TWI576836B - 形成具有環狀接觸之自旋轉移力矩記憶體(sttm)元件的技術 - Google Patents

形成具有環狀接觸之自旋轉移力矩記憶體(sttm)元件的技術 Download PDF

Info

Publication number
TWI576836B
TWI576836B TW104103727A TW104103727A TWI576836B TW I576836 B TWI576836 B TW I576836B TW 104103727 A TW104103727 A TW 104103727A TW 104103727 A TW104103727 A TW 104103727A TW I576836 B TWI576836 B TW I576836B
Authority
TW
Taiwan
Prior art keywords
layer
conductive
integrated circuit
magnetic layer
free magnetic
Prior art date
Application number
TW104103727A
Other languages
English (en)
Other versions
TW201603015A (zh
Inventor
布萊恩 道爾
大衛 肯克
肯恩 歐固茲
馬克 達克西
沙亞斯 蘇利
羅伯特 喬
查爾斯 郭
洛桑那 哥梨薩德莫札拉得
Original Assignee
英特爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾股份有限公司 filed Critical 英特爾股份有限公司
Publication of TW201603015A publication Critical patent/TW201603015A/zh
Application granted granted Critical
Publication of TWI576836B publication Critical patent/TWI576836B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Description

形成具有環狀接觸之自旋轉移力矩記憶體(STTM)元件的技術
本發明係有關一種形成具有環狀接觸之自旋轉移力矩記憶體(STTM)元件的技術。
自旋轉移力矩記憶體(Spin-transfer torque memory,STTM)裝置,例如自旋轉移力矩隨機存取記憶體(Spin-transfer torque random-access memory,STT-RAM)裝置,使用自旋基記憶體技術及包括可以儲存一位元之資訊的磁性隧道接面(magnetic tunnel junctions,MTJs)。每個MTJ具有固定層及自由層,以及在自由層中的磁化方向確定MTJ為高阻抗狀態還是低阻抗狀態(即其儲存是1還是0)。在這種方式下,STTM是非揮發性型態的記憶體。被需要以切換MTJ之自由層之磁化方向(例如,在寫入週期內)的電流被稱為臨界電流。
100,300‧‧‧方法
102,104,106,108,110,112,114,116,118,120,302,306,308,310,312,312’,314,316,318,320‧‧‧步驟
200,201,400,401‧‧‧介電質
202,204,402‧‧‧孔洞
210,410‧‧‧MTJ堆疊
212,412‧‧‧固定層
214,414‧‧‧隧道阻障層
216,416‧‧‧自由層
220‧‧‧第一導電層
230,230’,230”‧‧‧絕緣層
240,240”,440‧‧‧導電硬遮罩層
250‧‧‧第二導電層
252,252’,252”,452,452’‧‧‧導電間隔物
260,260’,260”,460,460’‧‧‧電流流動線
430,430’‧‧‧隧道材料層
450‧‧‧導電層
W‧‧‧寬度
X1,X2‧‧‧厚度
1000‧‧‧運算系統
1002‧‧‧電路板
1004‧‧‧處理器
1006‧‧‧通訊晶片
第1圖根據本發明一個或多個實施例繪示形成積體電路的方法。
第2A-H”圖根據各種實施例繪示當執行第1圖的方法時形成之範例結構。
第2I-I”圖繪示根據本發明一些實施例之分別受電性驅動呈現範例電流流動線之第2 H-H”圖之結構。
第3圖根據本發明一個或多個實施例繪示形成積體電路的方法。
第4A-H’圖根據本發明各種實施例繪示當執行第3圖的方法時形成之範例結構。
第4I-I’圖繪示根據本發明一些實施例之分別受電性驅動呈現範例電流流動線之第4 H-H’圖之結構。
第5圖根據範例實施例繪示具有使用本文所揭示之技術形成的積體電路結構或裝置實現的計算系統。
【發明內容及實施方式】
形成具有用以減少臨界電流要求之環狀接觸的自旋轉移力矩記憶體(spin-transfer torque memory,STTM)元件的技術被揭露。此技術減少對於給定的磁性隧道接面(magnetic tunnel junction,MTJ)的臨界電流的要求,因為環狀接觸減少接觸尺寸且增加局部電流密度,從而減少切換MTJ之自由磁性層之方向的所需電流。在一些情況下,環狀接觸圍繞防止電流通過之絕緣層 的至少一部分。在這種情況下,電流在流過自由磁性層之前流過環狀接觸且圍繞絕緣層,增加了局部電流密度。絕緣層可包含介電材料,且在一些情況下,為隧道材料,如氧化鎂(magnesium oxide,MgO)或氧化鋁(aluminum oxide,Al2O3)。在一些情況下,使用環狀接觸的結果是一給定MTJ之臨界電流降低至少10%。鑒於本發明,無數的配置及變化將是顯而易見。
概述
如前面所解釋的,需要以切換磁性隧道接面(magnetic tunnel junction,MTJ)之自由層的磁性方向之電流在,例如,自旋轉移力矩記憶體(spin-transfer torque memory,STTM)元件中,被稱為臨界電流。理想的是減少切換自由層之磁性方向所需之臨界電流,因為電流流過STTM位元係由例如在一個電晶體-一個電阻(1T-1R)記憶胞中電晶體流出之電流限制。此外,相對較高的臨界電流要求在商業應用方面存在著問題。切換MTJ之自由層中的磁性方向通常要求電流密度為約1-3MA/cm2。藉由減少記憶體元件的尺寸可增加電流密度,從而降低臨界電流的要求。然而,減少記憶體元件的尺寸也減少此非揮發性記憶體的整體穩定性。
因此,根據本發明一個或多個實施例揭露對於給定MTJ之形成具有用以減少臨界電流要求之環狀接觸的STTM元件的技術。這種技術減少對於給定的MTJ 臨界電流要求,因為即使所需的電流密度發生在僅僅自由層的一部分,MTJ之自由層可以被切換,並且減少接觸尺寸(例如,透過環狀接觸)而增加了局部電流密度。本文所使用之用語「環狀」一般包括大致為橢圓形或圓形的環狀/帶狀形狀。然而,本文所使用「環狀」也可以包括任何中空形狀,因此,環狀接觸,在不同的描述,不必限制於大致為橢圓形或圓形的環狀/帶狀形狀。例如,在一些情況下,環狀接觸可具有大致為方形或矩形的環狀/帶狀形狀。注意本文所敘述各種接觸的形狀(例如,環形、圓形、橢圓形、方形、矩形、中空等)係為從積體電路結構的頂部觀察時,俯視MTJ堆疊的形狀,如根據本發明將顯而易見。
在一些實施例中,用於STTM元件之環狀接觸圍繞絕緣層之至少一部分,其中當元件電性驅動時絕緣層防止電流通過。以此方式,電流被引導流過導電環狀接觸且圍繞絕緣層,當電流往下流至自由磁性層中因而增加了電流密度,導致減少對於給定的MTJ之臨界電流。在一些這種實施例中,絕緣層可在MTJ之自由磁性層上。例如,在一些實施例中,絕緣層可在自由磁性層正上方或與自由磁性層物理接觸,而在其它實施例中,絕緣體可在自由磁性層上方且由導電層及/或導電硬遮罩層分隔,如根據本發明將顯而易見。本文所使用之用語「導電」一般包括在至少電性感測中為導電的(例如,可以傳導電流)。
