TWI583831B - M面氮化鎵的製備方法 - Google Patents

M面氮化鎵的製備方法 Download PDF

Info

Publication number
TWI583831B
TWI583831B TW105117061A TW105117061A TWI583831B TW I583831 B TWI583831 B TW I583831B TW 105117061 A TW105117061 A TW 105117061A TW 105117061 A TW105117061 A TW 105117061A TW I583831 B TWI583831 B TW I583831B
Authority
TW
Taiwan
Prior art keywords
gallium nitride
zinc oxide
plane
hexagonal column
nitride layer
Prior art date
Application number
TW105117061A
Other languages
English (en)
Other versions
TW201741508A (zh
Inventor
羅奕凱
尤碩廷
蔡振凱
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW105117061A priority Critical patent/TWI583831B/zh
Priority to US15/241,810 priority patent/US20170345650A1/en
Application granted granted Critical
Publication of TWI583831B publication Critical patent/TWI583831B/zh
Publication of TW201741508A publication Critical patent/TW201741508A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

M面氮化鎵的製備方法
本發明係關於一種氮化鎵的製備方法,尤其是一種M面氮化鎵的製備方法。
習知的LED元件中多使用c面(c-plane)氮化鎵,惟由於量子侷限史塔克效應(quantum confined stark effect)而導致其發光效率不佳。因此,實務上傾向以M面(M-plane)氮化鎵取代c面氮化鎵,以解決上述問題,進而提升發光效率。然而,習知的M面氮化鎵製備方法,係於鋁酸鋰(LiAlO2)、鎵酸鋰(LiGaO2)或碳化矽(SiC)基板之表面生長M面氮化鎵,此類基板製作困難且生產成本高,進而也使得M面氮化鎵的生產成本難以降低。
有鑑於此,習知的M面氮化鎵製備方法仍有加以改善之必要。
為解決上述問題,本發明提供一種M面氮化鎵製備方法,其無需使用鋁酸鋰、鎵酸鋰或碳化矽等高價基板,即可以成長M面氮化鎵者。
本發明提供一種M面氮化鎵的製備方法,包含:提供一氧化鋅六角柱,該氧化鋅六角柱具有一成長面,該成長面係為垂直重力方向之M面;及自該氧化鋅六角柱之成長面成長一氮化鎵層,其中,該氧化鋅 六角柱之柱長可以為1~3μm,且直徑可以為1~2μm。
據此,本發明M面氮化鎵的製備方法,無需使用鋁酸鎵或鋁酸鋰等高價基板,即可以成長M面之氮化鎵層。該氧化鋅六角柱之製備方法簡便且成本便宜,進而能夠達成「降低該氮化鎵層之生產成本」功效。
其中,係可以以電漿輔助分子束磊晶法成長該氮化鎵層。係可以於500~600℃之溫度下成長該氮化鎵層,或於550℃之溫度下成長該氮化鎵層;係可以於氮/鎵流速比值為40~60之環境下成長該氮化鎵層,或於氮/鎵流速比值為53之環境下成長該氮化鎵層。藉此,可以避免該氮化鎵發生晶格缺陷,提升該氮化鎵之發光效率。
其中,提供該氧化鋅六角柱可以包含提供一基板,及以水熱法於該基板之表面合成該氧化鋅六角柱。該基板係可以為矽(100)基板,水熱法之反應溶液可以包含六水合硝酸鋅(zinc nitrate hexahydrate)與六亞甲基四胺(hexamethylenetetramine)。藉此,可以提供品質良好且製作成本低廉之氧化鋅六角柱。
S1‧‧‧基材提供步驟
S2‧‧‧氮化鎵成長步驟
A‧‧‧a軸方向
C‧‧‧c軸方向
第1圖:本發明M面氮化鎵的製備方法之流程圖。
第2圖:氧化鋅與氮化鎵界面之球棒模型圖。
第3a圖:氧化鋅六角柱之XRD圖譜。
第3b圖:氧化鋅六角柱之SEM影像(一)。
第3c圖:氧化鋅六角柱之SEM影像(二)。
第4a圖:氮化鎵層之SEM影像(一)。
第4b圖:氮化鎵層之SEM影像(二)。
第5a圖:氧化鋅六角柱及氮化鎵層之TEM影像。
第5b圖:氮化鎵層之SAD圖譜。
第5c圖:氮化鎵層與氧化鋅六角柱介面之SAD圖譜。
第5d圖:氧化鋅六角柱之SAD圖譜。
第6圖:氮化鎵層與氧化鋅六角柱之偏極化光激螢光光譜。
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:如第1圖所示,本發明之M面氮化鎵的製備方法,可以包含一基材提供步驟S1及一氮化鎵成長步驟S2。其中,該基材提供步驟S1可以包含提供一氧化鋅六角柱,該氧化鋅六角柱具有一成長面,該成長面係為垂直重力方向之M面;該氮化鎵成長步驟S2可以包含於該氧化鋅六角柱之成長面成長一氮化鎵層。
本發明所述之「M面氮化鎵」,係指成長方向為[100]的氮化鎵。更詳言之,該氮化鎵層可以為自該成長面以M面之堆疊方式生長,故該氮化鎵層之表面具有M面特性。
