrier layer 180c may be formed in a single layer or a multilayer structure and has a thickness ranging from 300 nm to 5000 nm.
若第一半導體層111、112、113及114具有n型導電性且第二半導體層131、132、133及134具有p型導電性,上電極的每一者可經成型做為發光二極體的陰極電極,且同時做為用於將發光二極體的陰極電極連接至下電極的導線,下電極是形成在鄰近單元區中的發光二極體的陽極電極。亦即,在形成於單元區中的發光二極體中,上電極可經成型以形成陰極電極且同時做為用於將發光二極體的陰極電極電性連接至鄰近單元區中的發光二極體的陽極電極的導線。 If the first semiconductor layers 111, 112, 113, and 114 have n-type conductivity and the second semiconductor layers 131, 132, 133, and 134 have p-type conductivity, each of the upper electrodes may be shaped as a light-emitting diode. The cathode electrode is simultaneously used as a wire for connecting the cathode electrode of the light-emitting diode to the lower electrode, and the lower electrode is an anode electrode of the light-emitting diode formed in the adjacent cell region. That is, in the light-emitting diode formed in the cell region, the upper electrode may be shaped to form a cathode electrode and simultaneously serve as a light-emitting diode for electrically connecting the cathode electrode of the light-emitting diode to the adjacent cell region. The wire of the anode electrode of the polar body.
圖18是圖13的平面圖中的結構的透視圖。 Figure 18 is a perspective view of the structure in the plan view of Figure 13.
請參照圖18,在至少兩個單元區上方形成第一上電極181至第三上電極183。屏蔽鄰近單元區之間的間隙。上電極使得光(其可能在鄰近單元區之間漏出)得以反射穿過基板,且上電極電性連接至各單元區中的第一半導體層。上電極電性連接至鄰近單元區中的第二半導體層。 Referring to FIG. 18, first to third upper electrodes 181 to 183 are formed over at least two unit regions. Mask the gap between adjacent unit areas. The upper electrode allows light (which may leak between adjacent cell regions) to be reflected through the substrate, and the upper electrode is electrically connected to the first semiconductor layer in each cell region. The upper electrode is electrically connected to the second semiconductor layer in the adjacent cell region.
圖19是根據本發明實施例藉由以圖13至圖18的結構為模型所得到的等效電路圖。 Figure 19 is an equivalent circuit diagram obtained by modeling the structures of Figures 13 through 18 in accordance with an embodiment of the present invention.
請參照圖19,表示四個發光二極體D1、D2、D3及D4及發光二極體之間的配線關係。 Referring to Fig. 19, the wiring relationship between the four light-emitting diodes D1, D2, D3, and D4 and the light-emitting diodes is shown.
在第一單元區161中形成第一發光二極體D1,在第二單元區162中形成第二發光二極體D2,在第三單元區163中形成第 三發光二極體D3,且在第四單元區164中形成第四發光二極體D4。在單元區161、162、163及164中的第一半導體層111、112、113及114經成型做為n型半導體,而第二半導體層131、132、133及134經成型做為p型半導體。 A first light-emitting diode D1 is formed in the first cell region 161, a second light-emitting diode D2 is formed in the second cell region 162, and a first light-emitting diode D2 is formed in the third cell region 163. The three light emitting diode D3 has a fourth light emitting diode D4 formed in the fourth unit region 164. The first semiconductor layers 111, 112, 113, and 114 in the cell regions 161, 162, 163, and 164 are formed as n-type semiconductors, and the second semiconductor layers 131, 132, 133, and 134 are formed as p-type semiconductors. .
第一上電極181電性連接至第一單元區161中的第一半導體層111,且第一上電極181延伸至第二單元區162以便於電性連接至第二單元區162中的第二半導體層132。因此,第一上電極181經成型做為用於將第一發光二極體D1的陰極端連接至第二發光二極體D2的陽極電極的導線。 The first upper electrode 181 is electrically connected to the first semiconductor layer 111 in the first unit region 161, and the first upper electrode 181 extends to the second unit region 162 to be electrically connected to the second one of the second unit regions 162. Semiconductor layer 132. Therefore, the first upper electrode 181 is shaped as a wire for connecting the cathode end of the first light-emitting diode D1 to the anode electrode of the second light-emitting diode D2.