在一些實施例中,絕緣層可被沉積在自由磁性層上或與自由磁性層物理接觸。例如,在一些實施例中,絕緣層可包含隧道材料層,如氧化鎂(magnesium oxide,MgO)或氧化鋁(aluminum oxide,Al2O3),以增加在絕緣層/自由磁性層界面之STTM元件的穩定性。其它各種隧道材料可被使用,例如適合用於MTJ中隧道阻障層應用之材料。在一些實施例中,隧道材料層可具有防止電流通過之較厚內側部分(例如,大於1nm)以及位於環狀接觸下方允許電流流過至自由磁性層之較薄的外圍部分(例如,1nm或更小),如根據本發明將顯而易見。
在一些實施例中,環狀接觸(其可從導電間隔物物形成,如根據本發明將顯而易見)包含釕(Ru)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)及/或氮化鉭(TaN)中的至少一種。在一些實施例中,當從上方俯視時,環狀接觸表面面積包含自由磁性層表面面積的10-90%。在一些這種實施例中,當從上方觀察時,絕緣層(例如,介電質或隧道材料,如:MgO或Al2O3)包含孔洞在環狀接觸中且因此可包含自由磁性層表面面積的其它90-10%。如前面所敘述,環狀接觸,在一些實施例中可具有大致上為圓形、橢圓形、方形或矩形的環狀/帶狀形狀,從而具有不一致的寬度(例如,在一個精確的圓形帶狀/環狀的情況下)或不同的寬度(例如,在一個精確的橢圓形帶狀/環狀的情況下)。在任何 情況下,環狀接觸的最小寬度可為大約3nm,在一些實施例中,例如,因為電阻的關係。
本文所提供的技術可以用於改善任何數目的積體電路結構及配置的臨界電流要求,如前面所敘述之自旋轉移力矩記憶體(Spin-transfer torque memory,STTM)裝置。因此,所揭露之技術可以被利用,根據一些實施例中,在嵌入式及/或非嵌入式非揮發性記憶體結構的形成中。然而,如本文各種敘述之技術也可以被使用以利於其它包括磁性隧道接面(magnetic tunnel junction,MTJ)的結構,如磁阻式隨機存取記憶體(Magnetoresistive Random Access Memory,MRAM)或熱輔助切換磁阻式隨機存取記憶體(thermal assisted switching MRAM,TAS-MRAM)。換句話說,本文所述之技術可被使用任何適合的結構或裝置,其將受益於使用用於減少切換MTJ之自由層的磁性方向所需電流(在此被稱為臨界電流)的環形接觸。因此,在一些情況下,例如,所揭露之技術可以被使用以減少接觸尺寸而提供小的、可擴展的記憶胞。
經分析(例如,使用掃描/穿透式電子顯微鏡(scanning/transmission electron microscopy,SEM/TEM)及/或組合物映射),根據一個或多個實施例配置之結構將有效地顯示如本文各種描述用於記憶體元件之環狀接觸或導電間隔物。此外,這種結構之臨界電流的要求可以相比於具有非環狀接觸之相似記憶體元件(例如,共 享自由磁性層表面面積之接觸)以測量透過使用如本文所描述的各種環狀接觸所實現之臨界電流要求的益處。在一些實施例中,使用如本文各種描述的環狀接觸導致於給定MTJ的臨界電流下降至少大約10%;然而,一些實施例中可能會導致更大的臨界電流要求的下降。鑒於本發明,無數的配置及變化將是顯而易見。
架構和方法
第1圖根據本發明一個或多個實施例繪示形成積體電路的方法100。第2A-H”圖根據各種實施例繪示當執行第1圖的方法100時形成之範例結構。第2I-I”圖根據本發明一些實施例繪示第2 H-H”圖之結構,其分別受電性驅動呈現範例電流流動線260及260’。雖然本文所揭露的技術主要是示出及描述自旋轉移力矩記憶體(Spin-transfer torque memory,STTM)元件的範圍,本文所敘述之類似的原理和技術可以用於其它積體電路結構。例如,本文所述技術可用於其它結構,包括磁性隧道接面(magnetic tunnel junction,MTJ),如磁阻式隨機存取記憶體(Magnetoresistive Random Access Memory,MRAM)或熱輔助切換磁阻式隨機存取記憶體thermal assisted switching MRAM,TAS-MRAM)。換句話說,本文所述之技術可被使用於任何適合的結構或裝置,其將受益於使用用於減少切換MTJ之自由層的磁性方向所需電流的環形接觸(在此被稱為臨界電流)。
如第1圖所示,方法100包括在基材上沉積102 MTJ層210以形成如第2A圖所示之範例結果結構,根據一實施例。在此範例實施例中,基材包括具有在孔洞202任一側之介電層200之第一(或底部)孔洞202。孔洞202可延伸至互連,導致例如一個位元線,如根據本發明將顯而易見。孔洞202可由任何合適導電材料(或結合的材料)、使用任何適合技術形成,且孔洞202的尺寸可根據給定的目標應用或終端使用需求客製化。例如,一些情況下,孔洞202可包含銅(Cu)、鈷(Co)、鉬(Mo)、銠(Rh)、鈹(Be)、鉻(Cr)、錳(Mn)、鋁(Al)、鈦(Ti)、銦(In)、釕(Ru)、鈀(Pd)、鎢(W)及/或鎳(Ni)。介電質200可由任何合適的介電材料或絕緣材料(或此種材料的結合)、使用任何適合技術形成。例如,一些情況下,介電質200可包含如二氧化矽(SiO2)或碳摻雜氧化物(CDO)之氧化物;氮化矽;如過氟環丁烷(perfluorocyclobutane)或聚四氟乙烯(polytetrafluoroethylene)、氟矽酸鹽玻璃(FSG)之有機化合物及/或如倍半矽氧烷(silsesquioxane)、矽氧烷(siloxane)或有機矽玻璃(organosilicate glass)的有機矽聚合物。
如第2A圖所示,MTJ堆疊210包括固定磁性層212、隧道阻障層214以及自由磁性層216。固定磁性層212(也被稱為釘扎磁性層(pinned magnetic layer))可由任何合適磁性材料(或此種材料的結合)、使用任何 各種各樣的技術形成。一些實施例中,固定磁性層212由用以固定多數自旋之材料或材料堆疊組成。例如,根據一些實施例,固定磁性層212可由鐵(Fe)、鉭(Ta)、釕(Ru)、鈷(Co)、如鈀化鈷(CoPd)之一種或多種過渡金屬的合金、如硼化鐵鈷(CoFeB)之一種或多種過渡金屬及非金屬的合金以及/或一種或多種它們的合金組成。一些實施例中,例如固定磁性層212由單一CoFeB層組成,而其它實施例固定磁性層可由CoFeB/Ru/CoFeB堆疊形成。根據一些實施例,固定磁性層212的形成可由使用例如:如濺鍍沉積之物理氣相沉積(physical vapor deposition,PVD)製程、化學氣相沉積(chemical vapor deposition,CVD)製程、原子層沉積(atomic layer deposition,ALD)製程及/或分子束磊晶(molecular beam epitaxy,MBE)製程。固定磁性層212可具有任何合適厚度,例如在一些實施例中厚度在20-30nm的範圍。其它用以形成固定磁性層212之合適材料及技術將根據給定的應用,根據本發明將顯而易見。
