TWI592786B - Bandgap reference circuit - Google Patents

Bandgap reference circuit Download PDF

Info

Publication number
TWI592786B
TWI592786B TW105123032A TW105123032A TWI592786B TW I592786 B TWI592786 B TW I592786B TW 105123032 A TW105123032 A TW 105123032A TW 105123032 A TW105123032 A TW 105123032A TW I592786 B TWI592786 B TW I592786B
Authority
TW
Taiwan
Prior art keywords
coupled
current source
resistor
operational amplifier
input
Prior art date
Application number
TW105123032A
Other languages
Chinese (zh)
Other versions
TW201804278A (en
Inventor
劉建興
Original Assignee
晶豪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶豪科技股份有限公司 filed Critical 晶豪科技股份有限公司
Priority to TW105123032A priority Critical patent/TWI592786B/en
Application granted granted Critical
Publication of TWI592786B publication Critical patent/TWI592786B/en
Publication of TW201804278A publication Critical patent/TW201804278A/en

Links

Description

能隙參考電路 Bandgap reference circuit

本發明係關於一種能隙參考電路。 The present invention relates to a bandgap reference circuit.

能隙參考電路係用於產生準確的輸出電壓和輸出電流。能隙參考電路所產生的輸出電壓和電流較免於製程、供應電源和溫度變化的影響。因此,能隙參考電路可廣泛使用於各種的類比電路和數位電路中,該些電路在運作時需要準確的參考電壓。 The bandgap reference circuit is used to generate accurate output voltage and output current. The output voltage and current generated by the bandgap reference circuit are immune to process, supply, and temperature variations. Therefore, the bandgap reference circuit can be widely used in various analog circuits and digital circuits, which require an accurate reference voltage during operation.

第1圖例示一常見的能隙參考電路100。參照第1圖,該能隙參考電路100包含PMOS電晶體M1,M2和M3,一運算放大器OP,電阻R1和R2以及雙極性電晶體(bipolar transistor)Q1、Q2和Q3。當忽略基極電流時,該能隙參考電路100的輸出電壓VOUT可以表示為: Figure 1 illustrates a conventional bandgap reference circuit 100. Referring to FIG. 1, the bandgap reference circuit 100 includes PMOS transistors M1, M2 and M3, an operational amplifier OP, resistors R1 and R2, and bipolar transistors Q1, Q2 and Q3. When the base current is ignored, the output voltage VOUT of the bandgap reference circuit 100 can be expressed as:

其中,VEB3為雙極性電晶體Q3的射極-基極間電壓差,VT為室溫時的熱電壓(thermal voltage),N為雙極性電晶體Q2之電流密度和雙極性電晶體Q1之電流密度的比例。 Among them, VEB3 is the emitter-base voltage difference of bipolar transistor Q3, VT is the thermal voltage at room temperature, N is the current density of bipolar transistor Q2 and the current of bipolar transistor Q1. The ratio of density.

如公式(1)所示,在調整電阻R2和R1的阻值比例 後,該能隙參考電路100可以提供具有零溫度係數的穩定輸出電壓VOUT。該電壓VOUT的電壓位準約為1.25V,接近於矽能隙(energy gap)的電子伏(electron volt),亦即,矽能隙參考電壓。 As shown in equation (1), adjust the resistance ratio of resistors R2 and R1 Thereafter, the bandgap reference circuit 100 can provide a stable output voltage VOUT having a zero temperature coefficient. The voltage level of the voltage VOUT is about 1.25V, which is close to the electron volt of the energy gap, that is, the 矽 energy gap reference voltage.

然而,為了能廣泛的使用於不同的應用中,能隙參考電路可能需要輸出不同的電壓位準。 However, in order to be widely used in different applications, the bandgap reference circuit may need to output different voltage levels.

本發明的目的之一在於提供一種能隙參考電路,以提供一參考電流和一參考電壓。 One of the objects of the present invention is to provide a bandgap reference circuit for providing a reference current and a reference voltage.