第二上電極182經成型做為用於連接第二發光二極體D2的陰極端與第三發光二極體D3的陽極端之間的導線。第三上電極183經成型做為用於連接第三發光二極體D3的陰極電極與第四發光二極體D4的陽極端的導線。第四上電極184經成型做為用於形成第四發光二極體D4的陰極電極的導線。 The second upper electrode 182 is shaped as a wire for connecting the cathode end of the second light-emitting diode D2 and the anode end of the third light-emitting diode D3. The third upper electrode 183 is formed as a wire for connecting the cathode electrode of the third light-emitting diode D3 and the anode terminal of the fourth light-emitting diode D4. The fourth upper electrode 184 is shaped as a wire for forming a cathode electrode of the fourth light-emitting diode D4.
因此,第一發光二極體D1的陽極端及第四發光二極體D4的陰極端相對於外部電源而言為電性開路的狀態,且其他的發光二極體D2及D3串聯電性連接。 Therefore, the anode end of the first LED Dipole D1 and the cathode end of the fourth LED Dipole D4 are in an electrically open state with respect to the external power source, and the other LEDs D2 and D3 are electrically connected in series. .
圖20是表示在圖13的結構的整體表面上塗佈第二層間絕緣層的平面圖,在第一單元區中的第一電極的部分被暴露出來,且在第四單元區中的第四下電極的部分被暴露出來。 Figure 20 is a plan view showing the application of a second interlayer insulating layer on the entire surface of the structure of Figure 13, the portion of the first electrode in the first cell region being exposed, and the fourth in the fourth cell region A portion of the electrode is exposed.
圖21是在圖20的平面圖中沿線B1-B2所取的截面圖,圖22是在圖20的平面圖中沿線C1-C2所取的截面圖,圖23是在 圖20的平面圖中沿線D1-D2所取的截面圖,且圖24是在圖20的平面圖中沿線E1-E2所取的截面圖。 Figure 21 is a cross-sectional view taken along line B1-B2 in the plan view of Figure 20, Figure 22 is a cross-sectional view taken along line C1-C2 in the plan view of Figure 20, Figure 23 is at A cross-sectional view taken along line D1-D2 in the plan view of Fig. 20, and Fig. 24 is a cross-sectional view taken along line E1-E2 in the plan view of Fig. 20.
請參照圖21,在第一單元區161中,電性連接至第二半導體層131的第一下電極151的部分是打開的。以亦在第二單元區162上方的第二層間絕緣層190覆蓋第一單元區中的剩餘部分。 Referring to FIG. 21, in the first unit region 161, a portion electrically connected to the first lower electrode 151 of the second semiconductor layer 131 is opened. The remaining portion of the first cell region is covered with a second interlayer insulating layer 190 also over the second cell region 162.
請參照圖22,第二層間絕緣層190完全覆蓋第二單元區162及第三單元區163。 Referring to FIG. 22, the second interlayer insulating layer 190 completely covers the second cell region 162 and the third cell region 163.
請參照圖23及圖24,在第四單元區164中的第四上電極184的部分被暴露出來,且第一單元區161中的第一下電極151的部分被暴露出來。 Referring to FIGS. 23 and 24, a portion of the fourth upper electrode 184 in the fourth unit region 164 is exposed, and a portion of the first lower electrode 151 in the first unit region 161 is exposed.
第二層間絕緣層190是選擇自能夠從外部環境保護下方膜的絕緣材料。特別地說,第二層間絕緣層可包括SiN或具有絕緣性質且可阻擋溫度或濕度改變的相似物。 The second interlayer insulating layer 190 is an insulating material selected from a film that can protect the underlying film from the outside. In particular, the second interlayer insulating layer may include SiN or an equivalent having insulating properties and blocking temperature or humidity changes.
在圖20至圖24中,將第二層間絕緣層190塗佈至形成在基板上的整個結構,且第二層間絕緣層190亦暴露出在第一單元區161中的第一下電極151的部分及暴露出在第四單元區164中的第四上電極184。 In FIGS. 20 to 24, the second interlayer insulating layer 190 is applied to the entire structure formed on the substrate, and the second interlayer insulating layer 190 is also exposed to the first lower electrode 151 in the first unit region 161. The fourth upper electrode 184 is partially and exposed in the fourth unit region 164.
