TWI564692B - Bandgap reference circuit - Google Patents

Bandgap reference circuit Download PDF

Info

Publication number
TWI564692B
TWI564692B TW104107694A TW104107694A TWI564692B TW I564692 B TWI564692 B TW I564692B TW 104107694 A TW104107694 A TW 104107694A TW 104107694 A TW104107694 A TW 104107694A TW I564692 B TWI564692 B TW I564692B
Authority
TW
Taiwan
Prior art keywords
electrically connected
voltage
current source
bipolar transistor
bandgap reference
Prior art date
Application number
TW104107694A
Other languages
Chinese (zh)
Other versions
TW201633033A (en
Inventor
粘書瀚
Original Assignee
晶豪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶豪科技股份有限公司 filed Critical 晶豪科技股份有限公司
Priority to TW104107694A priority Critical patent/TWI564692B/en
Publication of TW201633033A publication Critical patent/TW201633033A/en
Application granted granted Critical
Publication of TWI564692B publication Critical patent/TWI564692B/en

Links

Description

能隙參考電路 Bandgap reference circuit

本發明係關於一種能隙參考電路。 The present invention relates to a bandgap reference circuit.

能隙參考電路係用於產生準確的輸出電壓。能隙參考電路所產生的輸出電壓不會受製程、供應電源和溫度變化的影響。因此,能隙參考電路可廣泛使用於各種的類比電路和數位電路中,該些電路在運作時需要準確的參考電壓。 The bandgap reference circuit is used to generate an accurate output voltage. The output voltage generated by the bandgap reference circuit is not affected by process variations, power supply, and temperature variations. Therefore, the bandgap reference circuit can be widely used in various analog circuits and digital circuits, which require an accurate reference voltage during operation.

第1圖例示一常見的能隙參考電路100。參照第1圖,該能隙參考電路100包含PMOS電晶體M1、M2和M3,一運算放大器OP,電阻R1和R2以及雙極性電晶體(bipolar transistor)Q1、Q2和Q3。當忽略基極電流時,該能隙參考電路100的輸出電壓VOUT可以表示為: Figure 1 illustrates a conventional bandgap reference circuit 100. Referring to FIG. 1, the bandgap reference circuit 100 includes PMOS transistors M1, M2, and M3, an operational amplifier OP, resistors R1 and R2, and bipolar transistors Q1, Q2, and Q3. When the base current is ignored, the output voltage VOUT of the bandgap reference circuit 100 can be expressed as:

其中,VEB3為雙極性電晶體Q3的射極-基極間電壓差,VT為室溫時的熱電壓(thermal voltage),N為雙極性電晶體Q2之射極面積(emitter area)和雙極性電晶體Q1之射極面積的比例。 Among them, VEB3 is the emitter-base voltage difference of bipolar transistor Q3, VT is the thermal voltage at room temperature, N is the emitter area and bipolar of bipolar transistor Q2. The ratio of the emitter area of the transistor Q1.

如方程式(1)所示,在調整電阻R2和R1的阻值比 例後,該能隙參考電路100可以提供具有零溫度係數的穩定輸出電壓VOUT。該電壓VOUT的電壓位準約為1.25V,接近於矽能隙(energy gap)的電子伏(electron volt),亦即,矽能隙參考電壓。 As shown in equation (1), adjust the resistance ratio of resistors R2 and R1 After the example, the bandgap reference circuit 100 can provide a stable output voltage VOUT having a zero temperature coefficient. The voltage level of the voltage VOUT is about 1.25V, which is close to the electron volt of the energy gap, that is, the 矽 energy gap reference voltage.

參照第1圖,使該能隙參考電路100能維持正常運作的供應電源VDD之最低電壓位準為: Referring to FIG. 1, the lowest voltage level of the power supply VDD that enables the bandgap reference circuit 100 to maintain normal operation is:

其中|VDS|為PMOS電晶體M1的汲極-源極間電壓差。 Where |VDS| is the drain-source voltage difference of the PMOS transistor M1.