隧道阻障層214可由任何合適電性絕緣材料(或此種材料的結合)、使用任何各種各樣的技術形成。一些實施例中,隧道阻障層214可由任何合適用於允許多數自旋之電流通過該層之材料組成,而阻礙(至少達某程度)少數自旋之電流通過該層,正如習慣上用於隧道及隧道阻障層的情況下。例如,一些情況下,隧道阻障層214可由如氧化鎂(magnesium oxide,MgO)、氧化鋁 (aluminum oxide,Al2O3)或任何其它合適隧道材料的氧化物形成。根據一些實施例,隧道阻障層214可使用前面討論與固定磁性層212有關之任何範例形成技術形成。隧道阻障層214可具有任何合適厚度,例如在一些實施例中厚度為1nm或更少。其它用以形成隧道阻障層214之合適材料及技術將根據給定的應用,當根據本發明將顯而易見。
根據一些實施例,自由磁性層216可使用前面討論之例如與固定磁性層212有關之任何範例磁性材料形成。一些實施例中,自由磁性層216可由適合於在多數自旋與少數自旋之間過渡之材料組成。此外,自由磁性層216可以被允許接受在本身的磁性變化,並且因此可以被認為是,在一般的意義上,為一種自由或動態磁性層。因此,自由磁性層216(或記憶體層)在某些情況下也被稱為鐵磁記憶體(ferromagnetic memory)層。在一些範例情況下,自由磁性層216可由CoFeB單層形成。如將進一步理解的是,根據一些實施例,自由磁性層216可使用前面討論與固定磁性層212有關之任何範例形成技術形成。自由磁性層216可具有任何合適厚度,例如在一些實施例中厚度在1-2nm的範圍。其它用以形成自由磁性層216之合適材料及技術將根據給定的應用,當根據本發明將顯而易見。
方法100在根據一些實施例繼續沉積104第一導電層220在MTJ堆疊210上,沉積106絕緣層230 於其上,以及就此選擇性沉積108導電硬遮罩層240於其上,以形成如第2B圖所示之結果範例結構。沉積104、106及108可使用前面討論之範例技術(例如,PVD、CVD、ALD、MBE等等),或使用任何其它合適技術執行。此外,在一些實施例中,沉積104、106及/或108可於原位執行/沒有空氣斷開以,例如,防止該等層中的一層或多層之不需要的氧化。第一導電層220及導電硬遮罩層240可包含任何合適導電材料(如各種金屬或金屬合金)形成,包括,但不限制於,釕(Ru)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)及/或氮化鉭(TaN)。在一些實施例中,第一導電層220可使用作為用於蝕刻116之蝕刻停止層,如將在這邊所討論。絕緣層230可包含任何合適的電性絕緣材料,包括,但不限制於,各種介電材料,如那些前面所列相關於介電質200者。一些實施例中,絕緣層230可由沉積金屬薄層(例如,鉭)、接著氧化金屬薄層以形成絕緣材料層230(以及接著沉積導電硬遮罩層240於其上)來形成。絕緣層230可具有任何合適厚度,例如在一些實施例中厚度至少為1nm。
方法100繼續選擇性蝕刻110導電硬遮罩層240及蝕刻112絕緣層230,以形成如第2C圖所示之所得範例結構,根據一些實施例。蝕刻110及112可使用任何合適蝕刻技術執行以及可包括任何數目之合適圖形化製程。例如,一些實施例中,導電硬遮罩層240之蝕刻110 可為任何習知乾式蝕刻製程且絕緣層230之蝕刻112可為任何合適乾式或濕式蝕刻。一些實施例中,該蝕刻可於原位執行/沒有空氣斷開,其中只改變蝕刻氣體從蝕刻110至112。
回想一下,在一些實施例中,導電硬遮罩層240之沉積108及蝕刻110都是選擇性的製程。因此,在一些實施例中沉積108及蝕刻110皆未執行,導電硬遮罩層240將不存在於該結構中,如第2B’圖及第2C’圖所示之所得範例結構。注意在這種實施例中,絕緣層230’可能較厚(例如,相較於絕緣層230)是因為不存在導電硬遮罩層沉積在其上的結果。例如,在一些這種實施例中,絕緣層230’可具有2nm或更大的厚度,或5nm或更大的厚度,根據本發明將顯而易見。這種其中不存在導電硬遮罩層240的實施方施將參考第2H’圖於下面更仔細的討論。
方法100繼續選擇性的沉積114第二導電層250在蝕刻112之後形成的結構的表面型態上,以形成如第2D圖所示的所得範例結構,根據一實施例。沉積114可使用上面所討論的範例技術(例如,PVD、CVD、ALD、MBE等等)來執行。一些實施例中,沉積114用於在不平坦/非平面結構(例如,如第2D圖之情況下)上達到足夠一致厚度的第二導電層250的共形沉積製程(conformal deposition process)(例如,共形CVD或ALD製程)。第二導電層250可包含任何合適導電材料(如各種金屬或金屬合金),包括但不限於,釕(Ru)、 鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)及/或氮化鉭(TaN)。一些實施例中,蝕刻112及沉積114可於原位執行/沒有空氣斷開以,例如,防止第一導電層220不欲見的氧化。注意在其中第一導電層220包含釕(Ru)的實施例中,沉積114可離位(ex-situ)執行,因為氧化釕是導電的。還要注意的是,在一些實施例中,第一導電層220及/或導電金屬硬遮罩240及/或第二導電層250可包含相同材料(例如,層220和250可以都是釕)。此外需注意的是在一些實施例中,不需要執行第二導電層250之選擇性沉積114,將參考第2E圖於下面更仔細的描述。
方法100繼續蝕刻116導電層220及250以形成如第2E圖所示之範例所得結構之導電間隔物252,根據一實施例。蝕刻116可使用任何合適乾或濕蝕刻技術執行以及可包括任何數目之合適的圖形化製程。在一些實施例中,活性離子蝕刻(reactive ion etch,RIE)製程及/或離子研磨(ion milling)製程可被使用以形成導電間隔物252。一些實施例中,可使用乾式電漿基蝕刻製程。一些實施例中,可使用蝕刻116使用非揮發性蝕刻劑,如氬(argon)及/或氪(krypton)(例如,在離子撞擊期間),或O2、Cl2及/或Ar的一些組合。如前面所敘述,一些情況下,第一導電層220可被使用作為幫助蝕刻116之蝕刻停止層。此外,在一些情況下,絕緣層230可被使用作為蝕刻停止層,接著選擇性蝕刻絕緣層230。注 意蝕刻116在此範例實施例中停止於自由層216。
回想第二導電層的沉積114是選擇性的,且在其中未執行沉積114的實施例中,不形成第二導電層250(例如,第2D圖所示)。在此類實施例中,非揮發性蝕刻可在蝕刻116過程中執行,導致第一導電層220的部分被轉移在絕緣層230及導電硬遮罩240的側壁上以形成導電間隔物252。第2E圖所示之此種實施例所得結構範例,除了在這種範例實施例中,導電間隔物252由第一導電層220形成而不是第二導電層250,如使用如先前所描述之非揮發性蝕刻的結果。
方法100繼續蝕刻118 MTJ堆疊210(包括自由磁性層216、隧道阻障層214及固定磁性層212),以形成第2F圖所示之範例所得結構,根據一實施例。蝕刻118可使用任何合適乾式或濕式蝕刻技術執行以及可包括任何數目之合適圖形化製程。在一些實施例中,蝕刻116及蝕刻118可於原位執行/沒有空氣斷開以保留MTJ堆疊210中的一層或多層。注意蝕刻118停止於基材上(且基材包含介電質200及孔洞202,在此範例情況下)。
第2G圖根據一實施例繪示第2F圖所得結構之上視圖(其中第2F圖繪示結構之前視圖)。如可在第2G圖看出,導電間隔物252提供給自由層216環狀接觸,更具體地,接觸具有圓形環狀/帶狀形狀。注意在本文各種敘述的接觸形狀(例如,環形、圓形、橢圓形、中空等等)為從積體電路結構的上方觀察的形狀。回想可為 任何合適中空形狀之環狀接觸252,如橢圓形,因此第2G圖所示之範例形狀被提供以便於描述。在此範例實施例中,導電間隔物/環狀接觸252具有一致的寬度W(如在第2F圖及第2G圖所表示)。在一些情況下,寬度W可為至少3nm(例如,由於電阻的考量);然而,寬度W可為任何合適厚度,如1-100nm,或任何根據本發明將顯而易見之合適厚度。注意第2G圖所示之孔洞202被完全覆蓋;然而,這不是必須的情況。