圖25是表示在圖20的結構中形成第一接墊及第二接墊的平面圖。 Figure 25 is a plan view showing the formation of a first pad and a second pad in the structure of Figure 20;
請參照圖25,可在第一單元區161及第二單元區162上方形成第一接墊210。因此,第一接墊210可電性連接至第一單元區161中的第一下電極151(在圖20中被暴露出來)。 Referring to FIG. 25, a first pad 210 may be formed over the first cell region 161 and the second cell region 162. Therefore, the first pad 210 can be electrically connected to the first lower electrode 151 in the first unit region 161 (exposed in FIG. 20).
再者,第二接墊220經形成以與第一接墊210分開預定距離,且可在第三單元區163及第四單元區164上方形成第二接墊220。第二接墊220電性連接至第四單元區164中的第四上電極184(在圖20中被暴露出來)。 Moreover, the second pad 220 is formed to be separated from the first pad 210 by a predetermined distance, and the second pad 220 may be formed over the third cell region 163 and the fourth cell region 164. The second pad 220 is electrically connected to the fourth upper electrode 184 (exposed in FIG. 20) in the fourth cell region 164.
圖26是在圖25的平面圖中沿線B1-B2所取的截面圖,圖27是在圖25的平面圖中沿線C1-C2所取的截面圖,圖28是在圖25的平面圖中沿線D1-D2所取的截面圖,且圖29是在圖25的平面圖中沿線E1-E2所取的截面圖。 Figure 26 is a cross-sectional view taken along line B1-B2 in the plan view of Figure 25, Figure 27 is a cross-sectional view taken along line C1-C2 in the plan view of Figure 25, and Figure 28 is along line D1- in the plan view of Figure 25. A cross-sectional view taken at D2, and Fig. 29 is a cross-sectional view taken along line E1-E2 in the plan view of Fig. 25.
請參照圖26,在第一單元區161及第二單元區162上方形成第一接墊210。在第一單元區161中暴露的第一下電極151上、以及在其他單元區中的第二層間絕緣層190上形成第一接墊210。因此,第一接墊210經由第一下電極151電性連接至第一單元區161中的第二半導體層131。 Referring to FIG. 26, a first pad 210 is formed over the first cell region 161 and the second cell region 162. A first pad 210 is formed on the first lower electrode 151 exposed in the first unit region 161 and on the second interlayer insulating layer 190 in the other unit regions. Therefore, the first pad 210 is electrically connected to the second semiconductor layer 131 in the first cell region 161 via the first lower electrode 151.
請參照圖27,在第二單元區162中形成第一接墊210,而在第三單元區163中形成第二接墊220,使得第一接墊210與第二接墊220分開。在第二單元區162及第三單元區163中,第一接墊210或第二接墊220與下電極或上電極的電性接觸是受阻的。 Referring to FIG. 27, a first pad 210 is formed in the second cell region 162, and a second pad 220 is formed in the third cell region 163 such that the first pad 210 is separated from the second pad 220. In the second cell region 162 and the third cell region 163, the electrical contact of the first pad 210 or the second pad 220 with the lower electrode or the upper electrode is blocked.
請參照圖28,在第三單元區163及第四單元區164上方形成第二接墊220。特別地說,第二接墊220電性連接至在第四單元區164中被打開的第四上電極184。因此,第二接墊220電性連接至第四單元區164中的第一半導體層114。 Referring to FIG. 28, a second pad 220 is formed over the third cell region 163 and the fourth cell region 164. In particular, the second pad 220 is electrically connected to the fourth upper electrode 184 that is opened in the fourth cell region 164. Therefore, the second pad 220 is electrically connected to the first semiconductor layer 114 in the fourth cell region 164.
請參照圖29,在第四單元區164中形成第二接墊220, 且第一接墊210經形成以與第一單元區161中的第二接墊220分開。在第一單元區161中的第一下電極151上形成第一接墊210,且第一接墊210電性連接至第二半導體層131。 Referring to FIG. 29, a second pad 220 is formed in the fourth cell region 164. And the first pad 210 is formed to be separated from the second pad 220 in the first unit region 161. A first pad 210 is formed on the first lower electrode 151 in the first cell region 161, and the first pad 210 is electrically connected to the second semiconductor layer 131.
圖30是在圖25的平面圖中沿線C2-C3所取的透視圖。 Figure 30 is a perspective view taken along line C2-C3 in the plan view of Figure 25.