由方程式(2)中可發現,由於VEB3的電壓位準約為0.7V,該供應電源VDD之電壓位準須大於1.8V方能使該能隙參考電路100維持正常運作。 It can be found from equation (2) that since the voltage level of VEB3 is about 0.7V, the voltage level of the power supply VDD must be greater than 1.8V to enable the bandgap reference circuit 100 to maintain normal operation.

本發明的目的在於提供一種能隙參考電路,以產生具有穩定的輸出電壓。 It is an object of the present invention to provide a bandgap reference circuit for producing a stable output voltage.

依據本發明一實施例,該能隙參考電路包含一第一電流源、一第二電流源、一第三電流源、一第四電流源、一運算放大器、一第一雙極性電晶體、一分壓電路、一第二雙極性電晶體、一第三雙極性電晶體、一第一電阻及一第二電阻。該運算放大器電氣連接至該等第一至第四電流源。該第一雙極性電晶體具有電氣連接至該第一電流源的一射極, 和具有電氣連接至一接地電壓的一基極和一集極。該分壓電路電氣連接於該第一雙極性電晶體之該射極和該基極之間,該分壓電路提供比例於該第一雙極性電晶體之射極-基極間電壓差的一偏壓電壓。該第二雙極性電晶體具有用以接收該偏壓電壓的一基極,具有電氣連接至該第二電流源的一射極,和具有電氣連接至該接地電壓的一集極。該第三雙極性電晶體具有電氣連接至該接地電壓的一集極和一基極。該第一電阻電氣連接於該第三電流源和該第三雙極性電晶體的一射極之間。該第二電阻電氣連接於該第四電流源和該接地電壓之間。該第四電流源和該第二電阻的一交叉點提供一能隙參考電壓。 According to an embodiment of the invention, the gap reference circuit includes a first current source, a second current source, a third current source, a fourth current source, an operational amplifier, a first bipolar transistor, and a first current source. a voltage dividing circuit, a second bipolar transistor, a third bipolar transistor, a first resistor and a second resistor. The operational amplifier is electrically coupled to the first to fourth current sources. The first bipolar transistor has an emitter electrically connected to the first current source, And a base and a collector electrically connected to a ground voltage. The voltage dividing circuit is electrically connected between the emitter of the first bipolar transistor and the base, and the voltage dividing circuit provides a ratio of an emitter-base voltage difference of the first bipolar transistor a bias voltage. The second bipolar transistor has a base for receiving the bias voltage, an emitter electrically coupled to the second current source, and a collector electrically coupled to the ground voltage. The third bipolar transistor has a collector and a base electrically connected to the ground voltage. The first resistor is electrically coupled between the third current source and an emitter of the third bipolar transistor. The second resistor is electrically connected between the fourth current source and the ground voltage. An intersection of the fourth current source and the second resistor provides a bandgap reference voltage.

100‧‧‧能隙參考電路 100‧‧‧Gap reference circuit

200‧‧‧能隙參考電路 200‧‧‧Gap reference circuit

22‧‧‧電流源單元 22‧‧‧current source unit

24‧‧‧分壓電路 24‧‧‧voltage circuit

M1,M2,M3,M4‧‧‧PMOS電晶體 M1, M2, M3, M4‧‧‧ PMOS transistors

OP‧‧‧運算放大器 OP‧‧‧Operational Amplifier

Q1,Q2,Q3,Q4‧‧‧雙極性電晶體 Q1, Q2, Q3, Q4‧‧‧ bipolar transistor

R1,R2,R3,R4‧‧‧電阻 R1, R2, R3, R4‧‧‧ resistance

第1圖例示一常見的能隙參考電路。 Figure 1 illustrates a common bandgap reference circuit.

第2圖顯示結合本發明一實施例之能隙參考電路之電路圖。 Figure 2 is a circuit diagram showing a bandgap reference circuit incorporating an embodiment of the present invention.

第2圖顯示結合本發明一實施例之能隙參考電路200之電路圖。如第2圖所示,該能隙參考電路200包含一電流源單元22、一分壓電路24、一運算放大器OP、電阻R1和R2以及複數個雙極性電晶體Q1、Q2和Q3。 Figure 2 shows a circuit diagram of a bandgap reference circuit 200 incorporating an embodiment of the present invention. As shown in FIG. 2, the bandgap reference circuit 200 includes a current source unit 22, a voltage dividing circuit 24, an operational amplifier OP, resistors R1 and R2, and a plurality of bipolar transistors Q1, Q2, and Q3.

該電流源單元22用以提供穩定的電流I1、I2、I3 及I4。在本實施例中,該電流源單元22是由四個PMOS電晶體M1、M2、M3和M4所組成的一電流鏡單元。參照第2圖,該等PMOS電晶體M1、M2、M3及M4中的每一者具有電氣連接至一供應電源VDD的一源極和具有電氣連接至該運算放大器OP的一輸出端之一閘極。由於該等PMOS電晶體M1、M2、M3及M4的閘極連接在一起,且該等PMOS電晶體M1、M2、M3及M4的源極電性連接至共同的供應電源VDD,流過PMOS電晶體M1的電流I1、流過PMOS電晶體M2的電流I2、流過PMOS電晶體M3的電流I3及流過PMOS電晶體M4的電流I4會正比於PMOS電晶體的寬長比(W/L ratio)。 The current source unit 22 is used to provide stable currents I1, I2, and I3. And I4. In the present embodiment, the current source unit 22 is a current mirror unit composed of four PMOS transistors M1, M2, M3, and M4. Referring to FIG. 2, each of the PMOS transistors M1, M2, M3, and M4 has a source electrically connected to a supply source VDD and a gate having an output electrically connected to the operational amplifier OP. pole. The gates of the PMOS transistors M1, M2, M3, and M4 are connected together, and the sources of the PMOS transistors M1, M2, M3, and M4 are electrically connected to a common supply power source VDD, and flow through the PMOS battery. The current I1 of the crystal M1, the current I2 flowing through the PMOS transistor M2, the current I3 flowing through the PMOS transistor M3, and the current I4 flowing through the PMOS transistor M4 are proportional to the aspect ratio of the PMOS transistor (W/L ratio). ).

參照第2圖,該雙極性電晶體Q1具有電氣連接至該PMOS電晶體M1之汲極和該分壓電路24的一射極,和具有電氣連接至一接地端的一基極和一集極。該雙極性電晶體Q2具有電氣連接至該PMOS電晶體M2之汲極的一射極,具有電氣連接至來自該分壓電路24之一電壓VA的一基極,和具有電氣連接至該接地端的一集極。該雙極性電晶體Q3具有電氣連接至該接地端的一集極和一基極。該電阻R1電氣連接於該PMOS電晶體M3的一汲極和該雙極性電晶體Q3的一射極之間。 Referring to FIG. 2, the bipolar transistor Q1 has a drain electrically connected to the PMOS transistor M1 and an emitter of the voltage dividing circuit 24, and a base and a collector electrically connected to a ground. . The bipolar transistor Q2 has an emitter electrically connected to the drain of the PMOS transistor M2, has a base electrically connected to a voltage VA from the voltage dividing circuit 24, and has an electrical connection to the ground One episode of the end. The bipolar transistor Q3 has a collector and a base electrically connected to the ground. The resistor R1 is electrically connected between a drain of the PMOS transistor M3 and an emitter of the bipolar transistor Q3.

