TWI583665B - 製造環己酮之方法 - Google Patents
製造環己酮之方法 Download PDFInfo
- Publication number
- TWI583665B TWI583665B TW104129781A TW104129781A TWI583665B TW I583665 B TWI583665 B TW I583665B TW 104129781 A TW104129781 A TW 104129781A TW 104129781 A TW104129781 A TW 104129781A TW I583665 B TWI583665 B TW I583665B
- Authority
- TW
- Taiwan
- Prior art keywords
- effluent
- phenol
- cyclohexylbenzene
- weight
- cyclohexanone
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/81—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
- C07C45/82—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/68—Purification; separation; Use of additives, e.g. for stabilisation
- C07C37/70—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
- C07C37/74—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/006—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenation of aromatic hydroxy compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本申請案主張2014年9月30日申請之美國臨時申請案序號第62/057,947號、及2015年1月16日申請之歐洲申請案第15151425.4號的優先權,該等之揭示內容係以其引用方式整體併入本文中。
本發明關於製造環己酮之方法。特別是,本發明關於藉由酚之氫化(phenol hydrogenation)來製造環己酮的方法。本發明可用於例如從環己苯氧化(cyclohexylbenzene oxidation)及氫過氧化環己苯裂解(cyclohexylbenzene hydroperoxide cleavage)來製造環己酮。
環己酮係化學工業中之重要材料,且廣泛用於例如製造酚樹脂、雙酚A、ε-己內醯胺、己二酸及塑化劑。製造環己酮之一種方法係藉由氫化(hydrogenating)
酚(phenol)進行。
當前,製造酚之常見途徑係Hock法(Hock process)。此係三步驟方法,其中第一步驟包括以丙烯將苯烷基化(alkylation)以產生異丙苯(cumene),接著將該異丙苯氧化成對應之氫過氧化物(hydroperoxide),然後將該氫過氧化物裂解(cleavage)以產生等莫耳量之酚及丙酮。然後可藉由氫化步驟將分離之酚產物轉化成環己酮。
從例如美國專利第6,037,513號已知,環己苯可藉由在包括MCM-22型之分子篩及至少一種選自鈀、釕、鎳、鈷及其混合物之氫化金屬(hydrogenation metal)的雙功能觸媒(bifunctional catalyst)存在下,使苯與氫接觸來製造。此參考文獻亦揭示所得之環己苯可氧化成對應氫過氧化物,然後將其裂解以產生酚及環己酮之裂解混合物,然後將其分離而獲得純且實質上等莫耳之酚及環己酮產物。此共同製造酚及環己酮之基於環己苯的方法在製造這兩種重要工業材料方面具有高效率。由於環己酮之商業價值高於酚,非常希望此方法中製造比酚更多的環己酮。雖然此可藉由隨後氫化該方法中所製造的純酚產物以將部分或全部的酚轉化成環己酮而達成,但非常希望有更經濟之方法及系統。
一種從上述基於環己苯之方法製造比酚更多的環己酮之方案係將從裂解混合物所獲得之含有酚及環己酮的混合物氫化以將至少一部分其中所含之酚轉化成環己
酮。然而,由於酚/環己酮混合物必然含有不可忽略量之環己苯,其可在氫化步驟中轉化成雙環己烷(bicyclohexane),及由於該酚/環己酮/環己苯混合物之氫化亦會導致形成環己醇,二者均造成產率損失,該方法並非沒有挑戰。
因此,需要經改良之從含有酚、環己酮及環己苯的混合物製造環己酮之方法系統。
本發明滿足此需求及其他需求。
本發明方法關於從包含環己酮(cyclohexanone)、酚(phenol)、及環己苯(cyclohexylbenzene)之第一混合物製造環己酮的方法。先將該第一混合物饋入主要分餾塔(primary fractionation column),其產生富含環己酮之上方流、包含環己酮、酚、環己苯及一些雙環己烷(大部分由下游氫化反應產生且再循環至該主要分餾塔)之混合物的中間流、及富含環己苯之下方流。然後將該中間流連同氫流一起饋入氫化反應器,其中酚與氫反應產生額外量之環己酮,及可能一些環己苯與氫反應產生雙環己烷,及可能一些環己酮與氫反應產生環己醇(cyclohexanol)。然後將包含環己酮、酚、環己醇、環己苯、及雙環己烷之氫化反應產物再循環回該主要蒸餾塔。
已發現藉由將從該氫化反應器產生之包含
酚、環己酮、環己苯及雙環己烷的氫化產物混合物在主要分餾塔上多個位置體入該主要分餾塔(將酚供應至氫化反應器),吾人可有效管理主要分餾塔中之雙環己烷、防止於其中形成獨立的(separate)雙環己烷相(bicyclohexane phase)、及減少該氫化反應器中之雙環己烷的產生。
在第一態樣中,本揭示係關於製造環己酮之方法,該方法包括:(I)將包含環己酮、酚、及環己苯之第一混合物饋入第一蒸餾塔;(II)從該第一蒸餾塔獲得:(i)包含比該第一混合物中還高之濃度的環己酮、酚、及環己苯的第一上方流出物;(ii)包含環己酮、比該第一混合物中還高之濃度的酚、環己苯、及可部分由下游氫化反應所產生之雙環己烷的第一中間流出物;及(iii)包含比該第一混合物中還高之濃度的環己苯的第一下方流出物;(III)將至少一部分之該第一中間流出物及氫饋入氫化反應區,其中酚與氫及環己苯與氫係在氫化觸媒存在且在氫化反應條件下反應,以獲得包含比該第一中間流出物中還高之濃度的環己酮、比該第一中間流出物中還低之濃度的酚、環己苯、及雙環己烷的氫化反應產物;(IV)從該氫化反應產物獲得包括第一液態產物流及第二液態產物流之多重流;(V)在不低於抽出該第一中間流出物之位置的位置將該第一液態產物流饋入該第一蒸餾塔;以及(VI)在低於抽出該第一中間流出物之位置的位置將該第二液態產物流饋入該第一蒸餾塔。
101‧‧‧方法/系統
103‧‧‧進料
105、105b‧‧‧第一上方流出物
107‧‧‧第一中間流出物
109‧‧‧第一底部流出物
111‧‧‧氫流
112‧‧‧氫氣進料
113、167、175、183‧‧‧觸媒床
115‧‧‧氫化反應產物流
117‧‧‧再循環氫
119、199‧‧‧液相
121‧‧‧第三上方流出物
123‧‧‧第二上方流出物
125‧‧‧第二下方流出物
127‧‧‧第三上方流出物
129、169、177、185‧‧‧流出物
S1、S3、S5、S7、S9、S11、S13‧‧‧貯藏處
T1‧‧‧主要分餾塔
D1、D2、D3‧‧‧分離桶
R1、R3、R5、R7‧‧‧氫化反應器
T2‧‧‧環己酮純化塔
T3‧‧‧重質物蒸餾塔
T4、T5、T6‧‧‧側汽提塔
117a‧‧‧富含氫之蒸汽流
117b、135、139、145、155、107a、107b、205‧‧‧流
118‧‧‧壓縮器
119a、119b‧‧‧再循環流
131、141、153、171、179、187、197、203‧‧‧熱交換器
133‧‧‧較冷流
147‧‧‧泵
151‧‧‧進料流
157‧‧‧管
159‧‧‧冷卻介質流
161‧‧‧溫流
102‧‧‧酚/環己酮/環己苯進料
105a、193‧‧‧上方流出物
195‧‧‧下方流出物
201、206‧‧‧汽相
209‧‧‧輕質物流
211‧‧‧環己酮流
圖1為顯示用於從包含酚、環己酮及環己苯之混合物製造環己酮的方法/系統的示意圖,包括主要分餾塔T1、氫化反應器R1、及環己酮純化塔T2。
圖2為顯示與圖1所示之方法/系統相似的本揭示之例示方法/系統的一部分之示意圖,但在該主要分餾塔T1與該氫化反應器R1之間及/或之內包含經修改的流體連通(fluid communication)。
圖3為顯示與圖1及2所示者相似之方法/系統的一部分之示意圖,但在主要分餾塔T1與該環己酮純化塔T2之間及/或之內包含經修改的流體連通及/或熱轉移配置(heat transfer arrangement)。
圖4為顯示與圖1至3所示者相似的本揭示之例示方法/系統的一部分之示意圖,但包含管式熱交換型氫化反應器(tubular heat exchanger-type hydrogenation reactor)R1,其中該氫化反應主要以汽相(vapor phase)發生。
圖5為顯示與圖1至4所示者相似的本揭示之例示方法/系統的一部分之示意圖,但包含三個串聯連接的氫化反應器R3、R5、及R7,其中該氫化反應主要以液相發生。
圖6為顯示與圖1至5所示者相似的本揭示之例示方法/系統的一部分之示意圖,但在該主要分餾塔
T1與該氫化反應器R1之間及/或之內包含經修改的流體連通。
圖7為顯示與圖1至6所示者相似之方法/系統的一部分之示意圖,但包含在主要分餾塔T1之前的側汽提塔(side stripper column)T4,係建構用於從饋入該主要分餾塔T1之酚/環己酮/環己苯進料移除至少一部分輕質組分(light component)以減少或避免在氫化反應器中之觸媒毒化(catalyst poisoning)。
圖8為顯示與圖1至7所示者相似的本揭示之例示方法/系統的一部分之示意圖,但包含在主要分餾塔T1之後的側汽提塔T5,係建構用於從饋入該氫化反應器之酚/環己酮/環己苯進料移除至少一部分輕質組分以減少或避免在氫化反應器中之觸媒毒化。
圖9為顯示與圖1至8所示者相似之方法/系統的一部分之示意圖,但包含在環己酮純化塔T2之後的側汽提塔T6,係建構用於減少來自最終環己酮產物之輕質組分的量。
現在茲說明本發明之各種具體實施態樣、方案及實例,包括本文所採用以供理解所主張之發明的較佳實施態樣及定義。雖然以下詳細描述提供特定較佳實施態樣,但熟習本領域之人士會瞭解該等實施態樣僅為例示,本發明可以其他方式實施。基於判定侵權之目的,本發明
之範圍係指所附申請專利範圍中任一或多項,包括其相當者以及與所載之要素或限制相當之要素或限制。任何稱「本發明」者係可指申請專利範圍所界定之發明中的一或多者,但不必定指全部。
在本揭示中,方法係描述為包括至少一個「步驟」。應暸解,各步驟為可在該方法中以連續或不連續方式進行一次或多次之動作或操作。除非有相反規定或內文清楚指示,否則方法中之各步驟可以所列順序依序進行、與一或多個其他步驟重疊或不重疊、或當情況允許時以任何其他順序進行。此外,關於相同或不同材料批次,一或多個或甚至所有步驟可同時進行。例如,在連續方法中,雖然方法中之第一步驟係針對剛饋入該方法起始的原材料進行,第二步驟可針對從處理在第一步驟中較早期饋入該方法的原材料所得的中間材料而同時進行。較佳地,該等步驟係以所述順序進行。
除非另外指示,否則本揭示中所有表示量(quantity)的數字在所有實例中應理解為由用語「約」修飾。亦應理解本說明書及申請專利範圍中所使用的精確數值構成特定實施態樣。已努力確保實例中之數據的精確性。然而,應暸解任何所測得之數據固有地含有某程度的因進行該測量所使用之技術及設備的限制所導致的誤差。
除非有相反規定或內文清楚指示,否則本文所使用之不定冠詞「一(a/an)」應意指「至少一個」。因而,除非有相反規定或內文清楚指示只使用一個分餾
塔,否則使用「一分餾塔」之實施態樣包括使用一、二或更多個分餾塔的實施態樣。同樣的,除非內容指定或指示為只有一特定C12+組分,否則「C12+組分」應解讀為包括一、二或更多C12+組分。
本文所使用之「重量%」意指重量百分比,「體積%」意指體積百分比,「莫耳%」意指莫耳百分比,「ppm」意指每百萬之份數,及「ppm wt」和「wppm」係互換地用以意指以重量為基準之每百萬之份數。除非另外指定,否則本文所使用之所有「ppm」均為重量計ppm。本文中所有濃度係以所談論之組成物的總量為基準來表達。因而,第一原料之各種組分的濃度係以該第一原料之總重為基準來表達。除非有相反指定或指示,否則本文中所表達之所有範圍應包括兩端點作為兩具體實施態樣。
在本揭示中,在諸如塔之一端(頂部或底部)之位置「附近」的位置意指在離諸如該塔之該端(頂部或底部)之位置距離a*Hc內的位置,其中Hc係該塔從底部至頂部的高度,且a1aa2,其中a1及a2可獨立地為:0、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20,只要a1<a2即可。例如,在塔一端附近之位置可具有離該端(頂部或底部)為至多D公尺的絕對距離,其中D可為5.0、4.5、4.0、3.5、3.0、2.5、2.0、1.5、1.0、0.8、0.5、0.4、0.3、
0.2、0.1、或0。
如本文使用之「上方流出物(upper effluent)」可為在容器(諸如分餾塔或反應器)之最頂部或側邊,其上方具有或不具另外的流出物。較佳地,上方流出物係在該塔頂部附近之位置抽出。較佳地,上方流出物係在至少一進料上方的位置抽出。本文所使用之「下方流出物(lower effluent)」係在低於該上方流出物的位置,其可在容器最底部或側邊,且若在側邊,其下方具有或不具另外的流出物。較佳地,下方流出物係在該塔底部附近之位置抽出。較佳地,下方流出物係在至少一進料下方的位置抽出。本文所使用之「中間流出物(middle effluent)」為在上方流出物與下方流出物之間的流出物。在蒸餾塔上之「相同水平(same level)」意指該塔之連續區段(continuous segment),其具有不超過該塔總高度的5%之總高度。