在實施例中,其中環狀接觸不是正圓形,環狀接觸的寬度可變化,使得其具有較薄部分及較厚部分,甚至部分具有中間厚度。在一些實施例中,環狀接觸可具有橢圓形環狀/帶狀形狀。在一些這種實施例中,橢圓形環狀接觸可具有30×50nm、40×75nm、50×100nm、60×120nm的尺寸,或一些其它根據目標應用的合適尺寸。回想環狀接觸不需要為正圓形或橢圓形環狀/帶狀形狀,只要環形接觸是中空的。一些實施例中,在環狀接觸中洞(即,由導電硬遮罩240及環狀接觸/導電間隔物252內部的絕緣層230產生的洞)的範圍可以從整體形狀(例如,環狀接觸加洞)的面積30~90%及/或自由層216面積的30~90%。
方法100繼續選擇性完成自旋轉移力矩記憶體(Spin-transfer torque memory,STTM)元件(或一些其它合適記憶體元件),如第2H圖所示之範例所得結構,根據一實施例。在此範例實施例中,第二(或頂)孔 洞204形成在第2G圖所示之所得結構上,且介電材料201圍繞且電性絕緣所得STTM元件。相對於前面所討論之應用孔洞202及介電質200,分別,至孔洞204及介電質201。第2H’圖繪示根據一實施例在選擇性完成120 STTM元件形成之後之範例所得結構,在其中導電硬遮罩層沒有沉積在絕緣層230’上的情況中(例如,如前面參考第2B’圖及第2C’圖之討論)。第2H”圖繪示根據一實施例在選擇性完成120 STTM元件形成之後之範例所得結構,在其中絕緣層沒有被沉積在沉積導電硬遮罩層240”之前,而是導電硬遮罩層240”被氧化以形成絕緣層230”。在此實施例中,導電硬遮罩層240”可以被沉積而不需絕緣層230(例如,如果絕緣層230不存在於第2C圖所示的結構)。此外,在此實施例中,導電硬遮罩層240”可使用任何合適用以轉換導電硬遮罩層240”的暴露部分為絕緣層230”或形成絕緣層230”在導電硬遮罩層240”上的技術氧化,從而形成第2H”圖所示之所得範例結構。
第2I-I”圖分別根據本發明一些實施例繪示第2 H-H’圖之結構之電性驅動呈現所之範例電流流動線260-260”。在第2I圖之範例實施例中,該結構為STTM元件(例如,位元胞),且當電性驅動時,電流260流動:下至孔洞204,進入導電硬遮罩層240及導電間隔物252,圍繞絕緣層230,通過第一導電層220,進入磁性自由層216,然後向下通過MTJ堆疊210的其它部份及孔洞202。當電流260向下流到環狀接觸/導電間隔物252及圍 繞絕緣層230時,局部電流密度發生增加。具有增加電流密度之電流260繼續通過第2I圖可看到的自由層216的邊緣/外部。這將導致其中電流260通過之自由層216的部分翻轉(如果電流密度達到一定的臨界),驅動自由層216的其餘部分為反向狀態。因為環狀接觸/導電間隔物252,及絕緣層230,導致增加通過自由層216之電流密度(例如,相較於使用完整/非環狀接觸於給定臨界電流),較低臨界電流可使用於給定的MTJ堆疊210。注意在第2I’圖之範例實施例中,電流260’通過環狀接觸/導電間隔物252’且圍繞絕緣層230’,因為不存在導電硬遮罩層。此外需注意的是在第2I”圖之範例實施例中,電流260”通過環狀接觸/導電間隔物252”且圍繞絕緣層230”,因為絕緣層230”覆蓋導電硬遮罩層240”。回想在此範例實施例中,絕緣層230”可以為導電硬遮罩層240”的氧化層,如前面所描述。第2I’圖及第2I”圖中的配置也導致在自由層216中之電流密度增加,如前面可看出及如前面所敘述。在一些實施例中,底部孔洞202(因此固定磁性層212)可電性連接至位元線以及頂部孔洞204(因此自由磁性層216)可電性連接至電晶體,當根據本發明將顯而易見。
第3圖根據本發明一個或多個實施例繪示形成積體電路的方法300。第4A-H’圖根據本發明各種實施例繪示當執行第3圖的方法300時之範例結構。第4I-I’圖分別根據本發明一些實施例繪示第4 H-H’圖之結構之電 性驅動呈現所之範例電流流動線460及460’。前面關於第1圖及第2A-I’圖的討論同樣適用這裡,如將被理解的。相似的編號被使用來辨識使用於第3圖及第1圖之製程,不同之處在於第3圖包括編號300系列,而第1圖包括編號100系列(例如,沉積302相似於沉積102,蝕刻318相似於蝕刻118,等等)。此外,相似編號被使用來辨識使用於第4A-I’圖及第2A-I’圖之特徵,不同之處在於第4A-I’圖包括編號400系列,而第2A-I’圖包括編號200系列(例如,孔洞402相似於孔洞202,MTJ 410堆疊相似於MTJ堆疊210,等等)。因此,僅主要地討論第3圖和第4A-I’圖相對於第1圖和第2A-I’圖之不同之處。
如在第3圖可以看出,方法300包括沉積302 MTJ層310在基材上以形成第4A圖所示之範例所得結構,根據一實施例。在此實施例中,基材包括具有介電層400在孔洞402不同側的第一(或底部)孔洞402。前面相對於MTJ堆疊的描述(在此範例實施例中,其包括固定磁性層412、隧道阻障層414及自由磁性層416),第一(或底部)孔洞及介電層在此處也是同樣適用。
方法300繼續沉積306隧道材料層430在MTJ堆疊410,且接著沉積308導電硬遮罩層440於其上,以形成第4B圖所示之範例所得結構,根據一實施例。沉積306可使用前面討論之範例技術(例如,PVD、CVD、ALD、MBE等等)執行,或使用任何合適技術。回想第2B圖的實施例,第一導電層(例如,金屬層,例如 Ru層)直接地沉積在自由層上。然而,在第4B圖之實施例中,隧道材料層430直接沉積在自由層416上。隧道材料層430可包含氧化鎂(magnesium oxide,MgO)、氧化鋁(aluminum oxide,Al2O3)、氧化鉭(tantalum oxide,Ta2O5)或一些其它根據目標應用的合適隧道材料,且當根據本發明將顯而易見。例如,隧道材料層430可包含一些其它合適導電氧化物或任何合適於在MTJ之隧道阻障層之應用的材料。直接沉積隧道材料(例如,當相較於其它介電材料)在自由層416上可增加MTJ裝置的穩定性,因為在隧道材料層430和自由層416產生介面。在一些實施例中,隧道材料層430可被沉積以具有任何合適厚度(例如,大於1nm的厚度),當根據本發明將顯而易見。前面相對於導電硬遮罩層及相關沉積的敘述在此處也同樣適用。
方法300繼續蝕刻310導電硬遮罩層440以及蝕刻312隧道材料層430,以形成第2C圖所示之所得範例結構,根據一實施例。前面相對於蝕刻導電硬遮罩層的敘述在此處也同樣適用。蝕刻312在此範例實施例中為完整/完全蝕刻隧道材料層430,僅留下在導電硬遮罩層440下方之層430的部分,如在第4C圖可以看出。在第4C’圖所示之實施例中,部分蝕刻312’被執行以形成部分蝕刻的隧道材料層430’。如將在本文中所討論,部分蝕刻312’可向下蝕刻隧道材料層430’至1nm或更少之厚度,一些情況下,已允許電流流經過這較薄部分(例如,以類 似於電流可以留過隧道阻障層414的方式),但可以保證整個自由層具有一些隧道材料層430’在它的上面,例如,如第4C’圖所示。此外,在此實施例中,藉由執行隧道材料層430’之部分蝕刻312’,自由磁性層416未暴露,其可以幫助保護層416的下方,當根據本發明將顯而易見。
方法300繼續沉積314導電450在蝕刻312之後形成的表面型態上,以形成如第4D圖所示之所得範例結構,根據一實施例。前面相對於沉積此導電層之敘述在此處也是同樣適用。一些實施例中,蝕刻312以及沉積314可於原位執行/沒有空氣斷開,例如,防止自由磁性層416不需要的氧化。