依據本發明一實施例,該能隙參考電路包含有一第一運算放大器,一第二運算放大器,一第一電流源,一第二電流源,一第三電流源,一第一雙極性電晶體,一第二雙極性電晶體,一第一回授電晶體,一第一電阻,和一第二電阻。該第一運算放大器具有一第一輸入,一第二輸入和一第一輸出。該第二運算放大器具有一第三輸入,一第四輸入和一第二輸出。該第一電流源耦接於一供應電源節點和該第一運算放大器的該第一輸入之間。該第二電流源耦接於該供應電源節點和該第一運算放大器的該第二輸入之間。該第三電流源耦接於該供應電源節點和該第二運算放大器的該第三輸入之間。該第一雙極性電晶體具有一基極,具有耦接至該第一電流源的一射極,和具有耦接至一接地節點的一集極。該第二雙極性電晶體具有一基極,具有耦接至該第二電流源的 一射極,和具有耦接至該接地節點的一集極。該第一電阻耦接於該第二運算放大器的該第三輸入和該第一雙極性電晶體的該基極之間。該第一回授元件耦接於該第三電流源和該第二雙極性電晶體的該基極之間,該第一回授元件由該第二運算放大器的該第二輸出所控制。該第二電阻耦接於該第一雙極性電晶體的該基極和該第二雙極性電晶體的該基極之間。該第二運算放大器的該第四輸入耦接至該第一運算放大器的該第一輸入和該第一運算放大器的該第二輸入兩者中的其中一者。 According to an embodiment of the invention, the gap reference circuit includes a first operational amplifier, a second operational amplifier, a first current source, a second current source, a third current source, and a first bipolar transistor. a second bipolar transistor, a first feedback transistor, a first resistor, and a second resistor. The first operational amplifier has a first input, a second input, and a first output. The second operational amplifier has a third input, a fourth input and a second output. The first current source is coupled between a supply power node and the first input of the first operational amplifier. The second current source is coupled between the supply power node and the second input of the first operational amplifier. The third current source is coupled between the supply power node and the third input of the second operational amplifier. The first bipolar transistor has a base having an emitter coupled to the first current source and a collector coupled to a ground node. The second bipolar transistor has a base coupled to the second current source An emitter, and having a collector coupled to the ground node. The first resistor is coupled between the third input of the second operational amplifier and the base of the first bipolar transistor. The first feedback element is coupled between the third current source and the base of the second bipolar transistor, and the first feedback element is controlled by the second output of the second operational amplifier. The second resistor is coupled between the base of the first bipolar transistor and the base of the second bipolar transistor. The fourth input of the second operational amplifier is coupled to one of the first input of the first operational amplifier and the second input of the first operational amplifier.

100‧‧‧能隙參考電路 100‧‧‧Gap reference circuit

200‧‧‧能隙參考電路 200‧‧‧Gap reference circuit

22‧‧‧電流源單元 22‧‧‧current source unit

300‧‧‧能隙參考電路 300‧‧‧Gap reference circuit

32‧‧‧電流源單元 32‧‧‧current source unit

400‧‧‧能隙參考電路 400‧‧‧Gap reference circuit

42‧‧‧電流源單元 42‧‧‧current source unit

500‧‧‧能隙參考電路 500‧‧‧Gap reference circuit

M1,M2,M3,M4‧‧‧PMOS電晶體 M1, M2, M3, M4‧‧‧ PMOS transistors

MA,MB,MC‧‧‧回授電晶體 MA, MB, MC‧‧‧ feedback transistor

OP‧‧‧運算放大器 OP‧‧‧Operational Amplifier

OP1,OP2,OP3‧‧‧運算放大器 OP1, OP2, OP3‧‧‧Operational Amplifier

Q1,Q2,Q3‧‧‧雙極性電晶體 Q1, Q2, Q3‧‧‧ bipolar transistor

R1,R2,R3,R4‧‧‧電阻 R1, R2, R3, R4‧‧‧ resistance

第1圖例示一常見的能隙參考電路。 Figure 1 illustrates a common bandgap reference circuit.

第2圖顯示結合本發明一實施例之能隙參考電路之電路圖。 Figure 2 is a circuit diagram showing a bandgap reference circuit incorporating an embodiment of the present invention.

第3圖顯示結合本發明另一實施例之能隙參考電路之電路圖。 Figure 3 is a circuit diagram showing a bandgap reference circuit incorporating another embodiment of the present invention.

第4圖顯示結合本發明又一實施例之能隙參考電路之電路圖。 Figure 4 is a circuit diagram showing a bandgap reference circuit incorporating yet another embodiment of the present invention.

第5圖顯示結合本發明再一實施例之能隙參考電路之電路圖。 Fig. 5 is a circuit diagram showing a bandgap reference circuit in accordance with still another embodiment of the present invention.