如本文所使用,在既定反應系統中之反應物Re1的轉化率(conversion)及既定產物Pro1的選擇率(selectivity)係計算如下。假定將總共n0莫耳之Re1裝入該反應系統,該方法之淨效應(net effect)造成n1莫耳之Re1轉化成Pro1,且離開該反應系統之反應混合物包含n2莫耳之殘留Re1,則獲得Re1之整體轉化率(Con(Re1))及對Pro1之選擇率(Sel(Pro1))如下:
,及
本文所使用之元素及其族之命名係根據國際純化學暨應用化學聯合會(International Union of Pure and Applied Chemistry)於1988年之後所使用的元素週期表。該週期表之實例係示於F.Albert Cotton等人所著之Advanced Inorganic Chemistry,第6版(John Wiley & Sons,Inc.,1999)的封面內頁。
本文所使用之術語「甲基環戊酮(methylcyclopentanone)」包括2-甲基環戊酮(CAS註冊號1120-72-5)及3-甲基環戊酮(CAS註冊號1757-42-2)兩種異構物、為任何比例(除非清楚指定僅指此二異構物中之一者或內文清楚指示該情況)。應注意,在本發明方法之各種步驟的條件下,此二異構物可歷經異構反應(isomerization reaction)以導致它們之間的比例係與就在裝入容器(諸如分餾塔)前的原材料中者不同。
本文所使用之通用術語「二環己苯(dicyclohexylbenzene)」(「DiCHB」)總體上包括1,2-二環己苯、1,3-二環己苯、及1,4-二環己苯(除非清楚指明係僅意指其中一或二者)。當術語環己苯係以單數形式使用時,其意指單取代之環己苯。如本文所使用之術語「C12」意指具有12個碳原子之化合物,而「C12+組分」意指具有至少12個碳原子之化合物。C12+組分之實例尤其包括環己苯、聯苯、雙環己烷、甲基環戊苯(methylcyclopentylbenzene)、1,2-聯苯基苯(1,2-
biphenylbenzene)、1,3-聯苯基苯、1,4-聯苯基苯、1,2,3-三苯基苯(1,2,3-triphenylbenzene)、1,2,4-三苯基苯、1,3,5-三苯基苯、及衍生自此等化合物之對應的含氧物(oxygenate)諸如醇、酮、酸、及酯。如本文所使用之術語「C18」意指具有18個碳原子之化合物,而術語「C18+組分」意指具有至少18個碳原子之化合物。C18+組分之實例尤其包括二環己苯(上述之「DiCHB」)、三環己苯(「TriCHB」,包括其所有異構物,包括1,2,3-三環己苯(1,2,3-tricyclohexylbenzene)、1,2,4-三環己苯、1,3,5-三環己苯、及彼等之二或更多者的任何比例之混合物)。如本文所使用之術語「C24」意指具有24個碳原子之化合物。
本文中所使用之術語「MCM-22型材料」(或「MCM-22型之材料」或「MCM-22型分子篩」或「MCM-22型沸石」)包括以下一或多者:- 從常見第一級結晶建構塊單位晶胞(first degree crystalline building block unit cell)製成之分子篩(molecular sieve),該單位晶胞具有MWW架構拓樸(framework topology)。單位晶胞係原子的空間排列,其於以三維空間鋪排時描繪該晶體結構。此晶體結構詳述於"Atlas of Zeolite Framework Types," Fifth Edition,2001,其完整內容係以引用的方式併入本文中;- 從常見第二級建構塊(second degree building block)製成之分子篩,是為此MWW架構拓樸單位晶胞
之二維鋪排(2-dimensional tiling),形成一單位晶胞厚度之單層,較希望為一c-單位(c-unit)晶胞厚度;- 從常見第二級建構塊製成之分子篩,是為一或大於一單位晶胞厚度之層,其中該大於一單位晶胞厚度之層係藉由堆疊、堆砌、或結合至少兩個一單位晶胞厚度之單層而製成。此第二級建構塊之堆疊可為規律方式、不規律方式、隨機方式或其任何組合;及- 藉由具有MWW架構拓樸之單位晶胞的任何規律或隨機二維或三維組合製成的分子篩。
MCM-22型分子篩包括所具有之X射線繞射圖案(X-ray diffraction pattern)包含晶格面距(d-spacing)最大值在12.4±0.25、6.9±0.15、3.57±0.07、及3.42±0.07埃之該等分子篩。用以表示該材料之特徵的X射線繞射數據係藉由諸如使用銅之K-α雙重線(K-alpha doublet)(作為入射輻射(incident radiation))以及配備有閃爍計數器(scintillation counter)與結合之電腦的繞射計(diffractometer)(作為收集系統(the collection system))之標準技術所獲得。
MCM-22型之材料包括MCM-22(描述於美國專利第4,954,325號)、PSH-3(描述於美國專利第4,439,409號)、SSZ-25(描述於美國專利第4,826,667號)、ERB-1(描述於歐洲專利第0293032號)、ITQ-1(描述於美國專利第6,077,498號)、ITQ-2(描述於國際專利公開第WO97/17290號)、MCM-36(描述於美國專
利第5,250,277號)、MCM-49(描述於美國專利第5,236,575號)、MCM-56(描述於美國專利第5,362,697號)、及其混合物。基於本揭示之目的,其他分子篩,諸如UZM-8(描述於美國專利第6,756,030號),可單獨或與MCM-22型分子篩一起使用。理想地,本揭示之觸媒中所使用的分子篩係選自(a)MCM-49;(b)MCM-56;及(c)MCM-49與MCM-56之同型,諸如ITQ-2。
本文所揭示之製造環己酮之方法及系統可有利地用於從包含酚、環己酮及環己苯的任何進料混合物製造環己酮。雖然該進料可源自任何方法或來源,但較佳係由包含氫過氧化環己苯(cyclohexylbenzene hydroperoxide)及環己苯之混合物(較佳係得自環己苯之需氣氧化(aerobic oxidation),該環己苯較佳係得自苯)的酸裂解(acid cleavage)獲得。該等較佳方法之步驟係於下文詳細描述。
供應至氧化步驟之環己苯可作為從苯製造酚及環己酮之整合方法的一部分而製造及/或再循環。在此整合方法中,苯最初係藉由任何傳統技術轉化成環己苯,包括苯之氧化偶合(oxidative coupling)以製造聯苯、然後氫化該聯苯。然而,實務上,環己苯較佳係藉由在加氫烷基化觸媒(hydroalkylation catalyst)存在下於加氫烷基化條件條件之下使苯與氫接觸來製造,因而苯經歷以下反
應-1而產生環己苯(CHB):
或者,環己苯可根據以下反應-2,藉由在固態酸觸媒(諸如MCM-22族中之分子篩)存在下以環己烯(cyclohexene)將苯直接烷基化(direct alkylation)來製造:
美國專利第6,730,625號及第7,579,511號、國際專利申請案WO2009/131769號、及WO2009/128984號揭示藉由在加氫烷基化觸媒存在下使苯與氫反應來製造環己苯之方法,該等者之內容係以全文引用方式併入本文中。
加氫烷基化反應(hydroalkylation reaction)中所使用之觸媒為包含分子篩(諸如上述之MCM-22型之一)及氫化金屬的雙功能觸媒。
任何已知之氫化金屬(hydrogenation metal)可用於該加氫烷基化觸媒,其具體、非限制性、適用實例包括Pd、Pt、Rh、Ru、Ir、Ni、Zn、Sn、Co,以Pd特別有利。理想地,存在該觸媒中之氫化金屬的量為該觸媒總重的0.05重量%至10.0重量%,諸如0.10重量%至5.0重量%。
除了分子篩及氫化金屬之外,該加氫烷基化觸媒可包含一或多種隨意的無機氧化物支撐材料(inorganic oxide support materials)及/或黏合劑。適用的無機氧化物支撐材料包括但不侷限於黏土、非金屬氧化物、及/或金屬氧化物。此等支撐材料之具體、非限制性實例包括:SiO2、Al2O3、ZrO2、Y2O3、Gd2O3、SnO、SnO2、及其混合物、組合及複合物。
來自加氫烷基化反應之流出物(加氫烷基化反應產物混合物)或來自烷基化反應之流出物(烷基化反應產物混合物)可含有一些多烷基化之苯(polyalkylated benzene),諸如二環己苯(DiCHB)、三環己苯(TriCHB)、甲基環戊苯(methylcyclopentylbenzene)、未反應之苯、環己烷、雙環己烷、聯苯、及其他污染物。因而,通常在反應之後,藉由蒸餾分離該加氫烷基化反應產物混合物以獲得含有苯、環己烷之C6餾分(C6 fraction),含有環己苯及甲基環戊苯之C12餾分(C12 fraction),及含有例如C18(諸如DiCHB)及C24(諸如TriCHB)之重質餾分(heavy fraction)。該未反應之苯可藉由蒸餾回收且再循環至該加氫烷基化或烷基化反應器。可將該環己烷(具有或不具一些殘留苯,及具有或不具共饋入之氫)送至脫氫反應器(dehydrogenation reactor),其中將其轉化成苯及氫,其係可再循環至該加氫烷基化/烷基化步驟。
視該重質餾分之量而定,可能會要(a)以額
外苯將C18(諸如DiCHB)及C24(諸如TriCHB)轉烷基化(transalkylate)或(b)將該C18及C24脫烷基化(dealkylate)以最大化所希望之單烷基化(monoalkylated)物種的製造。
以額外苯轉烷基化理想上係在轉烷基化反應器(transalkylation reactor)(其係與加氫烷基化反應器分開)中,於適當轉烷基化觸媒(諸如MCM-22型之分子篩、沸石β、MCM-68(見美國專利第6,049,018號)、沸石Y、沸石USY、及絲光沸石(mordenite))進行。該轉烷基化反應理想上係在至少部分液相條件下進行,該條件適當地包括:溫度在100℃至300℃之範圍、壓力在800kPa至3500kPa之範圍、每小時之重量空間速度(weight hourly space velocity)為1hr-1至10hr-1(於總進料)、及苯/二環己苯重量比在1:1至5:1之範圍。
脫烷基化(dealkylation)亦理想地在與加氫烷基化反應器分離之反應器(諸如反應性蒸餾單元(reactive distillation unit))中,在約150℃至約500℃之溫度及在15至500psig(200至3550kPa)之範圍的壓力,於酸觸媒(諸如鋁矽酸鹽(aluminosilicate)、鋁磷酸鹽(aluminophosphate)、矽鋁磷酸鹽(silicoaluminophosphate)、非晶形矽石-氧化鋁(amorphous silica-alumina)、酸性黏土(acidic clay)、混合金屬氧化物諸如WOx/ZrO2、磷酸、硫酸化氧化鋯(sulfated zirconia)及其混合物)進行。理想地,該
酸觸媒包括FAU、AEL、AFI及MWW族之至少一種鋁矽酸鹽、鋁磷酸鹽或矽鋁磷酸鹽。與轉烷基化不同,脫烷基化可在無添加之苯下進行,惟可能希望添加苯至該脫烷基化反應以減少焦炭形成。該例中,該脫烷基化反應之進料中的苯對多烷基化芳族化合物(poly-alkylated aromatic compound)的重量比可為0至約0.9,諸如為約0.01至約0.5。類似地,雖然脫烷基化反應可在無添加之氫下進行,但理想地將氫導入該脫烷基化反應器以助減少焦炭。適用之氫添加速率係使得該脫烷基化反應器之總進料中的氫對多烷基化芳族化合物的莫耳比可為約0.01至約10。
然後可將該包含苯、C12、及重質物之轉烷基化或脫烷基化產物混合物分離以獲得C6餾分(其主要包含苯且可再循環至該加氫烷基化/烷基化步驟);主要包含環己苯之C12餾分;及重質餾分,其可再次接受轉烷基化/脫烷基化反應或丟棄。
新製造及/或再循環之環己苯可在饋入氧化步驟之前經純化,以移除至少一部分之(尤其是)甲基環戊苯、烯烴(olefin)、酚、酸等。此純化作用可包括例如蒸餾、氫化、鹼洗(caustic wash)等。
以該進料的總重計,氧化步驟之環己苯進料可含有下列之一或多者:(i)濃度在1ppm至1重量%,諸如10ppm至8000ppm之範圍的雙環己烷;(ii)濃度在1ppm至1重量%,諸如10ppm至8000ppm之範圍的聯苯;(iii)濃度至高達5000ppm,諸如100ppm至
1000ppm的水;及(iv)濃度不超過1000ppm之烯烴或烯苯(alkene benzene),諸如苯基環己烯(phenylcyclohexene)。
環己苯之氧化
在氧化步驟中,根據以下反應3,將至少一部分該氧化進料中所含的環己苯轉化成環己基-1-苯基-1-氫過氧化物(cyclohexyl-1-phenyl-1-hydroperoxide)(所希望之氫過氧化物):
在例示方法中,該氧化步驟可藉由使含氧氣體(諸如空氣及空氣的各種衍生物)與包含環己苯之進料接觸來完成。例如,可將純O2、以惰性氣體(諸如N2)稀釋之O2、純空氣、或其他含O2之混合物的流泵送通過在氧化反應器中之該含環己苯之進料。
氧化可在不存在或存在觸媒之下進行。適用之氧化觸媒的實例包括具有以下式(FC-I)、(FC-II)、或(FC-III)之結構者:
(FC-I) (FC-II) (FC-III)其中:A表示環結構中隨意地包含氮、硫、或氧,且隨意地經烷基、烯基、鹵素、或者含N、含S、或含O之基團或其他基團取代的環;X表示氫、無氧自由基(oxygen free radical)、羥基、或鹵素;R1於各次出現時係相同或不同,獨立地表示鹵素、含N、含S、或含O之基團,或者具有1至20個碳原子、隨意地經烷基、烯基、鹵素、或者含N、含S、或含O之基團或其他基團取代的直鏈或支鏈非環狀烷基或環狀烷基;及m為0、1或2。
氧化步驟之特別適用觸媒的實例包括以下式(FC-IV)表示者:
其中:
R2於各次出現時係相同或不同,獨立地表示鹵素、含N、含S、或含O之基團,或者具有1至20個碳原子之隨意地經取代的直鏈或支鏈非環狀烷基或環狀烷基;且n為0、1、2、3、或4。
具有上式(FC-IV)之尤其適於氧化步驟的觸媒為NHPI(N-羥基酞醯亞胺(N-hydroxyphthalimide))。例如,氧化步驟之進料可包含該進料中環己苯之10至2500ppm(重量)的NHPI。
氧化觸媒之其他非限制性實例包括:4-胺基-N-羥基酞醯亞胺、3-胺基-N-羥基酞醯亞胺、四溴-N-羥基酞醯亞胺、四氯-N-羥基酞醯亞胺、N-羥基氯橋醯亞胺(N-hydroxyhetimide)、N-羥基雪松醯亞胺(N-hydroxyhimimide)、N-羥基苯偏三醯亞胺(N-hydroxytrimellitimide)、N-羥基苯-1,2,4-三甲醯亞胺(N-hydroxybenzene-1,2,4-tricarboximide)、N,N'-二羥基(焦蜜石二醯亞胺)(N,N'-dihydroxy(pyromellitic diimide))、N,N'-二羥基(二苯基酮-3,3',4,4'-四羧酸二醯亞胺)(N,N'-dihydroxy(benzophenone-3,3',4,4'-tetracarboxylic diimide))、N-羥基順丁烯二醯亞胺(N-hydroxymaleimide)、吡啶-2,3-二甲醯亞胺(pyridine-2,3-dicarboximide)、N-羥基琥珀醯亞胺(N-hydroxysuccinimide)、N-羥基(酒石醯亞胺)(N-hydroxy(tartaric imide))、N-羥基-5-降莰烯-2,3-二甲醯亞胺(N-hydroxy-5-norbornene-2,3-dicarboximide)、
外-N-羥基-7-氧雜雙環[2.2.1]庚-5-烯-2,3-二甲醯亞胺(exo-N-hydroxy-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide)、N-羥基-順-環己烷-1,2-二甲醯亞胺(N-hydroxy-cis-cyclohexane-1,2-dicarboximide)、N-羥基-順-4-環己烯-1,2二甲醯亞胺(N-hydroxy-cis-4-cyclohexene-1,2 dicarboximide)、N-羥基萘二甲醯亞胺鈉鹽(N-hydroxynaphthalimide sodium salt)、N-羥基-鄰-苯二磺醯亞胺(N-hydroxy-o-benzenedisulphonimide)、及N,N',N"-三羥基異三聚氰酸(N,N',N"-trihydroxyisocyanuric acid)。
該氧化觸媒可單獨使用或與自由基引發劑合併使用,且進一步可作為液相、均相(homogeneous)觸媒使用,或可支撐於固態載體以提供異相觸媒(heterogeneous catalyst)。理想地,N-羥基經取代之環狀醯亞胺(N-hydroxy substituted cyclic imide)或N,N',N"-三羥基異三聚氰酸係以該環己苯進料的0.0001重量%至15重量%、諸如0.001重量%至5重量%之量使用。
該氧化步驟之適當反應條件的非限制性實例包括在70℃至200℃、諸如90℃至130℃之範圍的溫度,及在50kPa至10,000kPa之範圍的壓力。可添加鹼性緩衝劑以與氧化期間可能形成的酸性副產物反應。此外,可將水相導入該氧化反應器中。該反應可以分批(batch)或連續流方式進行。
用於該氧化步驟之反應器可為能藉由氧化劑(諸如分子氧)氧化環己苯的任何類型之反應器。適用之氧化反應器的特別有利實例為能容納某一體積之反應介質且使含O2之氣體流(諸如空氣)鼓泡通過該介質的泡板塔式反應器(bubble column reactor)。例如,該氧化反應器可包含具有供含氧氣體流用之分配器入口(distributor inlet)的簡單、大型開口之容器。該氧化反應器可具有抽取一部分反應介質且將其泵送通過適當冷卻裝置並將該經冷卻部分送返該反應器的工具,從而管理該反應中所產生的熱。或者,提供間接冷卻(例如藉由冷卻水)之冷卻旋管(cooling coil)可在該氧化反應器內操作以移除至少一部分產生的熱。或者,該氧化反應器可包含複數個串聯及/或並聯連接之反應器,各反應器係以經選擇之能加強具有不同組成之反應介質中的氧化反應之相同或不同條件操作。該氧化反應器可以熟習本領域之人士熟知的分批(batch)、半分批(semi-batch)、或連續流方式操作。
理想地,離開該氧化反應器之氧化反應產物混合物含有濃度在以該氧化反應產物混合物之總重計為Chp1重量%至Chp2重量%的範圍之環己基-1-苯基-1-氫過氧化物(cyclohexyl-1-phenyl-1-hydroperoxide),其中Chp1及Chp2可獨立地為:5、10、15、20、25、30、
35、40、45、50、55、60、65、70、75、80,只要Chp1<Chp2即可。較佳地,該氧化反應產物混合物中之環己基-1-苯基-1-氫過氧化物的濃度為該氧化反應產物混合物之至少20重量%。該氧化反應產物混合物可進一步包含濃度在以該氧化反應產物混合物之總重計為Cchb1重量%至Cchb2重量%的範圍之殘留環己苯,其中Cchb1及Cchb2可獨立地為:20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95,只要Cchb1<Cchb2即可。較佳地,該氧化反應產物混合物中之環己苯的濃度為該氧化反應產物混合物之至多65重量%。
此外,該氧化反應產物混合物可含有一或多種非環己基-1-苯基-1-氫過氧化物的氫過氧化物產生作為環己苯之氧化反應之副產物,或作為非環己苯之可氧化組分的氧化反應產物(其可包含在供應至該氧化步驟之進料中),諸如,環己基-2-苯基-1-氫過氧化物(cyclohexyl-2-phenyl-1-hydroperoxide)、環己基-3-苯基-1-氫過氧化物(cyclohexyl-3-phenyl-1-hydroperoxide)、及甲基環戊苯氫過氧化物(methylcyclopentylbenzene hydroperoxide)。該等不想要的氫過氧化物係以總濃度Cu1重量%至Cu2重量%存在,其中Cu1及Cu2可獨立地為:0.1、0.2、0.3、0.5、0.7、0.9、1.0、1.2、1.4、1.5、1.6、1.8、2.0、2.5、3.0、3.5、4.0、4.5、5.0、6.0、7.0、8.0,只要Cu1<Cu2即可。因彼等在裂解反應中不會以所希望的轉化率及/或選擇率轉化成酚及環己酮,造
成整體產率損失,故彼等是不想要的。
如前述,該氧化反應產物混合物亦可含有酚作為該氧化反應之另外的副產物。離開氧化反應器之氧化反應產物混合物中的酚之濃度(CPh)可在CPh1 ppm至CPh2 ppm之範圍,其中CPh1及CPh2可獨立地為:50、60、70、80、90、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1500、2000,只要CPh1<CPh2即可。
該氧化反應產物混合物可含有水。離開氧化反應器之氧化反應產物混合物中的水濃度,以該氧化反應產物混合物之總重計為可在C1a ppm至C1b ppm之範圍,其中C1a及C1b可獨立地為:30、40、50、60、70、80、90、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1500、2000、2500、3000、3500、4000、4500、或5000,只要C1a<C1b即可。
該氧化反應產物混合物亦可含有部分或全部之供應至該氧化步驟的任何觸媒,諸如NHPI。例如,該氧化反應產物混合物可含有10至2500ppm之NHPI,諸如100至1500ppm(重量計)之NHPI。
在本揭示之方法中,於供應至裂解步驟之前,可分離至少一部分該氧化反應產物混合物。分離方法
可包括對至少一部分該氧化反應產物混合物進行真空蒸發(vacuum evaporation)以回收:(i)含有大部分該環己基-1-苯基-1-氫過氧化物及該氧化反應產物混合物部分之其他較高沸點組分(諸如其他氫過氧化物及NHPI觸媒(若其存在於該氧化反應產物混合物部分中))的第一餾分;及(ii)包含大部分該環己苯、酚(若有的話)、及該氧化反應產物混合物部分之其他較低沸點組分的第二餾分。
理想地,在該第一餾分中,以該第一餾分的總重計,環己基-1-苯基-1-氫過氧化物之濃度可在Cc1重量%至Cc2重量%的範圍,且環己苯之濃度可在Cd1重量%至Cd2重量%的範圍,其中Cc1及Cc2可獨立地為:40、45、50、55、60、65、70、75、80、85、90,只要Cc1<Cc2即可;且Cd1及Cd2可獨立地為:10、15、20、25、30、35、40、45、50,只要Cd1<Cd2即可。
有利地,在該第二餾分中,以該第二餾分的總重計,環己基-1-苯基-1-氫過氧化物之濃度可在Cc3重量%至Cc4重量%的範圍,而環己苯之濃度可在Cd3重量%至Cd4重量%的範圍,其中Cc3及Cc4可獨立地為:0.01、0.05、0.10、0.20、0.40、0.50、0.60、0.80、1.00、1.50、2.00、2.50、3.00、3.50、4.00、4.50、5.00,只要Cc3<Cc4即可;且Cd3及Cd4可獨立地為:90、92、94、95、96、97、98、或甚至99,只要Cd3<Cd4即可。
由於氫過氧化環己苯(cyclohexylbenzene hydroperoxide)易於在高溫(例如高於150℃)分解,用以將該氧化反應產物混合物分離成第一及第二餾分之真空蒸發步驟係在相對低溫,例如不高於130℃、或不高於120℃、或甚至不高於110℃進行。環己苯具有高沸點(於101kPa為239℃)。因而,在可接受之環己苯移除溫度,環己苯往往具有非常低蒸汽壓。因此,較佳地,為了從該氧化反應產物混合物有效移除顯著量之環己苯,該氧化反應產物混合物係接受非常低絕對壓力,例如在Pc1 kPa至Pc2 kPa之範圍,其中Pc1及Pc2可獨立地為:0.05、0.10、0.15、0.20、0.25、0.26、0.30、0.35、0.40、0.45、0.50、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95、1.00、1.50、2.00、2.50、3.00,只要Pc1<Pc2即可。特別有利地,Pc1=0.25,且Pc2=1.5。
在將該氧化反應產物混合物分離成第一及第二餾分之後,可將部分或全部第一餾分直接循線送至該裂解步驟。所有或部分該第一餾分可在通至該裂解步驟之前經冷卻以使未反應之醯亞胺氧化觸媒結晶。然後可藉由過濾或藉由從用以進行結晶之熱交換器表面刮取(scraping)來回收醯亞胺晶體以供再使用。
從該氧化反應產物混合物製造之第二餾分可在該第二餾分中之部分或全部環己苯再循環至氫化之前經處理以降低其中的酚含量。
第二餾分之處理可包括使至少一部分之該第
二餾分與包含鹼的水性組成物在特定條件下接觸以使該鹼與該酚反應,而產生留在該水性組成物中之酚鹽(phenoate)物種。該第二餾分之處理中較佳係使用強鹼,即,具有低於3,諸如低於2、1、0或-1之pKb值的鹼。特別適用之鹼包括鹼金屬的氫氧化物(例如LiOH、NaOH、KOH、RbOH)、鹼土金屬之氫氧化物(Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2)、及其一或多者的混合物。酚可與該等氫氧化物反應以形成酚鹽,該酚鹽通常比酚本身具有更高之水中溶解度。特別希望的鹼為NaOH,其具有成本效益且能與該第二餾分中之酚反應以產生酚鈉(sodium phenoate)。應注意的是,當使用氫氧化物作為鹼時,由於存在於大氣中之CO2與該氫氧化物反應,該水性組成物可包含各種不同濃度的一或多種對應之碳酸鹽、碳酸氫鹽、或碳酸鹽-氫氧化物複合物。理想地,該包含鹼的水性組成物具有至少8、較佳為至少10之pH。
使該第二餾分與該包含鹼之水性組成物接觸係產生含有至少部分來自該第二餾分的該酚及/或其衍生物之水相,以及含有環己苯及具有與該第二餾分相比濃度降低之酚的有機相。理想地,該有機相中之酚濃度以該有機相的總重計係在CPh7 ppm至CPh8 ppm之範圍,其中CPh7及CPh8可獨立地為:0、10、20、30、40、50、100、150、200、250,只要CPh7<CPh8即可。
然後可將該有機相與該水相分離,例如在重
力下自發性地分離,然後可直接或更佳地在水清洗以移除該有機相中所含的鹼之後將其再循環至該氧化步驟作為第三餾分。
在該裂解反應中,根據以下所希望的反應-4,至少一部分該環己基-1-苯基-1-氫過氧化物在酸觸媒存在下以高選擇率分解成環己酮及酚:
該裂解產物混合物可包含酸觸媒、酚、環己酮、環己苯、及污染物(contaminant)。
該酸觸媒可為至少部分可溶於該裂解反應混合物中,在至少185℃之溫度安定,且具有比環己苯低之揮發性(volatility)(較高之標準沸點(normal boiling point))。
酸觸媒較佳包括但不侷限於布忍斯特酸(Bronsted acid)、路易斯酸(Lewis acid)、磺酸、過氯酸、磷酸、鹽酸、對甲苯磺酸、氯化鋁、發煙硫酸(oleum)、三氧化硫、氯化鐵、三氟化硼、二氧化硫及三氧化硫。硫酸為較佳酸觸媒。
該裂解反應較佳係在包括在20℃至200℃、