方法300繼續蝕刻316導電層450以形成如第4E圖所示之範例所得結構之導電間隔物452。方法300繼續蝕刻318 MTJ堆疊410(包括自由磁性層416、隧道阻障層414以及固定磁性層412),以形成如第4F圖所示之範例所得結構。前面相對於蝕刻導電層以形成導電間隔物以及蝕刻MTJ堆疊之敘述在此處也是同樣適用。第4G圖繪示第4F圖中所示之所得結構的上視圖(其中第4F圖繪示結構之前視圖)。前面相對於導電間隔物/環狀接觸之敘述在此處也是同樣適用。
方法300繼續選擇性完成自旋轉移力矩記憶體(Spin-transfer torque memory,STTM)元件(或一些其它合適記憶體元件)之形成320,如第4H圖所示之範例所得結構,根據一實施例。在此範例實施例中,第二 (或頂)孔洞404形成在第4G圖所示之所得結構上,且介電材料401圍繞且電性絕緣所得STTM元件。前面相對於選擇性完成STTM元件之形成之敘述在此處也是同樣適用。
第4H’圖繪示根據一實施例在選擇性完成120 STTM元件形成之後之範例所得結構,在其中隧道材料層430’之部分蝕刻312’被執行(例如,如參考第4C’圖之前面的討論),根據一實施例。如第4H’圖可以看出,部分蝕刻312'的結果,隧道材料層430’具有第一(較薄)厚度X1以及第二(較厚)厚度X2。也可以看出,導電間隔物/環狀接觸452’形成在隧道材料層430’第一/較薄部分X2上。如前面所敘述,在一些情況下,隧道材料層430’之較薄部分X2為1nm或更薄(例如,一些情況下為0.5nm),或一些其它合適厚度,以允許電流通過其較薄X2的位置。此外,一些情況下,隧道材料層430’之較厚部分X1為大於1nm(例如,一些情況下至少為2nm)或一些其它合適厚度,以防止電流通過其較厚X1的位置。
第4I-I’圖分別根據本發明一些實施例繪示第4 H-H’圖之結構之電性驅動呈現所之範例電流流動線460及460’。在第4I圖的範例實施例中,該結構為STTM元件(例如,位元胞),且當電性驅動時,電流460流動:下至孔洞404,進入導電硬遮罩層440及導電間隔物452,圍繞絕緣層430,進入磁性自由層416,然後向下通過MTJ堆疊410的其它部份及孔洞402。前面相對於藉由 使用環狀接觸導致電流叢聚(current crowding)結果而增加電流密度之敘述在此處也是同樣適用。注意在第4I’圖之範例實施例中,電流460’透過隧道材料層430’之薄部分X1流通過導電硬遮罩層440以及環狀接觸/導電間隔物452’,因為厚部分X1防止電流通過當薄部分X1允許電流通過或穿隧。在一些實施例中,底部孔洞402(因此固定磁性層412)可電性連接至位元線以及頂部孔洞404(因此自由磁性層416)可電性連接至電晶體,當根據本發明將顯而易見。
範例系統
第5圖繪示根據一範例實施例之實施本文所揭露之技術的積體電路結構或裝置之運算系統1000。可以看出,運算系統1000容納一電路板1002。電路板1002可以包括多個組件,包括,但不限制於一處理器1004以及至少一通訊晶片1006,其各者都可以物理和電性耦合至電路板1002,或以其它方式在此整合。如將理解的,電路板1002可為,例如,任何印刷電路板,無論是主板、安裝在主板的子板或系統1000的唯一板等等。
根據其應用,運算系統1000可以包括一個或多個其它組件透過或沒透過物理和電性耦合至電路板1002。這些其它組件包括,但不限制於,揮發性記憶體(例如:DRAM)、非揮發性記憶體(例如,ROM、STTM等等)、圖形處理器(graphics processor)、數位 訊號處理器(digital signal processor)、密碼處理器(crypto processor)、晶片組(chipset)、天線(antenna)、顯示器(display)、觸控螢幕顯示器(touchscreen display)、觸控螢幕控制器(touchscreen controller)、電池(battery)、音頻編解碼器(audio codec)、視頻編解碼器(video codec)、功率放大器(power amplifier)、一個全球定位系統(global positioning system,GPS)裝置,羅盤(campass)、加速度計(accelerometer)、陀螺儀(gyroscope)、揚聲器(speaker)、相機(camera)、以及一個大容量存儲裝置(mass storage device)(例如:硬碟機(hard disk drive)、光碟(compact disk,CD)、數位影音光碟(digital versatile disk,DVD)等等)。任何包括在運算系統1000內之組件可包括一個或多個根據一範例實施例之使用所揭示技術的積體電路結構或裝置。在一些實施例中,多項功能可以被整合於一個或多個晶片(例如,例如,注意通訊晶片1006可以是部分或以其它方式整合到處理器1004)。
通訊晶片1006可以透過無線通訊從另一台運算系統1000傳送資料和接收資料。用語"無線"及其衍生用於描述電路、裝置、系統、方法、技術、通訊通道等等,其可以通訊資料通過使用調製電磁波於非固體介質。該用語不是暗示相關裝置不包含有線,儘管一些實施例可能沒有包含有線。通訊晶片1006可以實現任何數目的無 線標準或協議,包括但不限制於無線網絡(IEEE802.11系列)、WiMAX(IEEE802.16系列)、IEEE 802.20、長期演進(long term evolution,LTE)、EV-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、藍芽(Bluetooth)、它們的衍生物、以及被指定為3G、4G、5G和超越任何其它無線協議。運算系統1000可包括複數個通訊晶片1006。例如,第一通訊晶片1006可專用於短距離無線通訊例如Wi-Fi和藍芽以及一第二通訊晶片1006可專用於長範圍的無線通訊如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、EV-DO、和其它。
運算系統1000的處理器1004包括積體電路晶粒封裝在處理器1004內。一些實施例中,處理器之積體電路晶粒包括實施一個或多個使用如本文各種敘述所揭露技術之積體電路結構或裝置的板上電路。用語"處理器"可以指任何裝置或裝置的一部分用來處理,例如,來自暫存器及/或記憶體電子資料,轉換該電子資料成可儲存於暫存器及/或記憶體的其它電子資料。
通訊晶片1006也可以包括積體電路晶粒封裝在通訊晶片1006內。根據一些這種範例實施例,通訊晶片之積體電路晶粒包括實施一個或多個使用如本文各種敘述所揭露技術之積體電路結構或裝置的板上電路。當根據本發明將顯而易見,需要注意的是多標準無線能力可以直接整合至處理器1004(例如,其中任何晶片1006的功能 整合至處理器1004,而不是具有分開的通信晶片)。此外需要注意的是處理器1004可為具有這種無線能力得晶片組。簡言之,可以使用任何數目的處理器1004及/或通訊晶片1006,任何晶片或晶片組可具有多功能整合於其中。
在各種實施中,運算系統1000可以為膝上型電腦(laptop)、簡易筆記型電腦(netbook)、筆記型電腦(notebook)、智慧型手機(smartphone)、平板電腦(tablet)、個人數位助理(personal digital assistant,PDA)、超級行動個人電腦(ultra mobile PC)、行動電話(mobile phone)、桌上型電腦(desktop computer)、伺服器(server)、印表機(printer)、掃描器(scanner)、螢幕(monitor)、機頂盒(set-top box)、娛樂控制單元(entertainment control unit)、數位相機(digital camera)、隨身音樂播放器(portable music player)、數位影音錄放器(digital video recorder)、任何其它電子裝置其處理資料或採用一個或多個如本文各種敘述所揭露技術之積體電路結構或裝置。