請參照圖30,第三單元區163中的第一半導體層113電性連接至第三上電極183。第三上電極183屏蔽第三單元區163及第四單元區164之間的間隙,且第三上電極183電性連接至第四單元區164中的第四下電極154。第一接墊210及第二接墊220彼此分開並形成在第二層間絕緣層190上。當然,如上所述,第一接墊210電性連接至第一單元區161中的第二半導體層131,且第二接墊220電性連接至第四單元區164中的第一半導體層114。 Referring to FIG. 30, the first semiconductor layer 113 in the third cell region 163 is electrically connected to the third upper electrode 183. The third upper electrode 183 shields the gap between the third unit region 163 and the fourth unit region 164, and the third upper electrode 183 is electrically connected to the fourth lower electrode 154 of the fourth unit region 164. The first pads 210 and the second pads 220 are separated from each other and formed on the second interlayer insulating layer 190. Of course, as described above, the first pad 210 is electrically connected to the second semiconductor layer 131 in the first cell region 161, and the second pad 220 is electrically connected to the first semiconductor layer 114 in the fourth cell region 164. .
請參照圖19的模型,在各個單元區中的第一半導體層111、112、113及114經成型做為n型半導體,且在各個單元區中的第二半導體層131、132、133及134經成型做為p型半導體。形成在第一單元區161中的第二半導體層131上的第一下電極151經成型做為第一發光二極體D1的陽極電極。因此,第一接墊210可經成型做為連接至第一發光二極體D1的陽極電極的導線。電性連接至第四單元區164中的第一半導體層114的第四上電極184經成型做為第四發光二極體D4的陰極電極。因此,第二接墊220可經成型做為連接至第四發光二極體D4的陰極電極的導線。 Referring to the model of FIG. 19, the first semiconductor layers 111, 112, 113, and 114 in the respective cell regions are formed as n-type semiconductors, and the second semiconductor layers 131, 132, 133, and 134 in the respective cell regions are formed. It is formed into a p-type semiconductor. The first lower electrode 151 formed on the second semiconductor layer 131 in the first unit region 161 is shaped as an anode electrode of the first light-emitting diode D1. Therefore, the first pad 210 can be shaped as a wire connected to the anode electrode of the first light-emitting diode D1. The fourth upper electrode 184 electrically connected to the first semiconductor layer 114 in the fourth unit region 164 is shaped as a cathode electrode of the fourth light-emitting diode D4. Therefore, the second pad 220 can be shaped as a wire connected to the cathode electrode of the fourth light-emitting diode D4.
因此,形成串聯連接的四個發光二極體D1至D4的陣列結構,且經由形成在單一基板100上的兩個接墊210及接墊220 達成上述陣列結構至外部的電性連接。 Therefore, the array structure of the four light-emitting diodes D1 to D4 connected in series is formed, and via the two pads 210 and the pads 220 formed on the single substrate 100 The electrical connection of the above array structure to the outside is achieved.
在本發明中,表示形成四個發光二極體同時四個發光二極體是彼此分開的,且發光二極體中的一者的陽極端經由下電極及上電極電性連接至發光二極體中的另一者的陰極端。然而,在此實施例中的四個發光二極體僅為範列,且可形成各種數量的發光二極體。 In the present invention, it is shown that four light emitting diodes are formed while four light emitting diodes are separated from each other, and an anode end of one of the light emitting diodes is electrically connected to the light emitting diode via the lower electrode and the upper electrode. The cathode end of the other of the bodies. However, the four light-emitting diodes in this embodiment are only a vane, and various numbers of light-emitting diodes can be formed.
圖31是以根據本發明的實施例將串聯的十個發光二極體的連接為模型所得到的電路圖。 31 is a circuit diagram obtained by connecting a connection of ten light-emitting diodes in series according to an embodiment of the present invention.
請參照圖31,使用圖5中的處理定義十個單元區301至310。單元區301至310的每一者中的第一半導體層、主動層、第二半導體層及下電極與其他單元區中的彼等者分開。在第二半導體層上形成各個下電極以便於形成發光二極體D1至發光二極體D10的陽極電極。 Referring to FIG. 31, ten unit areas 301 to 310 are defined using the processing in FIG. The first semiconductor layer, the active layer, the second semiconductor layer, and the lower electrode in each of the cell regions 301 to 310 are separated from those in the other cell regions. The respective lower electrodes are formed on the second semiconductor layer to facilitate formation of the anode electrodes of the light-emitting diode D1 to the light-emitting diode D10.