或40℃至120℃之範圍的溫度,及在1至370psig(至少7kPa表壓(gauge)以及不超過2,550kPa表壓)、或14.5psig至145psig(100kPa表壓至1,000kPa表壓)之範圍的壓力之裂解條件下發生,以使裂解反應混合物在裂解反應期間完全或主要呈液相。
該裂解反應混合物可含有濃度在以該裂解反應混合物之總重計為Cac1 ppm至Cac2 ppm(重量計)的範圍之酸觸媒,其中Cac1及Cac2可獨立地為:10、20、30、40、50、60、80、100、150、200、250、300、350、400、450、500、600、700、800、900、1000、1500、2000、2500、3000、3500、4000、4500、或甚至5000,只要Cac1<Cac2即可。較佳地,Cac1為50,且Cac2為200。
在該裂解反應中之氫過氧化物(諸如環己基-1-苯基-1-氫過氧化物,及慣常上為所有環己基-1-苯基-1-氫過氧化物及其他氫過氧化物)的轉化率會非常高,例如至少AA重量%,其中AA可為90.0、91.0、92.0、93.0、94.0、95.0、96.0、97.0、98.0、99.0、99.5、99.9、或甚至100,該百分比係以給定之氫過氧化物或饋入該裂解步驟的所有氫過氧化物之重量計。此較為理想的原因係任何氫過氧化物(甚至環己基-1-苯基-1-氫過氧化物)在下游程序中均會變成污染物。
理想地,每一莫耳之環己基-1-苯基-1-氫過氧化物產生一莫耳的酚及一莫耳的環己酮。然而,因副反應
之故,裂解反應成酚的選擇率可在Sph1%至Sph2%之範圍,而成為環己酮的選擇率可在Sch1%至Sch2%之範圍,其中Sph1、Sph2、Sch1、及Sch2可獨立地為:85、87、88、89、90、91、92、93、94、95、96、97、98、99、或甚至99.5,只要Sph1<Sph2、及Sch1<Sch2即可。
除了包含氫過氧化環己苯、環己苯及直接源自該氧化反應產物混合物之其他組分的裂解進料之外,該裂解反應混合物可進一步包含其他添加材料,諸如裂解觸媒、溶劑、及一或多種該裂解反應的產物,諸如從該裂解產物混合物或下游分離步驟再循環之酚及環己酮。因而,在該裂解反應器內之裂解反應混合物以該裂解反應混合物的總重計可包含:(i)酚,濃度在CPh9重量%至CPh10重量%之範圍,其中CPh9及CPh10可獨立地為:20、25、30、35、40、45、50、55、60、65、70、75、或80,只要CPh9<CPh10即可;(ii)環己酮,濃度在Cch1重量%至Cch2重量%之範圍,其中Cch1及Cch2可獨立地為:20、25、30、35、40、45、50、55、60、65、70、75、或80,只要Cch1<Cch2即可;及(iii)環己苯,濃度在Cchb7重量%至Cchb8重量%之範圍,其中Cchb7及Cchb8可獨立地為:5、8、9、10、12、14、15、18、20、22、24、25、26、28、30、35、40、45、50、55、60、65、70,只要Cchb7<Cchb8即可。
用以進行裂解反應之反應器(即,裂解反應器)可為熟習本領域之人士已知之任何類型反應器。例
如,該裂解反應器可為以接近連續攪拌槽反應器模式(near-continuous stirred tank reactor mode)操作之單一、大開口容器,或以接近塞流反應器模式(near-plug flow reactor mode)操作之單一、開放長度(open length)管(pipe)。該裂解反應器可包含複數個串聯之反應器,各反應器進行該轉化反應的一部分,隨意地以經選擇能加強相關轉化範圍之裂解反應的不同模式及不同條件操作。該裂解反應器可為催化蒸餾單元(catalytic distillation unit)。
該裂解反應器可操作以將一部分內容物輸送通過冷卻裝置,且將經冷卻部分送返該裂解反應器,從而管理該裂解反應的放熱度(exothermicity)。或者,該反應器可以絕熱方式(adiabatically)操作。在該(等)裂解反應器內操作之冷卻旋管可用於至少部分所產生的熱。
離開裂解反應器之裂解產物混合物,以該裂解產物混合物的總重計可包含:(i)酚,濃度在CPh11重量%至CPh12重量%之範圍,其中CPh11及CPh12可獨立地為:20、25、30、35、40、45、50、55、60、65、70、75、或80,只要Ch11<CPh12即可;(ii)環己酮,濃度在Cch3重量%至Cch4重量%之範圍,其中Cch3及Cch4可獨立地為:20、25、30、35、40、45、50、55、60、65、70、75、或80,只要Cch3<Cch4即可;及(iii)環己苯,濃度在Cchb9重量%至Cchb10重量%之範圍,其中Cchb9及Cchb10可獨立地為:5、8、9、10、
12、14、15、18、20、22、24、25、26、28、30、35、40、45、50、55、60、65、70,只要Cchb9<Cchb10即可。
如前文所論述,該裂解產物混合物可包含一或多種污染物。在本文所揭示之實施態樣中,該等方法進一步包括使至少一部分之污染物與酸性材料接觸,以將至少一部分之該污染物轉化成經轉化的污染物,從而產生經改質之產物混合物。污染物處理方法的詳細描述可參見例如國際專利公開號WO 2012/036822A1,其相關內容係以全文引用方式併入本文中。
至少一部分之該裂解產物混合物可接受中和反應。當使用液態酸(諸如硫酸)作為裂解觸媒時,非常希望在對該混合物進行分離之前以鹼(諸如有機胺(例如甲胺,乙胺,二胺類諸如亞甲基二胺(methylenediamine)、丙二胺(propylene diamine)、丁二胺(butylene diamine)、戊二胺(pentylene diamine)、己二胺(hexylene diamine)等))中和該裂解反應產物,以防止設備被該酸腐蝕。理想地,如此形成之胺硫酸鹽(amine sulfate salt)具有高於環己苯的沸點。
然後可藉由諸如蒸餾等方法將一部分之經中和的裂解反應產物分離。在一實例中,在該裂解反應器之
後的第一蒸餾塔中,於該塔底部獲得包含胺鹽的重質餾分(heavy fraction),在中間區段獲得包含環己苯之側餾分(side fraction),及獲得包含環己酮、酚、甲基環戊酮、及水的上餾分(upper fraction)。
然後經分離之環己苯餾分可在遞送至該氧化步驟之前經處理及/或純化。由於從該裂解產物混合物分離的環己苯可含有酚及/或烯烴(諸如環己苯類),該材料可接受以用於氧化產物混合物之第二餾分的包含鹼(如上所述)之水性組成物處理及/或氫化步驟,如例如國際專利申請案WO 2011/100013A1號所揭示,該案完整內容係以引用方式併入本文中。
在一實例中,包含酚、環己酮、及水之餾分可藉由簡單蒸餾而進一步分離,以獲得主要包含環己酮及甲基環戊酮之上餾分以及主要包含酚及一些環己酮的下方流(lower stream)。在不使用萃取溶劑的情況下無法使環己酮與酚完全分離,此係因這兩者間形成的共沸物(azeotrope)之故。因而,該上餾分可在獨立的塔中進一步蒸餾以在該底部附近獲得純環己酮產物,及在頂部附近獲得主要包含甲基環戊酮之雜質餾分,若有需要,該雜質餾分可進一步純化,然後可用作有用的工業材料。下餾分(lower fraction)可藉由使用萃取溶劑(例如二醇類,諸如乙二醇、丙二醇、二乙二醇、三乙二醇等)之萃取蒸餾(extractive distillation)步驟進一步分離,其描述於例如同樣讓受(co-assign)、同樣在申請中之專利申請案WO
2013/165656A1及WO 2013/165659,該等者之內容係以全文引用方式併入本文中。可獲得包含環己酮之上餾分及包含酚和萃取溶劑之下餾分。在後續蒸餾塔中,可接著分離該下餾分以獲得包含酚產物之上餾分及包含該萃取溶劑之下餾分。
可分離至少一部分(較佳為全部)經中和的裂解流出物(裂解反應產物)且可根據本發明將其含酚餾分氫化以將一部分之該酚轉化成環己酮。分離及氫化方法及/或系統之實例係於附圖中圖示且於下文中詳細說明。
應暸解該等示意、非按比例之圖式中所顯示的方法及/或系統僅供說明一般材料及/或熱流以及一般操作原理的目的。為了簡化圖解及說明,一些常規組件(諸如泵、閥、再沸器(reboiler)、壓力調節器、熱交換器、再循環迴路、冷凝器、分離桶、感應器、整流器、填料、分配器、攪拌器、馬達等)未顯示於圖式中或本文中未描述。按照本文之教示,具有本領域普通技術之人士可於適當時添加該等組件。
圖1為顯示本揭示之用於從包含酚、環己酮、及環己苯的混合物製造環己酮之例示方法/系統101的示意圖,其包括主要分餾塔T1(即,第一蒸餾塔)、氫化反應器R1、及環己酮純化塔T2(即,第二蒸餾塔)。將來自貯藏處S1之包含酚、環己酮及環己苯的進
料103饋入該主要分餾塔T1。
進料103可由任何方法製造。較佳方法係藉由在酸觸媒(諸如H2SO4)及如上述之環己苯存在下裂解氫過氧化環己苯。進料103可進一步包含除環己苯以外之雜質,諸如:輕質組分(light component),諸如水、甲基環戊酮、戊醛、己醛、苯甲酸(benzylic acid)等;及重質組分,諸如甲基環戊苯、雙環己烷、藉由將胺注入裂解混合物以中和所使用之液態酸觸媒而產生的有機胺(諸如1,6-己二胺(1,6-hexamethylenediame)、2-甲基-1,5-戊二胺(2-methyl-1,5-pentamethylenediamine)、乙二胺(ethylenediamine)、丙二胺(propylenediamine)、二伸乙三胺(diethylenetriamine)等)之硫酸鹽。進料103可進一步包含烯烴,諸如苯基環己烯異構物(phenylcyclohexene isomer)、羥基環己酮(hydroxylcyclohexanone)、環己烯酮(cyclohexenone)等。氫過氧化環己苯可藉由在觸媒(諸如上述NHPI)存在下之環己苯的需氣氧化(aerobic oxidation)來製造。環己苯可藉由在如上述之氫化/烷基化雙功能觸媒(bi-functional catalyst)存在下的苯之加氫烷基化製造。
因而,進料103(第一混合物)以其總重計可包含:- 環己酮,濃度Cxnone(FM1)在x11重量%至x12重量%之範圍,其中x11及x12可獨立地為:10、15、20、25、30、35、40、45、50、55、60、65、70、
75、80、82、84、85、86、88、或90,只要x11<x12即可;較佳地,20重量%Cxnone(FM1)30重量%;- 酚,濃度Cphol(FM1)在x21重量%至x22重量%之範圍,其中x21及x22可獨立地為:10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、82、84、85、86、88、或90,只要x21<x22即可;較佳地,20重量%Cphol(FM1)30重量%;較佳地,0.3Cxnone(FM1)/Cphol(FM1)2.0;更佳地,0.5Cxnone(FM1)/Cphol(FM1)1.5;甚至更佳地,0.8Cxnone(FM1)/Cphol(FM1)1.2;- 環己苯,濃度Cchb(FM1)在x31重量%至x32重量%之範圍,其中x31及x32可獨立地為:0.001、0.005、0.01、0.05、0.1、0.5、1、2、3、4、5、6、7、8、9、10、12、14、15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、40、42、44、45、46、48、50、52、54、55、56、58、60、62、64、65、66、68、70、72、74、75、76、77、78、79、或80,只要x31<x32即可;較佳地,30重量%Cchb(FM1)60重量%;及- 雙環己烷,濃度Cbch(FM1)在以該第一混合物的總重計為x41重量%至x42重量%之範圍,其中x41及x42可獨立地為:0、0.00001、0.0001、0.0005、0.001、0.005、0.01、0.05、0.1、0.5、1、2、3、4、5、6、7、8、9、10、12、14、15、16、18、20、22、24、25、26、
28、或30,只要x41<x42即可;較佳地,0.001重量%Cbch(FM1)1重量%。
從該主要分餾塔T1,在該塔T1頂部附近產生包含環己酮及輕質組分(諸如水、甲基環戊酮等)的第一上方流出物105。流出物105以其總重計可包含:- 濃度為Cxnone(UE1)之環己酮,其中z11重量%Cxnone(UE1)z12重量%,z11及z12可獨立地為:60、65、70、75、80、85、90、91、92、93、94、95、96、97、98、99、99.5、或99.9,只要z11<z12即可;較佳地,75Cxnone(UE1)95;- 濃度為Cphol(UE1)之酚,其中z21Cphol(UE1)z22,z21及z22可獨立地為:0、0.00001、0.00005、0.0001、0.0005、0.001、0.005、0.01、0.05、0.1、0.5、或1,只要z21<z22即可;- 濃度為Cchb(UE1)之環己苯,其中y31重量%Cchb(UE1)y32重量%,其中y31及y32可獨立地為:0、0.00001、0.00005、0.0001、0.0005、0.001、0.005、0.01、0.05、0.1、0.5、或1,只要y31<y32即可;- 濃度為Cbch(UE1)之雙環己烷,其中y41重量%Cbch(UE1)y42重量%,y41及y42可獨立地為:0、0.00001、0.00005、0.0001、0.0005、0.001、0.005、0.01、0.05、0.1、0.5、或1,只要y41<y42即可;及- 以該第一上方流出物之總重計濃度為Cxnol
(UE1)之環己醇,其中x51重量%Cxnol(UE1)x52重量%,其中x51及x52可獨立地為:0.001、0.005、0.01、0.05、0.1、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、或10,只要x51<x52即可;較佳地,0.1重量%Cxnol(UE1)5.0重量%。
