TWI583831B - M面氮化鎵的製備方法 - Google Patents
M面氮化鎵的製備方法 Download PDFInfo
- Publication number
- TWI583831B TWI583831B TW105117061A TW105117061A TWI583831B TW I583831 B TWI583831 B TW I583831B TW 105117061 A TW105117061 A TW 105117061A TW 105117061 A TW105117061 A TW 105117061A TW I583831 B TWI583831 B TW I583831B
- Authority
- TW
- Taiwan
- Prior art keywords
- gallium nitride
- zinc oxide
- plane
- hexagonal column
- nitride layer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02389—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02469—Group 12/16 materials
- H01L21/02472—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02513—Microstructure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02516—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02554—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02647—Lateral overgrowth
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本發明係關於一種氮化鎵的製備方法,尤其是一種M面氮化鎵的製備方法。
習知的LED元件中多使用c面(c-plane)氮化鎵,惟由於量子侷限史塔克效應(quantum confined stark effect)而導致其發光效率不佳。因此,實務上傾向以M面(M-plane)氮化鎵取代c面氮化鎵,以解決上述問題,進而提升發光效率。然而,習知的M面氮化鎵製備方法,係於鋁酸鋰(LiAlO2)、鎵酸鋰(LiGaO2)或碳化矽(SiC)基板之表面生長M面氮化鎵,此類基板製作困難且生產成本高,進而也使得M面氮化鎵的生產成本難以降低。
有鑑於此,習知的M面氮化鎵製備方法仍有加以改善之必要。
為解決上述問題,本發明提供一種M面氮化鎵製備方法,其無需使用鋁酸鋰、鎵酸鋰或碳化矽等高價基板,即可以成長M面氮化鎵者。
本發明提供一種M面氮化鎵的製備方法,包含:提供一氧化鋅六角柱,該氧化鋅六角柱具有一成長面,該成長面係為垂直重力方向之M面;及自該氧化鋅六角柱之成長面成長一氮化鎵層,其中,該氧化鋅
六角柱之柱長可以為1~3μm,且直徑可以為1~2μm。
據此,本發明M面氮化鎵的製備方法,無需使用鋁酸鎵或鋁酸鋰等高價基板,即可以成長M面之氮化鎵層。該氧化鋅六角柱之製備方法簡便且成本便宜,進而能夠達成「降低該氮化鎵層之生產成本」功效。
其中,係可以以電漿輔助分子束磊晶法成長該氮化鎵層。係可以於500~600℃之溫度下成長該氮化鎵層,或於550℃之溫度下成長該氮化鎵層;係可以於氮/鎵流速比值為40~60之環境下成長該氮化鎵層,或於氮/鎵流速比值為53之環境下成長該氮化鎵層。藉此,可以避免該氮化鎵發生晶格缺陷,提升該氮化鎵之發光效率。
其中,提供該氧化鋅六角柱可以包含提供一基板,及以水熱法於該基板之表面合成該氧化鋅六角柱。該基板係可以為矽(100)基板,水熱法之反應溶液可以包含六水合硝酸鋅(zinc nitrate hexahydrate)與六亞甲基四胺(hexamethylenetetramine)。藉此,可以提供品質良好且製作成本低廉之氧化鋅六角柱。
S1‧‧‧基材提供步驟
S2‧‧‧氮化鎵成長步驟
A‧‧‧a軸方向
C‧‧‧c軸方向
第1圖:本發明M面氮化鎵的製備方法之流程圖。
第2圖:氧化鋅與氮化鎵界面之球棒模型圖。
第3a圖:氧化鋅六角柱之XRD圖譜。
第3b圖:氧化鋅六角柱之SEM影像(一)。
第3c圖:氧化鋅六角柱之SEM影像(二)。
第4a圖:氮化鎵層之SEM影像(一)。
第4b圖:氮化鎵層之SEM影像(二)。
第5a圖:氧化鋅六角柱及氮化鎵層之TEM影像。
第5b圖:氮化鎵層之SAD圖譜。
第5c圖:氮化鎵層與氧化鋅六角柱介面之SAD圖譜。
第5d圖:氧化鋅六角柱之SAD圖譜。
第6圖:氮化鎵層與氧化鋅六角柱之偏極化光激螢光光譜。
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:如第1圖所示,本發明之M面氮化鎵的製備方法,可以包含一基材提供步驟S1及一氮化鎵成長步驟S2。其中,該基材提供步驟S1可以包含提供一氧化鋅六角柱,該氧化鋅六角柱具有一成長面,該成長面係為垂直重力方向之M面;該氮化鎵成長步驟S2可以包含於該氧化鋅六角柱之成長面成長一氮化鎵層。
本發明所述之「M面氮化鎵」,係指成長方向為[100]的氮化鎵。更詳言之,該氮化鎵層可以為自該成長面以M面之堆疊方式生長,故該氮化鎵層之表面具有M面特性。