進一步範例實施例
下面範例屬於進一步實施例,從中眾多排列和配置將是顯而易見的。
範例1為一種積體電路,包含:固定磁性層、位於該固定磁性層上方之自由磁性層、設置於該固定 磁性層及該自由磁性層之間之隧道阻障層、形成於該自由磁性層上方之絕緣層以及圍繞該絕緣層的至少一部分且電性連接至該自由磁性層之導電環狀接觸。
範例2包括範例1之技術特徵,其中該固定磁性層、該隧道阻障層及該自由磁性層包含磁性隧道接面(magnetic tunnel junction,MTJ)。
範例3包括範例1-2任何一個之技術特徵,其中該環狀接觸具有基本上圓形、橢圓形、正方形或矩形環狀/帶狀形狀。
範例4包括範例1-3任何一個之技術特徵,其中該環狀接觸包含釕(Ru)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)及/或氮化鉭(TaN)中的至少一種。
範例5包括範例1-4任何一個之技術特徵,其中從該積體電路的俯視透視,該環狀接觸表面面積包含該自由磁性層表面面積的10-90%。
範例6包括範例1-5任何一個之技術特徵,其中該環狀接觸具有至少3nm之最小寬度。
範例7包括範例1-6任何一個之技術特徵,其中該絕緣層的至少一部分為至少1nm厚。
範例8包括範例1-7任何一個之技術特徵,其中該絕緣層包含介電材料。
範例9包括範例1-8任何一個之技術特徵,更包含設置於該自由磁性層及該絕緣層之間之導電層。
範例10包括範例9之技術特徵,其中該導電層包含釕(Ru)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)及/或氮化鉭(TaN)中的至少一種。
範例11包括範例1-7任何一個之技術特徵,其中該絕緣層包含氧化鎂(magnesium oxide,MgO)或氧化鋁(aluminum oxide,Al2O3)。
範例12包括範例11之技術特徵,其中該環狀接觸與該自由磁性層物理接觸。
範例13包括範例11之技術特徵,其中該氧化鎂或氧化鋁層之厚度設置於該環狀接觸及該自由磁性層。
範例14包括範例13之技術特徵,其中該厚度小於1nm。
範例15包括範例1-14任何一個之技術特徵,更包含相鄰於該絕緣層之導電硬遮罩,其中該環狀接觸圍繞該導電硬遮罩的至少一部分。
範例16包括範例15之技術特徵,其中該導電硬遮罩包含釕(Ru)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)及/或氮化鉭(TaN)中的至少一種。
範例17包括範例1-16任何一個之技術特徵,其中該固定磁性層係電性連接至位元線及該自由磁性層電性連接至電晶體。
範例18為一種嵌入式記憶體裝置包含範例1- 17任何一個之技術特徵。
範例19包括範例18之技術特徵,其中該嵌入式記憶體裝置係自旋轉移力矩記憶體(spin-torque transfer memory,STTM)裝置。
範例20為一種形成積體電路的方法,該方法包含:沉積磁性隧道接面(magnetic tunnel junction,MTJ)層於基材上,該MTJ層包含固定磁性層、自由磁性層及設置於該固定磁性層及該自由磁性層之間的隧道阻障層;沉積第一導電層於該自由磁性層上;沉積絕緣層於該第一導電層上;蝕刻該絕緣層;蝕刻該第一導電層以形成圍繞該絕緣層的至少一部分之導電間隔物;以及蝕刻該MTJ層。
範例21包括範例20之技術特徵,其中該導電間隔物具有基本上圓形、橢圓形、正方形或矩形環狀/帶狀形狀。
範例22包括範例20-21任何一個之技術特徵,其中從該積體電路的俯視透視,該導電間隔物表面面積包含該自由磁性層表面面積的10-90%。
範例23包括範例20-22任何一個之技術特徵,其中該導電間隔物包含釕(Ru)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)及/或氮化鉭(TaN)中的至少一種。
範例24包括範例20-23任何一個之技術特徵,更包含:在蝕刻該絕緣層之前,沉積導電硬遮罩層在 該絕緣層上;及蝕刻該導電硬遮罩層。
範例25包括範例20-24任何一個之技術特徵,其中蝕刻該第一導電層包括非揮發蝕刻製程。
範例26包括範例20-25任何一個之技術特徵,更包含:在蝕刻該第一導電層之前,沉積第二導電層;及在蝕刻該第一導電層之前,蝕刻該第二導電層。
範例27包括範例26之技術特徵,其中蝕刻該絕緣層及沉積該第二導電層於原位執行或沒有空氣斷開。
範例28包括範例25-27任何一個之技術特徵,其中沉積該第二導電層係執行使用共形沉積製程。
範例29包括範例25-28任何一個之技術特徵,其中蝕刻該導電層係執行使用活性離子蝕刻(reactive ion etch,RIE)製程。
範例30為一種形成積體電路的方法,該方法包含:沉積磁性隧道接面(magnetic tunnel junction,MTJ)層於基材上,該MTJ層包含固定磁性層、自由磁性層及設置於該固定磁性層及該自由磁性層之間的隧道阻障層;沉積隧道材料層在該自由磁性層上;沉積導電硬遮罩層在該隧道材料層上;蝕刻該導電硬遮罩層;蝕刻該隧道材料層;沉積導電層於所得表面形狀上;蝕刻該導電層以形成圍繞該隧道材料層的至少一部分之導電間隔物;以及蝕刻該MTJ層。
範例31包括範例30之技術特徵,其中該導 電間隔物具有基本上圓形、橢圓形、正方形或矩形環狀/帶狀形狀。
範例32包括範例30-31任何一個之技術特徵,其中從該積體電路的俯視透視,該導電間隔物表面面積包含該自由磁性層表面面積的10-90%。
範例33包括範例30-32任何一個之技術特徵,其中該導電間隔物包含釕(Ru)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)及/或氮化鉭(TaN)中的至少一種。
範例34包括範例30-33任何一個之技術特徵,其中沉積該導電層係執行使用共形沉積製程。
範例35包括範例30-34任何一個之技術特徵,其中蝕刻該導電層係執行使用活性離子蝕刻(reactive ion etch,RIE)製程。
範例36包括範例30-35任何一個之技術特徵,其中沉積該隧道材料層導致該隧道材料層具有大於1nm之厚度。
範例37包括範例30-36任何一個之技術特徵,其中蝕刻該隧道材料層係完整蝕刻該隧道材料層往下至該自由磁性層。
範例38包括範例30-37任何一個之技術特徵,其中蝕刻該隧道材料層係部份蝕刻該隧道材料層,留下該隧道材料的薄部分於該自由磁性層。
範例39包括範例38之技術特徵,其中該隧 道材料的該薄部分具有1nm或更少之厚度。
範例40包括範例30-39任何一個之技術特徵,其中蝕刻該隧道材料層及沉積該導電層於原位執行或沒有空氣斷開。
前述描述之範例實施例已經呈現用於說明和描述的目的。所揭露的精確形式不是來用窮盡或限制本發明。當根據本發明時許多可行的修改及變化將顯而易見。目的是本揭露的範圍不是限制於這些詳細的描述,而是後附之申請專利範圍所界定者為準。將來早於本發明之申請可能以不同方式申請保護所揭露之技術特徵,並且通常可包括如本文各種揭露或其他示例的任何組的一個或更多的限制。
200,201‧‧‧介電質
202,204‧‧‧孔洞
210‧‧‧MTJ堆疊
212‧‧‧固定層
214‧‧‧隧道阻障層
216‧‧‧自由層
220‧‧‧第一導電層
230‧‧‧絕緣層
240‧‧‧導電硬遮罩層
252‧‧‧導電間隔物
260‧‧‧電流流動線

Claims (21)

  1. 一種積體電路,包含:固定磁性層;自由磁性層,其位於該固定磁性層上方;隧道阻障層,其設置於該固定磁性層及該自由磁性層之間;絕緣層,其形成於該自由磁性層上方;導電硬遮罩,其與該絕緣層相鄰;以及導電環狀接觸,其圍繞該絕緣層的至少一部分以及該導電硬遮罩的至少一部分。
  2. 如申請專利範圍第1項所述之積體電路,其中該固定磁性層、該隧道阻障層及該自由磁性層包含磁性隧道接面(magnetic tunnel junction,MTJ)。
  3. 如申請專利範圍第1項所述之積體電路,其中該環狀接觸具有基本上圓形、橢圓形、正方形或矩形環狀/帶狀形狀。
  4. 如申請專利範圍第1項所述之積體電路,其中該環狀接觸包含釕(Ru)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(TiN)及/或氮化鉭(TaN)中的至少一種。
  5. 如申請專利範圍第1項所述之積體電路,其中從該積體電路的俯視透視,該環狀接觸表面面積包含該自由磁性層之表面面積的10-90%。
  6. 如申請專利範圍第1項所述之積體電路,其中該 環狀接觸具有至少3nm之最小寬度。
  7. 如申請專利範圍第1項所述之積體電路,其中該絕緣層的至少一部分為至少1nm厚。
  8. 如申請專利範圍第1項所述之積體電路,其中該絕緣層包含介電材料。
  9. 如申請專利範圍第1項所述之積體電路,更包含導電層,其設置於該自由磁性層及該絕緣層之間。
  10. 如申請專利範圍第1項所述之積體電路,其中該絕緣層包含氧化鎂(magnesium oxide,MgO)或氧化鋁(aluminum oxide,Al2O3)。
  11. 如申請專利範圍第10項所述之積體電路,其中該環狀接觸與該自由磁性層物理接觸。
  12. 如申請專利範圍第10項所述之積體電路,其中該氧化鎂或氧化鋁層之厚度設置於該環狀接觸及該自由磁性層之間。
  13. 如申請專利範圍第12項所述之積體電路,其中該厚度小於1nm。
  14. 如申請專利範圍第1項所述之積體電路,其中該固定磁性層係電性連接至位元線及該自由磁性層電性連接至電晶體。
  15. 一種嵌入式記憶體裝置包含申請專利範圍第1項-第14項中任一項所述之積體電路。
  16. 如申請專利範圍第15項所述之嵌入式記憶體裝置,其中該嵌入式記憶體裝置係自旋轉移力矩記憶體 (spin-torque transfer memory,STTM)裝置。
  17. 一種形成積體電路的方法,該方法包含:沉積磁性隧道接面(magnetic tunnel junction,MTJ)層於基材上,該MTJ層包含固定磁性層、自由磁性層及設置於該固定磁性層及該自由磁性層之間的隧道阻障層;沉積第一導電層於該自由磁性層上;沉積絕緣層於該第一導電層上,其中該絕緣層為介電材料;沉積導電硬遮罩層於該絕緣層上;以及蝕刻該導電硬遮罩層以及該絕緣層;共形地沉積該第二導電層在該導電硬遮罩層和該第一導電層之上,使得該第二導電層係在該導電硬遮罩層以及該絕緣層之側壁上;蝕刻該第二導電層以形成圍繞該絕緣層的至少一部分之導電間隔物;以及蝕刻該MTJ層。
  18. 一種形成積體電路的方法,該方法包含:沉積磁性隧道接面(magnetic tunnel junction,MTJ)層於基材上,該MTJ層包含固定磁性層、自由磁性層及設置於該固定磁性層及該自由磁性層之間的隧道阻障層;沉積隧道材料層在該自由磁性層上;沉積導電硬遮罩層在該隧道材料層上; 蝕刻該導電硬遮罩層;蝕刻該隧道材料層,其中該隧道材料層在該自由磁性層以及該導電硬遮罩層之間具有內部部分,該內部部分在該自由磁性層以及該導電硬遮罩層之間具有2nm或更大的厚度;共形地沉積導電層於所得表面形狀上,使得該導電層係在該導電硬遮罩層以及該隧道材料層之側壁上;蝕刻該導電層以形成圍繞該隧道材料層的至少一部分之導電間隔物;以及蝕刻該MTJ層。
  19. 如申請專利範圍第18項所述之方法,其中蝕刻該隧道材料層係完整蝕刻該隧道材料往下至該自由磁性層。
  20. 如申請專利範圍第18項所述之方法,其中蝕刻該隧道材料層係部份蝕刻該隧道材料,留下該隧道材料的薄部分於該自由磁性層,該薄部分在厚部分的任一側。
  21. 如申請專利範圍第20項所述之方法,其中該隧道材料的該薄部分具有1nm或更小之厚度,以及該隧道材料的該厚部分具有5nm或更大之厚度。
TW104103727A 2014-03-26 2015-02-04 形成具有環狀接觸之自旋轉移力矩記憶體(sttm)元件的技術 TWI576836B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/031854 WO2015147813A1 (en) 2014-03-26 2014-03-26 Techniques for forming spin-transfer torque memory (sttm) elements having annular contacts

Publications (2)

Publication Number Publication Date
TW201603015A TW201603015A (zh) 2016-01-16
TWI576836B true TWI576836B (zh) 2017-04-01

Family

ID=54196134

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104103727A TWI576836B (zh) 2014-03-26 2015-02-04 形成具有環狀接觸之自旋轉移力矩記憶體(sttm)元件的技術

Country Status (6)

Country Link
US (1) US9779794B2 (zh)
EP (1) EP3123536B1 (zh)
KR (1) KR102249872B1 (zh)
CN (1) CN106104827B (zh)
TW (1) TWI576836B (zh)
WO (1) WO2015147813A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147813A1 (en) 2014-03-26 2015-10-01 Intel Corporation Techniques for forming spin-transfer torque memory (sttm) elements having annular contacts
WO2015147855A1 (en) 2014-03-28 2015-10-01 Intel Corporation Techniques for forming spin-transfer torque memory having a dot-contacted free magnetic layer
KR102482373B1 (ko) * 2015-11-24 2022-12-29 삼성전자주식회사 자기 저항 메모리 장치 및 그 제조 방법
WO2018182651A1 (en) * 2017-03-30 2018-10-04 Intel Corporation Perpendicular spin transfer torque memory (psttm) devices with enhanced anisotropy and methods to form the same
WO2019049244A1 (ja) * 2017-09-06 2019-03-14 Tdk株式会社 トンネル磁気抵抗効果素子及び磁気メモリ
KR102368033B1 (ko) 2017-09-20 2022-02-25 삼성전자주식회사 자기 저항 메모리 소자의 제조 방법
CN111226312B (zh) * 2017-10-16 2024-01-05 Tdk株式会社 隧道磁阻效应元件、磁存储器及内置型存储器
US10446743B2 (en) 2018-01-11 2019-10-15 Qualcomm Incorporated Double-patterned magneto-resistive random access memory (MRAM) for reducing magnetic tunnel junction (MTJ) pitch for increased MRAM bit cell density
US10886461B2 (en) * 2018-09-18 2021-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Highly physical etch resistive photoresist mask to define large height sub 30nm via and metal hard mask for MRAM devices
US10497858B1 (en) * 2018-12-21 2019-12-03 Applied Materials, Inc. Methods for forming structures for MRAM applications
US11127896B2 (en) * 2019-01-18 2021-09-21 Everspin Technologies, Inc. Shared spin-orbit-torque write line in a spin-orbit-torque MRAM
WO2020150451A1 (en) 2019-01-18 2020-07-23 Everspin Technologies, Inc. Magnetoresistive stack/structure and methods therefor
US11094878B2 (en) * 2019-06-18 2021-08-17 International Business Machines Corporation Short circuit reduction in magnetic tunnel junctions
CN112750943A (zh) * 2019-10-30 2021-05-04 上海磁宇信息科技有限公司 磁性隧道结结构及制作方法
US11223008B2 (en) * 2019-11-27 2022-01-11 International Business Machines Corporation Pillar-based memory hardmask smoothing and stress reduction
US11495743B2 (en) 2020-05-05 2022-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Non-volatile memory device and manufacturing technology
US20240130243A1 (en) * 2022-10-17 2024-04-18 International Business Machines Corporation Magnetic tunnel junction device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050023581A1 (en) * 2003-07-29 2005-02-03 International Business Machines Corporation Magnetic random access memory and method of fabricating thereof
WO2010080510A1 (en) * 2009-01-09 2010-07-15 Micron Technology, Inc. Stt-mram cell structures
US20100276768A1 (en) * 2009-04-30 2010-11-04 International Business Machines Corporation Sidewall coating for non-uniform spin momentum-transfer magnetic tunnel junction current flow
US20110169112A1 (en) * 2010-01-14 2011-07-14 Qualcomm Incorporated Composite Hardmask Architecture and Method of Creating Non-Uniform Current Path for Spin Torque Driven Magnetic Tunnel Junction
US20110235217A1 (en) * 2010-03-29 2011-09-29 Qualcomm Incorporated Fabricating A Magnetic Tunnel Junction Storage Element
WO2013095357A1 (en) * 2011-12-20 2013-06-27 Intel Corporation Method for reducing size and center positioning of magnetic memory element contacts
US20130336045A1 (en) * 2011-12-19 2013-12-19 Charles C. Kuo Spin transfer torque memory (sttm) device with half-metal and method to write and read the device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911156B2 (en) * 2003-04-16 2005-06-28 Freescale Semiconductor, Inc. Methods for fabricating MRAM device structures
US8593862B2 (en) * 2007-02-12 2013-11-26 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
KR101527533B1 (ko) * 2009-01-09 2015-06-10 삼성전자주식회사 자기 메모리 소자의 형성방법
US9019758B2 (en) * 2010-09-14 2015-04-28 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers
WO2015147813A1 (en) 2014-03-26 2015-10-01 Intel Corporation Techniques for forming spin-transfer torque memory (sttm) elements having annular contacts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050023581A1 (en) * 2003-07-29 2005-02-03 International Business Machines Corporation Magnetic random access memory and method of fabricating thereof
WO2010080510A1 (en) * 2009-01-09 2010-07-15 Micron Technology, Inc. Stt-mram cell structures
US20100276768A1 (en) * 2009-04-30 2010-11-04 International Business Machines Corporation Sidewall coating for non-uniform spin momentum-transfer magnetic tunnel junction current flow
US20110169112A1 (en) * 2010-01-14 2011-07-14 Qualcomm Incorporated Composite Hardmask Architecture and Method of Creating Non-Uniform Current Path for Spin Torque Driven Magnetic Tunnel Junction
US20110235217A1 (en) * 2010-03-29 2011-09-29 Qualcomm Incorporated Fabricating A Magnetic Tunnel Junction Storage Element
US20130336045A1 (en) * 2011-12-19 2013-12-19 Charles C. Kuo Spin transfer torque memory (sttm) device with half-metal and method to write and read the device
WO2013095357A1 (en) * 2011-12-20 2013-06-27 Intel Corporation Method for reducing size and center positioning of magnetic memory element contacts

Also Published As

Publication number Publication date
EP3123536B1 (en) 2019-03-13
EP3123536A4 (en) 2017-11-15
CN106104827A (zh) 2016-11-09
US20160351238A1 (en) 2016-12-01
US9779794B2 (en) 2017-10-03
KR102249872B1 (ko) 2021-05-11
WO2015147813A1 (en) 2015-10-01
CN106104827B (zh) 2019-04-16
EP3123536A1 (en) 2017-02-01
KR20160137520A (ko) 2016-11-30
TW201603015A (zh) 2016-01-16

Similar Documents

Publication Publication Date Title
TWI576836B (zh) 形成具有環狀接觸之自旋轉移力矩記憶體(sttm)元件的技術
US10580973B2 (en) Spin-transfer torque memory (STTM) devices having magnetic contacts
US10707409B2 (en) Techniques for forming spin-transfer torque memory having a dot-contacted free magnetic layer
US10529919B2 (en) Method of manufacturing a magnetoresistive random access memory device using hard masks and spacers
CN112750856B (zh) 半导体器件及其形成方法
US9312476B2 (en) Magnetic memory
TW201926337A (zh) 半導體裝置及其製造方法
US20180261649A1 (en) Forming self-aligned contacts on pillar structures
US20200144498A1 (en) Bottom electrode for semiconductor memory device
US20170069832A1 (en) Magnetoresistive memory devices and methods of manufacturing the same
US20230060906A1 (en) Mram stack with reduced height
US11217742B2 (en) Bottom electrode for semiconductor memory device
US20230144157A1 (en) Etching of magnetic tunnel junction (mtj) stack for magnetoresistive random-access memory (mram)
US20230371275A1 (en) Method of forming different types of memory devices