然後將該第一上方流出物105送至環己酮純化塔T2,從該環己酮純化塔T2在塔T2頂部附近的位置產生包含輕質組分(諸如水、甲基環戊酮等)的第三上方流出物121,然後遞送至貯藏處S5。產生包含實質上純環己酮的第二上方流出物123並將之送至貯藏處S7。在塔T2底部附近,產生第二下方流出物125並將之遞送至貯藏處S9。該第二下方流出物可為例如包含環己酮及環己醇二者的KA油。因而,該第二上方流出物123可包含以其總重計濃度為Cxnone(UE2)之環己酮,其中Cxnone(UE2)y11重量%,y11可為95、95.5、96、96.5、97、97.5、98、98.5、99、99.5、99.8、或99.9。該第二下方流出物125可包含:以其總重計,濃度為Cxnol(LE2)之環己醇,y51重量%Cxnol(LE2)y52重量%,y51及y52可獨立地為:10、12、14、15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、40、42、44、45、46、48、50、52、54、55、56、58、60、62、64、65、66、68、70、72、74、75、76、78、或80,只要y51<y52即可;及濃度為Cxnone(LE2)之環
己酮,e11重量%Cxnol(LE2)e12重量%,e11及e12可獨立地為:10、12、14、15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、40、42、44、45、46、48、50、52、54、55、56、58、60、62、64、65、66、68、70、72、74、75、76、78、或80,只要e11<e12即可。
從該主要分餾塔T1產生之第一中間流出物107包含比進料103中還高且比第一上方流出物105中還高之濃度的酚、比進料103與第一上方流出物105二者中還低之濃度的環己酮、較佳係比進料103中還低且比第一上方流出物105中還高之濃度的環己苯、及一或多種其他雜質(諸如雙環己烷及環己烯酮(cyclohexenone))。因而,流出物107以其總重計可包含:- 濃度為Cxnone(ME1)之環己酮,其中a11重量%Cxnone(ME1)a12重量%,a11及a12可獨立地為:1、2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、30、35、40、45、或50,只要a11<a12即可;- 濃度以該第一中間流出物之總重計為Cphol(ME1)之酚,其中a21重量%Cphol(ME1)a22重量%,其中a21及a22可獨立地為:10、15、20、25、30、35、40、45、50、55、60、65、70、75、80,只要a21<a22即可;較佳地,1.0Cphol(ME1)/Cxnone(ME1)3.0;更佳地,2.0Cphol(ME1)/Cxnone
(ME1)3.0,接近酚/環己酮共沸物中之比例;- 濃度為Cchb(ME1)之環己苯,其中a31重量%Cchb(ME1)a32重量%,a31及a32可獨立地為:0.001、0.005、0.01、0.05、0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、或30,只要a31<a32即可;- 濃度為Cbch(ME1)之雙環己烷,其中a41重量%Cbch(ME1)a42重量%,a41及a42可獨立地為:0.001、0.005、0.01、0.05、0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、或30,只要a41<a42即可;及- 濃度為Cxnol(ME1)之環己醇,其中a51重量%Cbch(ME1)a52重量%,a51及a52可獨立地為:0.01、0.02、0.04、0.05、0.06、0.08、0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、或30,只要a51<a52即可;較佳地,0.01重量%Cxnol(ME1)5重量%。
將流出物107遞送至氫化反應器R1,其中其係與包含來自貯藏處S3之新補充的氫流111及再循環氫117的氫氣進料112混合。進料107中所含的酚與氫在反應器R1內於觸媒床113存在下彼此反應而產生環己酮。一些該反應器R1內部的環己酮亦在觸媒床113存在下與
氫反應而產生環己醇。在圖1所示之例示方法中,將過剩的氫饋入反應器R1。預期可將與流出物107分開且獨立的第二含酚流(未圖示)饋入該氫化反應器R1。此額外進料可有利地含有濃度以該第二含酚流之總重計為Cphol(FP)之酚,d21重量%Cphol(FP)d22重量%,其中d21及d22可獨立地為:50、55、60、65、70、75、80、85、90、91、92、93、94、95、96、97、98、99、或100,只要d21<d22即可。較佳地,該第二含酚流為藉由任何方法(諸如慣用異丙苯法(cumene process)、焦煤法(coal process)等)製造之實質上純的酚。
遞送至該氫化反應器R1之總進料(包括流107及隨意的額外流)若在饋入R1之前摻合在一起,其可具有含有濃度為Cphol(A)之酚、濃度為Cxnone(A)之環己酮、濃度為Cchb(A)之環己苯、及濃度為Cbch(A)之雙環己烷的整體組成,其中該等濃度以該氫化進料的總重計係在下列範圍:a1重量%Cxnone(A)a2重量%,其中a1及a2可獨立地為:0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、40、42、44、45、46、48、50,只要a1<a2即可;b1重量%Cphol(A)b2重量%,其中b1及b2可獨立地為:10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、82、84、85、86、88、90、91、
92、93、94、95、96、97、98、或99,只要a21<a22即可;c1重量%Cchb(A)c2重量%,其中c1及c2可獨立地為:0.001、0.005、0.01、0.05、0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、或30,只要c1<c2即可;較佳地,1重量%Cchb(A)20重量%;及d1重量%Cbch(A)d2重量%,其中d1及d2可獨立地為:0.001、0.005、0.01、0.05、0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、或30,只要d1<d2即可;較佳地,1重量%Cbch(A)20重量%。
在氫化反應區中,可發生以下反應,造成環己酮、環己醇、及雙環己烷之濃度提高,以及酚、環己烯酮及環己苯之濃度降低:
環己酮可在氫化反應器R1中氫化以製造環己醇。由於該反應之淨效應係使環己酮整體增加,故該反應不包括在前述段落中。儘管如此,環己酮會與酚競爭氫,其應減少或抑制。
饋入該反應器R1之氫(包括新補充的氫及再循環的氫)之總量及饋入該氫化反應區之酚的總量較佳係展現出氫對酚之莫耳比為R(H2/phol),其中R1R(H2/phol)R2,R1及R2可獨立地為:1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、或10、只要R1<R2即可。雖然較高R(H2/phol)比可造成較高整體酚轉化率,但其易於亦造成較高之環己酮轉化率、較高之酚至環己醇的選擇率、及較高之環己苯轉化率。因此,已發現通常希望在氫化反應器R1中,反應條件(包括但不侷限於溫度、壓力、及R(H2/phol)比,以及觸媒係經選擇以使酚的整體轉化率不會太高。
氫化反應係在氫化觸媒存在下發生。氫化觸媒可包含支撐在支撐材料上之進行氫化功能的氫化金屬。該氫化金屬可為例如,Fe、Co、Ni、Ru、Rh、Pd、Ag、Re、Os、Ir、及Pt、及其一或多者的混合物及組合。該支撐材料可有利地為無機材料,諸如氧化物、玻璃、陶瓷、分子篩等。例如,該支撐材料可為活性碳、Al2O3、Ga2O3、SiO2、GeO2、SnO、SnO2、TiO2、ZrO2、Sc2O3、Y2O3、鹼金屬氧化物、鹼土金屬氧化物、及其混合物、組
合物、複合物、及化合物。該氫化金屬之濃度以該觸媒總重計可例如在Cm1重量%至Cm2重量%之範圍,其中Cm1及Cm2可獨立地為:0.001、0.005、0.01、0.05、0.1、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0,只要Cm1<Cm2即可。
不希望受任何特定理論束縛,據信上述氫化反應在氫化金屬存在下迅速發生。因此,非常希望該氫化金屬優先分布在觸媒粒子的外緣,即該觸媒粒子表面層中之該氫化金屬的濃度高於其核心。此種有外緣之觸媒可降低整體氫化金屬負荷,降低其成本,尤其是若該氫化金屬包含貴金屬(諸如Pt、Pd、Ir、Rh等)時。該觸媒粒子核心中之低濃度氫化金屬亦導致會從觸媒粒子表面擴散至核心之環己酮的氫化機會較低,造成整體方法中較高的環己酮選擇率。
據信該觸媒表面對於該反應介質中之不同組分(諸如酚、環己酮、環己醇、環己烯酮、環己苯、及雙環己烷)可具有不同吸附親和性程度。非常希望該觸媒表面對於酚之吸附親和性(adsorption affinity)高於對環己酮及環己苯之吸附親和性。此較高之酚吸附親和性將給予酚在反應中之競爭優點,導致較高之成為環己酮的選擇率、較低之環己醇選擇率、及較低之環己苯轉化率,此均為設計用於製造環己酮的方法中所希望的。此外,為了比起環己苯轉化成雙環己烷及環己酮轉化成環己醇更有利使酚轉化成環己酮,非常希望該氫化反應器R1中之反應介
質的酚濃度相對高,以使酚分子佔據大部分的活性觸媒表面積。因此,希望該反應器R1中之酚的整體轉化率相對低。
如此,希望在氫化反應器R1中,酚成為環己酮之選擇率為Sel(phol)a,酚成為環己醇之選擇率為Sel(phol)b、及滿足下列條件(i)、(ii)、(iii)、及(iv)中至少一者:(i)30%Con(phol)95%;(ii)0.1%Con(chb)20%;(iii)80%Sel(phol)a99.9%;及(iv)0.1%Sel(phol)b20%。
該氫化反應器R1之進料可進一步包含濃度以該氫化進料總重計為Cxenone(A)之環己烯酮,其中e1重量%Cxenone(A)e2重量%,e1及e2可獨立地為:0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.5、2、2.5、3.5、4、4.5、或5,只要e1<e2即可。非常希望在步驟(B)中,環己烯酮之轉化率為Con(xenone),Con5%Con(xenone)Con6%,其中Con5及Con6可獨立地為:85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100,只要Con5<Con6即可。如此,在氫化反應器R1中絕大部分該(等)進料中所含之環己烯酮係轉化成環己酮。
在反應器R1底部,取出包含比流107中還低
之濃度的酚、比流107中還高之濃度的環己酮、環己苯、雙環己烷、及過剩的氫之氫化反應產物流115。流115以其總重計可包含:- 濃度為Cxnone(HRP)之環己酮,其中b11重量%Cxnone(HRP)b12重量%,b11及b12可獨立地為:20、25、30、35、40、45、50、55、60、65、70、75、80、85、90,只要b11<b12即可;- 濃度為Cphol(HRP)之酚,其中b21重量%Cphol(HRP)b22重量%,b21及b22可獨立地為:1、2、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、30、40、50,只要b21<b22即可;- 濃度為Cchb(HRP)之環己苯,其中b31重量%Cchb(HRP)b32重量%,b31及b32可獨立地為:0.001、0.005、0.01、0.05、0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、30,只要b31<b32即可;- 濃度為Cbch(HRP)之雙環己烷,其中b41重量%Cbch(HRP)b42重量%,b41及b42可獨立地為:0.001、0.005、0.01、0.05、0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、30,只要b41<b42即可;及- 濃度為Cxnol(HRP)之環己醇,其中b51重量%Cxnol(HRP)b52重量%,b51及b52可獨立地為:0.01、0.02、0.04、0.05、0.06、0.08、0.1、0.2、
0.4、0.5、0.6、0.8、1、2、4、5、6、8、10,只要b51<b52即可。
較佳地,在該氫化反應產物流115中滿足下列標準至少一者:- Ra31Cchb(ME1)/Cchb(HRP)Ra32,其中Ra31及Ra32可獨立地為:0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.75、0.80、0.85、0.90、0.92、0.94、0.95、0.96、0.98、1.00、1.02、1.04、1.05、1.06、1.08、1.10、1.15、1.20、1.25、1.30、1.35、1.40、1.50、1.60、1.70、1.80、1.90、2.00、3.00、4.00、5.00、6.00、7.00、8.00、9.00、或10.0,只要Ra31<Ra32即可;更佳地,0.80Cchb(ME1)/Cchb(HRP)1.00,意味著在該氫化反應區中環己苯濃度不會顯著降低;- Ra41Cbch(HRP)/Cbch(ME1)Ra42,其中Ra41及Ra42可獨立地為:0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.75、0.80、0.85、0.90、0.92、0.94、0.95、0.96、0.98、1.00、1.02、1.04、1.05、1.06、1.08、1.10、1.15、1.20、1.25、1.30、1.35、1.40、1.50、1.60、1.70、1.80、1.90、2.00、3.00、4.00、5.00、6.00、7.00、8.00、9.00、或10.0,只要Ra41<Ra42即可;較佳地,1.0Cbch(HRP)/Cbch(ME1)1.5,意味著在該氫化反應區中雙環己烷濃度不會顯著提高;及