本發明不限制該氧化鋅六角柱的製備方法,舉例而言,係可以於一基板之表面以水熱法生長該氧化鋅六角柱,且該氧化鋅六角柱的尺寸較佳為微米尺度,例如其柱長可以為1~3μm,且直徑可以為1~2μm,以提供品質穩定之成長面,進而提升所製得之氮化鎵層的品質。於本實施例中,係於一矽基板(100)之表面,以六水合硝酸鋅(zinc nitrate hexahydrate)與六亞甲基四胺(hexamethylenetetramine)為反應物,於70~100℃之溫度下反應10~20小時,以成長該氧化鋅六角柱。
該氧化鋅六角柱係用以提供一成長面,以成長該氮化鎵層。詳言之,該氧化鋅六角柱具有二個頂面及六個側壁面,各側壁面皆為M面。係使該氧化鋅六角柱呈橫倒之狀態,該氧化鋅六角柱的其中一個M面與重力方向垂直,以作為該成長面。於本實施例中,係使該氧化鋅六角柱的一
個M面貼接該基板之表面,另一相對之M面則作為該成長面。
成長該氮化鎵層之前,另可以先去除該氧化鋅六角柱之水氣及有機物污染,以及對該氧化鋅六角柱進行熱退火等前處理。詳言之,本實施例係先於180℃之溫度及10-7~10-8torr之真空度下,移除附著於該基板及氧化鋅六角柱的水氣;續於550℃之溫度及10-9torr之真空度下,去除有機物污染;最後於600~650℃之溫度及10-10torr之真空度下,對該氧化鋅六角柱進行熱退火處理,以提供良好的生長環境,用以成長該氮化鎵層。
成長該氮化鎵層的方法,可以為磁控濺鍍、原子層化學氣相沉積或脈衝雷射蒸鍍等。或者,可以使用分子束磊晶法(molecular beam epitaxy)在低溫環境下成長該氮化鎵層。於本實施例中,係藉由電漿輔助分子束磊晶法,於500~600℃之溫度及低氮鎵比(氮的蒸汽壓/鎵的蒸汽壓)之環境下成長該氮化鎵層,例如氮與鎵之流速比值為40~60,較佳為53;成長時間為30分鐘~3小時,較佳為1小時,以製備晶格缺陷(lattice defect)少的氮化鎵層。此外,於成長該氮化鎵層之後,另可以藉由雷射剝離,將該氮化鎵層自該氧化鋅六角柱之成長面取下。於電漿輔助分子束磊晶之過程中,若溫度過高,可能導致氧化鋅分解,而與氮或鎵反應,造成堆積缺陷(stacking fault)。
值得一提的是,氧化鋅的晶格參數(lattice parameter)係為a=3.25Å及c=5.2Å,與氮化鎵的晶格參數接近(3.20Å及5.18Å),且氧化鋅與氮化鎵的晶格不匹配度低(lattice mismatch,[110]ZnO//[110]GaN及[0002]ZnO//[0002]GaN分別為1.86%及0.6%),故如第2圖所示,其中於a軸方向A上,aZnO aGaN;且於c軸方向C上,cZnO cGaN,而使得氧化鋅可以作為良好的基材以成長氮化鎵。再者,於成長該氮化鎵層時,氮源及鎵源係沿重力方向沉降堆積而成長氮化鎵,故必須使該氧化鋅六角柱的成長面垂直重力方向,以使氮源及鎵源得以堆疊於該生長面,進而促使該氮
化鎵層由該氧化鋅六角柱的M面向上生長,形成M面氮化鎵。反之,若該氧化鋅六角柱係呈直立狀態,亦即該氧化鋅六角柱的一頂面貼接該基板,而其M面與重力方向平行,則僅有少數的氮源及鎵源得以附著於該氧化鋅六角柱的M面,成長為M面之氮化鎵層;惟,大多數的氮源及鎵源會沉積於該基板之表面,而自該基板之表面成長為非M面之氮化鎵,並於逐漸沉積增高的過程中影響該氮化鎵層的成長。
為證實本發明之M面氮化鎵的製備方法確實可以成長氮化鎵層,且該氮化鎵層係為M面氮化鎵,遂進行下述實驗。
於本實驗中,係以上述水熱法於矽(100)基板之表面成長該氧化鋅六角柱,其反應溶液包含0.15M六水合硝酸鋅與0.03M六亞甲基四胺,並於90℃之溫度下反應12小時,所生成氧化鋅六角柱的XRD檢驗結果如第3a圖所示,SEM影像則如第3b、3c圖所示。由上述結果可知,藉由水熱法可以成長出具有平坦M面之氧化鋅六角柱,以供成長該氮化鎵層。
而後,續藉由上述電漿輔助分子束磊晶法,於該氧化鋅六角柱之成長面成長該氮化鎵層,成長溫度為550℃,氮/鎵流速比值為53,成長時間為60分鐘,而其SEM影像係如第4a及4b圖所示。續以TEM及SAD分析該氧化鋅六角柱及M面氮化鎵,結果如第5a~5d圖所示,其中第5a圖為沿[100]方向之剖面TEM影像,第5b~5d圖分別為第5a圖中標示區域(DP01、DP02、DP03)之SAD圖譜,分別包含氧化鋅六角柱、氮化鎵與氧化鋅介面以及氮化鎵層。由第5b圖可知,該氮化鎵層係為纖維鋅礦(wurtzite)結構,且生長方向為[100],而第5d圖則顯示該氧化鋅六角柱為M面纖維鋅礦(wurtzite)結構。如第5c圖所示,氮化鎵層與氧化鋅六角柱之SAD圖譜於DP02區域重疊,顯示GaN(110)//ZnO(110)之繞射點,證實該氮化鎵層係以[100]之方向生長且平行ZnO[100]。
此外,本實驗另於室溫下以偏極化光激螢光(polarization-dependent photoluminescence)檢驗該氧化鋅六角柱及M面氮化鎵,結果如第6圖所示。其中,φ=0°係定義為平行c軸之方向。上述螢光光譜之強度自φ=0°(E//c)至φ=90°(E⊥c)呈漸增,顯示氧化鋅及氮化鎵之非極性面特性,亦證實該氮化鎵層確實成長為M面氮化鎵。
綜上所述,本發明之M面氮化鎵的製備方法,藉由使用該氧化鋅六角柱作為基材,無需使用鋁酸鎵或鋁酸鋰等高價基板,即可以成長M面之氮化鎵層。該氧化鋅六角柱之製備方法簡便且成本便宜,進而能夠達成「降低該氮化鎵層之生產成本」功效。
此外,本發明之M面氮化鎵的製備方法中,藉由於該氧化鋅六角柱的成長面成長該氮化鎵層,由於該成長面係為垂直重力方向之M面,可以使該氮化鎵層確實為M面氮化鎵,且該氮化鎵層的晶格缺陷少,進而能夠達成「提升該氮化鎵層之發光效率」功效。
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
S1‧‧‧基材提供步驟
S2‧‧‧氮化鎵成長步驟
Claims (9)
- 一種M面氮化鎵的製備方法,包含:提供一氧化鋅六角柱,該氧化鋅六角柱具有一成長面,該成長面係為垂直重力方向之M面;及自該氧化鋅六角柱之成長面成長一氮化鎵層,其中,該氧化鋅六角柱之柱長為1~3μm,直徑為1~2μm。
- 如申請專利範圍第1項所述之M面氮化鎵的製備方法,其中,係以電漿輔助分子束磊晶法成長該氮化鎵層。
- 如申請專利範圍第2項所述之M面氮化鎵的製備方法,其中,係於500~600℃之溫度下成長該氮化鎵層。
- 如申請專利範圍第3項所述之M面氮化鎵的製備方法,其中,係於550℃之溫度下成長該氮化鎵層。
- 如申請專利範圍第2項所述之M面氮化鎵的製備方法,其中,係於氮/鎵流速比值為40~60之環境下成長該氮化鎵層。
- 如申請專利範圍第5項所述之M面氮化鎵的製備方法,其中,係於氮/鎵流速比值為53之環境下成長該氮化鎵層。
- 如申請專利範圍第1~6項任一項所述之M面氮化鎵的製備方法,其中,提供該氧化鋅六角柱包含提供一基板,及以水熱法於該基板之表面合成該氧化鋅六角柱。
- 如申請專利範圍第7項所述之M面氮化鎵的製備方法,其中,該基板係為矽(100)基板。
- 如申請專利範圍第7項所述之M面氮化鎵的製備方法,其中,水熱法之反應溶液包含六水合硝酸鋅(zinc nitrate hexahydrate)與六亞甲基四胺(hexamethylenetetramine)。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105117061A TWI583831B (zh) | 2016-05-31 | 2016-05-31 | M面氮化鎵的製備方法 |
US15/241,810 US20170345650A1 (en) | 2016-05-31 | 2016-08-19 | Fabrication of M-plane Gallium Nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105117061A TWI583831B (zh) | 2016-05-31 | 2016-05-31 | M面氮化鎵的製備方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI583831B true TWI583831B (zh) | 2017-05-21 |
TW201741508A TW201741508A (zh) | 2017-12-01 |
Family
ID=59367340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105117061A TWI583831B (zh) | 2016-05-31 | 2016-05-31 | M面氮化鎵的製備方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20170345650A1 (zh) |
TW (1) | TWI583831B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI792547B (zh) * | 2021-09-09 | 2023-02-11 | 國立中山大學 | 氮化物多孔單晶膜的製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108597985B (zh) * | 2018-04-17 | 2020-12-22 | 中山大学 | 一种叠层结构 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070194467A1 (en) * | 2003-06-20 | 2007-08-23 | Peidong Yang | Nanowire array and nanowire solar cells and methods for forming the same |
US20090114887A1 (en) * | 2005-05-09 | 2009-05-07 | Kent A J | Bulk, free-standing cubic III-N substrate and a method for forming same. |
US20120205623A1 (en) * | 2002-04-15 | 2012-08-16 | The Regents Of The University Of California | NON-POLAR (Al,B,In,Ga)N QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES |
CN103325895A (zh) * | 2013-07-04 | 2013-09-25 | 江苏中谷光电股份有限公司 | 氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法 |
-
2016
- 2016-05-31 TW TW105117061A patent/TWI583831B/zh active
- 2016-08-19 US US15/241,810 patent/US20170345650A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120205623A1 (en) * | 2002-04-15 | 2012-08-16 | The Regents Of The University Of California | NON-POLAR (Al,B,In,Ga)N QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES |
US20070194467A1 (en) * | 2003-06-20 | 2007-08-23 | Peidong Yang | Nanowire array and nanowire solar cells and methods for forming the same |
US20090114887A1 (en) * | 2005-05-09 | 2009-05-07 | Kent A J | Bulk, free-standing cubic III-N substrate and a method for forming same. |
CN103325895A (zh) * | 2013-07-04 | 2013-09-25 | 江苏中谷光电股份有限公司 | 氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI792547B (zh) * | 2021-09-09 | 2023-02-11 | 國立中山大學 | 氮化物多孔單晶膜的製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201741508A (zh) | 2017-12-01 |
US20170345650A1 (en) | 2017-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101719483B (zh) | 用于生长纤锌矿型晶体的衬底、其制造方法和半导体器件 | |
JP4806475B2 (ja) | 基板およびその製造方法 | |
TW200419652A (en) | Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy | |
JP2007128936A (ja) | ZnO結晶またはZnO系半導体化合物結晶の製造方法、及びZnO系発光素子の製造方法 | |
Grym et al. | Growth and spatially resolved luminescence of low dimensional structures in sintered ZnO | |
TWI583831B (zh) | M面氮化鎵的製備方法 | |
Aggarwal et al. | Semipolar r-plane ZnO films on Si (100) substrates: Thin film epitaxy and optical properties | |
TW201316377A (zh) | GaN系膜之製造方法及使用於其之複合基板 | |
US9305778B2 (en) | Controlled manufacturing method of metal oxide semiconductor and metal oxide semiconductor structure having controlled growth crystallographic plane | |
JP5899201B2 (ja) | 第13族金属窒化物の製造方法およびこれに用いる種結晶基板 | |
JPWO2005006420A1 (ja) | 窒化物半導体素子並びにその作製方法 | |
TWI398558B (zh) | 氮化鎵立體磊晶結構及其製作方法 | |
US8921851B2 (en) | Non-polar plane of wurtzite structure material | |
CN113120856B (zh) | 一种基于蓝宝石衬底的AlON矩形纳米阵列及其制备方法 | |
Ramesh et al. | Controlled nucleation and growth of nanostructures by employing surface modified GaN based layers/heterostructures as bottom layer | |
JP5246900B1 (ja) | 酸化マグネシウム薄膜の作成方法 | |
US20130118400A1 (en) | Method of forming epitaxial zinc oxide films | |
CN110517949A (zh) | 一种利用SiO2作为衬底制备非极性a面GaN外延层的方法 | |
Li et al. | Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays | |
KR101213133B1 (ko) | ZnO에 격자 정합된 자외선용 단결정 ZnMgAlO 박막 및 그 제조방법 | |
Badokas | Remote epitaxy of GaN via graphene on GaN/sapphire templates by MOVPE | |
KR101195473B1 (ko) | 질화갈륨 성장방법 | |
RU135186U1 (ru) | Полупроводниковое светоизлучающее устройство | |
JP4413558B2 (ja) | ウルツ鉱型iii−v族窒化物薄膜結晶の製造法 | |
JP2015192036A (ja) | 窒化物半導体素子の製造方法 |