如第2圖所示,該運算放大器OP具有電氣連接至該PMOS電晶體M3的該汲極的一正輸入端,具有電氣連接至該PMOS電晶體M2的該汲極的一負輸入端,和具有電氣連接 至該等PMOS電晶體M1、M2、M3及M4之閘極的一輸出端。該放大器OP和該等PMOS電晶體M2和M3構成一負回授迴路,使得輸入端電壓VD1和VD3實質上相同。因此,電壓VD1和VD3可表示為:VD1=VD3=VA+VEB2=VEB3+I3×R1 (3) As shown in FIG. 2, the operational amplifier OP has a positive input terminal electrically connected to the drain of the PMOS transistor M3, and has a negative input terminal electrically connected to the drain of the PMOS transistor M2, and An output having electrical connections to the gates of the PMOS transistors M1, M2, M3, and M4. The amplifier OP and the PMOS transistors M2 and M3 form a negative feedback loop such that the input voltages VD1 and VD3 are substantially identical. Therefore, the voltages VD1 and VD3 can be expressed as: VD1 = VD3 = VA + VEB2 = VEB3 + I3 × R1 (3)

其中,VEB2為該雙極性電晶體Q2的射極-基極間電壓差,VEB3為雙極性電晶體Q3的射極-基極間電壓差。 Wherein, VEB2 is the emitter-base voltage difference of the bipolar transistor Q2, and VEB3 is the emitter-base voltage difference of the bipolar transistor Q3.

參照第2圖,該分壓電路24電氣連接至該雙極性電晶體Q1之該射極。在本實施例中,該分壓電路24是由兩個串聯連接的電阻R3和R4所組成。因此,該分壓電路24提供之電壓VA比例於該雙極性電晶體Q1的射極-基極間電壓差,故該電壓VA可以表示為: Referring to Fig. 2, the voltage dividing circuit 24 is electrically connected to the emitter of the bipolar transistor Q1. In the present embodiment, the voltage dividing circuit 24 is composed of two resistors R3 and R4 connected in series. Therefore, the voltage VA provided by the voltage dividing circuit 24 is proportional to the emitter-base voltage difference of the bipolar transistor Q1, so the voltage VA can be expressed as:

其中,VEB1為該雙極性電晶體Q1的射極-基極間電壓差。 Wherein, VEB1 is the emitter-base voltage difference of the bipolar transistor Q1.

據此,方程式(2)套入方程式(4)後可重新整理為: According to this, equation (2) can be rearranged into equation (4) and can be rearranged as:

其中,VT為室溫時的熱電壓(thermal voltage),N為雙極性電晶體Q3之射極面積和雙極性電晶體Q2之射極面積 的比例。 Where VT is the thermal voltage at room temperature, N is the emitter area of the bipolar transistor Q3 and the emitter area of the bipolar transistor Q2 proportion.

在本實施例中,流過該雙極性電晶體Q2的電流和流過該雙極性電晶體Q3的電流會調整為實質上相同。因此,流過該電阻R1的電流I3可表示為: In the present embodiment, the current flowing through the bipolar transistor Q2 and the current flowing through the bipolar transistor Q3 are adjusted to be substantially the same. Therefore, the current I3 flowing through the resistor R1 can be expressed as:

由於熱電壓VT具有值為0.085mV/℃的正溫度係數,而該雙極性電晶體Q1的射極-基極間電壓差具有值為-2mV/℃的負溫度係數,故根據方程式(6)電流I3的溫度係數可調整為正溫度係數或負溫度係數。當N值增加時,該電流I3可獲得正溫度係數。當分壓電路24的比例增加(亦即R4/(R3+R4)的比例增加)時,該電流I3可獲得負溫度係數。該電流I3也能藉由調整N值和分壓電路24的比例得到實質為零的溫度係數。 Since the thermal voltage VT has a positive temperature coefficient of 0.085 mV/° C., and the emitter-base voltage difference of the bipolar transistor Q1 has a negative temperature coefficient of −2 mV/° C., according to equation (6) The temperature coefficient of the current I3 can be adjusted to a positive temperature coefficient or a negative temperature coefficient. When the value of N increases, the current I3 can obtain a positive temperature coefficient. When the ratio of the voltage dividing circuit 24 is increased (i.e., the ratio of R4/(R3+R4) is increased), the current I3 can obtain a negative temperature coefficient. This current I3 can also achieve a substantially zero temperature coefficient by adjusting the N value and the ratio of the voltage dividing circuit 24.

為了提供具有實質為零的溫度係數之一穩定參考電壓,如第2圖所示,該能隙參考電路200包含電氣連接於該PMOS電晶體M4的該汲極和該接地端之間的電阻R2。依此組態,該能隙參考電路200的輸出電壓VREF可表示為:VREF=I4×R2 (7) In order to provide a stable reference voltage having one of substantially zero temperature coefficients, as shown in FIG. 2, the bandgap reference circuit 200 includes a resistor R2 electrically connected between the drain of the PMOS transistor M4 and the ground. . According to this configuration, the output voltage VREF of the bandgap reference circuit 200 can be expressed as: VREF = I4 × R2 (7)

在本實施例中,流過雙極性電晶體Q1、Q2和Q3電壓的電流實質上相同。該電流源單元22中的PMOS電晶體M1、M2、M3和M4之寬長比設定為2:1:1:1。因此,電流I2、I3和I4實質上相同,而電流I1會是電流I2的兩倍。由於電流I3 和電流I4具有相同的電流值,將方程式(6)套入方程式(7)後可重新整理為: In the present embodiment, the currents flowing through the voltages of the bipolar transistors Q1, Q2, and Q3 are substantially the same. The aspect ratio of the PMOS transistors M1, M2, M3, and M4 in the current source unit 22 is set to 2:1:1:1. Therefore, currents I2, I3, and I4 are substantially the same, and current I1 will be twice the current I2. Since current I3 and current I4 have the same current value, equation (6) can be rearranged into equation (7) and can be rearranged as:

根據方程式(8),該電壓VREF的溫度係數可藉由N值的增加而調整為正溫度係數。該電壓VREF的溫度係數可藉由該分壓電路24的比例之增加(VA增加)而調整為負溫度係數。當N值、該分壓電路24的比例和電阻R2對R1的比例適當地選擇後,該能隙參考電路200可獲得具有零溫度係數和對溫度為低敏感度的輸出電壓VREF。 According to equation (8), the temperature coefficient of the voltage VREF can be adjusted to a positive temperature coefficient by an increase in the value of N. The temperature coefficient of the voltage VREF can be adjusted to a negative temperature coefficient by an increase in the ratio of the voltage dividing circuit 24 (VA increase). When the value of N, the ratio of the voltage dividing circuit 24, and the ratio of the resistor R2 to R1 are appropriately selected, the bandgap reference circuit 200 can obtain an output voltage VREF having a zero temperature coefficient and a low sensitivity to temperature.

此外,與先前技術相比,第2圖的該能隙參考電路200可工作在較低的供應電源電壓位準。回到方程式(1): Furthermore, the bandgap reference circuit 200 of FIG. 2 can operate at a lower supply voltage level than the prior art. Go back to equation (1):

從方程式(1)可發現為獲得零溫度係數,習知的能隙參考電路的輸出電壓VOUT的電壓位準會限制在1.25V。然而,參照方程式(8),本發明所揭示之能隙參考電路的輸出電壓VREF之電壓位準可減少至0.7V以下。參照第2圖,電阻R2係直接連接於接地端,而不是如第1圖所示連接於雙極性電晶體Q3。因此,該能隙參考電路200的輸出電壓VREF可藉由選擇不同的電阻R2來調整電壓位準。藉由本發明所揭示之能隙參考電路的組態,輸出電壓VREF的電壓位準可調整為0V至0.64V。由於輸出電壓VREF的電壓位準下降,該供應電源VDD 的電壓位準可低至1V以下。 From equation (1), it can be found that to obtain a zero temperature coefficient, the voltage level of the output voltage VOUT of the conventional bandgap reference circuit is limited to 1.25V. However, referring to equation (8), the voltage level of the output voltage VREF of the bandgap reference circuit disclosed in the present invention can be reduced to less than 0.7V. Referring to Fig. 2, the resistor R2 is directly connected to the ground terminal instead of being connected to the bipolar transistor Q3 as shown in Fig. 1. Therefore, the output voltage VREF of the bandgap reference circuit 200 can be adjusted by selecting a different resistor R2. With the configuration of the bandgap reference circuit disclosed in the present invention, the voltage level of the output voltage VREF can be adjusted from 0V to 0.64V. Since the voltage level of the output voltage VREF drops, the supply power VDD The voltage level can be as low as 1V or less.

本發明之技術內容及技術特點已揭示如上,然而熟悉本項技術之人士仍可能基於本發明之教示及揭示而作種種不背離本發明精神之替換及修飾。因此,本發明之保護範圍應不限於實施例所揭示者,而應包括各種不背離本發明之替換及修飾,並為隨後之申請專利範圍所涵蓋。 The technical and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention should be construed as not limited by the scope of the invention, and the invention is intended to be

200‧‧‧能隙參考電路 200‧‧‧Gap reference circuit

22‧‧‧電流源單元 22‧‧‧current source unit

24‧‧‧分壓電路 24‧‧‧voltage circuit

M1,M2,M3,M4‧‧‧PMOS電晶體 M1, M2, M3, M4‧‧‧ PMOS transistors

OP‧‧‧運算放大器 OP‧‧‧Operational Amplifier

Q1,Q2,Q3‧‧‧雙極性電晶體 Q1, Q2, Q3‧‧‧ bipolar transistor

R1,R2,R3,R4‧‧‧電阻 R1, R2, R3, R4‧‧‧ resistance

Claims (10)

一種能隙參考電路,包括:一第一電流源;一第二電流源;一第三電流源;一第四電流源;一運算放大器,電氣連接至該等第一至第四電流源;一第一雙極性電晶體,其具有電氣連接至該第一電流源的一射極,和具有電氣連接至一接地電壓的一基極和一集極;一分壓電路,電氣連接於該第一雙極性電晶體之該射極和該基極之間,該分壓電路提供比例於該第一雙極性電晶體之射極-基極間電壓差的一偏壓電壓;一第二雙極性電晶體,其具有用以接收該偏壓電壓的一基極,具有電氣連接至該第二電流源的一射極,和具有電氣連接至該接地電壓的一集極;一第三雙極性電晶體,其具有電氣連接至該接地電壓的一集極和一基極;一第一電阻,其電氣連接於該第三電流源和該第三雙極性電晶體的一射極之間;以及一第二電阻,其電氣連接於該第四電流源和該接地電壓之間; 其中,該第四電流源和該第二電阻的一交叉點提供一能隙參考電壓。 A gap reference circuit includes: a first current source; a second current source; a third current source; a fourth current source; an operational amplifier electrically connected to the first to fourth current sources; a first bipolar transistor having an emitter electrically connected to the first current source, and a base and a collector electrically connected to a ground voltage; a voltage dividing circuit electrically connected to the first Between the emitter of the bipolar transistor and the base, the voltage dividing circuit provides a bias voltage proportional to the emitter-base voltage difference of the first bipolar transistor; a second double a polar transistor having a base for receiving the bias voltage, an emitter electrically coupled to the second current source, and a collector electrically coupled to the ground voltage; a third bipolar a transistor having a collector and a base electrically connected to the ground voltage; a first resistor electrically coupled between the third current source and an emitter of the third bipolar transistor; a second resistor electrically connected to the fourth current source and the connection Between ground voltages; The intersection of the fourth current source and the second resistor provides a bandgap reference voltage. 根據申請專利範圍第1項之能隙參考電路,其中該第一電流源由一PMOS電晶體所構成,其具有電氣連接至一供應電源的一源極,具有電氣連接至該運算放大器的一輸出端之一閘極,和具有電氣連接至該第一雙極性電晶體的該射極之一汲極。 A gap reference circuit according to claim 1, wherein the first current source is formed by a PMOS transistor having a source electrically connected to a supply source having an output electrically connected to the operational amplifier One of the gates and one of the emitters electrically connected to the first bipolar transistor. 根據申請專利範圍第2項之能隙參考電路,其中該第二電流源由一PMOS電晶體所構成,其具有電氣連接至該供應電源的一源極,具有電氣連接至該運算放大器的該輸出端之一閘極,和具有電氣連接至該第二雙極性電晶體的該射極和該運算放大器的一第一輸入端之一汲極。 A bandgap reference circuit according to claim 2, wherein the second current source is formed by a PMOS transistor having a source electrically connected to the supply source, the output being electrically connected to the operational amplifier One of the terminals is gated, and has one of the emitters electrically connected to the second bipolar transistor and one of the first inputs of the operational amplifier. 根據申請專利範圍第3項之能隙參考電路,其中該第三電流源由一PMOS電晶體所構成,其具有電氣連接至該供應電源的一源極,具有電氣連接至該運算放大器的該輸出端之一閘極,和具有電氣連接至該第一電阻和該運算放大器的一第二輸入端之一汲極。 A gap reference circuit according to claim 3, wherein the third current source is formed by a PMOS transistor having a source electrically connected to the supply source, the output having an electrical connection to the operational amplifier a gate of the terminal, and one of the second input terminals electrically connected to the first resistor and the operational amplifier. 根據申請專利範圍第4項之能隙參考電路,其中該第四電流源由一PMOS電晶體所構成,其具有電氣連接至該供應電源的一源極,具有電氣連接至該運算放大器的該輸出端之一閘極,和具有電氣連接至該第二電阻之一汲極。 A bandgap reference circuit according to claim 4, wherein the fourth current source is formed by a PMOS transistor having a source electrically connected to the supply source, the output having an electrical connection to the operational amplifier One of the terminals is gated, and has one electrically connected to one of the second resistors. 根據申請專利範圍第1項之能隙參考電路,其中該分壓電路包括:複數個電阻,串聯連接於該第一雙極性電晶體的該射極和該基極之間,用以提供該偏壓電壓。 The bandgap reference circuit of claim 1, wherein the voltage dividing circuit comprises: a plurality of resistors connected in series between the emitter of the first bipolar transistor and the base to provide the Bias voltage. 根據申請專利範圍第6項之能隙參考電路,其中該能隙參考電壓的溫度係數藉由增加該第三雙極性電晶體的射極面積和該第二雙極性電晶體的射極面積之比例而調整為正值。 The bandgap reference circuit of claim 6, wherein the temperature coefficient of the bandgap reference voltage is increased by increasing an emitter area of the third bipolar transistor and an emitter area of the second bipolar transistor And adjust to a positive value. 根據申請專利範圍第6項之能隙參考電路,其中該能隙參考電壓的溫度係數藉由增加該偏壓電壓而調整為負值。 A bandgap reference circuit according to claim 6 wherein the temperature coefficient of the bandgap reference voltage is adjusted to a negative value by increasing the bias voltage. 根據申請專利範圍第6項之能隙參考電路,其中該能隙參考電壓的溫度係數藉由選擇該第三雙極性電晶體的射極面積和該第二雙極性電晶體之射極面積之比例、該偏壓電壓的電壓值和該第一電阻對該第二電阻的阻值比例而調整為實值為零。 The bandgap reference circuit of claim 6, wherein the temperature coefficient of the bandgap reference voltage is selected by selecting an emitter area of the third bipolar transistor and an emitter area of the second bipolar transistor And the voltage value of the bias voltage and the resistance ratio of the first resistor to the second resistor are adjusted to a real value of zero. 根據申請專利範圍第5項之能隙參考電路,其中該供應電源的電壓位準小於1V。 According to the energy gap reference circuit of claim 5, wherein the voltage level of the power supply is less than 1V.
TW104107694A 2015-03-11 2015-03-11 Bandgap reference circuit TWI564692B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104107694A TWI564692B (en) 2015-03-11 2015-03-11 Bandgap reference circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104107694A TWI564692B (en) 2015-03-11 2015-03-11 Bandgap reference circuit

Publications (2)

Publication Number Publication Date
TW201633033A TW201633033A (en) 2016-09-16
TWI564692B true TWI564692B (en) 2017-01-01

Family

ID=57443237

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104107694A TWI564692B (en) 2015-03-11 2015-03-11 Bandgap reference circuit

Country Status (1)

Country Link
TW (1) TWI564692B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742133B (en) * 2017-08-07 2021-10-11 美商凌力爾特控股有限責任公司 Stress-impaired signal correction circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792977B (en) * 2022-04-11 2023-02-11 立錡科技股份有限公司 Reference signal generator having high order temperature compensation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060043957A1 (en) * 2004-08-30 2006-03-02 Carvalho Carlos M Resistance trimming in bandgap reference voltage sources
TW200609704A (en) * 2004-06-30 2006-03-16 Analog Devices Inc A proportional to absolute temperature voltage circuit
TW201126305A (en) * 2009-09-25 2011-08-01 Microchip Tech Inc Compensated bandgap
TW201413416A (en) * 2012-06-07 2014-04-01 Renesas Electronics Corp Semiconductor device having voltage generation circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200609704A (en) * 2004-06-30 2006-03-16 Analog Devices Inc A proportional to absolute temperature voltage circuit
US20060043957A1 (en) * 2004-08-30 2006-03-02 Carvalho Carlos M Resistance trimming in bandgap reference voltage sources
TW201126305A (en) * 2009-09-25 2011-08-01 Microchip Tech Inc Compensated bandgap
TW201413416A (en) * 2012-06-07 2014-04-01 Renesas Electronics Corp Semiconductor device having voltage generation circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742133B (en) * 2017-08-07 2021-10-11 美商凌力爾特控股有限責任公司 Stress-impaired signal correction circuit

Also Published As

Publication number Publication date
TW201633033A (en) 2016-09-16

Similar Documents

Publication Publication Date Title
TWI542967B (en) Low-offset bandgap circuit and corrector
TWI592786B (en) Bandgap reference circuit
CN106200732A (en) Generate the circuit of output voltage and the method to set up of the output voltage of low dropout voltage regulator
CN105022441A (en) Temperature-independent current reference
US9141124B1 (en) Bandgap reference circuit
TW201525647A (en) Bandgap reference generating circuit
TW201339795A (en) Reference-voltage circuit
CN112987836A (en) High-performance band-gap reference circuit
TW201931046A (en) Circuit including bandgap reference circuit
WO2019150744A1 (en) Correction current output circuit and reference voltage circuit with correction function
US20160252923A1 (en) Bandgap reference circuit
TW201401013A (en) Voltage reference circuit
TWI564692B (en) Bandgap reference circuit
TWI534585B (en) Reference voltage circuit
US20130063201A1 (en) Reference voltage circuit
TWI592785B (en) Bandgap reference circuit
CN108345336B (en) Energy gap reference circuit
TWI581086B (en) A reference current generating circuit and a reference voltage generating circuit
JP2016212476A (en) Band gap reference circuit
CN108227814B (en) Source follower circuit
JP5707634B2 (en) Tunnel current circuit
TWI522770B (en) Bandgap reference circuit
CN109582077B (en) Low-power-consumption power supply start-reset circuit and reference signal circuit
KR20120116708A (en) Current reference circuit
CN107728690B (en) Energy gap reference circuit