第2圖顯示結合本發明一實施例之能隙參考電 路200之電路圖。如第2圖所示,該能隙參考電路200包含一電流源單元22,一運算放大器OP1,一運算放大器OP2,一雙極性電晶體Q1,一雙極性電晶體Q2,一回授電晶體MA,一電阻R1,和一電阻R2。 Figure 2 shows a bandgap reference in accordance with an embodiment of the present invention. Circuit diagram of the road 200. As shown in FIG. 2, the bandgap reference circuit 200 includes a current source unit 22, an operational amplifier OP1, an operational amplifier OP2, a bipolar transistor Q1, a bipolar transistor Q2, and a feedback transistor MA. , a resistor R1, and a resistor R2.

該電流源單元22提供複數個穩定的偏壓電流I1、I2和I3。在本實施例中,該電流源單元22為一電流鏡組態,其由三個PMOS電晶體M1、M2和M3所組成。參照第2圖,該PMOS電晶體M1具有耦接至一供應電壓源VDD的一源極,具有耦接至該運算放大器OP1的一輸出端的一閘極,和具有耦接至該運算放大器OP1的一反相輸入端的一汲極。該PMOS電晶體M2具有耦接至該供應電壓源VDD的一源極,具有耦接至該運算放大器OP1的該輸出端的一閘極,和具有耦接至該運算放大器OP1的一非反相輸入端以及耦接至該運算放大器OP2的一反相輸入端的一汲極。該PMOS電晶體M3具有耦接至該供應電壓源VDD的一源極,具有耦接至該運算放大器OP1的該輸出端的一閘極,和具有耦接至該運算放大器OP2的一非反相輸入端的一汲極。 The current source unit 22 provides a plurality of stable bias currents I1, I2, and I3. In the present embodiment, the current source unit 22 is a current mirror configuration consisting of three PMOS transistors M1, M2 and M3. Referring to FIG. 2, the PMOS transistor M1 has a source coupled to a supply voltage source VDD, has a gate coupled to an output of the operational amplifier OP1, and has a coupling coupled to the operational amplifier OP1. A bungee of an inverting input. The PMOS transistor M2 has a source coupled to the supply voltage source VDD, has a gate coupled to the output of the operational amplifier OP1, and has a non-inverting input coupled to the operational amplifier OP1. And a drain coupled to an inverting input of the operational amplifier OP2. The PMOS transistor M3 has a source coupled to the supply voltage source VDD, has a gate coupled to the output of the operational amplifier OP1, and has a non-inverting input coupled to the operational amplifier OP2. One end of the pole.

該雙極性電晶體Q1具有一基極,耦接至該運算放大器OP1的該反相輸入端的一射極,和耦接至一接地端點的一集極。該雙極性電晶體Q2具有一基極,耦接至該運算放大器OP1的該非反相輸入端和耦接至該運算放大器OP2的該反相輸入端的一射極,和耦接至該接地端點的一集極。 The bipolar transistor Q1 has a base coupled to an emitter of the inverting input of the operational amplifier OP1 and a collector coupled to a ground terminal. The bipolar transistor Q2 has a base coupled to the non-inverting input of the operational amplifier OP1 and an emitter coupled to the inverting input of the operational amplifier OP2, and coupled to the ground terminal The episode of the episode.

參考第2圖,該回授電晶體MA為一NMOS電晶體,其具有耦接至該運算放大器OP2的該非反相輸入端的一汲極,耦接至該運算放大器OP2的一輸出端的一閘極,和耦接至該雙極性電晶體Q2的該基極的一源極。該電阻R1耦接於該運算放大器OP2的該非反相輸入端和該雙極性電晶體Q1的該基極之間。該電阻R2耦接於該雙極性電晶體Q1的該基極和該雙極性電晶體Q2的該基極之間。 Referring to FIG. 2, the feedback transistor MA is an NMOS transistor having a drain coupled to the non-inverting input of the operational amplifier OP2 and coupled to a gate of an output of the operational amplifier OP2. And a source coupled to the base of the bipolar transistor Q2. The resistor R1 is coupled between the non-inverting input terminal of the operational amplifier OP2 and the base of the bipolar transistor Q1. The resistor R2 is coupled between the base of the bipolar transistor Q1 and the base of the bipolar transistor Q2.