- Ra51Cxnol(HRP)/Cxnol(ME1)Ra52,其中Ra51及Ra52可獨立地為:0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.75、0.80、0.85、0.90、0.92、0.94、0.95、0.96、0.98、1.00、1.02、1.04、1.05、1.06、1.08、1.10、1.15、1.20、1.25、1.30、1.35、1.40、1.50、1.60、1.70、1.80、1.90、2.00、3.00、4.00、5.00、6.00、7.00、8.00、9.00、或10.0,只要Ra51<Ra52即可;較佳地,1.0Cxnol(HRP)/Cxnol(ME1)1.5,意味著在該氫化反應區中環己醇濃度不會顯著提高。
然後將流115遞送至分離桶(separation drum)D1,其中獲得包含大部分過剩的氫之汽相(vapor phase)及液相。該汽相可作為流117再循環至反應器R1作為氫供應的一部分,及該液相119可再循環至主要分餾塔T1,於該塔T1之一或多個側邊位置,該等位置中至少一者高於取出第一中間流出物107的位置、但低於取出第一上方流出物105的位置。
從該主要分餾塔T1獲得之第一底部流出物109主要包含重質組分,諸如環己苯、雙環己烷、上述胺鹽、C18+、C12含氧化合物、及C18+含氧化合物。將該餾分遞送至重質物蒸餾塔T3(第三蒸餾塔),從該塔產生之第三上方流出物127較佳包含濃度高於C31重量%的環己苯及下方流出物129,其中C31可為80、82、84、85、86、88、90、92、94、95、96、98、或99。可將流
出物127遞送至貯藏處S11及將流出物129遞送至貯藏處S13。流出物127可進一步包含不可忽略量之烯烴,主要為苯基環己烯異構物(phenylcyclohexene isomer)。會希望對流出物127進行氫化以降低烯烴濃度,及隨後將該經氫化之流出物127再循環至先前步驟,諸如環己苯氧化以將其至少一部分轉化成氫過氧化環己苯,以使該方法的整體產率獲得改善。
圖2為顯示與圖1所示之方法/系統相似的本揭示之例示方法/系統的一部分之示意圖,但在該主要分餾塔T1與該氫化反應器R1之間及/或之內包含經修改的流體連通(fluid communication)。該圖中,氫化反應產物115包含剩餘氫,如圖1中所示之實例。將流出物115先遞送至分離桶D1,其中獲得富含氫之蒸汽流117a,以壓縮器118壓縮,然後作為流117b連同新補充進反應器R1的氫流111一起遞送至反應器R1。從分離桶D1獲得液態流119,然後分成多道流(圖2中顯示兩個再循環流,第一液態產物流119b及第二液態產物流119a),再循環至在塔T1側邊上的兩個不同位置,一個低於取出第一中間流出物107的位置(顯示在與進料103大約相同水平),及另一個在高於抽出第一中間流出物107的位置。亦可能該第一液態產物流119b係再循環至該主要分餾塔T1之不同位置,只要其不低於抽出該第一中間流出物107之位置、且低於抽出該第一上方流出物105之位置即可。亦可能第二液態產物流119a係再循環至T1之稍微不同位
置,只要其低於抽出該第一中間流出物105之位置即可。例如,該第二液態產物流119a饋入該主要分餾塔T1的位置係可介於饋入該第一混合物之位置與抽出該第一中間流出物之位置之間、與饋入該第一混合物之位置的距離為至多k.D,其中D為與饋入該第一混合物之位置和抽出該第一中間流出物之位置的總距離,且k可為例如0.50、0.45、0.40、0.35、0.30、0.25、0.20、0.15、0.10、0.05。在圖2所示之實施態樣中,此兩液態產物流119a及119b係從來自分離桶D1之單一液態流119分出,因此具有實質上相同組成。然而,亦可能119a及119b之化學組成可稍微不同,例如,若其在不同位置從該分離桶D1直接獲得時。
圖2(亦相似地部分圖示於圖4、5、6、及8)所示之在氫化反應器R1與主要分餾塔T1之間的此經修改之再循環流體連通,與圖1相比,係具有令人意外的優點。發現當再循環液態流119只饋入一個位置時,諸如在高於第一中間流出物107之位置,雙環己烷係在反應器R1中從流107中之環己苯連續產生,然後會穩定地於塔T1中累積至可形成分離相(separate phase)的高濃度,干擾塔T1中之有效產物分離。另一方面,當該再循環流119係於T1之多個位置(如圖2所示)再循環回塔T1時,在T1內部形成分離的(separate)雙環己烷相的可能性大幅降低或消除。
令液態產物流於如圖2所示之多個不同位置
再循環至主要分餾塔的另一優點係抑制氫化反應器R1中因環己苯氫化(cyclohexylbenzene hydrogenation)所造成的雙環己烷(bicyclohexane)形成。不希望受任何特定理論束縛,據信藉由將該第二液態產物流在低於該第一中間流出物之位置饋入該主要分餾塔,部分該氫化反應產物中之雙環己烷必然會進入該第一中間流出物,然後進入氫化反應器R1。氫化進料中存在雙環己烷可能會抑制環己苯氫化而製造額外的雙環己烷。可能在操作一旦達到穩定狀態之後,氫化進料中及氫化反應產物中之雙環己烷的濃度會非常接近,意指在該氫化反應器中非常少量(若有的話)環己苯轉化成雙環己烷。此係非常想要的結果,原因係該方法中所產生的雙環己烷可能不得不作為廢棄物丟棄或燒毀、造成無法彌補的產率損失。
該流119a及119b中之再循環液態產物的量可相同或不同。較佳地,該第一液態產物流119b之量(例如,流率(flow rate))係高於該第二液態產物流119a之量。例如,該第一液態流119b之重量對該第二液態流119a之重量的比可在r1到r2之範圍,其中r1及r2可獨立地為1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10、15、20、25、30、35、40、45、或50,只要r1<r2即可。較佳地,r1=1.0且r2=5.0。如此,即使第二液態產物流119a之量明顯小於第一液態產物流119b之量,在低於該第一
中間流出物107之位置導入包含比該第一中間流出物107還高之濃度之環己酮的119b的目的在於使雙環己烷於主要分餾塔T1中累積至會產生相分離(phase separation)之水平的可能性減少或消除。將過多液態產物流饋入低於該第一中間流出物的位置會稍微降低該主要分餾塔T1的整體能源效率。此係第一液態產物流之量較佳為大於第二液態產物流之量的原因。
該氫化產物中之雙環己烷濃度相比於該第一中間流出物中之雙環己烷濃度,可在r3至r4之範圍,其中r3及r4可獨立地為:1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.2、2.4、2.5、2.6、2.8、3.0、3.2、3.4、3.5、3.6、3.8、4.0、4.2、4.4、4.5、4.6、4.8、或5.0,只要r3<r4即可。較佳地,r3=1.0且r4=1.5。
圖3為顯示與圖1及2所示者相似的本揭示之例示方法/系統的一部分之示意圖,在主要分餾塔T1與該環己酮純化塔T2之間及/或之內包含經修改的流體連通及/或熱轉移配置(heat transfer arrangement)。該圖中,未圖示該氫化反應器R1及其周邊設備。在此實例中,將從塔T1抽出之第一中間流出物107分成多道流(顯示兩道流107a及107b),將其中一者(107a)作為氫化進料遞送至該氫化反應器R1(未圖示),及將另一者(107b)遞送至與環己酮純化塔T2流體且熱連通之熱交換器131。在此實例中,將來自塔T2之底部流125(例
如,包含環己酮及環己醇之混合物)分成三道流:流135,其通過熱交換器131並由流107b加熱;流139,其係由熱交換器141加熱然後再循環至塔T2;及流145,經由泵147將其遞送至貯藏處S9。在通過熱交換器131之後,流107b成為較冷流133,然後接著再循環至主要分餾塔T1的一或多個位置,該等位置中至少一者位在高於抽出該第一中間流出物107的位置。如圖3所圖示之熱管理方案(heat management scheme)可顯著改善本揭示之整體方法及系統的能源效率(energy efficiency)。
圖4為顯示與圖1至3所示者相似的本揭示之例示方法/系統的一部分之示意圖,但包含管式熱交換型氫化反應器(tubular heat exchanger-type hydrogenation reactor)。該圖說明在氫化條件下操作氫化反應器R1,以使大部分存在於該反應器R1內部之反應介質中的酚及/或環己苯呈汽相的實例。在此實例中,從該主要分餾塔T1取出之第一中間流出物107係先與氫進料(包括新補充之氫流111及再循環氫流117b)組合,藉由熱交換器153加熱,然後遞送至具有安裝於管157內部之氫化觸媒的管式熱交換型氫化反應器R1。從貯藏處S11供應之冷卻介質(諸如冷水)流159通過交換器/反應器R1之外殼且作為溫流161離開該反應器R1,然後係遞送至貯藏處S13,從而帶走大量從酚氫化反應所釋放的熱,使該反應器R1內部之溫度維持在T1℃至T2℃的範圍,該反應器R1內部之絕對壓力維持在P1 kPa至P2 kPa的範圍,其中
T1及T2可獨立地為:140、145、150、155、160、165、170、175、180、185、190、195、200、205、210、215、220、225、230、235、240、250、260、270、280、290、300,只要T1<T2即可,及P1及P2可獨立地為:100、110、120、130、140、150、160、170、180、190、200、250、300、350、或400,只要P1<P2即可。較佳地,T2=240且P2=200。或者,該冷卻介質可包含至少一部分之呈液相的氫化進料,以使至少一部分該進料被汽化(vaporize),及隨後將至少一部分的蒸汽進料(vapor feed)饋入氫化反應器R1。
由於汽相之熱轉移不像液相一樣有效率,且酚氫化反應高度放熱,非常希望在此汽相氫化反應器中小心管理熱轉移。亦可使用適用於液相反應之其他類型反應器。例如,固定床反應器(fixed-bed reactor),建構為具有中間冷卻能力(intercooling capability)及/或驟冷(quenching)選項,因此可充分迅速帶走該反應中所產生的熱,以使該反應介質維持在希望之溫度範圍。
圖5為顯示與圖1至4所示者相似的本揭示之例示方法/系統的一部分之示意圖,但包含三個串聯連接的固定床氫化反應器(fixed bed hydrogenation reactor)R3、R5、及R7。該圖說明在氫化條件下操作該等氫化反應器,以使大部分存在於反應器R3、R5、及R7內部之反應介質中的酚及/或環己苯呈液相的實例。在此實例中,從該主要分餾塔T1取出的第一中間流出物107
係先與氫進料(包括新補充之氫流111及再循環氫流117b)組合以形成進料流151,然後藉由熱交換器153加熱,然後作為流155遞送至內部具有觸媒床167之第一氫化反應器R3。一部分之該酚係在反應器R3中轉化成環己酮,釋放適量的熱而升高該反應介質的溫度。離開反應器R3之流出物169隨後藉由熱交換器171冷卻,然後將之遞送至內部具有觸媒床175的第二固定床反應器R5。一部分之該反應介質中所含的酚係在反應器R5中轉化成環己酮,釋放適量的熱而升高該反應器R5內部的溫度。離開反應器R5之流出物177隨後藉由熱交換器179冷卻,然後將之遞送至內部具有觸媒床183的第三固定床氫化反應器R7。該反應介質中所含的一部分之酚係在反應器R7中轉化成環己酮,釋放適量的熱而升高該反應器R7內部的溫度。離開反應器R7之流出物185隨後藉由熱交換器187冷卻,並遞送至桶D1,其中獲得汽相117a及液相119。藉由在氫化反應區中使用多反應器,及在各反應器之間及之後使用熱交換器,反應器R3、R5、及R7內部的溫度係各自獨立地維持在T3℃至T4℃之範圍,及反應器R3、R5、及R7內部的絕對壓力係各自獨立地維持在P3 kPa至P4 kPa之範圍,其中T3及T4可獨立地為:140、145,150、155、160、165、170、175、180、185、190、195、200、205、210、215、220、225、230、235、240、250、260、270、280、290、300,只要T3<T4即可,以及P3及P4可獨立地為:375、400、425、450、475、
500、525、550、575、600、625、650、675、700、725、750、775、800、825、850、875、900、925、950、975、1000、1025、1050、1075、1100、1125、1134、1150、1175、1200,只要P3<P4即可。較佳地,T4=240且P4=1134。通常,較高溫度會比製造環己酮更有利於製造環己醇。因此,非常希望氫化係在不高於220℃之溫度進行。