本發明不限制該氧化鋅六角柱的製備方法,舉例而言,係可以於一基板之表面以水熱法生長該氧化鋅六角柱,且該氧化鋅六角柱的尺寸較佳為微米尺度,例如其柱長可以為1~3μm,且直徑可以為1~2μm,以提供品質穩定之成長面,進而提升所製得之氮化鎵層的品質。於本實施例中,係於一矽基板(100)之表面,以六水合硝酸鋅(zinc nitrate hexahydrate)與六亞甲基四胺(hexamethylenetetramine)為反應物,於70~100℃之溫度下反應10~20小時,以成長該氧化鋅六角柱。
該氧化鋅六角柱係用以提供一成長面,以成長該氮化鎵層。詳言之,該氧化鋅六角柱具有二個頂面及六個側壁面,各側壁面皆為M面。係使該氧化鋅六角柱呈橫倒之狀態,該氧化鋅六角柱的其中一個M面與重力方向垂直,以作為該成長面。於本實施例中,係使該氧化鋅六角柱的一 個M面貼接該基板之表面,另一相對之M面則作為該成長面。
成長該氮化鎵層之前,另可以先去除該氧化鋅六角柱之水氣及有機物污染,以及對該氧化鋅六角柱進行熱退火等前處理。詳言之,本實施例係先於180℃之溫度及10-7~10-8torr之真空度下,移除附著於該基板及氧化鋅六角柱的水氣;續於550℃之溫度及10-9torr之真空度下,去除有機物污染;最後於600~650℃之溫度及10-10torr之真空度下,對該氧化鋅六角柱進行熱退火處理,以提供良好的生長環境,用以成長該氮化鎵層。
成長該氮化鎵層的方法,可以為磁控濺鍍、原子層化學氣相沉積或脈衝雷射蒸鍍等。或者,可以使用分子束磊晶法(molecular beam epitaxy)在低溫環境下成長該氮化鎵層。於本實施例中,係藉由電漿輔助分子束磊晶法,於500~600℃之溫度及低氮鎵比(氮的蒸汽壓/鎵的蒸汽壓)之環境下成長該氮化鎵層,例如氮與鎵之流速比值為40~60,較佳為53;成長時間為30分鐘~3小時,較佳為1小時,以製備晶格缺陷(lattice defect)少的氮化鎵層。此外,於成長該氮化鎵層之後,另可以藉由雷射剝離,將該氮化鎵層自該氧化鋅六角柱之成長面取下。於電漿輔助分子束磊晶之過程中,若溫度過高,可能導致氧化鋅分解,而與氮或鎵反應,造成堆積缺陷(stacking fault)。
值得一提的是,氧化鋅的晶格參數(lattice parameter)係為a=3.25Å及c=5.2Å,與氮化鎵的晶格參數接近(3.20Å及5.18Å),且氧化鋅與氮化鎵的晶格不匹配度低(lattice mismatch,[110]ZnO//[110]GaN及[0002]ZnO//[0002]GaN分別為1.86%及0.6%),故如第2圖所示,其中於a軸方向A上,aZnO aGaN;且於c軸方向C上,cZnO cGaN,而使得氧化鋅可以作為良好的基材以成長氮化鎵。再者,於成長該氮化鎵層時,氮源及鎵源係沿重力方向沉降堆積而成長氮化鎵,故必須使該氧化鋅六角柱的成長面垂直重力方向,以使氮源及鎵源得以堆疊於該生長面,進而促使該氮 化鎵層由該氧化鋅六角柱的M面向上生長,形成M面氮化鎵。反之,若該氧化鋅六角柱係呈直立狀態,亦即該氧化鋅六角柱的一頂面貼接該基板,而其M面與重力方向平行,則僅有少數的氮源及鎵源得以附著於該氧化鋅六角柱的M面,成長為M面之氮化鎵層;惟,大多數的氮源及鎵源會沉積於該基板之表面,而自該基板之表面成長為非M面之氮化鎵,並於逐漸沉積增高的過程中影響該氮化鎵層的成長。
為證實本發明之M面氮化鎵的製備方法確實可以成長氮化鎵層,且該氮化鎵層係為M面氮化鎵,遂進行下述實驗。
於本實驗中,係以上述水熱法於矽(100)基板之表面成長該氧化鋅六角柱,其反應溶液包含0.15M六水合硝酸鋅與0.03M六亞甲基四胺,並於90℃之溫度下反應12小時,所生成氧化鋅六角柱的XRD檢驗結果如第3a圖所示,SEM影像則如第3b、3c圖所示。由上述結果可知,藉由水熱法可以成長出具有平坦M面之氧化鋅六角柱,以供成長該氮化鎵層。
而後,續藉由上述電漿輔助分子束磊晶法,於該氧化鋅六角柱之成長面成長該氮化鎵層,成長溫度為550℃,氮/鎵流速比值為53,成長時間為60分鐘,而其SEM影像係如第4a及4b圖所示。續以TEM及SAD分析該氧化鋅六角柱及M面氮化鎵,結果如第5a~5d圖所示,其中第5a圖為沿[100]方向之剖面TEM影像,第5b~5d圖分別為第5a圖中標示區域(DP01、DP02、DP03)之SAD圖譜,分別包含氧化鋅六角柱、氮化鎵與氧化鋅介面以及氮化鎵層。由第5b圖可知,該氮化鎵層係為纖維鋅礦(wurtzite)結構,且生長方向為[100],而第5d圖則顯示該氧化鋅六角柱為M面纖維鋅礦(wurtzite)結構。如第5c圖所示,氮化鎵層與氧化鋅六角柱之SAD圖譜於DP02區域重疊,顯示GaN(110)//ZnO(110)之繞射點,證實該氮化鎵層係以[100]之方向生長且平行ZnO[100]。
此外,本實驗另於室溫下以偏極化光激螢光(polarization-dependent photoluminescence)檢驗該氧化鋅六角柱及M面氮化鎵,結果如第6圖所示。其中,φ=0°係定義為平行c軸之方向。上述螢光光譜之強度自φ=0°(E//c)至φ=90°(E⊥c)呈漸增,顯示氧化鋅及氮化鎵之非極性面特性,亦證實該氮化鎵層確實成長為M面氮化鎵。
綜上所述,本發明之M面氮化鎵的製備方法,藉由使用該氧化鋅六角柱作為基材,無需使用鋁酸鎵或鋁酸鋰等高價基板,即可以成長M面之氮化鎵層。該氧化鋅六角柱之製備方法簡便且成本便宜,進而能夠達成「降低該氮化鎵層之生產成本」功效。
此外,本發明之M面氮化鎵的製備方法中,藉由於該氧化鋅六角柱的成長面成長該氮化鎵層,由於該成長面係為垂直重力方向之M面,可以使該氮化鎵層確實為M面氮化鎵,且該氮化鎵層的晶格缺陷少,進而能夠達成「提升該氮化鎵層之發光效率」功效。
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
S1‧‧‧基材提供步驟
S2‧‧‧氮化鎵成長步驟

Claims (9)

  1. 一種M面氮化鎵的製備方法,包含:提供一氧化鋅六角柱,該氧化鋅六角柱具有一成長面,該成長面係為垂直重力方向之M面;及自該氧化鋅六角柱之成長面成長一氮化鎵層,其中,該氧化鋅六角柱之柱長為1~3μm,直徑為1~2μm。
  2. 如申請專利範圍第1項所述之M面氮化鎵的製備方法,其中,係以電漿輔助分子束磊晶法成長該氮化鎵層。
  3. 如申請專利範圍第2項所述之M面氮化鎵的製備方法,其中,係於500~600℃之溫度下成長該氮化鎵層。
  4. 如申請專利範圍第3項所述之M面氮化鎵的製備方法,其中,係於550℃之溫度下成長該氮化鎵層。
  5. 如申請專利範圍第2項所述之M面氮化鎵的製備方法,其中,係於氮/鎵流速比值為40~60之環境下成長該氮化鎵層。
  6. 如申請專利範圍第5項所述之M面氮化鎵的製備方法,其中,係於氮/鎵流速比值為53之環境下成長該氮化鎵層。
  7. 如申請專利範圍第1~6項任一項所述之M面氮化鎵的製備方法,其中,提供該氧化鋅六角柱包含提供一基板,及以水熱法於該基板之表面合成該氧化鋅六角柱。
  8. 如申請專利範圍第7項所述之M面氮化鎵的製備方法,其中,該基板係為矽(100)基板。
  9. 如申請專利範圍第7項所述之M面氮化鎵的製備方法,其中,水熱法之反應溶液包含六水合硝酸鋅(zinc nitrate hexahydrate)與六亞甲基四胺(hexamethylenetetramine)。
TW105117061A 2016-05-31 2016-05-31 M面氮化鎵的製備方法 TWI583831B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105117061A TWI583831B (zh) 2016-05-31 2016-05-31 M面氮化鎵的製備方法
US15/241,810 US20170345650A1 (en) 2016-05-31 2016-08-19 Fabrication of M-plane Gallium Nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105117061A TWI583831B (zh) 2016-05-31 2016-05-31 M面氮化鎵的製備方法

Publications (2)

Publication Number Publication Date
TWI583831B true TWI583831B (zh) 2017-05-21
TW201741508A TW201741508A (zh) 2017-12-01

Family

ID=59367340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105117061A TWI583831B (zh) 2016-05-31 2016-05-31 M面氮化鎵的製備方法

Country Status (2)

Country Link
US (1) US20170345650A1 (zh)
TW (1) TWI583831B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792547B (zh) * 2021-09-09 2023-02-11 國立中山大學 氮化物多孔單晶膜的製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108597985B (zh) * 2018-04-17 2020-12-22 中山大学 一种叠层结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070194467A1 (en) * 2003-06-20 2007-08-23 Peidong Yang Nanowire array and nanowire solar cells and methods for forming the same
US20090114887A1 (en) * 2005-05-09 2009-05-07 Kent A J Bulk, free-standing cubic III-N substrate and a method for forming same.
US20120205623A1 (en) * 2002-04-15 2012-08-16 The Regents Of The University Of California NON-POLAR (Al,B,In,Ga)N QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES
CN103325895A (zh) * 2013-07-04 2013-09-25 江苏中谷光电股份有限公司 氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120205623A1 (en) * 2002-04-15 2012-08-16 The Regents Of The University Of California NON-POLAR (Al,B,In,Ga)N QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES
US20070194467A1 (en) * 2003-06-20 2007-08-23 Peidong Yang Nanowire array and nanowire solar cells and methods for forming the same
US20090114887A1 (en) * 2005-05-09 2009-05-07 Kent A J Bulk, free-standing cubic III-N substrate and a method for forming same.
CN103325895A (zh) * 2013-07-04 2013-09-25 江苏中谷光电股份有限公司 氮化镓单晶非极性面衬底生长氮化镓发光二极管的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792547B (zh) * 2021-09-09 2023-02-11 國立中山大學 氮化物多孔單晶膜的製造方法

Also Published As

Publication number Publication date
TW201741508A (zh) 2017-12-01
US20170345650A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
CN101719483B (zh) 用于生长纤锌矿型晶体的衬底、其制造方法和半导体器件
JP4806475B2 (ja) 基板およびその製造方法
TW200419652A (en) Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
JP2007128936A (ja) ZnO結晶またはZnO系半導体化合物結晶の製造方法、及びZnO系発光素子の製造方法
Grym et al. Growth and spatially resolved luminescence of low dimensional structures in sintered ZnO
TWI583831B (zh) M面氮化鎵的製備方法
Aggarwal et al. Semipolar r-plane ZnO films on Si (100) substrates: Thin film epitaxy and optical properties
TW201316377A (zh) GaN系膜之製造方法及使用於其之複合基板
US9305778B2 (en) Controlled manufacturing method of metal oxide semiconductor and metal oxide semiconductor structure having controlled growth crystallographic plane
JP5899201B2 (ja) 第13族金属窒化物の製造方法およびこれに用いる種結晶基板
JPWO2005006420A1 (ja) 窒化物半導体素子並びにその作製方法
TWI398558B (zh) 氮化鎵立體磊晶結構及其製作方法
US8921851B2 (en) Non-polar plane of wurtzite structure material
CN113120856B (zh) 一种基于蓝宝石衬底的AlON矩形纳米阵列及其制备方法
Ramesh et al. Controlled nucleation and growth of nanostructures by employing surface modified GaN based layers/heterostructures as bottom layer
JP5246900B1 (ja) 酸化マグネシウム薄膜の作成方法
US20130118400A1 (en) Method of forming epitaxial zinc oxide films
CN110517949A (zh) 一种利用SiO2作为衬底制备非极性a面GaN外延层的方法
Li et al. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays
KR101213133B1 (ko) ZnO에 격자 정합된 자외선용 단결정 ZnMgAlO 박막 및 그 제조방법
Badokas Remote epitaxy of GaN via graphene on GaN/sapphire templates by MOVPE
KR101195473B1 (ko) 질화갈륨 성장방법
RU135186U1 (ru) Полупроводниковое светоизлучающее устройство
JP4413558B2 (ja) ウルツ鉱型iii−v族窒化物薄膜結晶の製造法
JP2015192036A (ja) 窒化物半導体素子の製造方法