參照第2圖,該運算放大器OP1和該電流源單元22構成一第一負回授迴路,使得輸入端電壓VD1和VD2實質上相同;而該運算放大器OP2,該回授電晶體MA,和該電流源單元22構成一第二負回授迴路,使得輸入端電壓VD2和VD3實質上相同。 Referring to FIG. 2, the operational amplifier OP1 and the current source unit 22 constitute a first negative feedback loop such that the input terminal voltages VD1 and VD2 are substantially the same; and the operational amplifier OP2, the feedback transistor MA, and the The current source unit 22 constitutes a second negative feedback loop such that the input voltages VD2 and VD3 are substantially identical.

由於該等電晶體M1、M2和M3的閘極彼此相連,該等電晶體M1、M2和M3的源極耦接至該供應電壓源VDD,且該等電晶體M1、M2和M3的汲極電壓實質上相同,故流過該等PMOS電晶體M1、M2和M3的電流I1、I2和I3的電流值正比於電晶體的寬長比。 The gates of the transistors M1, M2, and M3 are coupled to the supply voltage source VDD, and the drains of the transistors M1, M2, and M3 are connected to each other. The voltages are substantially the same, so the current values of the currents I1, I2, and I3 flowing through the PMOS transistors M1, M2, and M3 are proportional to the aspect ratio of the transistor.

參照第2圖,電壓VD1和VD3可表示為:VD1=VREF+VEB1=VD3=VREF+I3A×R1 (2) Referring to Figure 2, voltages VD1 and VD3 can be expressed as: VD1 = VREF + VEB1 = VD3 = VREF + I3A × R1 (2)

其中,VREF為一加總節點N1上的電壓,VEB1為該雙極性電晶體Q1的射極-基極間電壓差,而I3A為流過該電阻R1的電流。 Where VREF is the voltage across the summing node N1, VEB1 is the emitter-base voltage difference of the bipolar transistor Q1, and I3A is the current flowing through the resistor R1.

據此,公式(2)可重新整理為公式(3): According to this, the formula (2) can be rearranged into the formula (3):

由於該雙極性電晶體Q1的射極-基極間電壓差為互補於絕對溫度(Complementary To Absolute Temperature Voltage)(亦即,CTAT電壓),因此電流I3A為CTAT電流。 Since the emitter-base voltage difference of the bipolar transistor Q1 is complementary to the absolute temperature (Complementary To Absolute Temperature Voltage) (ie, the CTAT voltage), the current I3A is the CTAT current.

忽略該雙極性電晶體Q1和Q2的基極電流,電壓VD1和VD2可表示為:VD1=VREF+VEB1=VD2=VREF+I3B×R2+VEB2 (4) The base currents of the bipolar transistors Q1 and Q2 are ignored. The voltages VD1 and VD2 can be expressed as: VD1 = VREF + VEB1 = VD2 = VREF + I3B × R2 + VEB2 (4)

其中,VEB2為該雙極性電晶體Q2的射極-基極間電壓差,而I3B為流過該電阻R2的電流。 Wherein, VEB2 is the emitter-base voltage difference of the bipolar transistor Q2, and I3B is the current flowing through the resistor R2.

據此,公式(4)可重新整理為公式(5): Accordingly, equation (4) can be rearranged to equation (5):

由於電壓差△VBE與絕對溫度成正比(Proportional To Absolute Temperature)(亦即,PTAT電壓),因此電流I3B為PTAT電流。 Since the voltage difference ΔVBE is proportional to the absolute temperature (ie, the PTAT voltage), the current I3B is the PTAT current.

參照第2圖,流過該電阻R1的CTAT電流I3A和流過該電阻R2的PTAT電流I3B在該加總節點N1上加總(忽略該雙極性電晶體Q1和Q2的基極電流)。因此,藉由調整該電阻R1和該電阻R2的阻值後,該能隙參考電路200可以提供一具有零溫度係數的穩定輸出電流IREF。此外,藉由調整該電阻R1和該電阻R2的阻值,該能隙參考電路200也可以提供一具有正溫 度係數或負溫度係數的穩定輸出電流IREF。舉例而言,藉由減少該電阻R2的阻值,該能隙參考電路200可以提供一具有正溫度係數的穩定輸出電流IREF;藉由減少該電阻R1的阻值,該能隙參考電路200可以提供一具有負溫度係數的穩定輸出電流IREF。 Referring to Fig. 2, the CTAT current I3A flowing through the resistor R1 and the PTAT current I3B flowing through the resistor R2 are summed over the summing node N1 (ignoring the base currents of the bipolar transistors Q1 and Q2). Therefore, by adjusting the resistance of the resistor R1 and the resistor R2, the bandgap reference circuit 200 can provide a stable output current IREF having a zero temperature coefficient. In addition, the gap reference circuit 200 can also provide a positive temperature by adjusting the resistance of the resistor R1 and the resistor R2. A stable output current IREF with a degree coefficient or a negative temperature coefficient. For example, by reducing the resistance of the resistor R2, the bandgap reference circuit 200 can provide a stable output current IREF having a positive temperature coefficient; by reducing the resistance of the resistor R1, the bandgap reference circuit 200 can A stable output current IREF having a negative temperature coefficient is provided.