之後,使用圖6至圖17表示的處理形成第一層間絕緣層及第一至第十上電極181、182、183、184、185、186、187、188、189及189'。上電極181、182、183、184、185、186、187、188、189及189'屏蔽相鄰的單元區之間的間隙。第一至第九上電極181、182、183、184、185、186、187、188及189作用為用於達成一對鄰近的發光二極體中的一者的陽極電極與此對鄰近的發光二極體中的另一者的第一半導體層之間的電性連接的導線。第十上電極189'電性連接至發光二極體D10的第一半導體層。 Thereafter, the first interlayer insulating layer and the first to tenth upper electrodes 181, 182, 183, 184, 185, 186, 187, 188, 189, and 189' are formed using the processes shown in FIGS. 6 to 17. The upper electrodes 181, 182, 183, 184, 185, 186, 187, 188, 189, and 189' shield the gap between adjacent unit regions. The first to ninth upper electrodes 181, 182, 183, 184, 185, 186, 187, 188, and 189 function as an anode electrode for achieving one of a pair of adjacent light-emitting diodes and a light adjacent to the pair An electrically connected wire between the first semiconductor layers of the other of the diodes. The tenth upper electrode 189' is electrically connected to the first semiconductor layer of the light emitting diode D10.
再者,使用圖20至圖29中表示的處理來形成第二層間 絕緣層。連接至電源路徑上的正電壓V+的第一發光二極體D1的下電極被暴露出來,且連接至電源路徑上的負電壓V-的第十發光二極體D10的上電極被打開。接著,形成第一接墊320且將第一接墊320連接至第一發光二極體D1的陽極端,且形成第二接墊330並將第二接墊330連接至第十發光二極體D10的陰極端。 Furthermore, the process shown in FIGS. 20 to 29 is used to form the second interlayer Insulation. The lower electrode of the first light-emitting diode D1 connected to the positive voltage V+ on the power supply path is exposed, and the upper electrode of the tenth light-emitting diode D10 connected to the negative voltage V- on the power supply path is opened. Next, the first pad 320 is formed and the first pad 320 is connected to the anode end of the first LED D1, and the second pad 330 is formed and the second pad 330 is connected to the tenth LED. The cathode end of D10.
其他的發光二極體串聯/並聯連接以便於形成陣列。 Other light emitting diodes are connected in series/parallel to facilitate formation of the array.
圖32是將根據本發明的實施例具有串聯/並聯連接的發光二極體的陣列成型所得到的電路圖。 Figure 32 is a circuit diagram of an array of light-emitting diodes having series/parallel connections according to an embodiment of the present invention.
請參照圖32,多個發光二極體D1至D8彼此串聯/並聯連接。經由定義單元區401至單元區408分別獨立地形成發光二極體D1至發光二極體D8。如上所述,經由下電極形成發光二極體D1至發光二極體D8的每一者的陽極電極。發光二極體D1至發光二極體D8的每一者的陰極電極與鄰近的發光二極體的陽極電極之間的導線是藉由形成上電極並進行適當的配線處理而製造。然而,在第二半導體層上形成下電極,且上電極經形成以屏蔽相鄰的單元區之間的間隙。 Referring to FIG. 32, a plurality of light emitting diodes D1 to D8 are connected in series/parallel to each other. The light-emitting diode D1 to the light-emitting diode D8 are independently formed via the defined cell region 401 to the cell region 408, respectively. As described above, the anode electrode of each of the light-emitting diode D1 to the light-emitting diode D8 is formed via the lower electrode. A wire between the cathode electrode of each of the light-emitting diode D1 to the light-emitting diode D8 and the anode electrode of the adjacent light-emitting diode is manufactured by forming an upper electrode and performing appropriate wiring processing. However, a lower electrode is formed on the second semiconductor layer, and an upper electrode is formed to shield a gap between adjacent unit regions.
最後,經供應有正電壓V+的第一接墊410電性連接至形成在第一發光二極體D1或第三發光二極體D3的第二半導體層上的下電極,且經供應有負電壓V-的第二接墊420電性連接至做為第六發光二極體D6或第八發光二極體D8的陰極電極的上電極。 Finally, the first pad 410 supplied with the positive voltage V+ is electrically connected to the lower electrode formed on the second semiconductor layer of the first light emitting diode D1 or the third light emitting diode D3, and is supplied with a negative The second pad 420 of the voltage V- is electrically connected to the upper electrode as the cathode electrode of the sixth light emitting diode D6 or the eighth light emitting diode D8.
根據上述的本發明,在發光二極體的每一者的主動層中產生的光從下電極及上電極經反射朝向基板,且覆晶型發光二極 體經由單一基板上的上電極的導線電性連接。具體地說,上電極作用為用於達成一對鄰近的發光二極體中的一者的第一半導體層與此對鄰近的發光二極體中的另一者的第二半導體層之間的電性連接的導線。在此案例中,上電極包括反射導體層,從而反射由發光層所發射的光以增強光提取效率。 According to the invention as described above, the light generated in the active layer of each of the light-emitting diodes is reflected from the lower electrode and the upper electrode toward the substrate, and the flip-chip light-emitting diode The body is electrically connected via wires of the upper electrode on a single substrate. Specifically, the upper electrode functions between a first semiconductor layer for achieving one of a pair of adjacent light emitting diodes and a second semiconductor layer of the other of the pair of adjacent light emitting diodes Electrically connected wires. In this case, the upper electrode includes a reflective conductor layer to reflect light emitted by the luminescent layer to enhance light extraction efficiency.
自外側經由第二層間絕緣層屏蔽上電極。經供應有正電壓的第一接墊電性連接至最靠近正電壓連接的發光二極體的下電極。經供應有負電壓的第二接墊電性連接最靠近負電壓連接的發光二極體的上電極。 The upper electrode is shielded from the outside via a second interlayer insulating layer. The first pad, which is supplied with a positive voltage, is electrically connected to the lower electrode of the light-emitting diode closest to the positive voltage connection. The second pad, which is supplied with a negative voltage, is electrically connected to the upper electrode of the light-emitting diode that is closest to the negative voltage connection.
因此,解決在副載基板上裝載多個覆晶型發光二極體、以及實現兩端經由配置在副載基板上的導線至外部電源的處理中的不方便是可能的。此外,可藉由上電極屏蔽相鄰的單元區之間的間隙,從而最大化朝向基板的光反射。 Therefore, it is possible to solve the inconvenience in the process of loading a plurality of flip-chip type light-emitting diodes on the sub-mount substrate and performing the processing of both ends via the wires disposed on the sub-substrate to the external power source. In addition, the light reflection toward the substrate can be maximized by shielding the gap between adjacent cell regions by the upper electrode.
此外,第二層間絕緣層自外部溫度或濕度及相似條件中保護配置在基板與第二層間絕緣層之間的疊層結構。因此,不具有任何分離封裝方法的干預而實現可直接裝載在基板上的結構是可能的 Further, the second interlayer insulating layer protects the laminated structure disposed between the substrate and the second interlayer insulating layer from external temperature or humidity and the like. Therefore, it is possible to realize a structure that can be directly loaded on a substrate without intervention of any separate packaging method.
特別地說,由於在單一基板上實現多個覆晶型發光二極體,因此存在有可直接使用商業電源同時排除電壓降、電壓等級的轉換或用於商業電源的波形轉換的優點。 In particular, since a plurality of flip-chip type light-emitting diodes are realized on a single substrate, there is an advantage that a commercial power source can be directly used while eliminating voltage drop, voltage level conversion, or waveform conversion for a commercial power source.
雖然已連接較佳實施例來描述本發明,但本發明並不受限於此。因此,本發明所屬技術領域中具有通常知識者將理解的 是,可不違背由所附的申請專利範圍所定義的發明精神及範圍而對本發明做出各種改良及改變。 Although the preferred embodiments have been described to describe the present invention, the invention is not limited thereto. Therefore, it will be understood by those of ordinary skill in the art to which the present invention pertains. Various changes and modifications of the invention may be made without departing from the spirit and scope of the invention as defined by the appended claims.
100‧‧‧基板 100‧‧‧Substrate
111、112‧‧‧第一半導體層 111, 112‧‧‧ first semiconductor layer
121、122‧‧‧主動層 121, 122‧‧‧ active layer
131、132‧‧‧第二半導體層 131, 132‧‧‧ second semiconductor layer
151、152‧‧‧下電極 151, 152‧‧‧ lower electrode
161、162‧‧‧單元區 161, 162‧‧‧ unit area
170‧‧‧第一層間絕緣層 170‧‧‧First interlayer insulation
180a‧‧‧歐姆接觸層 180a‧‧‧ohm contact layer
180b‧‧‧反射導體層 180b‧‧‧reflective conductor layer
180c‧‧‧阻障層 180c‧‧‧Barrier layer
181、182‧‧‧上電極 181, 182‧‧‧ upper electrode
B1-B2‧‧‧線 B1-B2‧‧‧ line
L‧‧‧光 L‧‧‧Light
Claims (25)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120086329 | 2012-08-07 | ||
KR20120094107 | 2012-08-28 | ||
KR1020130088710A KR101949505B1 (en) | 2012-08-28 | 2013-07-26 | Light emitting diode array on wafer level and method of forming the same |
KR1020130088709A KR101892213B1 (en) | 2012-08-07 | 2013-07-26 | Light emitting diode array on wafer level and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201413915A TW201413915A (en) | 2014-04-01 |
TWI599017B true TWI599017B (en) | 2017-09-11 |
Family
ID=54393891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102128317A TWI599017B (en) | 2012-08-07 | 2013-08-07 | Light emitting diode array on wafer level and method of forming the same |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE202013012471U1 (en) |
IN (1) | IN2015KN00390A (en) |
TW (1) | TWI599017B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI591849B (en) | 2015-11-27 | 2017-07-11 | 隆達電子股份有限公司 | Semiconductor light emitting structure and semiconductor package structure thereof |
CN111933654A (en) * | 2020-08-19 | 2020-11-13 | 惠科股份有限公司 | Display device and method for manufacturing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6573537B1 (en) | 1999-12-22 | 2003-06-03 | Lumileds Lighting, U.S., Llc | Highly reflective ohmic contacts to III-nitride flip-chip LEDs |
KR101158071B1 (en) | 2005-09-28 | 2012-06-22 | 서울옵토디바이스주식회사 | Luminous element having arrayed cells and method of manufacturing the same |
KR101115535B1 (en) | 2006-06-30 | 2012-03-08 | 서울옵토디바이스주식회사 | Light emitting diode with a metal reflection layer expanded and method for manufacturing the same |
-
2013
- 2013-08-06 DE DE202013012471.7U patent/DE202013012471U1/en not_active Expired - Lifetime
- 2013-08-06 IN IN390KON2015 patent/IN2015KN00390A/en unknown
- 2013-08-07 TW TW102128317A patent/TWI599017B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201413915A (en) | 2014-04-01 |
DE202013012471U1 (en) | 2017-02-17 |
IN2015KN00390A (en) | 2015-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI602324B (en) | Light emitting diode array on wafer level | |
US9318530B2 (en) | Wafer level light-emitting diode array and method for manufacturing same | |
US11587972B2 (en) | Wafer level light-emitting diode array | |
US9318529B2 (en) | Wafer level light-emitting diode array | |
US11139338B2 (en) | Wafer level light-emitting diode array | |
KR20100074352A (en) | Light emitting device having plurality of light emitting cells and method of fabricating the same | |
KR101949718B1 (en) | Light emitting diode array on wafer level | |
KR20100075420A (en) | Light emitting device having plurality of light emitting cells and method of fabricating the same | |
KR101597326B1 (en) | Light emitting device having plurality of light emitting cells | |
JP2005019653A (en) | Semiconductor light emitting element and light emitting device | |
TWI599017B (en) | Light emitting diode array on wafer level and method of forming the same | |
KR101893578B1 (en) | Light emitting diode array on wafer level | |
KR102122847B1 (en) | Light emitting diode array on wafer level | |
KR101798134B1 (en) | Light emitting diode array on wafer level and method of forming the same | |
KR101949505B1 (en) | Light emitting diode array on wafer level and method of forming the same | |
KR102160072B1 (en) | Light emitting diode array on wafer level and method of forming the same | |
KR101893579B1 (en) | Light emitting diode array on wafer level | |
KR20130030279A (en) | Light emitting device having semiconductor layers spaced apart from each other and method of fabricating the same | |
KR20130102030A (en) | Light emitting device having plurality of light emitting cells and method of fabricating the same |