圖6為顯示與圖1至5所示之方法/系統相似的本揭示之例示方法/系統的一部分之示意圖,但在該主要分餾塔T1與該氫化反應器R1之間及/或之內包含經修改的流體連通。該圖中,兩中間流出物(包括第一中間流出物107a及第二中間流出物107b)係從該主要分餾塔T1的側邊抽出。此兩流出物107a及107b具有不同組成,且係混合以形成進料107,然後將其與氫進料流111及117b混合,並遞送至氫化反應器。在不同位置抽出具有不同組成的兩中間流出物係具有意料外的技術優點。發現若只從塔T1上的單一位置抽出一中間流出物,某些不想要的組分(諸如羥基環己酮(類))會累積在塔T1中。據信羥基環己酮(類)會發生脫水而形成環己烯酮(cyclohexenone),其會造成塔T1內部積垢(fouling)。藉由在該塔上不同高度位置抽出中間流出物,吾人可有效減少此等不想要的組分之累積及該塔內部積垢的可能性。
圖7為顯示與圖1至6所示者相似的本揭示
之例示方法/系統的一部分之示意圖,但包含在主要分餾塔T1之前的側汽提塔(side stripper column)T4,係建構用於從饋入該主要分餾塔T1之酚/環己酮/環己苯進料移除至少一部分輕質組分(light component)以減少或避免在氫化反應器中之觸媒毒化(catalyst poisoning)。據信若某些輕質組分(即,具有低於環己酮之標準沸點(normal boiling point)的組分)包含在進入氫化反應區的酚/環己酮/環己苯進料中,會使脫氫觸媒毒化,導致該觸媒性能及壽命過早降低。因而,該圖中,先將該酚/環己酮/環己苯進料102饋入比塔T1小的側汽提塔T4,以獲得富含輕質組分且耗乏酚和環己苯之上方流出物105a,及耗乏該等輕質組分之下方流出物103。然後將該上方流出物105a與從主要分餾塔T1獲得之該第一上方流出物105b混合而形成流105,然後將之遞送至環己酮純化塔T2。然後將該下方流出物103遞送至該主要分餾塔T1作為酚/環己酮/環己苯進料。藉由增加小型、相對便宜的側汽提塔T4,吾人可移除絕大部分該等易於使氫化觸媒毒化的輕質組分(例如,C1-C6有機酸)。
圖8顯示圖7構造的替代方案。該圖中,代替在該主要分餾塔T1之前放置側汽提塔T4,而是將側汽提塔T5放置在塔T1之後,其接收該第一中間流出物107作為進料,產生富含易於使該氫化觸媒毒化的輕質組分(例如,C1-C6有機酸)之上方流出物193,將該上方流出物193再循環至塔T1的高於抽出流出物107位置的位
置,且將耗乏此等輕質組分的下方流出物195連同氫進料111及117b一起遞送至該氫化反應器作為酚/環己酮/環己苯進料151的一部分或全部。
圖9為顯示與圖1至8所示者相似的本揭示之方法/系統的例示部分之示意圖,包含在環己酮純化塔T2之後的側汽提塔T6,係建構用於減少來自最終環己酮產物之輕質組分的量。該圖中,將該主要包含環己酮及從該主要分餾塔T1獲得之輕質組分的第一上方流出物105遞送至環己酮純化塔T2,其中獲得三流出物:富含輕質組分(諸如水及甲基環戊酮)且耗乏環己酮及環己醇之第二上方流出物121、富含環己酮且耗乏輕質組分及環己醇之第二中間流出物123、及富含環己醇之第二下方流出物125。流出物121先藉由熱交換器197冷卻,然後遞送至分離桶D2以獲得液相199,將其再循環至塔T2;及汽相201,其係藉由熱交換器203再次冷卻,並遞送至另一分離桶D3以獲得液相,將該液相部分作為流205再循環至桶D2,及部分遞送至貯藏處S5,及汽相206,其可經吹洗(purge)。將流出物123遞送至側汽提塔T6,其中產生下列流:在其底部附近之實質上純的環己酮流211,將其遞送至貯藏處S7;及輕質物流209,將其再循環至該塔T2的高於123之位置。
在全部上述圖式中,遞送至該氫化反應器之酚/環己酮/環己苯進料係全部從來自主要分餾塔T1之一或更多中間流出物獲得。然而,預期額外地可將包含酚濃
度不低於從塔T1所獲得之進料的第二酚進料流獨立且個別地、或在與從塔T1獲得之進料及/或氫進料混合之後饋入該氫化反應器。例如,該第二酚流可包含酚濃度以其總重計為至少Cphol(f2)重量%的實質上純的酚,其中Cphol(f2)可為例如,80、82、84、85、86、88、90、91、92、93、94、95、96、97、98、99、99.5、99.8、或甚至99.9。
經由本文所揭示之方法所製造的環己酮可用作例如工業溶劑,用作氧化反應中之活化劑,及用於製造己二酸、環己酮樹脂、環己酮肟、己內醯胺及耐綸(nylon)諸如耐綸-6及耐綸-6,6。
經由本文所揭示之方法所製造的酚可用以例如製造酚樹脂(phenolic resin)、雙酚A、ε-己內醯胺、己二酸及/或塑化劑。
雖然已參考特定實施態樣描述及說明本發明,具有本領域普通技術之人士將明暸本發明本身可應用於不一定於本文說明的變化。因此,決定本發明之實際範疇時應僅參考所附申請專利範圍。
本文所引用之所有參考文獻內容係以引用方式整體併入本文中。
本發明包括下列非限制性態樣及/或實施態樣之一或多者。
E1.一種製造環己酮之方法,該方法包括下列步驟:(I)將包含環己酮、酚(phenol)、及環己苯之第一混合物饋入第一蒸餾塔(first distillation column);(II)從該第一蒸餾塔獲得:包含環己酮(濃度係比該第一混合物中還高)、酚、及環己苯的第一上方流出物(first upper effluent);包含環己酮、酚(濃度係比該第一混合物中還高)、環己苯、及雙環己烷(在以下步驟(III)所產生)的第一中間流出物(first middle effluent);及包含環己苯(濃度係比該第一混合物中還高)的第一下方流出物(first lower effluent);(III)將至少一部分之該第一中間流出物及氫饋入氫化反應區,其中酚與氫反應且環己苯與氫反應(於氫化觸媒存在下、在氫化反應條件下),以獲得包含環己酮(濃度係比該第一中間流出物中還高)、酚(濃度係比該第一中間流出物還低)、環己苯、及雙環己烷(bicyclohexane)的氫化反應產物;以及(IV)從該氫化反應產物獲得包括第一液態產物流及第二液態產物流之多重流;(V)在不低於抽出該第一中間流出物之位置的位置,將該第一液態產物流饋入該第一蒸餾塔;(VI)在低於抽出該第一中間流出物之位置的位置,將該第二液態產物流饋入該第一蒸餾塔。
E2.如E1之方法,其中,步驟(IV)進一步包括獲
得包含至少50體積%之氫的第三蒸汽流(third vapor stream),且該方法進一步包括:(VII)將至少一部分之該第三蒸汽流再循環至該氫化反應區。
E3.如E1或E2之方法,其中,該第三蒸汽流包含至少80體積%之氫。
E4.如E1至E3中任一者之方法,其中,在步驟(V)中,該第一液態產物流係在高於抽出該第一中間流出物之位置但低於抽出該第一上方流出物之位置的位置饋入該第一蒸餾塔。
E5.如E1至E4中任一者之方法,其中,在步驟(VI)中,該第二液態產物流饋入該第一蒸餾塔的位置係不低於該第一混合物饋入該第一蒸餾塔之位置。
E6.如E1至E5中任一者之方法,其中,在步驟(VI)中,該第二液態產物流饋入該第一蒸餾塔的位置係高於該第一混合物、且與該第一混合物饋入該第一蒸餾塔之位置的距離為不大於該第一混合物饋入該蒸餾塔之位置與該第一中間流出物從該第一蒸餾塔抽出之位置之間的距離之20%。
E7.如E1至E6中任一者之方法,其中,該第一液態產物流及該第二液態產物流具有相同組成。
E8.如E1至E7中任一者之方法,其中,該第一液態產物流的量係大於該第二液態產物流。
E9.如E1至E8中任一者之方法,其中,該第一液態
流之重量對該第二液態流之重量的比係在1.1至50之範圍。
E10.如E9之方法,其中,該第一液態流之重量對該第二液態流之重量的比係在2.0至5.0之範圍。
E11.如E1至E10中任一者之方法,其中,該氫化產物中之雙環己烷濃度相比於該第一中間流出物中之雙環己烷濃度,係在1.0至5.0之範圍。
E12.如E1至E11中任一者之方法,其中,該氫化產物中之雙環己烷濃度相比於該第一中間流出物中之雙環己烷濃度,係在1.0至1.8之範圍。
E13.如E1至E12中任一者之方法,其中係符合至少一項下列條件:(i)該第一混合物包含濃度在10重量%至90重量%範圍之環己酮;(ii)該第一混合物包含濃度在10重量%至80重量%範圍之酚;以及(iii)該第一混合物包含濃度在0.001重量%至75重量%範圍之環己苯;其中,該等百分比係以該第一混合物總重計。
E14.如E1至E13中任一者之方法,其中,該第一上方流出物進一步包含環己醇(cyclohexanol),且該方法進一步包括:(VIII)將至少一部分之該第一上方流出物饋入第二蒸餾塔;以及
(IX)從該第二蒸餾塔獲得下列:包含比該第一上方流出物中還高之濃度的環己酮的第二上方流出物;在高於該第二上方流出物之位置的第三上方流出物,該第三上方流出物包含標準沸點(normal boiling point)低於環己酮之標準沸點的組分;以及第二下方流出物,包含環己酮(濃度係比該第一上方流出物還低)、以及環己醇(濃度係比該第一上方流出物中還高)。
E15.如E14之方法,其中,該第二上方流出物包含濃度以該第二上方流出物總重計為至少95重量%之環己酮。
E16.如E14或E15之方法,其中:該第二下方流出物包含濃度以該第二下方流出物總重計為10重量%至80重量%範圍之環己醇。
E17.如E1至E16中任一者之方法,其中係符合至少一項下列條件:(i)該第一中間流出物包含濃度在1重量%至50重量%範圍之環己酮;(ii)該第一中間流出物包含濃度在10重量%至80重量%範圍之酚;(iii)該第一中間流出物包含濃度在0.001重量%至30重量%範圍之環己苯;以及(iv)該第一中間流出物包含濃度在0.001重量%至
30重量%範圍之雙環己烷。
E18.如E1至E17中任一者之方法,其中,將與該第一中間流出物無關之第二含酚流饋入該氫化反應區,該第二含酚流所包含之酚的濃度係在以該第二含酚流之總重計為50重量%至100重量%之範圍。
E19.如E1至E18中任一者之方法,其中,以在1.0至10之範圍的氫對酚之莫耳比將氫及酚饋入該氫化反應區。
E20.如E1至E19中任一者之方法,其中,在該氫化反應區中,(i)至少50%之該環己苯係以液相存在;及/或(ii)至少50%之該酚係以液相存在。
E21.如E20之方法,其中,在該氫化反應區中,該氫化條件包含溫度在140℃至300℃之範圍,及絕對壓力在375kPa至1200kPa之範圍。
E22.如E1至E21中任一者之方法,其中,在該氫化反應區中,(i)至少90%之環己苯係以汽相(vapor phase)存在;及/或(ii)至少90%之酚係以汽相存在。
E23.如E22之方法,其中,在該氫化反應區中,該氫化反應條件包含溫度在140℃至300℃之範圍,及絕對壓力(absolute pressure)在100kPa至400kPa之範圍。
E24.如E1至E23中任一者之方法,其中係符合至少一項下列條件:(i)該氫化反應產物包含濃度在20重量%至90重量%範圍之環己酮;
(ii)該氫化反應產物包含濃度在1重量%至50重量%範圍之酚;(iii)該氫化反應產物包含濃度在0.001重量%至30重量%範圍之環己苯;以及(iv)該氫化反應產物包含濃度在0.001重量%至30重量%範圍之雙環己烷;其中,該等百分比係以該氫化反應產物總重計。
E25.如E1至E24中任一者之方法,其中,該氫化反應產物進一步包含濃度在以該氫化反應產物總重計為0.01重量%至10重量%之範圍的環己醇。
E26.如E1至E25中任一者之方法,其中係符合至少一項下列條件:(i)該第一中間流出物中之環己苯的濃度對該氫化反應產物中之環己苯的濃度之比係在0.10至10的範圍;(ii)該氫化反應產物中之雙環己烷的濃度對該第一中間流出物中之雙環己烷的濃度之比係在0.10至10的範圍;以及(iii)該氫化反應產物中之環己醇的濃度對該第一中間流出物中之環己醇的濃度之比係在0.10至10的範圍;其中,濃度係分別為以該氫化反應產物之總重計或以該第一中間流出物之總重計的重量百分比。
E27.如E1至E26中任一者之方法,其中,步驟(I)中之該第一混合物係藉由裂解(cleavage)方法獲得,該裂解方法包括:
(I-A)在裂解反應器中使包含1-苯基-1-環己烷-氫過氧化物(1-phenyl-1-cyclohexane-hydroperoxide)與環己苯之裂解進料混合物與酸觸媒(acid catalyst)接觸以獲得裂解反應產物。
E28.如E27之方法,其中,在步驟(I-A)中,該酸為液態酸,且該裂解進一步包括:(I-B)添加鹼性材料至該裂解反應產物以獲得該第一混合物。
E29.如E28之方法,其中,該裂解進料混合物係藉由以下獲得:(I-A-1)使苯與氫在加氫烷基化觸媒存在且在加氫烷基化(hydroalkylation)條件下接觸,以產生包含環己苯之加氫烷基化產物混合物;(I-A-2)使該環己苯與氧在觸媒存在下接觸,以產生包含1-苯基-1-環己烷-氫過氧化物之氧化反應產物混合物;以及(I-A-3)提供來自該氧化反應產物混合物之裂解進料混合物。
E30.如E1至E29中任一者之方法,進一步包括:(X)將至少一部分之該第一下方流出物饋入第三蒸餾塔;以及(XI)從該第三蒸餾塔獲得下列:包含環己苯之第三上方流出物;以及包含沸點高於環己苯之組分的第三下方流出物。
E31.如E30之方法,其中,該第三上方流出物包含以該第三上方流出物總重計之濃度為至少90重量%的環己苯。
E33.如E30或E31之方法,其中,至少一部分之該第三上方流出物係再循環至步驟(I-A-2)。
101‧‧‧方法/系統
103‧‧‧進料
105‧‧‧第一上方流出物
107‧‧‧第一中間流出物
109‧‧‧第一底部流出物
111‧‧‧氫流
112‧‧‧氫氣進料
113‧‧‧觸媒床
115‧‧‧氫化反應產物流
117‧‧‧再循環氫
119‧‧‧液相
121‧‧‧第三上方流出物
123‧‧‧第二上方流出物
125‧‧‧第二下方流出物
127‧‧‧第三上方流出物
129‧‧‧流出物
S1、S3、S5、S7、S9、S11、S13‧‧‧貯藏處
D1‧‧‧分離桶
R1‧‧‧氫化反應器
T1‧‧‧主要分餾塔
T2‧‧‧環己酮純化塔
T3‧‧‧重質物蒸餾塔
Claims (10)