為了複製該電流IREF,一PMOS電晶體M4加入該電流源單元22中。由於輸出電流IREF的電流值實質上相同於流過該PMOS電晶體M3的電流值(當該雙極性電晶體Q1,Q2的基極電流和該運算放大器OP2的輸入電流忽略不計時),該PMOS電晶體M4提供正比於電晶體的寬長比的一輸出電流I4。 In order to replicate the current IREF, a PMOS transistor M4 is added to the current source unit 22. Since the current value of the output current IREF is substantially the same as the current value flowing through the PMOS transistor M3 (when the base current of the bipolar transistor Q1, Q2 and the input current of the operational amplifier OP2 are ignored), the PMOS Transistor M4 provides an output current I4 that is proportional to the aspect ratio of the transistor.

參考第3圖,一電阻R3耦接於該加總節點N1和該接地端點之間。因此,該穩定輸出電壓VREF產生於該加總節點N1上。一電阻R4耦接於該PMOS電晶體M4的汲極端和該接地端點之間,因此產生另一穩定輸出電壓VREF1。為了使電流I4更準確,一運算放大器OP3和一回授電晶體MB加入於第4圖。該運算放大器OP3、該回授電晶體MB和該電流源單元42構成一第三負回授迴路,使得輸入端電壓VD3和VD4實質上相同。 Referring to FIG. 3, a resistor R3 is coupled between the summing node N1 and the ground terminal. Therefore, the stable output voltage VREF is generated on the summing node N1. A resistor R4 is coupled between the drain terminal of the PMOS transistor M4 and the ground terminal, thereby generating another stable output voltage VREF1. In order to make the current I4 more accurate, an operational amplifier OP3 and a return transistor MB are added to FIG. The operational amplifier OP3, the feedback transistor MB and the current source unit 42 form a third negative feedback loop such that the input voltages VD3 and VD4 are substantially identical.

復參照第1圖,傳統的能隙參考電路所提供的具有零溫度係數的穩定輸出電壓VOUT的電壓位準約為1.25V。然而,本發明所揭示的能隙參考電路能提供具有較低電壓位準(例如小於0.6V)的輸出電壓,這是由於該電阻R4直接連接至 該接地端點,而第1圖中的電阻R2是透過雙極性電晶體Q3始連接至接地端點。此外,由於電壓VD1,VD2和VD3實質上相同且該等PMOS電晶體M1,M2,M3和M4的閘極彼此相連,該等PMOS電晶體M1,M2,M3和M4可運作在飽和區(saturation region)或線性區(linear region)來提供正比於電晶體的寬長比的比例電流。因此,該能隙參考電路300可以提供具有寬廣電壓範圍的輸出電壓VREF1。該輸出電壓VREF1根據該電阻R4的阻值其電壓值會介於0V和VDD-VSD,M4之間,其中VSD,M4為該PMOS電晶體M4的源極-汲極間電壓差。亦即,該輸出電壓VREF1可以很接近該供應電壓源VDD的電壓位準。 Referring to FIG. 1, the voltage level of the stable output voltage VOUT having a zero temperature coefficient provided by the conventional bandgap reference circuit is about 1.25V. However, the bandgap reference circuit disclosed herein can provide an output voltage having a lower voltage level (e.g., less than 0.6V) because the resistor R4 is directly connected to The ground terminal, and the resistor R2 in FIG. 1 is connected to the ground terminal through the bipolar transistor Q3. In addition, since the voltages VD1, VD2 and VD3 are substantially the same and the gates of the PMOS transistors M1, M2, M3 and M4 are connected to each other, the PMOS transistors M1, M2, M3 and M4 can operate in a saturation region (saturation) The region or linear region provides a proportional current proportional to the aspect ratio of the transistor. Therefore, the bandgap reference circuit 300 can provide an output voltage VREF1 having a wide voltage range. The output voltage VREF1 is between 0V and VDD-VSD, M4 according to the resistance of the resistor R4, wherein VSD, M4 is the source-drain voltage difference of the PMOS transistor M4. That is, the output voltage VREF1 can be very close to the voltage level of the supply voltage source VDD.

參考第3圖。該運算放大器OP1、該運算放大器OP2和該回授電晶體MA藉由負回授迴路使得該等電壓VD1、VD2和VD3實質上相同。然而,本發明不應以此為限。舉例而言,該運算放大器OP2的該反相輸入端可以由接收第2圖中的電壓VD2改成接收電壓VD1。在本發明另一實施例中,回授電晶體MC可以選擇為PMOS電晶體,如第5圖所示。該運算放大器OP2的該非反相輸入端接收該電壓VD2,而該運算放大器OP2的該反相輸入端接收該電壓VD3。在本發明又一實施例中,該運算放大器OP2的該非反相輸入端接收該電壓VD1,而非第5圖所示的電壓VD2。依照又一實施例的組態,該等電壓VD1、VD2和VD3會實質上相同。 Refer to Figure 3. The operational amplifier OP1, the operational amplifier OP2, and the feedback transistor MA are substantially identical by a negative feedback loop such voltages VD1, VD2, and VD3. However, the invention should not be limited thereto. For example, the inverting input of the operational amplifier OP2 can be changed to the received voltage VD1 by receiving the voltage VD2 in FIG. In another embodiment of the invention, the feedback transistor MC can be selected as a PMOS transistor, as shown in FIG. The non-inverting input of the operational amplifier OP2 receives the voltage VD2, and the inverting input of the operational amplifier OP2 receives the voltage VD3. In still another embodiment of the present invention, the non-inverting input of the operational amplifier OP2 receives the voltage VD1 instead of the voltage VD2 shown in FIG. According to a configuration of yet another embodiment, the voltages VD1, VD2, and VD3 will be substantially the same.

本發明之技術內容及技術特點已揭示如上,然 而熟悉本項技術之人士仍可能基於本發明之教示及揭示而作種種不背離本發明精神之替換及修飾。因此,本發明之保護範圍應不限於實施例所揭示者,而應包括各種不背離本發明之替換及修飾,並為隨後之申請專利範圍所涵蓋。 The technical content and technical features of the present invention have been disclosed as above, It will be apparent to those skilled in the art that the present invention may be substituted and modified without departing from the spirit and scope of the invention. Therefore, the scope of the invention should be construed as not limited by the scope of the invention, and the invention is intended to be

200‧‧‧能隙參考電路 200‧‧‧Gap reference circuit

22‧‧‧電流源單元 22‧‧‧current source unit

M1,M2,M3,M4‧‧‧PMOS電晶體 M1, M2, M3, M4‧‧‧ PMOS transistors

MA‧‧‧回授電晶體 MA‧‧‧Returning transistor

OP1,OP2‧‧‧運算放大器 OP1, OP2‧‧‧Operational Amplifier

Q1,Q2‧‧‧雙極性電晶體 Q1, Q2‧‧‧ bipolar transistor

R1,R2‧‧‧電阻 R1, R2‧‧‧ resistance

Claims (10)

一種能隙參考電路,包括:一第一運算放大器,其具有一第一輸入,一第二輸入和一第一輸出;一第二運算放大器,其具有一第三輸入,一第四輸入和一第二輸出;一第一電流源,耦接於一供應電源節點和該第一運算放大器的該第一輸入之間;一第二電流源,耦接於該供應電源節點和該第一運算放大器的該第二輸入之間;一第三電流源,耦接於該供應電源節點和該第二運算放大器的該第三輸入之間;一第一雙極性電晶體,其具有一基極,具有耦接至該第一電流源的一射極,和具有耦接至一接地節點的一集極;一第二雙極性電晶體,其具有一基極,具有耦接至該第二電流源的一射極,和具有耦接至該接地節點的一集極;一第一電阻,耦接於該第二運算放大器的該第三輸入和該第一雙極性電晶體的該基極之間;一第一回授元件,耦接於該第三電流源和該第二雙極性電晶體的該基極之間,該第一回授元件由該第二運算放大器的該第二輸出所控制;以及 一第二電阻,耦接於該第一雙極性電晶體的該基極和該第二雙極性電晶體的該基極之間;其中,該第二運算放大器的該第四輸入耦接至該第一運算放大器的該第一輸入和該第一運算放大器的該第二輸入兩者中的其中一者。 A gap reference circuit includes: a first operational amplifier having a first input, a second input, and a first output; a second operational amplifier having a third input, a fourth input, and a second a second current source coupled between a supply power node and the first input of the first operational amplifier; a second current source coupled to the supply power node and the first operational amplifier Between the second input; a third current source coupled between the supply power node and the third input of the second operational amplifier; a first bipolar transistor having a base having An emitter coupled to the first current source and having a collector coupled to a ground node; a second bipolar transistor having a base coupled to the second current source An emitter, and a collector coupled to the ground node; a first resistor coupled between the third input of the second operational amplifier and the base of the first bipolar transistor; a first feedback component coupled to the third current source and Between the base of the second bipolar transistor, the first feedback element is controlled by the second output of the second operational amplifier; and a second resistor coupled between the base of the first bipolar transistor and the base of the second bipolar transistor; wherein the fourth input of the second operational amplifier is coupled to the One of the first input of the first operational amplifier and the second input of the first operational amplifier. 根據申請專利範圍第1項之能隙參考電路,更包括:一第三電阻,耦接於該第一雙極性電晶體的該基極和該接地節點之間。 The gap reference circuit of claim 1 further includes: a third resistor coupled between the base of the first bipolar transistor and the ground node. 根據申請專利範圍第1項之能隙參考電路,更包括:一第四電流源,耦接至該供應電源節點;其中,該第四電流源組態以複製流過該第三電流源的一電流。 The energy gap reference circuit of claim 1, further comprising: a fourth current source coupled to the power supply node; wherein the fourth current source is configured to replicate a current flowing through the third current source Current. 根據申請專利範圍第3項之能隙參考電路,更包括:一第四電阻,直接連接於該第四電流源和該接地節點之間。 According to the gap reference circuit of claim 3, the method further includes: a fourth resistor directly connected between the fourth current source and the ground node. 根據申請專利範圍第2項之能隙參考電路,更包括:一第五電流源,耦接至該供應電源節點;一第三運算放大器,其具有耦接至該第三電流源的一第一輸入,耦接至該第五電流源的一第二輸入,和一第一輸出;一第二回授元件,耦接於該第五電流源,該第二回授元件由該第三運算放大器的該第一輸出所控制;以及一第五電阻,耦接於該第二回授元件和該接地節點之間; 其中,該第五電流源組態以複製流過該第三電流源的一電流。 The energy gap reference circuit of claim 2, further comprising: a fifth current source coupled to the supply power node; a third operational amplifier having a first coupled to the third current source An input coupled to a second input of the fifth current source, and a first output; a second feedback component coupled to the fifth current source, the second feedback component being coupled to the third operational amplifier Controlled by the first output; and a fifth resistor coupled between the second feedback element and the ground node; Wherein the fifth current source is configured to replicate a current flowing through the third current source. 根據申請專利範圍第3項之能隙參考電路,更包括:一第三運算放大器,其具有耦接至該第三電流源的一第五輸入,耦接至該第四電流源的一第六輸入,和一第三輸出;一第二回授元件,耦接於該第四電流源,該第二回授元件由該第三運算放大器的該第三輸出所控制;以及一第五電阻,耦接於該第二回授元件和該接地節點之間。 The energy gap reference circuit of claim 3, further comprising: a third operational amplifier having a fifth input coupled to the third current source and coupled to a sixth of the fourth current source An input, and a third output; a second feedback component coupled to the fourth current source, the second feedback component being controlled by the third output of the third operational amplifier; and a fifth resistor, The second feedback component is coupled between the ground node and the ground node. 根據申請專利範圍第1項之能隙參考電路,其中流過該第一回授元件的一電流和流過該第一電阻的一電流加總以產生流過該第三電流源的一電流,且流過該第三電流源的該電流的正溫度係數係藉由減少該第二電阻的阻值來獲得。 A gap reference circuit according to claim 1, wherein a current flowing through the first feedback element and a current flowing through the first resistor are summed to generate a current flowing through the third current source, And the positive temperature coefficient of the current flowing through the third current source is obtained by reducing the resistance of the second resistor. 根據申請專利範圍第1項之能隙參考電路,其中流過該第一回授元件的一電流和流過該第一電阻的一電流加總以產生流過該第三電流源的一電流,且流過該第三電流源的該電流的負溫度係數係藉由減少該第一電阻的阻值來獲得。 A gap reference circuit according to claim 1, wherein a current flowing through the first feedback element and a current flowing through the first resistor are summed to generate a current flowing through the third current source, And the negative temperature coefficient of the current flowing through the third current source is obtained by reducing the resistance of the first resistor. 根據申請專利範圍第2項之能隙參考電路,其中流過該第一回授元件的一電流和流過該第一電阻的一電流加總以在該第二電阻和該第三電阻的一交越點產生一參考電壓,且該參考電壓的正溫度係數係藉由減少該第二電阻的阻值來獲得。 A gap reference circuit according to claim 2, wherein a current flowing through the first feedback element and a current flowing through the first resistor are summed to one of the second resistor and the third resistor The crossover point generates a reference voltage, and the positive temperature coefficient of the reference voltage is obtained by reducing the resistance of the second resistor. 根據申請專利範圍第2項之能隙參考電路,其中流過該第一回授元件的一電流和流過該第一電阻的一電流加總以在該第二電阻和該第三電阻的一交越點產生一參考電壓,且該參考電壓的負溫度係數係藉由減少該第一電阻的阻值來獲得。 A gap reference circuit according to claim 2, wherein a current flowing through the first feedback element and a current flowing through the first resistor are summed to one of the second resistor and the third resistor The crossover point generates a reference voltage, and the negative temperature coefficient of the reference voltage is obtained by reducing the resistance of the first resistor.
TW105123032A 2016-07-20 2016-07-20 Bandgap reference circuit TWI592786B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105123032A TWI592786B (en) 2016-07-20 2016-07-20 Bandgap reference circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105123032A TWI592786B (en) 2016-07-20 2016-07-20 Bandgap reference circuit

Publications (2)

Publication Number Publication Date
TWI592786B true TWI592786B (en) 2017-07-21
TW201804278A TW201804278A (en) 2018-02-01

Family

ID=60048643

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105123032A TWI592786B (en) 2016-07-20 2016-07-20 Bandgap reference circuit

Country Status (1)

Country Link
TW (1) TWI592786B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10515686B1 (en) * 2018-08-03 2019-12-24 Macronix International Co., Ltd. Low voltage reference current generator and memory device using same
TWI718804B (en) * 2019-12-09 2021-02-11 大陸商北京集創北方科技股份有限公司 Band gap reference circuit and electronic circuit device with the same
JP2021110994A (en) 2020-01-07 2021-08-02 ウィンボンド エレクトロニクス コーポレーション Constant current circuit
TWI800790B (en) * 2020-02-21 2023-05-01 美商半導體組件工業公司 Method for generating reference current and bandgap reference circuit
US11566950B2 (en) * 2020-04-06 2023-01-31 Realtek Semiconductor Corp. Process and temperature tracking reference load and method thereof
US11675384B2 (en) * 2021-10-05 2023-06-13 Macronix International Co., Ltd. Reference voltage generator with extended operating temperature range

Also Published As

Publication number Publication date
TW201804278A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
TWI592786B (en) Bandgap reference circuit
JP5085238B2 (en) Reference voltage circuit
JP4817825B2 (en) Reference voltage generator
JP4722502B2 (en) Band gap circuit
US9092044B2 (en) Low voltage, low power bandgap circuit
US9582021B1 (en) Bandgap reference circuit with curvature compensation
KR20100080958A (en) Reference bias generating apparatus
CN103792980A (en) Reference voltage generation circuit
TW202020596A (en) Current circuit for providing adjustable constant current
US9600013B1 (en) Bandgap reference circuit
CN108052151B (en) Band-gap reference voltage source of no-clamping operational amplifier
KR20190049551A (en) Bandgap reference circuitry
US10203715B2 (en) Bandgap reference circuit for providing a stable reference voltage at a lower voltage level
TWI592785B (en) Bandgap reference circuit
TW201342003A (en) Voltage and reference current generator
CN108345336B (en) Energy gap reference circuit
JP2018018561A (en) Semiconductor device and electronic system
CN107728690B (en) Energy gap reference circuit
JP2007095031A (en) Band gap reference voltage generation circuit for low voltage
CN112433556A (en) Improved band-gap reference voltage circuit
TWI564692B (en) Bandgap reference circuit
WO2022236890A1 (en) Bandgap reference voltage generating circuit having high-order temperature compensation
KR20120116708A (en) Current reference circuit
JP2018165940A (en) Regulator circuit
JP2018128926A (en) Reference voltage generating circuit and method