- 一種製造環己酮之方法,該方法包括下列步驟:(I)將包含環己酮、酚(phenol)、及環己苯之第一混合物饋入第一蒸餾塔;(II)從該第一蒸餾塔獲得:包含比該第一混合物中還高之濃度的環己酮、酚、及環己苯的第一上方流出物;包含環己酮、比該第一混合物中還高之濃度的酚、環己苯、及至少部分在以下步驟(III)所產生之雙環己烷(bicyclohexane)的第一中間流出物;及包含比該第一混合物中還高之濃度的環己苯的第一下方流出物;(III)將至少一部分之該第一中間流出物及氫饋入氫化反應區,其中酚與氫及環己苯與氫係在氫化觸媒存在且在氫化反應條件下反應,以獲得包含比該第一中間流出物中還高之濃度的環己酮、比該第一中間流出物中還低之濃度的酚、環己苯、及雙環己烷的氫化反應產物;(IV)從該氫化反應產物獲得包括第一液態產物流及第二液態產物流之多重流;(V)在不低於抽出該第一中間流出物之位置的位置將該第一液態產物流饋入該第一蒸餾塔;以及(VI)在低於抽出該第一中間流出物之位置的位置將該第二液態產物流饋入該第一蒸餾塔。
- 如申請專利範圍第1項之方法,其中,步驟 (IV)進一步包括獲得包含至少50體積%之氫的第三蒸汽流,且該方法進一步包括:(VII)將至少一部分之該第三蒸汽流再循環至該氫化反應區。
- 如申請專利範圍第1項之方法,其中,在步驟(V)中,該第一液態產物流係在高於抽出該第一中間流出物之位置但低於抽出該第一上方流出物之位置的位置饋入該第一蒸餾塔。
- 如申請專利範圍第1項之方法,其中,在步驟(VI)中,該第二液態產物流饋入該第一蒸餾塔的位置係高於該第一混合物饋入該第一蒸餾塔之位置、且與該第一混合物饋入該第一蒸餾塔之位置的距離為不大於該第一混合物饋入該蒸餾塔之位置與該第一中間流出物從該第一蒸餾塔抽出之位置之間的距離之20%。
- 如申請專利範圍第1項之方法,其中,該第一液態產物流及該第二液態產物流具有相同組成。
- 如申請專利範圍第1項之方法,其中,該第一液態流之重量對該第二液態流之重量的比係在2.0至5.0之範圍。
- 如申請專利範圍第1項之方法,其中,將與該第一中間流出物無關之第二含酚流饋入該氫化反應區,該第二含酚流所包含之酚的濃度係在以該第二含酚流之總重計為50重量%至100重量%之範圍。
- 如申請專利範圍第1項之方法,其中,步驟(I) 中之該第一混合物係藉由裂解(cleavage)方法獲得,該裂解方法包括:(I-A)在裂解反應器中使包含1-苯基-1-環己烷-氫過氧化物(1-phenyl-1-cyclohexane-hydroperoxide)與環己苯之裂解進料混合物與酸觸媒接觸以獲得裂解反應產物。
- 如申請專利範圍第8項之方法,其中,該裂解進料混合物係藉由以下獲得:(I-A-1)使苯與氫在加氫烷基化觸媒存在且在加氫烷基化(hydroalkylation)條件下接觸,以產生包含環己苯之加氫烷基化產物混合物;(I-A-2)使該環己苯與氧在觸媒存在下接觸,以產生包含1-苯基-1-環己烷-氫過氧化物之氧化反應產物混合物;以及(I-A-3)提供來自該氧化反應產物混合物之裂解進料混合物。
- 如申請專利範圍第9項之方法,其進一步包括:(X)將至少一部分之該第一下方流出物饋入第三蒸餾塔;以及(XI)從該第三蒸餾塔獲得下列:包含濃度係以第三上方流出物之總重計為至少90重量%的環己苯之第三上方流出物;以及包含沸點高於環己苯之組分的第三下方流出物,其中,至少一部分之該第三上方流出物係再循環至步驟(I-A-2)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462057947P | 2014-09-30 | 2014-09-30 | |
EP15151425 | 2015-01-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201625513A TW201625513A (zh) | 2016-07-16 |
TWI583665B true TWI583665B (zh) | 2017-05-21 |
Family
ID=52345121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104129781A TWI583665B (zh) | 2014-09-30 | 2015-09-09 | 製造環己酮之方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10233140B2 (zh) |
CN (1) | CN105461535B (zh) |
SG (1) | SG11201701429SA (zh) |
TW (1) | TWI583665B (zh) |
WO (1) | WO2016053581A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201700403YA (en) | 2014-08-15 | 2017-02-27 | Exxonmobil Chemical Patents Inc | Process and system for making cyclohexanone |
SG11201700197XA (en) | 2014-08-15 | 2017-02-27 | Exxonmobil Chemical Patents Inc | Process and system for making cyclohexanone |
SG11201701945RA (en) | 2014-09-30 | 2017-04-27 | Exxonmobil Chemical Patents Inc | Process for making cyclohexanone |
WO2016053466A1 (en) | 2014-09-30 | 2016-04-07 | Exxonmobil Chemical Patents Inc. | Process for making cyclohexanone |
UA122897C2 (uk) | 2014-11-10 | 2021-01-20 | Кеп Ііі Б.В. | Спосіб одержання циклогексанону з фенолу |
TWI691480B (zh) | 2014-12-15 | 2020-04-21 | 荷蘭商卡普三世責任有限公司 | 用來建構用於生產環己酮之設備的方法 |
WO2019005274A1 (en) | 2017-06-28 | 2019-01-03 | Exxonmobil Chemical Patents Inc. | PROCESS FOR PRODUCTION OF CYCLOHEXANONE |
WO2019005276A1 (en) * | 2017-06-28 | 2019-01-03 | Exxonmobil Chemical Patents Inc. | PRODUCTS CONTAINING CYCLOHEXANONE AND METHODS OF MAKING THE SAME |
WO2019005273A1 (en) | 2017-06-28 | 2019-01-03 | Exxonmobil Chemical Patents Inc. | PRODUCTS CONTAINING CYCLOHEXANONE AND METHODS OF MAKING THE SAME |
WO2020031765A1 (ja) * | 2018-08-09 | 2020-02-13 | 日本曹達株式会社 | 電解酸化によるトリキノイル及び/又はその水和物の製造方法 |
CN116354798A (zh) | 2021-12-27 | 2023-06-30 | 复旦大学 | 一种可见光介导的环己基苯一步法制苯酚和环己酮的方法 |
CN114653403B (zh) * | 2022-03-18 | 2023-02-03 | 大连理工大学 | 一种用于苯酚加氢制环己酮的双功能催化剂的制备方法及应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4169857A (en) * | 1978-10-05 | 1979-10-02 | Phillips Petroleum Company | Separation of cyclohexylbenzene-cyclohexanone-phenol-containing mixtures by hydrogenation and distillation |
US20110021844A1 (en) * | 1997-06-13 | 2011-01-27 | Dakka Jihad M | Process for Producing Cyclohexanone |
CN102015604A (zh) * | 2008-05-01 | 2011-04-13 | 埃克森美孚化学专利公司 | 环己酮的制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD218092A1 (de) * | 1983-09-30 | 1985-01-30 | Leuna Werke Veb | Verfahren zur herstellung von cyclohexanon und cyclohexanol |
US6037513A (en) | 1998-07-09 | 2000-03-14 | Mobil Oil Corporation | Hydroalkylation of aromatic hydrocarbons |
SG11201700197XA (en) * | 2014-08-15 | 2017-02-27 | Exxonmobil Chemical Patents Inc | Process and system for making cyclohexanone |
SG11201701945RA (en) | 2014-09-30 | 2017-04-27 | Exxonmobil Chemical Patents Inc | Process for making cyclohexanone |
WO2016053466A1 (en) | 2014-09-30 | 2016-04-07 | Exxonmobil Chemical Patents Inc. | Process for making cyclohexanone |
-
2015
- 2015-09-08 SG SG11201701429SA patent/SG11201701429SA/en unknown
- 2015-09-08 US US15/502,687 patent/US10233140B2/en not_active Expired - Fee Related
- 2015-09-08 WO PCT/US2015/048835 patent/WO2016053581A1/en active Application Filing
- 2015-09-09 TW TW104129781A patent/TWI583665B/zh not_active IP Right Cessation
- 2015-09-29 CN CN201510638883.3A patent/CN105461535B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4169857A (en) * | 1978-10-05 | 1979-10-02 | Phillips Petroleum Company | Separation of cyclohexylbenzene-cyclohexanone-phenol-containing mixtures by hydrogenation and distillation |
US20110021844A1 (en) * | 1997-06-13 | 2011-01-27 | Dakka Jihad M | Process for Producing Cyclohexanone |
CN102015604A (zh) * | 2008-05-01 | 2011-04-13 | 埃克森美孚化学专利公司 | 环己酮的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US10233140B2 (en) | 2019-03-19 |
TW201625513A (zh) | 2016-07-16 |
CN105461535B (zh) | 2017-06-20 |
SG11201701429SA (en) | 2017-04-27 |
WO2016053581A1 (en) | 2016-04-07 |
CN105461535A (zh) | 2016-04-06 |
US20170233323A1 (en) | 2017-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI583665B (zh) | 製造環己酮之方法 | |
TWI588125B (zh) | 環己酮之製法 | |
TWI588124B (zh) | 製造環己酮之方法及系統 | |
TWI593669B (zh) | 製造環己酮之方法及系統 | |
TWI583663B (zh) | 製造環己酮之方法 | |
US9926254B2 (en) | Process and system for making cyclohexanone | |
TWI596085B (zh) | 製造環己酮之方法及系統 | |
US20160376212A1 (en) | Process for Making Cyclohexylbenzene and/or Phenol and/or Cyclohexanone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |